TI-89. Gleichungssysteme

Größe: px
Ab Seite anzeigen:

Download "TI-89. Gleichungssysteme"

Transkript

1 TI-89 Gleichungssysteme Hans Berger 005

2 Lineare Gleichungssysteme Der TI-89 kann beliebige Objekte in Variable speichern, auch ganze Gleichungen. Man kann somit beliebige Gleichungen z.b. in g1, g, g3, etc. Danach kann man mit den Variabeln weiterrechnen: z.b. g1 g berechnet Gleichung 1 minus Gleichung, oder 3*g berechnet das 3-fache der Gleichung 0.16u 0.04v = u 0.v Beide Gleichungen einzeln eingeben: 0.16x 0.04y = 1 STO g1 ergibt 4 x 5 y = 1 5 zweite Gleichung 0.38x 0.y STO g ergibt 19x 50 11y 50 Da die Gleichungen in Variable abgespeichert wurden, kann man nun z.b. mit der Additionsmethode weiterrechnen: g g Resultat y = mal 76, durch 5 gibt y Mit dem Parameteroperator wird der gefundene y-wert z.b. in Gleichung 1 eingesetzt: g1 y=3 4x 3 = 1 mal 5, plus 3, durch ergibt x = 7 Hans Berger Seite

3 (x 1)(y + 5.5) = (x 3)(y + 5) (y 1)(x + 5.5) = (x 3)y Eingabe der Gleichungen einzeln in g1 und g, wie im vorigen Beispiel Danach expand(g1), STO h1 und expand(g), STO h. Dadurch werden beide Gleichungen ausgerechnet und neu gespeichert, wobei die ursprünglichen Gleichungen (zur späteren Kontrolle) erhalten bleiben: Die nächsten Schritte sind x*y + 3y und ENTER Weiter mit +66 und ENTER Nun noch * und expand( ) Das vereinfachte System ist nun Dies ist die vereinfachte Gleichung Analog Gleichung 1 behandeln 17y 4x = 157 x 18y = 10 Die Lösung erfolgt wie in der ersten. Gleichungen mit Parametern mx + y = m x + y = m+ n + n Hier führt die Additionsmethode am schnellsten zum Ziel (Gleichung 1 Gleichung ) Jetzt noch teilen durch (m-1) und ENTER Der Wert für y wird mit dem Parameteroperator gefunden Hans Berger Seite

4 Nicht lineare Gleichungssysteme TI-89 Gleichungssysteme 1 = 1 x + p x + y q 3 + x + p x + y q mal die Gleichung 1 + Gleichung lässt den -ten Bruchterm und damit auch die Variable y verschwinden: Somit ist x = 1 p. Dies mit dem Parameteroperator in g1 eingesetzt: Hinweise: Die Nenner müssen mit Klammern eingegeben werden Bei der Multiplikation muss das kgv in Klammern stehen Substitution Obige kann auch mit einer Substitution gelöst werden: a = 1 und x + p 1 b = x + y q somit a b = 1 3a + b Weiter wie bei der ersten. Hinweis: Der Rechner beherrscht nur diese indirekte Substitution Systeme mit mehr als 3 Variabeln : 4x 3. 5y + 4z = x + y 5z = x + 4y + 3z 5. Eingabe der drei Gleichungen in g1, g und g3 Die Variable z wird in Schritten eliminiert: 5g1 + 4g und 3g1 4g3: Hans Berger Seite

5 Man könnte auch 5*g1+4*g STO h1 und 3*g1 4*g3 STO h Damit lässt sich bequem weiterrechnen. Resultate kontrollieren: Kleine Eingabefehler führen zu falschen Resultaten. Daher sollte jedes Resultat kontrolliert werden. Dazu bietet der Rechner wieder den Parameteroperator. Im obigen Beispiel lauten die Lösungen x = 0., y = 7 und z = -0.8 Die Kontrolle: Hinweise: 3g1 4g muss mit 3*g1-4*g eingegeben werden Das Vorzeichen (-) darf nicht mit dem Minus verwechselt werden Wenn Resultate nicht als echte Brüche dargestellt werden können ergibt die Kontrolle ev. false obwohl das Resultat stimmt. Dies hängt mit der Anzeigegenauigkeit zusammen. Der Gauss sche Algorithmus oder rref( ) auf dem Taschenrechner Der Gauss sche Algorithmus verwendet Additionen, Subtraktionen und Multiplikationen zur Lösung eines Gleichungssystems. Beispiel: x + y + z = 8 x + y + z = 11 Anwendung des Gauss schen Algorithmus x y z = 1 Wir subtrahieren die zweite Gleichung von der ersten und zweimal die erste von der dritten: y + z = 3 nun multiplizieren wir die zweite mit 1 und addieren sie zur dritten y 3z = 9 Hans Berger Seite

