MND Projekt 2. Zur Veranschaulichung werden die einzelnen Phis graphisch dargestellt.

Größe: px
Ab Seite anzeigen:

Download "MND Projekt 2. Zur Veranschaulichung werden die einzelnen Phis graphisch dargestellt."

Transkript

1 AUFGABENSTELLUNG MND Projekt 2 Das Ziel dieses Projekts war es ein Anfangswertproblem mit Hilfe des klassischen Runge-Kutta Verfahrens und dem Levenberg-Marquardt-Verfahren zu lösen. AUFGABE 1 In der Ersten Aufgabe muss ein Differentialgleichungssystem 1. Ordnung hergeleitet werden und Phi mit dem klassischen Runge-Kutta verfahren berechnet werden. Als Endwert der Zeit wird 4s angenommen mit 41 Teilschritten. % f phi, x), Modell, x(1)=d, x(2)=k % phi = [phi; d/dt-phi; phid; d/dt-phid; phik; d/dt-phik] f [phi(2); -x(1)*phi(2)-x(2)*sin(phi(1));... phi(4); -phi(2)-x(1)*phi(4)-x(2)*cos(phi(1))*phi(3);... phi(6); -x(1)*phi(6)-sin(phi(1))-x(2)*cos(phi(1))*phi(5)]; phi0 = [alpha, dphi, phid, dphid, phik, dphik]'; T = 4; dt = T/n; r1 = f(t, phi(:,)); r2 = f(t+0.5*dt, phi(:,)+0.5*dt*r1); r3 = f(t+0.5*dt, phi(:,)+0.5*dt*r2); r4 = f(t+dt, phi(:,)+dt*r3); phi = [phi, phi(:,) + dt/6*(r1+2*r2+2*r3+r4)]; Zur Veranschaulichung werden die einzelnen Phis graphisch dargestellt. AUFGABE 2 In der zweiten Aufgabe werden die gegebenen Messdaten geladen und damit der Fehler berechnet. Gleichzeitig wird der Gradient von F bezüglich d und k berechnet. % Files laden load('measurementwithoutnoise.mat') load('measurementwithnoise.mat') % Variabeln zuweisen tm = measurementwithnoise(:,1); ST

2 WN = measurementwithnoise(:,2); WoN = measurementwithoutnoise(:,2); % Summierte Fehlerquadrate F(phi) und Gradient F(phi) F_WoN(k,:) = phi(1,k) - WoN(k); % Summierte Fehlerquadrate F_WN(k,:) = phi(1,k) - WN(k); df(k,:) = [phi(3,k), phi(5,k)]; % Gradient theta = 0.5*F_WoN'*F_WoN; % Summe der Fehlerquadrate dtheta = df'*f_won; % Gradient von theta Es wird der Fehler von den Messdaten mit und ohne Rauschen dargestellt. Der Fehler ist bei dieser Methode sehr gross. Deshalb muss man das mit dem Levenberg-Marquardt- Verfahren verfeinern. AUFGABE 3 In dieser Aufgabe benutzt man das Levenberg-Marquardt-Verfahren für das nichtlineare Ausgleichsproblem. Dafür wird in jeder Iteration die DGL für F(phi, x) mit Runge-Kutta und der Fehler berechnet. Zusätzlich muss auch die DGL und der Fehler für ein F(phi, x_neu) berechnet werden, da in dieser Aufgabe nicht in die Funktion F eingesetzt werden kann. % Berechung DGL mit xn f [phi(2); -xn(1)*phi(2)-xn(2)*sin(phi(1));... phi(4); -phi(2)-xn(1)*phi(4)-xn(2)*cos(phi(1))*phi(3);... phi(6); -xn(1)*phi(6)-sin(phi(1))-xn(2)*cos(phi(1))*phi(5)]; r1 = f(t, phi(:,)); r2 = f(t+0.5*dt, phi(:,)+0.5*dt*r1); r3 = f(t+0.5*dt, phi(:,)+0.5*dt*r2); r4 = f(t+dt, phi(:,)+dt*r3); phi = [phi, phi(:,) + dt/6*(r1+2*r2+2*r3+r4)]; % Abweichung xn Fn(k,:) = phi(1,k_korr) - WoN(k); % Summierte Fehlerquadrate ST

3 Beim Levenberg-Marquardt-Verfahren wird bei jeder Iteration entschieden ob das Rho grösser oder kleiner, als ein Vorgegebener Wert Beta ist und dementsprech das Mü angepasst. Dieses hat dann wieder Einfluss auf das lineare Ausgleichsproblem in der nächsten Iteration. rho = (norm(f)^2-norm(fn)^2)/(norm(f)^2-norm(f+df*s)^2); if(rho < beta0) if(mu < mumax) mu = mu*2; % mu wird vergrössert, Lösung wird nicht verwet else if rho > beta1 if (mu > mumin) mu = mu/2; % verkleinere mu x = xn; % akzeptiere die Lösung Um das ganze besser zu veranschaulichen werden einige Diagramme und Daten ausgegeben: Toleranz: Iterationen: 27 d: l: Somit wären für d und für l die optimalen Startwerte. Auf dem linken Diagramm erkennt man den Vergleich der Messung zu den Phis und der Absolute Fehler. Auf dem rechten wird die Toleranz, der Fehler, das Mü sowie das d, k, und l in Relation zu der Anzahl Iterationen angezeigt. ST

4 ANHANG: MATLAB CODE %% MND Projekt 2 % Nichtlineare Ausgleichsrechnung % Darius Eckhardt clc, clear, clf, close disp 'MND Projekt 2' %% Initialisierung disp 'Initialisierung' n = 41; % Anzahl Schritte g = 9.81; % Gravitationskonstante l = 1; % Länge % Anfangswertproblem %% Aufgabe 1 % DGL berechnen disp 'Aufgabe 1' % Parameter d = 1; k = g/l; alpha = 3.14; dphi = 0; phid = 0; dphid = 0; phik = 0; dphik = 0; x0 = [d; k]; x = x0; % f phi, x), Modell, x(1)=d, x(2)=k % phi = [phi; d/dt-phi; phid; d/dt-phid; phik; d/dt-phik] f [phi(2); -x(1)*phi(2)-x(2)*sin(phi(1));... phi(4); -phi(2)-x(1)*phi(4)-x(2)*cos(phi(1))*phi(3);... phi(6); -x(1)*phi(6)-sin(phi(1))-x(2)*cos(phi(1))*phi(5)]; phi0 = [alpha, dphi, phid, dphid, phik, dphik]'; T = 4; dt = T/n; r1 = f(t, phi(:,)); r2 = f(t+0.5*dt, phi(:,)+0.5*dt*r1); r3 = f(t+0.5*dt, phi(:,)+0.5*dt*r2); r4 = f(t+dt, phi(:,)+dt*r3); phi = [phi, phi(:,) + dt/6*(r1+2*r2+2*r3+r4)]; % Plot figure('name','phasiagramm','units','normalized','position',[ ]) subplot(311) plot(phi(1,:), phi(2,:),'b') title({'phasiagramm';'';'phi'}) subplot(312) plot(phi(3,:), phi(4,:),'r') title('phi_d') subplot(313) plot(phi(5,:), phi(6,:),'g') title('phi_k') %% Aufgabe 2 disp 'Aufgabe 2' ST

