Gleichungssysteme mit zwei Variablen
|
|
|
- Leopold Fleischer
- vor 9 Jahren
- Abrufe
Transkript
1 Gleichungssysteme mit zwei Variablen Eine alte chinesische Aufgabe lautet: In einem Stall befinden sich 5 Tiere, und zwar Hühner und Kaninchen. Die Tiere haben zusammen 9 Beine. Wie viele Hühner und wie viele Kaninchen sind in dem Stall? Um erkennen zu können, wie ein Gleichungssystem gelöst werden kann, betrachten wir zunächst ein einfacheres Gleichungssystem: Die Addition der linken und rechten Seiten führt zu einer Gleichung, die nur noch eine Variable enthält und daher direkt gelöst werden kann. x = wird in eine Gleichung, z.b. x+y = 5, eingesetzt, um y = 1 zu erhalten. Betrachten wir nun ein allgemeineres Gleichungssystem: Durch geeignete Multiplikation kann erreicht werden, dass nach der Addition eine Variable herausfällt. Das folgende Gleichungssystem soll graphisch gelöst werden. x + y = 1 x y = 1 Lösungsansatz: Sei x die Anzahl der Hühner und y die Anzahl der Kaninchen. Die Fragestellung führt zu dem Gleichungssystem: x + y = 5 x + y = 9 x + y = 5 x y = 1 x = x = y = 1 5x + y = 9 x y = 15x + 6y = 7 x 6y = y = y Hierzu lösen wir die Gleichungen nach y auf und erhalten: y = x+ y = x 1 S( ) 1 Weitere Aufgaben: (rechnerische Lösung) a) 7x y = 11 5x + 8y = 18 b) x y = 9 5 x + 1 y = x -1 c) 0 (y +) x = 6 (y 5) d) (x ) = 8 y 5 (x ) = 6 y 1
2 Gleichungssysteme mit zwei Variablen Eine alte chinesische Aufgabe lautet: In einem Stall befinden sich 5 Tiere, und zwar Hühner und Kaninchen. Die Tiere haben zusammen 9 Beine. Wie viele Hühner und wie viele Kaninchen sind in dem Stall? Um erkennen zu können, wie ein Gleichungssystem gelöst werden kann, betrachten wir zunächst ein einfacheres Gleichungssystem: Die Addition der linken und rechten Seiten führt zu einer Gleichung, die nur noch eine Variable enthält und daher direkt gelöst werden kann. x = wird in eine Gleichung, z.b. x+y = 5, eingesetzt, um y = 1 zu erhalten. Betrachten wir nun ein allgemeineres Gleichungssystem: Durch geeignete Multiplikation kann erreicht werden, dass nach der Addition eine Variable herausfällt. Das folgende Gleichungssystem soll graphisch gelöst werden. x + y = 1 x y = 1 Lösungsansatz: Sei x die Anzahl der Hühner und y die Anzahl der Kaninchen. Die Fragestellung führt zu dem Gleichungssystem: x + y = 5 x + y = 9 x + y = 5 x y = 1 x = x = y = 1 5x + y = 9 x y = 15x + 6y = 7 x 6y = y = y Hierzu lösen wir die Gleichungen nach y auf und erhalten: y = x+ y = x 1 S( ) 1 Weitere Aufgaben: (rechnerische Lösung) a) 7x y = 11 5x + 8y = 18 c) 0 (y +) x = 6 (y 5) b) d) x y = 9 5 x + 1 y = 5 (x ) = 8 y 5 (x ) = 6 y -1 1 x -1 Lösungen: a) x = ; y = 1 b) 0; y = c) ; y = 6 d) ; y = 0 Die Lösung der chinesischen Aufgabe lautet: x = ; y = 1