6 y z 4z ersten: x 3z y z z zur zweiten: x y z = 1 = 1 oder auch y z z jetzt subtrahieren wir die zweite von der und zum Schluss addieren wir dreimal die dritte zur ersten und einmal In dieser Form sind die Lösungen bequem abzulesen. Genau nach diesem Algorithmus arbeitet die Catalogfunktion rref() auf dem Taschenrechner. Die Abkürzung rref bedeutet Row Reduce Echelon Form, oder auf deutsch: Zeilenweise Reduktion auf eine geeichte Form. Die Funktion finden Sie auf dem TI-89 im Catalog. Vor dem Aufruf müssen Sie das Zahlenschema (ohne die Variabelnamen) in eine Matrix eingeben. Das Gleichungssystem muss sich in der Grundform befinden, d.h. alle Variabeln links und die Konstanten oder die Parameter rechts. TI 89 APPS Matrix New, unter Type geben Sie Matrix ein und unter Variable z.b. matrix, die Row dimension gibt die Anzahl Gleichungen an und die Col dimension die Anzhl Unbekannte Ein Beispiel: Rechner ein: x1 + 3x + x3 x 4 = 4 4x1 6x + x3 + x 4 = 1 4x1 + 8x + 7x3 + x 4 = 3 x1 + 4x + x3 4x 4 Geben Sie die Matrix nun in Ihren Das Ergebnis: Die Interpretation: x 1 = 7.1, x = -4.8, x 3 = 1.4, x 4 = -1.4 Hans Berger Seite

7 Hier ein Beispiel eines Gleichungssystems mit L = {} Das Ergebnis: u+ v + w = u+ v + w = 6 u 4v w = 6 Die letzte Zeile besagt: 0w = 1, das ist ein Widerspruch, also ist L = {} Hier ein Gleichungssystems mit beliebig vielen Lösungen: Das Ergebnis: x 3y + z = 7 x 4y z = 1 3x y + 4z = 13 Das bedeutet: x + z oder x - z y + z = 1 oder y = 1 z Anders ausgedrückt: Für z kann jede beliebige Zahl eingesetzt werden und für y = 1 -z und für x - z. Weitere Unterlagen finden Sie unter Hans Berger Seite

Gleichungen mit mehreren Unbekannten Kap. 2.5 Seite 124

Gleichungen mit mehreren Unbekannten Kap. 2.5 Seite 124 Gleichungen mit mehreren Unbekannten Kap. 2.5 Seite 24 Gleichungen mit mehreren Unbekannten kennen Sie bereits von den Funktionsgleichungen: y = 3x 4 oder y = x 2 2x + 5. Bereits diese beiden e zeigen,

Mehr

Aufgaben zu linearen Gleichungssystemen

Aufgaben zu linearen Gleichungssystemen Aufgaben zu linearen Gleichungssystemen Folgende lineare Gleichungssysteme sollen gelöst werden: a) x 2y 3z 3 2x 4y z 1 4x 2y z 9 b) 2x y 4 2y 2z 5 x z 6 c) 2x 4y 3z 5 4x 2y 2z 2 6x 2y 4z 7 d) x 2y 2z

Mehr

Das Lösen linearer Gleichungssysteme

Das Lösen linearer Gleichungssysteme Das Lösen linearer Gleichungssysteme Lineare Gleichungen Die Gleichung a 1 x 1 + a 2 x 2 +... + a n x n = b ist eine lineare Gleichung in den n Variablen x 1, x 2,..., x n. Die Zahlen a 1, a 2,..., a n

Mehr

TI-89. Zahlen, Mengen, Terme. Johann Berger

TI-89. Zahlen, Mengen, Terme. Johann Berger TI-89 Zahlen, Mengen, Terme Johann Berger 005 www.johnny.ch Dezimalbrüche Sofern der Rechner auf EXACT eingestellt ist (siehe Einleitung) werden abbrechende Dezimalbrüche als gekürzte normale Brüche dargestellt:

Mehr

Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren

Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren oder: Wie rechnet eigentlich der TI 84, wenn lineare Gleichungssysteme gelöst werden? Hier wird an einem Beispiel das Gaußsche Verfahren zum

Mehr

Gleichungssysteme mit zwei Variablen

Gleichungssysteme mit zwei Variablen Gleichungssysteme mit zwei Variablen Eine alte chinesische Aufgabe lautet: In einem Stall befinden sich 5 Tiere, und zwar Hühner und Kaninchen. Die Tiere haben zusammen 9 Beine. Wie viele Hühner und wie

Mehr

05. Lineare Gleichungssysteme

05. Lineare Gleichungssysteme 05 Lineare Gleichungssysteme Wir betrachten ein System von m Gleichungen in n Unbestimmten (Unbekannten) x 1,, x n von der Form a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + a

Mehr

12 Lineare Gleichungssysteme

12 Lineare Gleichungssysteme 12 12.1 Einführung Ein lineares Gleichungssystem besteht aus mehreren linearen Gleichungen, die verschiedene Variablen enthalten können. Wir werden uns im Wesentlichen auf Gleichungssysteme mit zwei Variablen

Mehr

Lineare Gleichungssysteme. 1-E Ma 1 Lubov Vassilevskaya

Lineare Gleichungssysteme. 1-E Ma 1 Lubov Vassilevskaya Lineare Gleichungssysteme 1-E Ma 1 Lubov Vassilevskaya Systeme linearer Funktionen und Gleichungen y = a 1 a 2... a n lineare Funktion Funktion ersten Grades,,..., unabhängige Variablen y abhängige Variable