5 % Files laden load('measurementwithoutnoise.mat') load('measurementwithnoise.mat') % Variabeln zuweisen tm = measurementwithnoise(:,1); WN = measurementwithnoise(:,2); WoN = measurementwithoutnoise(:,2); % Summierte Fehlerquadrate F(phi) und Gradient F(phi) F_WoN(k,:) = phi(1,k) - WoN(k); % Summierte Fehlerquadrate F_WN(k,:) = phi(1,k) - WN(k); df(k,:) = [phi(3,k), phi(5,k)]; % Gradient theta = 0.5*F_WoN'*F_WoN; % Summe der Fehlerquadrate dtheta = df'*f_won; % Gradient von theta % Plot figure('name','abweichung','units','normalized','position',[ ]) plot(tm,f_won,'r--',tm,f_wn,'b-') leg({'ohne Rauschen','Mit Rauschen'},'location','SE') title('abweichung') %% Aufgabe 3 disp 'Aufgabe 3' % Initialisierung für Levenberg-Marquardt x=x0; tol=1e-12; tols=1e-18; iter=0; maxiter=100; ok=true; mu=1; mumax=1e3; mumin=0; beta0=0.2; beta1=0.8; resl=[]; Si=[]; mus = [mu]; rhos = []; thetas = []; param = [x0]; n = 2; % neues dt berechnen dt = (tm(2)-tm(1))/10; while ok && (iter < maxiter) % Berechnung DGL f [phi(2); -x(1)*phi(2)-x(2)*sin(phi(1));... phi(4); -phi(2)-x(1)*phi(4)-x(2)*cos(phi(1))*phi(3);... phi(6); -x(1)*phi(6)-sin(phi(1))-x(2)*cos(phi(1))*phi(5)]; r1 = f(t, phi(:,)); r2 = f(t+0.5*dt, phi(:,)+0.5*dt*r1); r3 = f(t+0.5*dt, phi(:,)+0.5*dt*r2); r4 = f(t+dt, phi(:,)+dt*r3); phi = [phi, phi(:,) + dt/6*(r1+2*r2+2*r3+r4)]; % Berechung der Summierten Fehlerquadrate F(k,:) = phi(1,k_korr) - WoN(k); % Summierte Fehlerquadrate ST

6 df(k,:) = [phi(3,k_korr), phi(5,k_korr)]; % Gradient theta = 0.5*F'*F; dtheta = df'*f; % Summe der Fehlerquadrate % Gradient theta % Berechung des linearen Ausgleichsproblems Fi = [F; zeros(n,1)]; dfi = [df; mu*eye(n)]; [q,r] = qr(dfi); s = backward(r(1:n,:),-q(:,1:n)'*fi); % Korrektur fuer die naechste Iteration xn = x+s; % Berechung DGL mit xn f [phi(2); -xn(1)*phi(2)-xn(2)*sin(phi(1));... phi(4); -phi(2)-xn(1)*phi(4)-xn(2)*cos(phi(1))*phi(3);... phi(6); -xn(1)*phi(6)-sin(phi(1))-xn(2)*cos(phi(1))*phi(5)]; r1 = f(t, phi(:,)); r2 = f(t+0.5*dt, phi(:,)+0.5*dt*r1); r3 = f(t+0.5*dt, phi(:,)+0.5*dt*r2); r4 = f(t+dt, phi(:,)+dt*r3); phi = [phi, phi(:,) + dt/6*(r1+2*r2+2*r3+r4)]; % Abweichung xn Fn(k,:) = phi(1,k_korr) - WoN(k); % Summierte Fehlerquadrate % Levenberg-Marquardt-Verfahren rho = (norm(f)^2 - norm(fn)^2)/(norm(f)^2 - norm(f+df*s)^2); if (rho < beta0) && (mu < mumax) mu = mu*2; % vergroessere mu und akzeptiere den Schritt nicht. else if (rho > beta1) && (mu > mumin) mu = mu / 2; % verkleinere mu x = xn; % akzeptiere die Loesung % Residuum ist durch die Norm des Gradienten von phi gegeben % dphi = 0 notwige Bedingung fuer Minimum resl = [resl, norm(dtheta,'inf')]; Si = [Si, norm(s,'inf')]; if resl() < tol Si() < tols ok=false; mus = [mus, mu]; rhos = [rhos, rho]; thetas = [thetas, theta]; param = [param, x]; iter = iter+1; if iter == maxiter disp('maximale Anzahl Iterationen erreicht') xl=x; %% Aufgabe 4 disp 'Aufgabe 4' disp '' ST

7 fprintf('toleranz:\t\t%f\n',resl()) fprintf('iterationen:\t%f\n',iter) fprintf('d:\t\t\t\t%f\n',x(1)) fprintf('l:\t\t\t\t%f\n',g/x(2)) % Plots % Zeitverhalten figure('name','zeitverhalten','units','normalized','position',[ ]) tp = dt*(0:length(phi)-1); subplot(3, 2, 1:4) plot(tm,won,'bo',tp,phi(1,:),'r',tp,phi(3,:),'-.k',tp,phi(5,:),'-.c'), grid ylim([-2,3.5]), xlim([0,4]) title({'zeitverhalten',''}), xlabel('zeit [s]'), ylabel('winkel [rad]') leg('messung','phi','phi_d','phi_k') subplot(3, 2, 5:6) plot(tm,abs(f),'r--') ylim([0,inf]), xlim([0,4]), ylabel('fehler'), grid on % Parameterverhalten im Levenberg-Marquardt Verfahren count = 0:iter; figure('name','parameterverhalten','units','normalized','position',[ ]) subplot(2,3,1) % Tol semilogy(count(1:-1),resl), grid title('tol'),ylabel('norm(gradient)'),xlim([0, iter]) subplot(2,3,2) % Fehler semilogy(count(1:-1),thetas), grid title('fehler'),ylabel('potential'),xlim([0, iter]) subplot(2,3,3) % mu semilogy(count,mus), grid title('mu'), xlim([0, iter]) subplot(2,3,4) % d plot(count, param(1,:),'b'), grid minor, grid title('d'), xlabel('iterationen'), xlim([0, iter]) subplot(2,3,5) % k plot(count, param(2,:),'c'), grid minor, grid title('k'), xlabel('iterationen'), xlim([0, iter]) subplot(2,3,6) % l plot(count, g./param(2,:),'g'), grid minor, grid title('l = g/k'), xlabel('iterationen'), xlim([0, iter]) ST