3 Gleichungssysteme mit dem GTR lösen 5x + y = 9 x y = Um Gleichungssysteme mit dem GTR zu lösen, wird zunächst die Koeffizientenmatrix eingegeben. Das Gleichungssystem muss in der Normalform vorliegen: Variablen links mit gleicher Reihenfolge, Zahlen rechts. 5 9 Der GTR liefert das Ergebnis in der Form: Dies entspricht dem Gleichungssystem in der sogenannten Diagonalform. 1x + 0y = 1 0x + 1y = oder kurz: y = Jedes Gleichungssystem kann durch wiederholtes a) Multiplizieren einer Gleichung mit einer Zahl, b) Addieren zweier Gleichungen (jeweils rechte und linke Seiten) auf die Diagonalform gebracht werden. Löse mit dem GTR: 5x + y = 1 x + 7y = Ergebnis:, y = 6 Mit nd MATRIX EDIT werden die Matrix-Koeffizienten eingegeben. bedeutet: Zeilen (waagerecht), Spalten (senkrecht). Editor mit nd Quit verlassen. Mit nd MATRIX MATH B:rref([A]) wird das LGS gelöst. nd MATRIX NAMES 1: liefert z.b. [A], MATH 1: Frac versucht Brüche zu erzeugen. rref reduced row (Zeile) echelon form (Treppen- oder Stufenform)
4 Köpfe-Beine-Aufgabe Die chinesische Aufgabe kann einfacher gelöst werden, z. B. mit einer innerer Anschauung, die folgendermaßen aussehen könnte (auch große Mathematiker haben in Bildern gedacht): Gegeben: Anzahl Beine, Anzahl Köpfe Betrachte: Anzahl Beine Anzahl Köpfe (achte auf die Beine) und teile das Ergebnis durch : Anzahl Beine Anzahl Köpfe Dies ergibt die Anzahl der Vierbeiner. Eine Umformung liefert eine weitere Möglichkeit: Anzahl Beine Anzahl Köpfe = Anzahl Beine Anzahl Köpfe Betrachte: Anzahl Beine und vermindere das Ergebnis um Anzahl Köpfe :
5 Weg zum Additionsverfahren Vorüberlegung 1 + = + = = 10 } + a = b a = c 0 = b+c } + a = b c = d a+c = b+d } + Wende diese Überlegung auf die Gleichungssysteme an, so dass eine Variable beim Addieren herausfällt. Beachte, eine Gleichung (rechte und linke Seite) kann mit einer Zahl multipliziert werden. a) x y = 5 x + y = 11 b) x y = 1 x + y = 10 c) x y = x + y = d) x + 5y = 1 x + y = 10 5
6 a) x y = 5 x + y = 11 x = 8 y = b) x y = 1 x + y = 10 x = 7 y = c) x y = ( ) x + y = x = 5 y = 1 d) x + 5y = 1 (z.b.) x + y = 10 ( 5) y = 6
7 Gleichungssysteme mit Parametern 1. x + y = 1 (1 a)x ay =. ax + y = a x + 1 b y = 1 Ergebnisse 1. x = +a y = 1 a. x = ab a b = ab b a, y = a b a b a b 7
Merkhilfe Grundwissen
Merkhilfe Grundwissen 1. Umkreis eines Dreiecks Inkreis 2. gleichschenkliges Dreieck gleichseitiges Dreieck Parallelogramm Trapez Raute Drachenviereck 3. x 2 + px + q = 0 pq-formel x 1/2 =? x 4 7x 2 +
10 Lineare Gleichungssysteme
ChrNelius : Lineare Algebra I (WS 2004/05) 1 10 Lineare Gleichungssysteme (101) Bezeichnungen: Ein System a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 ( ) a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a
Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix
Inhaltsverzeichnis Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Auf dieser Seite werden Matrizen und Vektoren fett gedruckt, um sie von Zahlen zu unterscheiden. Betrachtet wird das
Inhaltsverzeichnis. Inhaltsverzeichnis. 3
Inhaltsverzeichnis Inhaltsverzeichnis Vorwort 5 1 Grundsätzliches 6 1.1 Erläuterungen zur Schreibweise.......................... 6 1.2 Wichtige Tasten.................................. 6 1.3 Grad und Bogenmaß................................