Mehr

2.2 Lineare Gleichungssysteme (LGS)

2.2 Lineare Gleichungssysteme (LGS) 2.2 Lineare Gleichungssysteme (LGS) Definition 2.2.. Ein LGS über einem Körper K von m Gleichungen in n Unbekannten x,..., x n ist ein Gleichungssystem der Form a x + a 2 x 2 +... + a n x n = b a 2 x +

Mehr

10 Lineare Gleichungssysteme

10 Lineare Gleichungssysteme ChrNelius : Lineare Algebra I (WS 2004/05) 1 10 Lineare Gleichungssysteme (101) Bezeichnungen: Ein System a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 ( ) a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a

Mehr

6. Vorlesung. Rechnen mit Matrizen.

6. Vorlesung. Rechnen mit Matrizen. 6. Vorlesung. Rechnen mit Matrizen. In dieser Vorlesung betrachten wir lineare Gleichungs System. Wir betrachten lineare Gleichungs Systeme wieder von zwei Gesichtspunkten her: dem angewandten Gesichtspunkt

Mehr

Nur Matrizen gleicher Dimension können addiert oder subtrahiert werden. Zur Berechnung werden zwei Matrizen A und B in den Matrix-Editor eingegeben.

Nur Matrizen gleicher Dimension können addiert oder subtrahiert werden. Zur Berechnung werden zwei Matrizen A und B in den Matrix-Editor eingegeben. R. Brinkmann http://brinkmann-du.de Seite 1 14.02.2014 Casio fx-cg20 Operationen mit Matrizen Bei nachfolgend beschriebenen Matrizenoperationen wird davon ausgegangen, dass die Eingabe von Matrizen in

Mehr

Lineare Gleichungen mit 2 Variablen

Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen sind sehr eng verwandt mit linearen Funktionen. Die Funktionsgleichung einer linearen Funktion f(x) = m x+q m: Steigung, q: y Achsenabschnitt

Mehr

1 Lineare Gleichungssysteme und Matrizen

1 Lineare Gleichungssysteme und Matrizen 1 Lineare Gleichungssysteme und Matrizen Das Studium linearer Gleichungssysteme und ihrer Lösungen ist eines der wichtigsten Themen der linearen Algebra. Wir werden zunächst einige grundlegende Begriffe

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 12 8. Juni 2010 Kapitel 10. Lineare Gleichungssysteme (Fortsetzung) Umformung auf obere Dreiecksgestalt Determinantenberechnung mit dem Gauß-Verfahren

Mehr

A2.3 Lineare Gleichungssysteme

A2.3 Lineare Gleichungssysteme A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Dr. H. Macholdt 7. September 2005 1 Motivation Viele Probleme aus dem Bereich der Technik und der Naturwissenschaften stellen uns vor die Aufgabe mehrere unbekannte Gröÿen gleichzeitig

Mehr

Albert Einstein. Physiker,

Albert Einstein. Physiker, 8 Gleichungssysteme Insofern sich die Sätze der Mathematik auf die Wirklichkeit beziehen, sind sie nicht sicher, und insofern sie sicher sind, beziehen sie sich nicht auf die Wirklichkeit. Mathematische

Mehr

Gruber I Neumann. Erfolg in VERA-8. Vergleichsarbeit Mathematik Klasse 8 Gymnasium

Gruber I Neumann. Erfolg in VERA-8. Vergleichsarbeit Mathematik Klasse 8 Gymnasium Gruber I Neumann Erfolg in VERA-8 Vergleichsarbeit Mathematik Klasse 8 Gymnasium . Zahlen Zahlen Tipps ab Seite, Lösungen ab Seite 0. Zahlen und Zahlenmengen Es gibt verschiedene Zahlenarten, z.b. ganze

Mehr

12 Lineare Gleichungssysteme

12 Lineare Gleichungssysteme 2 2. Einführung Ein lineares Gleichungssystem besteht aus mehreren linearen Gleichungen, die verschiedene Variablen enthalten können. Wir werden uns im Wesentlichen auf Gleichungssysteme mit zwei Variablen

Mehr

Gleichungssysteme ersten Grades lösen

Gleichungssysteme ersten Grades lösen Gleichungssysteme ersten Grades lösen Zwei Gleichungen mit zwei Unbekannten Einsetzungsmethode 18=10a + b 2=0a + b Durch Isolieren von b in der ersten Gleichung ergibt sich b =18 10a. b wird nun in der

Mehr

Lösen von linearen Gleichungen und Gleichungssystemen

Lösen von linearen Gleichungen und Gleichungssystemen - 1 - VB 2004 Lösen von linearen Gleichungen und Gleichungssystemen Inhaltsverzeichnis Lösen von linearen Gleichungen und Gleichungssystemen... 1 Inhaltsverzeichnis... 1 Einführung... 2 Lösen einfacher

Mehr

Vorwort. Marc Peter, Rainer Hofer Berufsschullehrer und Lehrpersonen für Förderangebote