2. Anfangswertprobleme 2. Ordnung

2. Anfangswertprobleme 2. Ordnung Zu einem Anfangswertproblem 2. Ordnung gehören folgende Daten: Eine Differenzialgleichung 2. Ordnung: ẍ t f [ x t, ẋ t,t ] Die Anfangsbedingungen: x 0 x 0, ẋ 0 ẋ 0 Das zu untersuchende Zeitintervall: t

Mehr

KAPITEL 6. Nichtlineare Ausgleichsrechnung

KAPITEL 6. Nichtlineare Ausgleichsrechnung KAPITEL 6 Nichtlineare Ausgleichsrechnung Beispiel 61 Gedämpfte Schwingung: u + b m u + D m u = 0, Lösungen haben die Form: u(t) = u 0 e δt sin(ω d t + ϕ 0 ) Modell einer gedämpften Schwingung y(t; x 1,

Mehr

Diplom VP Numerik 21. März 2005

Diplom VP Numerik 21. März 2005 Diplom VP Numerik. März 5 Aufgabe Gegeben sei das lineare Gleichungssystem Ax = b mit A = 3 3 4 8 und b = 4 5.5 6. ( Punkte) a) Berechnen Sie die LR-Zerlegung von A mit Spaltenpivotisierung. Geben Sie

Mehr

Ingenieurinformatik II Numerik für Ingenieure Teil 2

Ingenieurinformatik II Numerik für Ingenieure Teil 2 Hochschule München, FK 03 MB SS 013 Name Vorname Matrikelnummer Sem.Gr. Hörsaal Platz Ingenieurinformatik II Numerik für Ingenieure Teil Bearbeitungszeit : 60 Minuten Aufgabensteller : Dr. Reichl Hilfsmittel

Mehr

Vergleich mehrerer Solver beim Pendel großer Amplitude

Vergleich mehrerer Solver beim Pendel großer Amplitude Prof. Dr. R. Kessler, C:\ro\Si5\Matlab\DGLn\Solver_Vergleich_Pendel.doc, S. 1/1 Homepage: http://www.home.hs-karlsruhe.de/~kero1/ Vergleich mehrerer Solver beim Pendel großer Amplitude Download: http://www.home.hs-karlsruhe.de/%7ekero1/solververgleich/solvpend.zip

Mehr

18.4 Das Newton-Verfahren

18.4 Das Newton-Verfahren 18.4 Das Newton-Verfahren Ziel: Wir suchen die Nullstellen einer Funktion f : D R n, D R n : f(x) = 0 Wir kennen bereits die Fixpunktiteration x k+1 := Φ(x k ) mit Startwert x 0 und Iterationsvorschrift

Mehr

(d) das zu Grunde liegende Problem gut konditioniert ist.

(d) das zu Grunde liegende Problem gut konditioniert ist. Aufgabe 0: (6 Punkte) Bitte kreuzen Sie die richtige Lösung an. Es ist jeweils genau eine Antwort korrekt. Für jede richtige Antwort erhalten Sie einen Punkt, für jede falsche Antwort wird Ihnen ein Punkt

Mehr

Parameterschätzung an einem Anfangswertproblem aus der Physiologie

Parameterschätzung an einem Anfangswertproblem aus der Physiologie Parameterschätzung an einem Anfangswertproblem aus der Physiologie Erkki Silde und Horatio Cuesdeanu 13. Juli 2010 Erkki Silde und Horatio Cuesdeanu () Parameterschätzung 13. Juli 2010 1 / 7 Gegeben sei

Mehr

Anfangswertprobleme: Grundlagen

Anfangswertprobleme: Grundlagen Anfangswertprobleme: Grundlagen In diesem Skript werden die Grundlagen erklärt, wie man mit Matlab Anfangswertprobleme analysieren kann. Contents Beispiel: Entladung eines Kondensators Beispiel mit expliziter

Mehr

Ausgleichsproblem. Definition (1.0.3)

Ausgleichsproblem. Definition (1.0.3) Ausgleichsproblem Definition (1.0.3) Gegeben sind n Wertepaare (x i, y i ), i = 1,..., n mit x i x j für i j. Gesucht ist eine stetige Funktion f, die die Wertepaare bestmöglich annähert, d.h. dass möglichst

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 0 0090 Aufgabe Punkte: Betrachten Sie das lineare Gleichungssystem Ax = b mit A = 0 und b

Mehr

Die Involutfunktion Inhalt

Die Involutfunktion Inhalt Die Involutfunktion Inhalt Inhalt...1 Grundlagen... Basic-Programm...3 Programm-Ablaufplan Involut rekursiv...3 Programm Involut rekursiv...4 Programme für CASIO fx-7400g PLUS...5 Involutfunktion...5 Involut

Mehr

Übungen zur Numerischen Mathematik 2 Sommersemester 2014. Übungsblatt 13

Übungen zur Numerischen Mathematik 2 Sommersemester 2014. Übungsblatt 13 Universität Heidelberg Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Prof. Dr. Dres. h.c. Hans Georg Bock Dr. Christian Kirches Dipl.-Phys. Simon Lenz Übungen zur Numerischen Mathematik 2 Sommersemester

Mehr

Woche 20/12 13/01 4. Iterative Lösung linearer Gleichungssysteme 1 / 5

Woche 20/12 13/01 4. Iterative Lösung linearer Gleichungssysteme 1 / 5 Woche 20/12 13/01 4. Iterative Lösung linearer Gleichungssysteme 1 / 5 Lernziele In diesem Praktikum sollen Sie üben und lernen: Umgang mit der Matlab-Umgebung Schreiben einfacher Skrite und Funktionen

Mehr

m-files sind Folgen von MATLAB-Anweisungen oder Daten-Files.

m-files sind Folgen von MATLAB-Anweisungen oder Daten-Files. MATLAB m-files m-files sind Folgen von MATLAB- oder Daten-Files. Erstellen von m-files Über File New M-file wird ein Texteditor geöffnet. Dort wird das m-file als ASCII-File erzeugt und unter name.m im

Mehr

*110001+0000000000002000 84..16+0000000010084108 85..16+0000000019427002 86..16+0000000000976228 *110002+000000AP00000001 21.322+0000000014403384 22.322+0000000011127425 31.326+0000000000089850 58...6+00000000000.0000