TI-89. Gleichungssysteme
TI-89 Gleichungssysteme Hans Berger 005 Lineare Gleichungssysteme Der TI-89 kann beliebige Objekte in Variable speichern, auch ganze Gleichungen. Man kann somit beliebige Gleichungen z.b. in g1, g, g3,
Klassenarbeit zu linearen Gleichungssystemen
Klassenarbeit zu linearen Gleichungssystemen Aufgabe : Veranschauliche alle Lösungen der Gleichung 3x + 5y = 0 in einem Koordinatensystem. Bestimme zwei Lösungspaare der Gleichung. Aufgabe : Bestimme rechnerisch
Definition, Rechenoperationen, Lineares Gleichungssystem
Bau und Gestaltung, Mathematik, T. Borer Aufgaben /3 Aufgaben Matrizen Definition, Rechenoperationen, Lineares Gleichungssystem Lernziele - die Bezeichnung der Matrixelemente kennen und verstehen. - den
Gemischte Aufgaben : Gleichungssysteme 1. Aufgabe
Gemischte Aufgaben : Gleichungssysteme 1. Aufgabe 1) 2) 3) 4) 5) 6) 7) 8) 2. Aufgabe Wie viele Hühner und Schweine besitzt Herr Müller, wenn die Tiere zusammen Beine haben? Bestimmen Sie die Lösung rechnerisch
Definition, Rechenoperationen, Lineares Gleichungssystem
Bau und Gestaltung, Mathematik, T. Borer Aufgaben / Aufgaben Matrizen Definition, Rechenoperationen, Lineares Gleichungssystem Lernziele - die Bezeichnung der Matrixelemente kennen und verstehen. - den
A2.3 Lineare Gleichungssysteme
A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen
Corinne Schenka Vorkurs Mathematik WiSe 2012/13
4. Lineare Gleichungssysteme Ein lineares Gleichungssystem ist ein System aus Gleichungen mit Unbekannten, die nur linear vorkommen. Dieses kann abkürzend auch in Matrizenschreibweise 1 notiert werden:
Wissen und Fertigkeiten Berthold Mersch
Wissen und Fertigkeiten Y= WINDOW ZOOM TRACE GRAPH TBLSET TABLE CALC DRAW Y= Darstellung: Stil Darstellung: Ja/Nein Term: Variable WINDOW? GRAPH ZOOM Wähle den Mittelpunkt der Vergrößerung/Verkleinerung
Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw.
Kapitel 5 Lineare Algebra 5 Lineare Gleichungssysteme und Matrizen Man begegnet Systemen von linearen Gleichungen in sehr vielen verschiedenen Zusammenhängen, etwa bei Mischungsverhältnissen von Substanzen
Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw.
Kapitel 5 Lineare Algebra 51 Lineare Gleichungssysteme und Matrizen Man begegnet Systemen von linearen Gleichungen in sehr vielen verschiedenen Zusammenhängen, etwa bei Mischungsverhältnissen von Substanzen
1 Lineare Gleichungssysteme
1 Lineare Gleichungssysteme Didaktische Hinweise Diese Station ist ein Unterrichtsbeispiel zur Einführung von Linearen Gleichungssystemen. Auf vier sehr detaillierten Arbeitsblättern werden die Problemstellung
Lineare Gleichungen mit 2 Variablen
Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen sind sehr eng verwandt mit linearen Funktionen. Die Funktionsgleichung einer linearen Funktion f(x) = m x+q m: Steigung, q: y Achsenabschnitt
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Algebra: Lineare Gleichungssysteme und Matrizen
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lineare Algebra: Lineare Gleichungssysteme und Matrizen Das komplette Material finden Sie hier: School-Scout.de Thema: Lineare Algebra:
Analytische Geometrie Lehrbuch. Skriptum zum Vorbereitungskurs
Analytische Geometrie Lehrbuch Skriptum zum Vorbereitungskurs WICHTIGER HINWEIS: Ich bitte den Eigentümer dieses Skriptes, weder das gesamte Skript noch Teilauszüge daraus zu kopieren, einzuscannen oder
Der exakte Schnittpunkt ist aus der Grafik nur schwer heraus zu lesen. Es ist daher erfordelich, Gleichungssysteme auch rechnerisch lösen zu können!