Vorwort. Marc Peter, Rainer Hofer Berufsschullehrer und Lehrpersonen für Förderangebote Vorwort Das mathematische Grundwissen in der Arithmetik dem «Rechnen» kommt in vielen Berufen zur Anwendung. Dieser Band aus der Reihe «Mathematik Basics» bietet Ihnen die Möglichkeit, in Form eines programmierten

Mehr

Lineare Gleichungssysteme mit 2 Variablen

Lineare Gleichungssysteme mit 2 Variablen Lineare Gleichungssysteme mit 2 Variablen Lineare Gleichungssysteme mit 2 Variablen Einzelne lineare Gleichungen mit zwei Variablen Bis jetzt haben wir nur lineare Gleichungen mit einer Unbekannten (x)

Mehr

6.1 Welche Matrix gehört zu der Abbildung?

6.1 Welche Matrix gehört zu der Abbildung? Kapitel 6 Gleichungssysteme Bisher haben wir nur für spezielle Fälle (Drehungen, Spiegelungen ) die zu einer bekannten Abbildung gehörende Matrix gesucht. Da uns die Abbildung in allen Einzelheiten bekannt

Mehr

Aufgabe 1 (a) Bestimmen Sie die Schnittgerade der beiden Ebenen gegeben durch 3x y 2z 5 = 0 und x y 4z 3 = 0.

Aufgabe 1 (a) Bestimmen Sie die Schnittgerade der beiden Ebenen gegeben durch 3x y 2z 5 = 0 und x y 4z 3 = 0. Mathematik I für Naturwissenschaften Dr. Christine Zehrt 22.11.18 Übung 10 (für Pharma/Geo/Bio) Uni Basel Besprechung der Lösungen: 26. November 2018 in den Übungsstunden Aufgabe 1 (a) Bestimmen Sie die

Mehr

Inhaltsverzeichnis Mathematik

Inhaltsverzeichnis Mathematik 1. Mengenlehre 1.1 Begriff der Menge 1.2 Beziehungen zwischen Mengen 1.3 Verknüpfungen von Mengen (Mengenoperationen) 1.4 Übungen 1.5 Übungen (alte BM-Prüfungen) 1.6 Zahlenmengen 1.7 Grundmenge (Bezugsmenge)

Mehr

Lineare Gleichungssystem

Lineare Gleichungssystem Lineare Gleichungssystem 8. Juli 07 Inhaltsverzeichnis Einleitung Der Gauß-Algorithmus 4 3 Lösbarkeit von Gleichungssystemen 6 Einleitung Wir haben uns bisher hauptsächlich mit dem Finden von Nullstellen

Mehr

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw.

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw. Kapitel 5 Lineare Algebra 51 Lineare Gleichungssysteme und Matrizen Man begegnet Systemen von linearen Gleichungen in sehr vielen verschiedenen Zusammenhängen, etwa bei Mischungsverhältnissen von Substanzen

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmann W Wu Herbstsemester 26 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 2 Aufgabe 2 Welche der folgenden Aussagen sind korrekt? (i) Jedes

Mehr

Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte.

Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte. Lineare Gleichungssysteme. Einleitung Lineare Gleichungssysteme sind in der Theorie und in den Anwendungen ein wichtiges Thema. Theoretisch werden sie in der Linearen Algebra untersucht. Die Numerische

Mehr

1 Geometrie - Lösungen von linearen Gleichungen

1 Geometrie - Lösungen von linearen Gleichungen Übungsmaterial Geometrie - Lösungen von linearen Gleichungen Lineare Gleichungen sind von der Form y = f(x) = 3x + oder y = g(x) = x + 3. Zwei oder mehr Gleichungen bilden ein Gleichungssystem. Ein Gleichungssystem

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 5. April 2018 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

Lineare Gleichungssysteme und Matrizen

Lineare Gleichungssysteme und Matrizen Kapitel 11 Lineare Gleichungssysteme und Matrizen Ein lineares Gleichungssystem (lgs) mit m linearen Gleichungen in den n Unbekannten x 1, x 2,..., x n hat die Gestalt: Mit a 11 x 1 + a 12 x 2 + a 13 x

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Poelchau-Oberschule Berlin A. Mentzendorff September 2007 Lineare Gleichungssysteme Inhaltsverzeichnis 1 Grundlagen 2 2 Das Lösungsverfahren von Gauß 4 3 Kurzschreibweise und Zeilensummenkontrolle 6 4

Mehr

Kapitel 3. Kapitel 3 Gleichungen

Kapitel 3. Kapitel 3 Gleichungen Gleichungen Inhalt 3.1 3.1 Terme, Gleichungen, Lösungen x 2 2 + y 2 2 3.2 3.2 Verfahren zur zur Lösung von von Gleichungen 3x 3x + 5 = 14 14 3.3 3.3 Gleichungssysteme Seite 2 3.1 Terme, Gleichungen, Lösungen

Mehr

Beispiele 1. Gegeben ist das lineare System. x+4y +3z = 1 2x+5y +9z = 14 x 3y 2z = 5. Die erweiterte Matrix ist