Mehr

mit Dämpfung : mit :sin(α)=tan(α)=x/l m g x=0bzw : l oder x r m v l bzw : v= g l

mit Dämpfung : mit :sin(α)=tan(α)=x/l m g x=0bzw : l oder x r m v l bzw : v= g l Pendel in linearer Näherung Wir linearisieren die Rückstellkraft, da nur dann die DGL analytisch lösbar ist. Nachdem das Programm für die lineare DGL korrekte Ergbnisse liefert, könnte man die nichtlineare

Mehr

MATLAB Ferienkurs WS 2010/2011

MATLAB Ferienkurs WS 2010/2011 MATLAB Ferienkurs WS 2010/2011 Teil 4 von 6 Andreas Klimke, Matthias Wohlmuth Technische Universität München Fakultät Mathematik, Lehrstuhl für Numerische Mathematik Basier auf Kursunterlagen von Boris

Mehr

Einführung in die Programmierung (MA8003)

Einführung in die Programmierung (MA8003) Theorie 2.2: Schleifen, Vektorisierung, bedingte Ausführung Dr. Lorenz John Technische Universität München Fakultät Mathematik, Lehrstuhl für Numerische Mathematik M2 05.10.2016 Numerische Mathematik M2

Mehr

Numerische Analysis - Matlab-Blatt 5

Numerische Analysis - Matlab-Blatt 5 Prof. Dr. Stefan Funken Universität Ulm M.Sc. Andreas Bantle Institut für Numerische Mathematik Dipl.-Math. oec. Klaus Stolle Sommersemester 05 Numerische Analysis - Matlab-Blatt 5 Lösung (Besprechung

Mehr

Demo falsche Anwendung der Fourier-Reihen: Die System-Antwort ist NICHT die (mit Transferfunktion bewertete) Fourierreihe des Eingangs

Demo falsche Anwendung der Fourier-Reihen: Die System-Antwort ist NICHT die (mit Transferfunktion bewertete) Fourierreihe des Eingangs Prof. Dr. R. Kessler, FH-Karlsruhe, C:\ro\Si5\homepage\welcome\ZusstellAufstell\Fourier_falsch_1.doc, S. 1/1 Prof. Dr. R. Kessler, FH Karlsruhe homepage: http://www.home.hs-karlsruhe.de/~kero1 Demo falsche

Mehr

Das Trust-Region-Verfahren

Das Trust-Region-Verfahren Das Trust-Region-Verfahren Nadine Erath 13. Mai 2013... ist eine Methode der Nichtlinearen Optimierung Ziel ist es, das Minimum der Funktion f : R n R zu bestimmen. 1 Prinzip 1. Ersetzen f(x) durch ein

Mehr

Aktiver Tiefpass 6. Ordnung, Frequenzbereich u. Zeitbereich

Aktiver Tiefpass 6. Ordnung, Frequenzbereich u. Zeitbereich Prof. Dr. R. Kessler, HS-Karlsruhe, C:\Si5\HOMEPAGE\akttiefpass\AktiverTiefpass 6_2.doc, S. /7 Homepage: http://www.home.hs-karlsruhe.de/~kero/ Aktiver Tiefpass 6. Ordnung, Frequenzbereich u. Zeitbereich

Mehr

Die MATLAB-Funktionen (Beschreibung : Siehe MATLAB-Hilfen)

Die MATLAB-Funktionen (Beschreibung : Siehe MATLAB-Hilfen) Fachbereich Grundlagenwissenschaften Prof. Dr. H. Dathe Numerische Mathematik/Optimierung Eine Einführung in Theorie und Verfahren Die MATLAB-Funktionen (Beschreibung : Siehe MATLAB-Hilfen) linprog Lineare

Mehr

MATLAB Einführung. Numerische Methoden für ITET und MATL Dr. S. May, D. Devaud. ETH Zürich, Seminar for Applied Mathematics

MATLAB Einführung. Numerische Methoden für ITET und MATL Dr. S. May, D. Devaud. ETH Zürich, Seminar for Applied Mathematics Numerische Methoden für ITET und MATL 2016 ETH Zürich, Seminar for Applied Mathematics Dr. S. May, D. Devaud Frame 2 MATLAB Auf ETH Computer vorinstalliert Auf Heim PC: von www.ides.ethz.ch herunterladen

Mehr

Das Eulerverfahren zum numerischen Lösen von DGLen

Das Eulerverfahren zum numerischen Lösen von DGLen Das Eulerverfahren zum numerischen Lösen von DGLen Thomas Wassong FB17 Mathematik Universität Kassel 06.05.2008 Numerische Verfahren zur Berechnung von Differentialgleichungen Das Eulerverfahren: Programmierung

Mehr

Musterlösung: 23. Oktober 2014, 16:42

Musterlösung: 23. Oktober 2014, 16:42 Audiotechnik II Digitale Audiotechnik:. Übung Prof. Dr. Stefan Weinzierl 3..4 Musterlösung: 3. Oktober 4, 6:4 Amplitudenstatistik analoger Signale a) Ein Signal (t) hat die durch die Abbildung gegebene

Mehr

6. Folgen und Grenzwerte

6. Folgen und Grenzwerte 6. Folgen und Grenzwerte 6.1 Ermittlung von Grenzwerten Der Grenzwert einer Zahlenfolge a n berechnet man in Maple mit dem Befehl 6.1 limit(a(n), n=infinity); > a:=n-> 1+1/2ˆn: > Limit (a(n), n = infinity)

Mehr

Übung 7: Methode der kleinsten Quadrate

Übung 7: Methode der kleinsten Quadrate ZHAW, DSV2, 2007, Rumc, 1/8 Übung 7: Methode der kleinsten Quadrate Aufgabe 1: Lineare Annäherung im Skalarprodukt-Raum. Finden Sie für den Vektor y = [2 2 2] T eine Linearkombination y e der Vektoren

Mehr

Einführung in MATLAB Blockkurs DLR:

Einführung in MATLAB Blockkurs DLR: Einführung in MATLAB Blockkurs DLR: 19.4-22.4.2004 Tag 2, 2.Teil Programmieren mit MATLAB II 20.4.2004 Dr. Gerd Rapin grapin@math.uni-goettingen.de Gerd Rapin Einführung in MATLAB p.1/25 Programmieren

Mehr

4. Anhang 4.1 Wertetabellen zum 2. Algorithmus //Suche alle k, welche quadratische Reste mod 64 sind print "Quadratische Reste mod 64:"; for k:=0 to 31 do print (k^2 mod 64); end for; k 0 1 2 3 4 5 6 7

Mehr

Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 9 Nichtsinusförmige Größen

Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 9 Nichtsinusförmige Größen Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München 9 Nichtsinusförmige Größen Aufgabe 9.9 Die Klemmenspannung u(t) der zweipoligen Schaltung hat die Grundfrequenz f 1 = 100 Hz und wird