Das Problem des grafischen Lösungsverfahrens Die Lösungsmenge eines linearen Gleichungssystems in 2 Variablen lässt sich mit der grafischen Lösungsmethode nicht immer genau bestimmen. Die folgende Grafik
Mathematikaufgaben > Analysis > Bestimmungsaufgabe
Michael Buhlmann Mathematikaufgaben > Analysis > Bestimmungsaufgabe Aufgabe: Eine allgemeine Parabel Grades f(x) = ax +bx+c verläuft durch die Punkte P(-4 65), Q(1 5) und R( -1) Wie lautet die Funktionsgleichung
Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte.
Lineare Gleichungssysteme. Einleitung Lineare Gleichungssysteme sind in der Theorie und in den Anwendungen ein wichtiges Thema. Theoretisch werden sie in der Linearen Algebra untersucht. Die Numerische
Gleichungsarten. Quadratische Gleichungen
Gleichungsarten Quadratische Gleichungen Normalform: Dividiert man die allgemeine Form einer quadratischen Gleichung durch a, erhält man die Normalform der quadratischen Gleichung. x 2 +px+q=0 Lösungsformel:
Lineare Gleichungssysteme (LGS)
Lineare Gleichungssysteme (LGS) Was ist ein lineares Gleichungssystem? Treten in irgendeinem Zusammenhang mehrere Gleichungen auf, dann sind diese Gleichungen in der Regel unabhängig. Das Wort unabhängig
Ferienkurs Mathematik für Physiker I Skript Teil 3 ( )
Ferienkurs Mathematik für Physiker I WS 2016/17 Ferienkurs Mathematik für Physiker I Skript Teil 3 (29032017) 1 Lineare Gleichungssysteme Oft hat man es in der Physik mit unbekannten Größen zu tun, für
3. Übungsblatt zur Lineare Algebra I für Physiker
Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte
Analytische Geometrie mit dem Voyage 1
Analytische Geometrie mit dem Voyage. Vektoren Vektoren lassen sich definieren in eckigen Klammern. Setzt man ein Semikolon zwischen die einzelnen Komponenten, so ergibt sich ein Spaltenvektor. Ein Spaltenvektor
Begleitbuch für Mathematik Oberstufe für die Abiturprüfungen 2018 Baden-Württemberg - allg. Gymnasium. Teilgebiet Analytische Geometrie
Begleitbuch für Mathematik Oberstufe für die Abiturprüfungen 08 Baden-Württemberg - allg. Gymnasium Teilgebiet Analytische Geometrie Dipl.-Math. Alexander Schwarz Im Weinberg 9 7489 Cleebronn E-Mail: [email protected]
Aufgaben zu linearen Gleichungssystemen
Aufgaben zu linearen Gleichungssystemen Folgende lineare Gleichungssysteme sollen gelöst werden: a) x 2y 3z 3 2x 4y z 1 4x 2y z 9 b) 2x y 4 2y 2z 5 x z 6 c) 2x 4y 3z 5 4x 2y 2z 2 6x 2y 4z 7 d) x 2y 2z
Lineare Gleichungssystem
Lineare Gleichungssystem 8. Juli 07 Inhaltsverzeichnis Einleitung Der Gauß-Algorithmus 4 3 Lösbarkeit von Gleichungssystemen 6 Einleitung Wir haben uns bisher hauptsächlich mit dem Finden von Nullstellen
Lineare Gleichungssysteme
Poelchau-Oberschule Berlin A. Mentzendorff September 2007 Lineare Gleichungssysteme Inhaltsverzeichnis 1 Grundlagen 2 2 Das Lösungsverfahren von Gauß 4 3 Kurzschreibweise und Zeilensummenkontrolle 6 4