Beispiele 1. Gegeben ist das lineare System. x+4y +3z = 1 2x+5y +9z = 14 x 3y 2z = 5. Die erweiterte Matrix ist 127 Die Schritte des Gauß-Algorithmus sind nun die Folgenden: 1. Wir bestimmen die am weitesten links stehende Spalte, die Einträge 0 enthält. 2. Ist die oberste Zahl der in Schritt 1 gefundenen Spalte

Mehr

Taschenrechner hp 33s. Kurzanleitung

Taschenrechner hp 33s. Kurzanleitung Taschenrechner hp 33s Kurzanleitung M. Loretz 005 Kurzanleitung hp 33s (lz 05) Seite 1 Inhaltsverzeichnis: Seite 3 Einschalten, Ausschalten Löschtasten, Kommastellen RPN System, ALG System Seite 4 Rechenoperationen

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Algebra: Lineare Gleichungssysteme und Matrizen

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Algebra: Lineare Gleichungssysteme und Matrizen Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lineare Algebra: Lineare Gleichungssysteme und Matrizen Das komplette Material finden Sie hier: School-Scout.de Thema: Lineare Algebra:

Mehr

Lineare Gleichungssysteme (LGS)

Lineare Gleichungssysteme (LGS) Prof Dr M Helbig LA Vorlesung Lineare Gleichungssysteme (LGS) Fragen? LGS - Begriffe Definition a) Ein lineares Gleichungssystem (LGS) in den Unbekannten x 1,, x n mit Koeffizienten a ij R ( 1 i m, 1 j

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Christian Serpé Universität Münster 14. September 2011 Christian Serpé (Universität Münster) 14. September 2011 1 / 56 Gliederung 1 Motivation Beispiele Allgemeines Vorgehen 2 Der Vektorraum R n 3 Lineare

Mehr

Termstrukturen. Sieglinde Fürst. Elementare Algebra Gleichungen lösen und Umformen Termstrukturen erkennen

Termstrukturen. Sieglinde Fürst. Elementare Algebra Gleichungen lösen und Umformen Termstrukturen erkennen Sieglinde Fürst Termstrukturen Elementare Algebra Gleichungen lösen und Umformen Termstrukturen erkennen Inhalte Multiplizieren von mehrgliedrigen Ausdrücken Quadrat eines Binoms ergänzen, Arbeiten mit

Mehr

1.5 lineare Gleichungssysteme

1.5 lineare Gleichungssysteme 1.5 lineare Gleichungssysteme Inhaltsverzeichnis 1 Was ist ein lineares Gleichungssystem mit zwei Gleichungen und zwei Unbekannten? 2 2 Wie lösen wir ein lineares Gleichungssystem mit zwei Unbekannten?

Mehr

Lineare Gleichungssysteme mit zwei Unbekannten

Lineare Gleichungssysteme mit zwei Unbekannten Lineare Gleichungssysteme mit zwei Unbekannten Wie beginnen mit einem Beispiel: Gesucht ist die Lösung des folgenden Gleichungssystems: (I) 2x y = 4 (II) x + y = 5 Hier stehen eine Reihe von Verfahren

Mehr

Wissen und Fertigkeiten Berthold Mersch

Wissen und Fertigkeiten Berthold Mersch Wissen und Fertigkeiten Y= WINDOW ZOOM TRACE GRAPH TBLSET TABLE CALC DRAW Y= Darstellung: Stil Darstellung: Ja/Nein Term: Variable WINDOW? GRAPH ZOOM Wähle den Mittelpunkt der Vergrößerung/Verkleinerung

Mehr

Gleichungen in GeoGebra-CAS Quelle: https://wiki.geogebra.org/de/befehle

Gleichungen in GeoGebra-CAS Quelle: https://wiki.geogebra.org/de/befehle Gleichungen in GeoGebra-CAS Quelle: https://wiki.geogebra.org/de/befehle Hinweis Mit spitzen Klammern werden die Objekte gekennzeichnet, die du selber ausfüllen sollst. Sie dürfen bei der Übergabe nach

Mehr

Systeme linearer Gleichungen mit 2 Variablen

Systeme linearer Gleichungen mit 2 Variablen Systeme linearer Gleichungen mit 2 Variablen Beispiel: I y 1 = 4x 1 3 II y 2 = -5x 2 + 4 1. Grafisch: Schnittpunkt zweier Geraden Eingabe der Funktionsgleichungen o Y 1 eingeben oder Y 2 eingeben Bearbeitung

Mehr

Skript Lineare Algebra

Skript Lineare Algebra Skript Lineare Algebra sehr einfach Erstellt: 2018/19 Von: www.mathe-in-smarties.de Inhaltsverzeichnis Vorwort... 2 1. Vektoren... 3 2. Geraden... 6 3. Ebenen... 8 4. Lagebeziehungen... 10 a) Punkt - Gerade...