Mehr

NUMERISCHE MATHEMATIK I

NUMERISCHE MATHEMATIK I D-MATH ETH Zürich, 22. August 2011 Prof. Ch. Schwab NUMERISCHE MATHEMATIK I 1. Interpolation und Quadratur (25 P.) a) Sei [a, b] R 1 mit a < b ein beschränktes Intervall, und f C 2 ([a, b]). Zeigen Sie,

Mehr

Fachhochschule Südwestfalen Wir geben Impulse. Kontrollstrukturen und Schleifen in Octave

Fachhochschule Südwestfalen Wir geben Impulse. Kontrollstrukturen und Schleifen in Octave Fachhochschule Südwestfalen Wir geben Impulse Kontrollstrukturen und Schleifen in Octave Einführung Inhalt m-files Script-Files Function-Files Ein- Ausgabe von Variablen oder Ergebnissen For-Schleife While-Schleife

Mehr

Optimierung mit Matlab

Optimierung mit Matlab Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof. Dr. L. Cromme Optimierung mit Matlab 1 Optimierungsaufgaben Die allgemeine Aufgabenstellung der Optimierung besteht darin,

Mehr

Funktionen in Matlab. Lehrstuhl für Angewandte Mathematik Sommersemester und 29. Mai 2008

Funktionen in Matlab. Lehrstuhl für Angewandte Mathematik Sommersemester und 29. Mai 2008 Funktionen in Matlab Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Sommersemester 2008 15. und 29. Mai 2008 Funktionen in Matlab Wir kennen schon diverse

Mehr

6 Nichtlineare Ausgleichsrechnung

6 Nichtlineare Ausgleichsrechnung 6 Nichtlineare Ausgleichsrechnung 6.1 Problemstellung Wie im Abschnitt 4.1 betrachten wir wieder die Aufgabe, aus gegebenen Daten (Messungen) b i, i =1,...,m, m>n, auf eine von gewissen unbekannten Parametern

Mehr

Simulation. Lineare Regression Methode der kleinsten Quadrate (Excel-Matrix-Formel) Verknüpfung des Euler- und Newton-Verfahrens. Das Euler-Verfahren

Simulation. Lineare Regression Methode der kleinsten Quadrate (Excel-Matrix-Formel) Verknüpfung des Euler- und Newton-Verfahrens. Das Euler-Verfahren Simulation Lineare Regression Methode der kleinsten Quadrate (Excel-Matrix-Formel) Verknüpfung des Euler- und Newton-Verfahrens Dynamische Prozesse: Prozesse, bei denen sich das zeitliche und örtliche

Mehr

Test-Driven Design: Ein einfaches Beispiel

Test-Driven Design: Ein einfaches Beispiel Test-Driven Design: Ein einfaches Beispiel Martin Wirsing in Zusammenarbeit mit Matthias Hölzl, Piotr Kosiuczenko, Dirk Pattinson 05/03 2 Ziele Veranschaulichung der Technik des Test-Driven Design am Beispiel

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Viele physikalische Probleme können mathematisch als gewöhnliche Differentialgleichungen formuliert werden nur eine unabhängige Variable (meist t), z.b. Bewegungsgleichungen: gleichmäßig

Mehr

Optimierung mit Matlab

Optimierung mit Matlab Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof. Dr. L. Cromme Computerbasierte Mathematische Modellierung für Mathematiker, Wirtschaftsmathematiker, Informatiker im Wintersemester

Mehr

Bremsweg von PKW und Geländewagen

Bremsweg von PKW und Geländewagen BspNr: E0012 Ziele Interpretation der Koeffizienten einer quadratischen Funktion Veranschaulichung des Begriffes mit Hilfe physikalischer Anwendungen Analoge Aufgabenstellungen Übungsbeispiele Lehrplanbezug

Mehr

Test-Driven Design: Ein einfaches Beispiel

Test-Driven Design: Ein einfaches Beispiel Test-Driven Design: Ein einfaches Beispiel Martin Wirsing in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer SS 06 2 Ziele Veranschaulichung der Technik des Test-Driven Design am Beispiel eines Programms

Mehr

Klausur Mathematik 2

Klausur Mathematik 2 Mathematik für Ökonomen WS 2009/10 Campus Duisburg U. Herkenrath/H. Hoch, Fachbereich Mathematik Klausur Mathematik 2 09. Febr. 2010, 16:00 18:00 Uhr (120 Minuten) Erlaubte Hilfsmittel: Nur reine Schreib-

Mehr

1 Amplitudenstatistik analoger Signale

1 Amplitudenstatistik analoger Signale Audiotechnik II Digitale Audiotechnik:. Tutorium Prof. Dr. Stefan Weinzierl 3..2 Musterlösung: 28. Oktober 23, 22:25 Amplitudenstatistik analoger Signale a) Ein Signal x(t) hat die durch Abb. gegebene

Mehr

Billlard mit 3 Kugeln im Rechteck-Kasten. Simulink-Simulation, mit Animation

Billlard mit 3 Kugeln im Rechteck-Kasten. Simulink-Simulation, mit Animation Prof. Dr. R. Kessler,FH-Karlsruhe, Sensorsystemtechnik, BillardKugeln.doc, S. /9 Homepage: http://www.home.hs-karlsruhe.de/~kero000 Billlard mit Kugeln im Rechteck-Kasten. Simulink-Simulation, mit Animation

Mehr

Programmieren in MATLAB Mehr als nur ein Taschenrechner

Programmieren in MATLAB Mehr als nur ein Taschenrechner Computational Physics 1, Seminar 02 Seite 1 Programmieren in MATLAB Mehr als nur ein Taschenrechner 1) Definition eigener Funktionen Anlegen eines neuen m-files im m-file-editor mit folgem Beispielinhalt:

Mehr

Numerische Verfahren

Numerische Verfahren Numerische Verfahren Numerische Methoden von gewöhnlichen Differentialgleichungen (AWP) Prof. Dr.-Ing. K. Warendorf, Prof. Dr.-Ing. P. Wolfsteiner Hochschule für Angewandte Wissenschaften München (FH)

Mehr

Gaußsche Ausgleichsrechnung

Gaußsche Ausgleichsrechnung Kapitel 6 Gaußsche Ausgleichsrechnung 6. Gaußsche Methode der kleinsten Fehlerquadrate Die Gaußsche Methode der kleinsten Fehlerquadrate wurde 89 von C.F. Gauß in dem Aufsatz Theorie der Bewegung der Himmelkörper