2.2 Lineare Gleichungssysteme (LGS)
2.2 Lineare Gleichungssysteme (LGS) Definition 2.2.. Ein LGS über einem Körper K von m Gleichungen in n Unbekannten x,..., x n ist ein Gleichungssystem der Form a x + a 2 x 2 +... + a n x n = b a 2 x +
Beispiele 1. Gegeben ist das lineare System. x+4y +3z = 1 2x+5y +9z = 14 x 3y 2z = 5. Die erweiterte Matrix ist
127 Die Schritte des Gauß-Algorithmus sind nun die Folgenden: 1. Wir bestimmen die am weitesten links stehende Spalte, die Einträge 0 enthält. 2. Ist die oberste Zahl der in Schritt 1 gefundenen Spalte
Formelsammlung Mathematik Grundkurs Inhalt
Formelsammlung Mathematik Grundkurs Inhalt Inhalt...1 Trigonometrie Grundlagen... Vektoren...3 Skalarprodukt...4 Geraden...5 Abstandsberechnungen...6 Ebenen...7 Lineare Gleichungssysteme (LGS)...8 Gauß'sches
Lineare Gleichungssysteme I (Matrixgleichungen)
Lineare Gleichungssysteme I (Matrixgleichungen Eine lineare Gleichung mit einer Variablen x hat bei Zahlen a, b, x die Form ax = b. Falls hierbei der Kehrwert von a gebildet werden darf (a 0, kann eindeutig
Gruber I Neumann. Erfolg in VERA-8. Vergleichsarbeit Mathematik Klasse 8 Gymnasium
Gruber I Neumann Erfolg in VERA-8 Vergleichsarbeit Mathematik Klasse 8 Gymnasium . Zahlen Zahlen Tipps ab Seite, Lösungen ab Seite 0. Zahlen und Zahlenmengen Es gibt verschiedene Zahlenarten, z.b. ganze
Lineare Gleichungssysteme und Matrizen
Kapitel 11 Lineare Gleichungssysteme und Matrizen Ein lineares Gleichungssystem (lgs) mit m linearen Gleichungen in den n Unbekannten x 1, x 2,..., x n hat die Gestalt: Mit a 11 x 1 + a 12 x 2 + a 13 x
Lösungen zum 5. Aufgabenblatt
SS 2012, Lineare Algebra 1 Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com
Download. Basics Mathe Gleichungen mit Klammern und Binomen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen.
Download Michael Franck Basics Mathe Gleichungen mit Klammern und Binomen Einfach und einprägsam mathematische Grundfertigkeiten wiederholen Downloadauszug aus dem Originaltitel: Basics Mathe Gleichungen
1 Transponieren, Diagonal- und Dreiecksmatrizen
Technische Universität München Thomas Reifenberger Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 2008/09 1 Transponieren, Diagonal- und Dreiecksmatrizen Definition 11 Transponierte Matrix
BEISPIELAUFGABEN ZUM ONLINE-KURS MATHEMATIK-ÜBUNGEN - MATRIZEN - MULTIPLIKATION
BEISPIELAUFGABEN ZUM ONLINE-KURS MATHEMATIK-ÜBUNGEN - MATRIZEN - MULTIPLIKATION Dieser Kurs beinhaltet: * Matrizen multiplizieren * bestimmte Elemente einer Produktmatrix bestimmen * Umformung eines linearen
Kapitel 9: Lineare Gleichungssysteme
Kapitel 9: Lineare Gleichungssysteme Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) Kapitel 9: Lineare Gleichungssysteme 1 / 15 Gliederung 1 Grundbegriffe
Nur Matrizen gleicher Dimension können addiert oder subtrahiert werden. Zur Berechnung werden zwei Matrizen A und B in den Matrix-Editor eingegeben.