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt [email protected] Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 3 und lineare Gleichungssysteme und

Mehr

3 Lineare Gleichungen

3 Lineare Gleichungen Aufgabe 3. Man löse die lineare Gleichung a 2 x b 2 a a(b ax) b + b2 a = a, a b nach der Unbekannten x auf und diskutiere die möglichen Fälle. a 2 x b 2 a a(b ax) b + b2 a = a a b a 2 bx b 3 a 2 b + a

Mehr

Mathematik Modul 3 -Arbeitsblatt A 3-7: LINEARE GLEICHUNGSSYSTEME MIT ZWEI VARIABLEN

Mathematik Modul 3 -Arbeitsblatt A 3-7: LINEARE GLEICHUNGSSYSTEME MIT ZWEI VARIABLEN Schule Thema Bundesgymnasium für Berufstätige Salzburg Mathematik Modul 3 -Arbeitsblatt A 3-7: LINEARE GLEICHUNGSSYSTEME MIT ZWEI VARIABLEN Unterlagen LehrerInnenteam Sehr oft treten in der Mathematik

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme 2 Lineare Gleichungssysteme Betrachte ein beliebiges System von m linearen Gleichungen in den n Unbekannten x,,x n : a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n = b 2 () a m x + a m2 x

Mehr

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw.

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw. Kapitel 5 Lineare Algebra 5 Lineare Gleichungssysteme und Matrizen Man begegnet Systemen von linearen Gleichungen in sehr vielen verschiedenen Zusammenhängen, etwa bei Mischungsverhältnissen von Substanzen

Mehr

Definition, Rechenoperationen, Lineares Gleichungssystem

Definition, Rechenoperationen, Lineares Gleichungssystem Bau und Gestaltung, Mathematik, T. Borer Aufgaben /3 Aufgaben Matrizen Definition, Rechenoperationen, Lineares Gleichungssystem Lernziele - die Bezeichnung der Matrixelemente kennen und verstehen. - den

Mehr

Lineare Gleichungssysteme, Matrizen und Determinanten

Lineare Gleichungssysteme, Matrizen und Determinanten Kapitel 2 Lineare Gleichungssysteme, Matrizen und Determinanten Einen klassischen Einstieg in die lineare Algebra bietet die Behandlung linearer Gleichungssysteme Wir beschäftigen uns dabei zunächst mit

Mehr

1 Einführung Gleichungen und 2 Unbekannte Gleichungen und 3 Unbekannte... 4

1 Einführung Gleichungen und 2 Unbekannte Gleichungen und 3 Unbekannte... 4 Wirtschaftswissenschaftliches Zentrum 3 Universität Basel Mathematik 2 Dr Thomas Zehrt Lineare Gleichungssysteme Inhaltsverzeichnis Einführung 2 2 Gleichungen und 2 Unbekannte 2 2 3 Gleichungen und 3 Unbekannte

Mehr

Lösungen zur Mathematik für Informatiker I

Lösungen zur Mathematik für Informatiker I Lösungen zur Mathematik für Informatiker I Wintersemester 00/03 Prof Dr H Lenzing Blatt 7 Sei M Ihre Matrikelnummer mit den Ziffern m, m, m 3, m 4, m 5, m 6, m 7 Aufgabe 6 ( Bonuspunkt): Wir betrachten

Mehr

Gleichungen entstehen dann, wenn einfach oder kompliziert aufgebaute Rechenausdrücke einander gleichgesetzt werden. a) 3. 7 = 21

Gleichungen entstehen dann, wenn einfach oder kompliziert aufgebaute Rechenausdrücke einander gleichgesetzt werden. a) 3. 7 = 21 Gleichungen Gleichungen entstehen dann, wenn einfach oder kompliziert aufgebaute Rechenausdrücke einander gleichgesetzt werden. a) 3. 7 = 21 b) 2 5 + 4 6 = 2 17 c) 6 2 7 3 5 2 4 = 3 4 9 + 8 13 Das Gleichheitszeichen

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13

Corinne Schenka Vorkurs Mathematik WiSe 2012/13 4. Lineare Gleichungssysteme Ein lineares Gleichungssystem ist ein System aus Gleichungen mit Unbekannten, die nur linear vorkommen. Dieses kann abkürzend auch in Matrizenschreibweise 1 notiert werden:

Mehr

= * 281 = : 25 = oder 7x (also 7*x) oder (2x + 3) *9 oder 2a + 7b (also 2*a+ 7*b)

= * 281 = : 25 = oder 7x (also 7*x) oder (2x + 3) *9 oder 2a + 7b (also 2*a+ 7*b) GLEICHUNGEN Gleichungslehre Bisher haben Sie Aufgaben kennen gelernt, bei denen eine Rechenoperation vorgegeben war und Sie das Ergebnis berechnen sollten. Nach dem Gleichheitszeichen war dann das Ergebnis

Mehr

Lineare Gleichungen. Mathematik-Repetitorium. 3.1 Eine Unbekannte. 3.2 Zwei oder drei Unbekannte. 3.3 Allgemeine lineare Gleichungssysteme

Lineare Gleichungen. Mathematik-Repetitorium. 3.1 Eine Unbekannte. 3.2 Zwei oder drei Unbekannte. 3.3 Allgemeine lineare Gleichungssysteme Lineare Gleichungen 3.1 Eine Unbekannte 3.2 Zwei oder drei Unbekannte 3.3 Allgemeine lineare Gleichungssysteme Lineare Gleichungen 1 Vorbemerkung zu Kapitel 1 Gleichungen (Unbekannte) (Variablen, Parameter)