Mehr

Numerische Verfahren Übungen und Lösungen, Blatt 1

Numerische Verfahren Übungen und Lösungen, Blatt 1 Technische Universität Hamburg-Harburg Institut für Numerische Simulation, E-0 Dr. Jens-Peter M. Zemke Sommersemester 2008 Numerische Verfahren Übungen und Lösungen, Blatt Aufgabe : (Thema: relativer und

Mehr

NICHTRESTRINGIERTE OPTIMIERUNG

NICHTRESTRINGIERTE OPTIMIERUNG 3 NICHTRESTRINGIERTE OPTIMIERUNG Die Aufgabe, mit der wir uns im Folgen beschäftigen werden, ist die Lösung von Minimierungsproblemen der Form minimiere f(x) in R n, (3.1) wobei f : R n R eine gegebene

Mehr

Numerische Lineare Algebra - Matlab-Blatt 2

Numerische Lineare Algebra - Matlab-Blatt 2 Prof. Dr. Stefan Funken Universität Ulm M.Sc. Andreas Bantle Institut für Numerische Mathematik Dipl.-Math. oec. Klaus Stolle Wintersemester 014/015 Numerische Lineare Algebra - Matlab-Blatt Lösung (Besprechung

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Versus QR Matrizen mit vollem Rang 27. Mai 2011 Versus QR Inhaltsverzeichnis 1 2 3 Beispiel 4 Beispiel 5 6 Versus QR Kondition Vergleich Beispiel Versus QR Zu finden: Gerade, die den Punkten (0, 6), (1,

Mehr

Informationsverarbeitung im Bauwesen

Informationsverarbeitung im Bauwesen V14 1 / 30 Informationsverarbeitung im Bauwesen Markus Uhlmann Institut für Hydromechanik WS 2009/2010 Bemerkung: Verweise auf zusätzliche Information zum Download erscheinen in dieser Farbe V14 2 / 30

Mehr

DGLn v = dx/dt m*dv/dt = - D*x - rv*v - rgl*sign(v) - rt * v * abs(v) + af* sin(2*pi*f*t)

DGLn v = dx/dt m*dv/dt = - D*x - rv*v - rgl*sign(v) - rt * v * abs(v) + af* sin(2*pi*f*t) C:\ro\HOMEPAGE\welcome\fedmass\FedMassSchwing.doc, S,6 http://www.home.hs-karlsruhe.de/~kero/ Download: http://www.home.hs-karlsruhe.de/~kero/fedmass/fedmass.zip Feder-Masse-System, berechnet mit Simulink,

Mehr

Klausurlösung Einführung in Numerische Methoden und FEM Universität Siegen, Department Maschinenbau,

Klausurlösung Einführung in Numerische Methoden und FEM Universität Siegen, Department Maschinenbau, Universität Siegen, Department Maschinenbau, 7.7. Aufgabe y 3 l 3 3 F l l x Das dargestellte Fachwerk soll statisch mit Hilfe der FEM untersucht werden. Die Knoten und Elemente sind in der Abbildung nummeriert.

Mehr

Klausur Mathematik 2

Klausur Mathematik 2 Mathematik für Ökonomen WS 2014/15 Campus Duisburg PD Dr. V. Krätschmer, Fakultät für Mathematik Klausur Mathematik 2 17.02.2015, 12:30-14:30 Uhr (120 Minuten) Erlaubte Hilfsmittel: Nur reine Schreib-

Mehr

ETHZ, D-MATH. Numerische Methoden D-PHYS, WS 2015/16 Dr. V. Gradinaru

ETHZ, D-MATH. Numerische Methoden D-PHYS, WS 2015/16 Dr. V. Gradinaru ETHZ, D-MATH Prüfung Numerische Methoden D-PHYS, WS 5/6 Dr. V. Gradinaru..6 Prüfungsdauer: 8 Minuten Maximal erreichbare Punktzahl: 6. Der van-der-pol Oszillator ( Punkte) Der van-der-pol Oszillator kann

Mehr

Übung 3: Einfache Graphiken und Näherungen durch Regression

Übung 3: Einfache Graphiken und Näherungen durch Regression Übung 3: Einfache Graphiken und Näherungen durch Regression M. Schlup, 9. August 010 Aufgabe 1 Einfache Graphik Für die abgegebene Leistung P = UI eines linearen, aktiven Zweipols mit Leerlaufspannung

Mehr

d) Produkte orthogonaler Matrizen sind wieder orthogonal.

d) Produkte orthogonaler Matrizen sind wieder orthogonal. Die orthogonale Matrizen Definition: Eine Matrix Q R n n heißt orthogonal, falls QQ T = Q T Q = I gilt. Die Eigenschaften orthogonaler Matrizen: a) det(q) = ±1; b) Qx 2 = x 2 für alle x R n, also Q 2 =

Mehr

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2.

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2. MATHEMATISCHES INSTITUT PROF. DR. ACHIM SCHÄDLE 9.8.7 KLAUSUR zur Numerik I mit Lösungen Aufgabe : ( Punkte) [ wahr falsch ]. Die maximale Ordnung einer s-stufigen Quadraturformel ist s. [ ]. Der Clenshaw

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2015/16 Prof. Dr. Michael Hinze Dr. Hanna Peywand Kiani Analysis I für Studiere der Ingenieurwissenschaften Blatt 6 Aufgabe 1) Bitte lösen Sie die angegebenen

Mehr

NICHTLINEARE AUSGLEICHSPROBLEME

NICHTLINEARE AUSGLEICHSPROBLEME 1 NICHTLINEARE AUSGLEICHSPROBLEME In Numerik I haben wir uns bereits mit linearen Ausgleichsproblemen befasst. Wir erinnern uns daran, dass diese Probleme von der Form Ax d 2 2 min mit A R m n,d R m,m>n

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS2010/11 1 / 1 Inhaltsübersicht 3Einführung in die freie Optimierung 4Orakel und Modellfunktionen 5Optimalitätsbedingungen der freien Optimierung

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion

Mehr

Nullstellen von algebraischen Gleichungen

Nullstellen von algebraischen Gleichungen Kapitel 2 Nullstellen von algebraischen Gleichungen 2.1 Vorbemerkungen Suche Lösung der Gleichung f(x) = 0 (2.1) Dies ist die Standardform für eine Dimension. - typisch nichtlineare Gleichung, sonst elementar

Mehr

Überbestimmte Gleichungssysteme

Überbestimmte Gleichungssysteme Siebente Vorlesung, 8. Mai 2008, Inhalt Überbestimmte Gleichungssysteme Kleinste Quadrate: einfaches Beispiel, elementare Herleitung Normalengleichungen Transformation mit QR-Zerlegung und SVD Nichtlineare

Mehr

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme Newton-Verfahren zur gleichungsbeschränkten Optimierung Armin Farmani Anosheh (afarmani@mail.uni-mannheim.de) 3.Mai 2016 1 Gleichungsbeschränkte Optimierungsprobleme Einleitung In diesem Vortrag geht es