R. Brinkmann http://brinkmann-du.de Seite 1 14.02.2014 Casio fx-cg20 Operationen mit Matrizen Bei nachfolgend beschriebenen Matrizenoperationen wird davon ausgegangen, dass die Eingabe von Matrizen in
Inhaltsverzeichnis. Inhaltsverzeichnis. 3
Inhaltsverzeichnis Inhaltsverzeichnis Vorwort 4 1 Grundsätzliche Tipps 5 1.1 Erläuterungen zur Schreibweise.......................... 5 1.2 Die Menüstruktur.................................. 5 1.3 Wichtige
1.2 Gauß-Algorithmus zum Lösen linearer Gleichungssysteme
. Gauß-Algorithmus zum Lösen linearer Gleichungssysteme. Gauß-Algorithmus zum Lösen linearer Gleichungssysteme Die Bestimmung einer Polynomfunktion zu gegebenen Eigenschaften erfordert oft das Lösen eines
Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren
Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren oder: Wie rechnet eigentlich der TI 84, wenn lineare Gleichungssysteme gelöst werden? Hier wird an einem Beispiel das Gaußsche Verfahren zum
Lineare Algebra und Numerische Mathematik für D-BAUG
R Käppeli L Herrmann W Wu Herbstsemester 26 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 2 Aufgabe 2 Welche der folgenden Aussagen sind korrekt? (i) Jedes
Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7
Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Timo Stöcker Erstsemestereinführung Informatik TU Dortmund 22. März 2011 Heute Themen Lineare Gleichungssysteme Matrizen Timo Stöcker https://fsinfo.cs.tu-dortmund.de/studis/ese/vorkurse/mathe
Das Lösen linearer Gleichungssysteme
Das Lösen linearer Gleichungssysteme Lineare Gleichungen Die Gleichung a 1 x 1 + a 2 x 2 +... + a n x n = b ist eine lineare Gleichung in den n Variablen x 1, x 2,..., x n. Die Zahlen a 1, a 2,..., a n
Lineare Algebra 1. Roger Burkhardt
Lineare Algebra 1 Roger Burkhardt [email protected] Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 1 Einführung Lineare Gleichungen Definition
Der Gaußsche Algorithmus
Der Gaußsche Algorithmus Der Gaußsche Algorithmus beinhaltet das Vertauschen der Zeilen der erweiterten Koeffizientenmatrix (A, b) und das Additionsverfahren. Ziel ist es, möglichst viele Nullen unterhalb
Lineare Gleichungen. Mathematik-Repetitorium. 3.1 Eine Unbekannte. 3.2 Zwei oder drei Unbekannte. 3.3 Allgemeine lineare Gleichungssysteme
Lineare Gleichungen 3.1 Eine Unbekannte 3.2 Zwei oder drei Unbekannte 3.3 Allgemeine lineare Gleichungssysteme Lineare Gleichungen 1 Vorbemerkung zu Kapitel 1 Gleichungen (Unbekannte) (Variablen, Parameter)
Lineare Gleichungssysteme
Lineare Gleichungssysteme Lineare Gleichungssysteme Das System a x + a x +... + a n x n = b a x + a x +... + a n x n = b. +. +... +. =. a m x + a m x +... + a mn x n = b m heißt lineares Gleichungssystem
8.2 Invertierbare Matrizen
38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen
6. Vorlesung. Rechnen mit Matrizen.
6. Vorlesung. Rechnen mit Matrizen. In dieser Vorlesung betrachten wir lineare Gleichungs System. Wir betrachten lineare Gleichungs Systeme wieder von zwei Gesichtspunkten her: dem angewandten Gesichtspunkt
1 Einführung Gleichungen und 2 Unbekannte Gleichungen und 3 Unbekannte... 4
Wirtschaftswissenschaftliches Zentrum 3 Universität Basel Mathematik 2 Dr Thomas Zehrt Lineare Gleichungssysteme Inhaltsverzeichnis Einführung 2 2 Gleichungen und 2 Unbekannte 2 2 3 Gleichungen und 3 Unbekannte
1 Geometrie - Lösungen von linearen Gleichungen
Übungsmaterial Geometrie - Lösungen von linearen Gleichungen Lineare Gleichungen sind von der Form y = f(x) = 3x + oder y = g(x) = x + 3. Zwei oder mehr Gleichungen bilden ein Gleichungssystem. Ein Gleichungssystem
3 Lineare Gleichungen
Aufgabe 3. Man löse die lineare Gleichung a 2 x b 2 a a(b ax) b + b2 a = a, a b nach der Unbekannten x auf und diskutiere die möglichen Fälle. a 2 x b 2 a a(b ax) b + b2 a = a a b a 2 bx b 3 a 2 b + a
Übungsaufgaben zu linearen Gleichungssysteme. Löse das lineare Gleichungssystem mit dem Einsetzungsverfahren! a)
Übungsaufgaben zu linearen Gleichungssysteme Aufgabe 1: Löse das lineare Gleichungssystem mit dem Einsetzungsverfahren! a) 1. 2x 2y = 4 2. 5x + y = 11 b) 1. 2x y = 18 2. 6x + 3y = 22 c) 1. x = 5 + 6y 2.