Mehr

Mathematik 1, Teil B. Inhalt:

Mathematik 1, Teil B. Inhalt: FH Emden-Leer Fachb. Technik, Abt. Elektrotechnik u. Informatik Prof. Dr. J. Wiebe www.et-inf.fho-emden.de/~wiebe Mathematik 1, Teil B Inhalt: 1.) Grundbegriffe der Mengenlehre 2.) Matrizen, Determinanten

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme KAPITEL 2 Lineare Gleichungssysteme. Beispiele Wir betrachten zunächst vier Gleichungssysteme und bestimmen ihre Lösungsmenge. Dabei geht es uns noch nicht darum, ein Lösungsverfahren für lineare Gleichungssysteme

Mehr

Definition, Rechenoperationen, Lineares Gleichungssystem

Definition, Rechenoperationen, Lineares Gleichungssystem Bau und Gestaltung, Mathematik, T. Borer Aufgaben / Aufgaben Matrizen Definition, Rechenoperationen, Lineares Gleichungssystem Lernziele - die Bezeichnung der Matrixelemente kennen und verstehen. - den

Mehr

Rechnen mit Potenzen und Termen

Rechnen mit Potenzen und Termen Sieglinde Fürst Rechnen mit Potenzen und Termen Themenbereich Algebra Inhalte Rechnen mit Potenzen - Rechenregeln Gleitkommadarstellung Auflösen von Klammern Multiplizieren von Termen Ziele Rechenregeln

Mehr

Lineare Gleichungssysteme (Teschl/Teschl 11.1)

Lineare Gleichungssysteme (Teschl/Teschl 11.1) Lineare Gleichungssysteme (Teschl/Teschl.) Ein Lineares Gleichungssystem (LGS) besteht aus m Gleichungen mit n Unbekannten x,...,x n und hat die Form a x + a 2 x 2 +... + a n x n b a 2 x + a 22 x 2 +...

Mehr

Mathematik 1 -Arbeitsblatt 1-8: Rechnen mit Potenzen. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB. Potenzen mit negativer Basis

Mathematik 1 -Arbeitsblatt 1-8: Rechnen mit Potenzen. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB. Potenzen mit negativer Basis Schule Thema Personen Bundesgymnasium für Berufstätige Salzburg Mathematik -Arbeitsblatt -8: Rechnen mit Potenzen F Wintersemester 0/0 Unterlagen: LehrerInnenteam GFB ) Potenzen mit negativer Basis Zur

Mehr

ADDIEREN UND SUBTRAHIEREN VON TERMEN POTENZSCHREIBWEISE

ADDIEREN UND SUBTRAHIEREN VON TERMEN POTENZSCHREIBWEISE ADDIEREN UND SUBTRAHIEREN VON TERMEN UND DIE POTENZSCHREIBWEISE ) VARIABLE Beispiel: Ein Rechteck habe einen Umfang von 0 cm. Gib Länge und Breite des Rechtecks in einer Formel an. Es ist natürlich leicht

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

18. Matrizen 2: Gleichungssysteme, Gauß-Algorithmus

18. Matrizen 2: Gleichungssysteme, Gauß-Algorithmus 18. Matrizen 2: Gleichungssysteme, Gauß-Algorithmus Conrad Donau 8. Oktober 2010 Conrad Donau 18. Matrizen 2: Gleichungssysteme, Gauß-Algorithmus 8. Oktober 2010 1 / 7 18.1 Wiederholung: Ebenen in R 3

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 2. Semester ARBEITSBLATT 3 RECHNEN MIT BRUCHTERMEN. 1. Kürzen von Bruchtermen

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 2. Semester ARBEITSBLATT 3 RECHNEN MIT BRUCHTERMEN. 1. Kürzen von Bruchtermen Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3. Semester ARBEITSBLATT 3 RECHNEN MIT BRUCHTERMEN 1. Kürzen von Bruchtermen Zunächst einmal müssen wir klären, was wir unter einem Bruchterm verstehen. Definition:

Mehr

nur der reziproke Wert (Kehrwert) des letzten Terms berechnet werden. Dies kann man elegant mit der Taste x 1

nur der reziproke Wert (Kehrwert) des letzten Terms berechnet werden. Dies kann man elegant mit der Taste x 1 Rechnen mit dem TI-84 Plus Lösungen+ Übungen Aufgabe 1 (a) 7.5 2 + 9.3 2.8 4.1 + 0.9 Beachte: Ein Bruchstrich ersetzt Klammern! 5.29 Aufgabe 1 (b) 7.6 2 + 9.3 2.8 4.1 + 0.9 Die letzte Eingabe mit 2nd [entry]

Mehr

GLEICHUNGEN MIT PARAMETERN

GLEICHUNGEN MIT PARAMETERN Mathematik-Olympiaden in Rheinland-Pfalz GLEICHUNGEN MIT PARAMETERN Fortgeschrittene Die Aufgaben auf diesem Arbeitsblatt haben alle eine elegante Lösungsidee. Bei vielen Gleichungen ist nach Anwenden

Mehr

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen 3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange

Mehr

7.1 Matrizen und Vektore

7.1 Matrizen und Vektore 7.1 Matrizen und Vektore Lineare Gleichungssysteme bestehen aus einer Gruppe von Gleichungen, in denen alle Variablen nur in der 1. Potenz vorkommen. Beispiel Seite 340 oben: 6 x 2 = -1 + 3x 2 = 4 mit

Mehr

(1) Rechnen mit Paaren und Tripeln. (2) Eine Gleichung mit 2 oder 3 Unbekannten. (3) Zwei Gleichungen mit 3 Unbekannten. Datei Nr.