Mehr

Mathematik für Biologen und Chemiker Prof. Scheltho - Übungen Mathe 2

Mathematik für Biologen und Chemiker Prof. Scheltho - Übungen Mathe 2 Mathematik für Biologen und Chemiker Prof. Scheltho - Übungen Mathe 2 Fortsetzung der komlexen Zahlen : 9. Radizieren und Potenzen a) Berechnen Sie (1+i) 20 und geben Sie das Resultat als Polarkoordinaten

Mehr

Kurvenanpassung mit dem SOLVER

Kurvenanpassung mit dem SOLVER 1 Iterative Verfahren (SOLVER) Bei einem iterativen Verfahren wird eine Lösung durch schrittweise Annäherung gefunden. Der Vorteil liegt in der Verwendung einfacher Rechenoperationen und darin, dass der

Mehr

Explizite Runge-Kutta-Verfahren

Explizite Runge-Kutta-Verfahren Explizite Runge-Kutta-Verfahren Proseminar Numerische Mathematik Leitung: Professor Dr. W. Hofmann Dominik Enseleit 06.07.2005 1 1 Einleitung Nachdem wir schon einige numerische Verfahren zur Lösung gewöhnlicher

Mehr

Berechnung der Madelung Konstante und des kritischen Radius von zweidimensionalen Kristallstrukturen

Berechnung der Madelung Konstante und des kritischen Radius von zweidimensionalen Kristallstrukturen Berechnung der Madelung Konstante und des kritischen Radius von zweidimensionalen Kristallstrukturen Manuel Pfeifenberger, 0831365 Studentenprojekt Festkörperphysik WS 2010/11 1 Projektbeschreibung 1 Madelung

Mehr

Verarbeitung von Messdaten

Verarbeitung von Messdaten HTL Steyr Verarbeitung von Messdaten Seite von 8 Bernhard Nietrost, HTL Steyr Verarbeitung von Messdaten Mathematische / Fachliche Inhalte in Stichworten: Regression, Polynominterpolation, Extremwertberechnung,

Mehr

Mathematische Grundlagen der dynamischen Simulation

Mathematische Grundlagen der dynamischen Simulation Mathematische Grundlagen der dynamischen Simulation Dynamische Systeme sind Systeme, die sich verändern. Es geht dabei um eine zeitliche Entwicklung und wie immer in der Informatik betrachten wir dabei

Mehr

Numerische Lineare Algebra - Matlab-Blatt 1

Numerische Lineare Algebra - Matlab-Blatt 1 Prof. Dr. Stefan Funken Universität Ulm M.Sc. Andreas Bantle Institut für Numerische Mathematik Dipl.-Math. oec. Klaus Stolle Wintersemester 2014/2015 Numerische Lineare Algebra - Matlab-Blatt 1 Lösung

Mehr

Modellbildung und Simulation SS2011 Lineare Iterationsverfahren

Modellbildung und Simulation SS2011 Lineare Iterationsverfahren restart; with(plots): with(linearalgebra): Modellbildung und Simulation SS2 Lineare Iterationsverfahren Hilfsfunktionen: Bilder malen bild malt einen Vektor als stueckweise lineare Funktion ueber dem Einheitsintervall.

Mehr

Modulprüfung Numerische Mathematik 1

Modulprüfung Numerische Mathematik 1 Prof. Dr. Klaus Höllig 18. März 2011 Modulprüfung Numerische Mathematik 1 Lösungen Aufgabe 1 Geben Sie (ohne Beweis an, welche der folgenden Aussagen richtig und welche falsch sind. 1. Die Trapezregel

Mehr

Informationen zur Realisierung der virtuellen ph-messung

Informationen zur Realisierung der virtuellen ph-messung Informationen zur Realisierung der virtuellen ph-messung von Yvonne Unger 1) Allgemeines zur Realisierung der virtuellen Messung 2) Elektrodenauswahl 3) Steuerung über Navigationsleiste 4) Kalibrierung

Mehr

Tutorial: Numerisch Differenzieren

Tutorial: Numerisch Differenzieren (basierend auf dem Skript Numerik für Ingenieure von R. Axthelm) Aufgabenstellung: Von ihrem GPS-Gerät bekommen sie alle 12 Sekunden ihre aktuelle Position zugeschickt. Daraus können sie das unten dargestellte

Mehr

Beispiel aus der Schwingungslehre: Sinus-Erregung mit veränderlicher Frequenz ( Sweep )

Beispiel aus der Schwingungslehre: Sinus-Erregung mit veränderlicher Frequenz ( Sweep ) Prof. Dr. R. Kessler, FH-Karlsruhe, Sensorsystemstechnik, SweepFedMas.doc, S. / homepage: http://www.home.hs-karlsruhe.de/~kero/ Beispiel aus der Schwingungslehre: Sinus-Erregung mit veränderlicher Frequenz

Mehr

Man kann zeigen (durch Einsetzen: s. Aufgabenblatt, Aufgabe 3a): Die Lösungsgesamtheit von (**) ist also in diesem Fall

Man kann zeigen (durch Einsetzen: s. Aufgabenblatt, Aufgabe 3a): Die Lösungsgesamtheit von (**) ist also in diesem Fall 4. Lösung einer Differentialgleichung. Ordnung mit konstanten Koeffizienten a) Homogene Differentialgleichungen y'' + a y' + b y = 0 (**) Ansatz: y = e µx, also y' = µ e µx und y'' = µ e µx eingesetzt

Mehr

2.3.1 Explizite Runge-Kutta-Verfahren

2.3.1 Explizite Runge-Kutta-Verfahren Somit ist y(t + h) = y + hf(t, y ) + h (f t (t, y ) + f y (t, y )f(t, y )) + O(h 3 ) Setzen wir Φ(t, y, h) := f(t, y) + h (f t(t, y) + f y (t, y)f(t, y)), so erhalten wir ein Verfahren mit der Konsistenzordnung

Mehr

Übungen zum MATLAB Kurs Teil

Übungen zum MATLAB Kurs Teil Übungen zum MATLAB Kurs Teil 1 29.09.04 Indizierung Erzeugen Sie eine 5 x 5 Matrix A mit der Funktion rand Überlegen und testen Sie die Ergebnisse der folgende Ausdrücke: A([3 5],:) A(2,:) A([3,5]) A(:)

Mehr

Inhaltsverzeichnis. Kapitel 1: Rechnen mit Zahlen. Kapitel 2: Umformen von Ausdrücken. Kapitel 3: Gleichungen, Ungleichungen, Gleichungssysteme

Inhaltsverzeichnis. Kapitel 1: Rechnen mit Zahlen. Kapitel 2: Umformen von Ausdrücken. Kapitel 3: Gleichungen, Ungleichungen, Gleichungssysteme Kapitel 1: Rechnen mit Zahlen 1.1 Rechnen mit reellen Zahlen 1.2 Berechnen von Summen und Produkten 1.3 Primfaktorzerlegung 1.4 Größter gemeinsamer Teiler 1.5 Kleinstes gemeinsames Vielfaches 1.6 n-te

Mehr

Aufgabenstellung: Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung Gesucht ist eine Funktion y = y(x).