Zahlensystem und Grundrechnen Lineare Gleichungssysteme
1. Seite 1 bestehen aus Gleichungen mit jeweils Variablen. Im Koordinatensystem kann man im Schnittpunkt der beiden Graden die Lösung erkennen, die für beide Gleichungen zutrifft. Diese Gleichungssysteme
Lineare Gleichungssysteme
Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Übersicht Lineare Gleichungssystem mit 2 Variablen 1 Lineare Gleichungssystem mit 2 Variablen Beispiele 2 Fakultät Grundlagen Folie: 2 Beispiel I Lineare
Aufgabe 1 (a) Bestimmen Sie die Schnittgerade der beiden Ebenen gegeben durch 3x y 2z 5 = 0 und x y 4z 3 = 0.
Mathematik I für Naturwissenschaften Dr. Christine Zehrt 22.11.18 Übung 10 (für Pharma/Geo/Bio) Uni Basel Besprechung der Lösungen: 26. November 2018 in den Übungsstunden Aufgabe 1 (a) Bestimmen Sie die
5 Lineare Gleichungssysteme und Determinanten
5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von
Kapitel 15 Lineare Gleichungssysteme
Kapitel 15 Lineare Gleichungssysteme Kapitel 15 Lineare Gleichungssysteme Mathematischer Vorkurs TU Dortmund Seite 1 / 27 Kapitel 15 Lineare Gleichungssysteme Definition 15.1 (Lineares Gleichungssystem
Brückenkurs Elementarmathematik
Brückenkurs Elementarmathematik IV. Ungleichungen November 13, 2013 Inhalt 1 Ungleichungen 2 Umformungen von Ungleichungen 2.1 Äquivalenzumformungen 2.2 Addition und Multiplikation von Ungleichungen 3
Übungsaufgaben mit Lösungen zu Lineargleichungssystemen
Übungsaufgaben mit Lösungen zu Lineargleichungssystemen Wolfgang Kippels 6. März 2014 Inhaltsverzeichnis 1 Einleitung 3 2 Übungsaufgaben 3 2.1 Aufgabe 1................................... 3 2.2 Aufgabe
6 Lineare Gleichungssysteme
6 LINEARE GLEICHUNGSSYSTEME 3 6 Lineare Gleichungssysteme Unter einem linearen Gleichungssystem verstehen wir ein System von Gleichungen α ξ + + α n ξ n = β α m ξ + + α mn ξ n = β m mit Koeffizienten α
Lösen linearer Gleichungssysteme
Lösen linearer Gleichungssysteme Eine Aufgabe aus einem alten chinesischen Rechenbuch (600 v. Chr.) In einem Käfig sind Hasen und Hühner eingesperrt. Die Tiere haben zusammen 5 Köpfe und 94 Füße. Wie viele
Lineare Gleichungssysteme
Lineare Gleichungssysteme Wir befassen uns anschließend mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren einmal den begrifflichen Aspekt, d.h.