(1) Rechnen mit Paaren und Tripeln. (2) Eine Gleichung mit 2 oder 3 Unbekannten. (3) Zwei Gleichungen mit 3 Unbekannten. Datei Nr. () Rechnen mit Paaren und Tripeln () Eine Gleichung mit oder Unbekannten () Zwei Gleichungen mit Unbekannten Datei Nr. 6 0 Stand. September 0 Friedrich W. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Ungleichungen Inhalt: 1. Grundlegendes 2. Lineare Ungleichungen 3. Ungleichungen mit

Mehr

Grundwissensblatt 8. Klasse. IV. Lineare Gleichungen mit zwei Variablen 1. Eigenschaften von linearen Gleichungen mit zwei Variablen

Grundwissensblatt 8. Klasse. IV. Lineare Gleichungen mit zwei Variablen 1. Eigenschaften von linearen Gleichungen mit zwei Variablen Grundwissensblatt 8. Klasse IV. Lineare Gleichungen mit zwei Variablen. Eigenschaften von linearen Gleichungen mit zwei Variablen Alle linearen Gleichungen der Form a + by = c (oder auch y = m + t) erfüllen:

Mehr

Das inhomogene System. A x = b

Das inhomogene System. A x = b Ein homogenes lineares Gleichungssystem A x = 0 mit m Gleichungen und n Unbestimmten hat immer mindestens die Lösung 0. Ist r der Rang von A, so hat das System n r Freiheitsgrade. Insbesondere gilt: Ist

Mehr

Lineare Algebra und analytische Geometrie

Lineare Algebra und analytische Geometrie TI voyage 200 Kompaktwissen Lineare Algebra und analytische Geometrie Eine kleine Hilfe für Schüler der DSB Seite 2 TI voyage 200 Kompaktwissen Algebra/Geometrie Diese Anleitung soll helfen, Aufgaben aus

Mehr

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok Kurs über Lineare Gleichungssysteme PD Dr. Karin Halupczok Mathematisches Institut Albert-Ludwigs-Universität Freiburg http://home.mathematik.unifreiburg.de/halupczok/diverses.html [email protected]

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Übersicht Lineare Gleichungssystem mit 2 Variablen 1 Lineare Gleichungssystem mit 2 Variablen Beispiele 2 Fakultät Grundlagen Folie: 2 Beispiel I Lineare

Mehr

Wiederholung von Äquivalenzumformungen (Lösen linearer Gleichungen): Wiederholung von Äquivalenzumformungen (Lösen von Ungleichungen):

Wiederholung von Äquivalenzumformungen (Lösen linearer Gleichungen): Wiederholung von Äquivalenzumformungen (Lösen von Ungleichungen): Prof. U. Stephan WiIng 1. Wiederholung von Äquivalenzumformungen (Lösen linearer Gleichungen): Bitte lösen Sie die folgenden Aufgaben und prüfen Sie, ob Sie Lücken dabei haben. Bestimmen Sie jeweils die

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt [email protected] Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 1 Einführung Lineare Gleichungen Definition

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 1. Semester ARBEITSBLATT 8 RECHNEN MIT POTENZEN. 1) Potenzen mit negativer Basis

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 1. Semester ARBEITSBLATT 8 RECHNEN MIT POTENZEN. 1) Potenzen mit negativer Basis ARBEITSBLATT 8 RECHNEN MIT POTENZEN ) Potenzen mit negativer Basis Zur Erinnerung: = = 6 Der Eponent gibt also an, wie oft die Basis mit sich selbst multipliziert werden muss. Die Basis muss natürlich

Mehr

Aufgaben mit zwei Rechenzeichen nebeneinander zum Beispiel: 5 (+ 3) Es gilt:

Aufgaben mit zwei Rechenzeichen nebeneinander zum Beispiel: 5 (+ 3) Es gilt: Hilfe Addition und Subtraktion von Rationalen Zahlen Rechnen mit rationalen Zahlen, also Rechnen im negativen Bereich ist nicht immer so einfach. Ich kann mir das eigentlich ganz gut mit Schulden oder

Mehr

Taschenrechner HP 35s Kurzanleitung

Taschenrechner HP 35s Kurzanleitung Taschenrechner HP 35s Kurzanleitung Kant. Mittelschule Uri / M. Loretz - 2008 Kurzanleitung HP 35s (lz 2008) Seite 1 Inhaltsverzeichnis: Seite 3 Einschalten, Ausschalten, Helligkeit Anzeige einstellen

Mehr

1 Matrizenrechnung zweiter Teil

1 Matrizenrechnung zweiter Teil MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten

Mehr