Aufgabenstellung: Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung Gesucht ist eine Funktion y = y(x). I Neunte Übungseinheit Inhalt der neunten Übungseinheit: Gewöhnliche Differentialgleichungen erster Ordnung I. Gewöhnliche Differentialgleichungen erster Ordnung Aufgabenstellung: Explizite gewöhnliche

Mehr

am Funktionsgenerator

am Funktionsgenerator FACHBEREICH PHYSIK Elektronik Praktikum Frequenzsweep sweep.tex KB 20061127 am Funktionsgenerator Mit dem Sweep-Modus ermöglicht der Funktionsgenerator eine schnelle Übersicht über das Frequenzverhalten

Mehr

Programmieren lernen mit Groovy Rekursion Rekursion und Iteration

Programmieren lernen mit Groovy Rekursion Rekursion und Iteration Programmieren lernen mit Groovy Rekursion Seite 1 Rekursion Rekursion Ursprung lat. recurrere ~ zurücklaufen rekursive Definition Definition mit Bezug auf sich selbst Beispiel Fakultätsfunktion n! 0! =

Mehr

Numerische Methoden 4. Übungsblatt

Numerische Methoden 4. Übungsblatt Karlsruher Institut für Technologie (KIT) SS 0 Institut für Analysis Prof. Dr. Michael Plum Dipl.-Math.techn. Rainer Mandel Numerische Methoden 4. Übungsblatt Aufgabe 9: QR-Verfahren (Bearbeitung bis Do,.05.)

Mehr

Motivation. Jede Messung ist mit einem sogenannten Fehler behaftet, d.h. einer Messungenauigkeit

Motivation. Jede Messung ist mit einem sogenannten Fehler behaftet, d.h. einer Messungenauigkeit Fehlerrechnung Inhalt: 1. Motivation 2. Was sind Messfehler, statistische und systematische 3. Verteilung statistischer Fehler 4. Fehlerfortpflanzung 5. Graphische Auswertung und lineare Regression 6.

Mehr

Komplexe Übertragungsfunktion mit FFT berechnet (Tephys und Matlab)

Komplexe Übertragungsfunktion mit FFT berechnet (Tephys und Matlab) Prof. Dr. R. Kessler, FH-Karlsruhe, C:\ro\Si5\f4ueb\F4UEB\XFERer_Tphys_Matlab_2.doc, Seite 1/1 Komplexe Übertragungsfunktion mit FFT berechnet (Tephys und Matlab) Tiefpass 5.Ordnung 2 CLC Pi-Glieder, hat

Mehr

Bandpass: Eingang Rechteck, Zeitbereich des Ausgangs ua mit inverser FFT und mit DGLn berechnet

Bandpass: Eingang Rechteck, Zeitbereich des Ausgangs ua mit inverser FFT und mit DGLn berechnet Prof. Dr. R. Kessler, HS-Karlsruhe, C:\ro\Si5\didakt\Fourier\invDFT\Bandpass Zeitber_u_ inversdft.doc, S. /7 Homepage: http://www.home.hs-karlsruhe.de/~kero/ Bandpass: Eingang Rechteck, Zeitbereich des

Mehr

Einführung in die digitale Signalverarbeitung

Einführung in die digitale Signalverarbeitung Einführung in die digitale Signalverarbeitung Prof. Dr. Stefan Weinzierl 1. Aufgabenblatt 1. Eigenschaften diskreter Systeme a. Erläutern Sie die Begriffe Linearität Zeitinvarianz Speicherfreiheit Kausalität

Mehr

WiMa-Praktikum 1. Woche 8

WiMa-Praktikum 1. Woche 8 WiMa-Praktikum 1 Universität Ulm, Sommersemester 2017 Woche 8 Lernziele In diesem Praktikum sollen Sie üben und lernen: Besonderheiten der For-Schleife in Matlab Wiederholung des Umgangs mit Matrizen und

Mehr

Berechnungen von Wurzeln

Berechnungen von Wurzeln Berechnungen von Wurzeln Malte Schmidt Proseminar: Implementierung mathematischer Algorithmen 19.12.2013 Inhaltsverzeichnis I 1 Geschichte der Wurzelrechnung Griechische Gedankenspiele Babylonische Wurzelgedanken

Mehr

A 1 A 2 A 3 A 4 A 5 A 6 A 7

A 1 A 2 A 3 A 4 A 5 A 6 A 7 Institut für Geometrie und Praktische Mathematik Numerisches Rechnen für Informatiker WS 7/8 Prof. Dr. H. Esser J. Grande, Dr. M. Larin Klausur Numerisches Rechnen für Informatiker Hilfsmittel: keine (außer

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Differentialrechnung für Funktionen mehrerer

Mehr

Wir untersuchen die Bewegungsleichung des mathematischen (gedämpften) Fadenpendels in einer Dimension. = 0, ϕ (0)

Wir untersuchen die Bewegungsleichung des mathematischen (gedämpften) Fadenpendels in einer Dimension. = 0, ϕ (0) 3.1 Beispiel: mathematisches Pendel Wir untersuchen die Bewegungsleichung des mathematischen (gedämpften) Fadenpendels in einer Dimension ϕ+α ϕ+ω 2 0 sinϕ = 0, Ω2 0 = g/l (1) Das äquivalente System 1.

Mehr

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. F. Hettlich Dr. S. Schmitt Dipl.-Math. J. Kusch Karlsruhe, den 09.06.20 Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik

Mehr

Inhaltsverzeichnis. 1 Einleitung... 1

Inhaltsverzeichnis. 1 Einleitung... 1 Inhaltsverzeichnis 1 Einleitung................................................. 1 2 Fehleranalyse: Kondition, Rundungsfehler, Stabilität...... 11 2.1 Kondition eines Problems................................

Mehr

= {} +{} = {} Widerstand Kondensator Induktivität

= {} +{} = {} Widerstand Kondensator Induktivität Bode-Diagramme Selten misst man ein vorhandenes Zweipolnetzwerk aus, um mit den Daten Amplituden- und Phasengang zu zeichnen. Das kommt meistens nur vor wenn Filter abgeglichen werden müssen oder man die

Mehr