Test 2, Musterlösung. Name, Klasse: Semester: 1 Datum: Teil ohne Matlab
Test 2, Musterlösung Lineare Algebra [email protected] Institut für Mathematik und Physik Name, Klasse: Semester: Datum: 2..26. Teil ohne Matlab. Lineare Abbildungen Zeigen Sie, dass die folgenden Abbildungen
Stundenplanung Verfahren zum Lösen von linearen Gleichungssystemen
Stundenplanung Verfahren zum Lösen von linearen Gleichungssystemen Das graphische Lösen von linearen Gleichungssystemen hat in der Praxis einige Nachteile, deshalb verwendet man hier eher die rechnerischen
9.2 Invertierbare Matrizen
34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen
Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018
(Analysis und lineare Algebra) im Sommersemester 2018 5. April 2018 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html
Grundfertigkeit 2: Lineare GleichungsSysteme (LGS)
Grundfertigkeit 2: Lineare GleichungsSysteme (LGS) Die Grundfertigkeit Lineare Gleichungssysteme (LGS) hast du sehr wahrscheinlich bereits in der vorigen Schule behandelt (üblicherweise werden Lineare
Lineare Gleichungssysteme. 1-E Ma 1 Lubov Vassilevskaya
Lineare Gleichungssysteme 1-E Ma 1 Lubov Vassilevskaya Systeme linearer Funktionen und Gleichungen y = a 1 a 2... a n lineare Funktion Funktion ersten Grades,,..., unabhängige Variablen y abhängige Variable
( ) Lineare Gleichungssysteme
102 III. LINEARE ALGEBRA Aufgabe 13.37 Berechne die Eigenwerte der folgenden Matrizen: ( ) 1 1 0 1 1 2 0 3 0 0, 2 1 1 1 2 1. 1 1 0 3 Aufgabe 13.38 Überprüfe, ob die folgenden symmetrischen Matrizen positiv
Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya
Inverse Matrix -E Ma Lubov Vassilevskaya Inverse Matrix Eine n-reihige, quadratische Matrix heißt regulär, wenn ihre Determinante einen von Null verschiedenen Wert besitzt. Anderenfalls heißt sie singulär.
1 Bestimmung der inversen Matrix
Inhaltsverzeichnis 1 Bestimmung der inversen Matrix Die inverse Matrix A 1 zu einer Matrix A kann nur bestimmt werden, wenn die Determinante der Matrix A von Null verschieden ist. Im folgenden wird die
6.1 Welche Matrix gehört zu der Abbildung?
Kapitel 6 Gleichungssysteme Bisher haben wir nur für spezielle Fälle (Drehungen, Spiegelungen ) die zu einer bekannten Abbildung gehörende Matrix gesucht. Da uns die Abbildung in allen Einzelheiten bekannt
Übungen zum Ferienkurs Lineare Algebra WS 14/15
Übungen zum Ferienkurs Lineare Algebra WS 14/15 Matrizen und Vektoren, LGS, Gruppen, Vektorräume 1.1 Multiplikation von Matrizen Gegeben seien die Matrizen A := 1 1 2 0 5 1 8 7 Berechnen Sie alle möglichen
1.5 lineare Gleichungssysteme
1.5 lineare Gleichungssysteme Inhaltsverzeichnis 1 Was ist ein lineares Gleichungssystem mit zwei Gleichungen und zwei Unbekannten? 2 2 Wie lösen wir ein lineares Gleichungssystem mit zwei Unbekannten?
Basiswissen Matrizen
Basiswissen Matrizen Mathematik GK 32 Definition (Die Matrix) Eine Matrix A mit m Zeilen und n Spalten heißt m x n Matrix: a a 2 a 4 A a 2 a 22 a 24 a 4 a 42 a 44 Definition 2 (Die Addition von Matrizen)
AB2 Lineare Gleichungssysteme (LGS)
AB2 Lineare Gleichungssysteme (LGS) 1) An der Kinokasse 2) In der Kneipe Wie hoch ist der Preis für die Kinokarte eines Erwachsenen, wie viel Dollar kostet die Kinderkarte? Schreibe deinen Lösungsweg auf.
