|
|
|
- Meike Stieber
- vor 8 Jahren
- Abrufe
Transkript
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 4. Anhang 4.1 Wertetabellen zum 2. Algorithmus //Suche alle k, welche quadratische Reste mod 64 sind print "Quadratische Reste mod 64:"; for k:=0 to 31 do print (k^2 mod 64); end for; k q64[k] g11[k] q11[k] //Suche alle k, welche quadratische Reste mod 63 sind print "Quadratische Reste mod 63:"; for k:=0 to 31 do print (k^2 mod 63); end for; k q63[k] q63[k] q63[k] //Suche alle k, welche quadratische Reste mod 65 sind print "Quadratische Reste mod 65:"; for k:=0 to 32 do print (k^2 mod 65); end for; k q65[k] q65[k] q65[k] //Suche alle k, welche quadratische Reste mod 11 sind print "Quadratische Reste mod 11:"; for k:=0 to 5 do print (k^2 mod 11); end for; k q11[k]
16 4.2 MAGMA-Codes mit Beispielen 1. Algorithmus: // Integer Square Root n:=144; x:=n; y:=floor((x + Floor(n div x)) div 2); while (y lt x) do print y; x:=y; y:=floor((x + Floor(n div x)) div 2); end while; Ausgabefenster in MAGMA Die ganzzahlige Quadratwurzel von 144 ist: 12 print "Die ganzzahlige Quadratwurzel von",n,"ist:",x; 2. Algorithmus: // Square Test n:=4096; q11:=[0,1,3,4,5,9]; q63:=[0,1,4,7,9,16,18,22,25,28,36,37,43,46,49,58]; q64:=[0,1,4,9,16,17,25,33,36,41,49,57]; q65:=[0,1,4,9,10,14,16,25,26,29,30,35,36,39,40,49,51,55,56,61,64]; r:=(n mod 45045); t:=(n mod 64); a:=(r mod 63); b:=(r mod 65); c:=(r mod 11); x:=n; y:=floor((x + Floor(n div x)) div 2); //Probe 64 if t in q64 then print "q64[", t,"], also berechne: (",n,"mod ) =", r; //Probe 63 if a in q63 then print "q63[", a, "] = 1, also koennte", n, "eine Quadratzahl sein."; //Probe 65 if b in q65 then print "q65[", b, "] = 1, also koennte", n, "eine Quadratzahl sein."; //Probe 11 if c in q11 then print "q11[", c, "] = 1, also koennte", n, "eine Quadratzahl sein."; //Berechnung der Quadratwurzel while (y lt x) do x:=y; y:=floor((x+floor(n div x)) div 2); end while; print "Berechnung der ganzzahligen Quadratwurzel:", x; //Test, ob dies wirklich die Quadratwurzel if (x^2 eq n) then print "Ergebnis:", n, "ist eine Quadratzahl mit Quadratwurzel", x; else print "Ergebnis:", n, "ist keine Quadratwurzel."; else print "q11[", c, "] = 0, also ist", n, "keine Quadratzahl."; else print "q65[", b, "] = 0, also ist", n, "keine Quadratzahl."; else print "q63[", a, "] = 0, also ist", n, "keine Quadratzahl."; else print "q64[", t, "] = 0, also ist", n, "keine Quadratzahl.";
17 Ausgabefenster in MAGMA: q64[ 0 ], also berechne: ( 4096 mod ) = 4096 q63[ 1 ] = 1, also koennte 4096 eine Quadratzahl sein. q65[ 1 ] = 1, also koennte 4096 eine Quadratzahl sein. q11[ 4 ] = 1, also koennte 4096 eine Quadratzahl sein. Berechnung der ganzzahligen Quadratwurzel: 64 Ergebnis: 4096 ist eine Quadratzahl mit Quadratwurzel Algorithmus: //Prime Power Test n:=2197; p:=2; q:=n; R:=ResidueClassRing(q); f:=factorization(q-1); t:=f[1][2]; m:=(q-1) div (2^t); //1. Schritt: Fall n gerade if IsEven(n) then print "1. Schritt:", n, "ist gerade -> Finaler Test (Schritt 4)"; //4. Schritt: Finaler Test if IsPrime(p) then //Mehrmaliges Dividieren k:=0; repeat k:=k+1; until (p^k ge n); if (p^k eq n) then print "4. Schritt:", n, "ist Primzahlpotenz von p =", p, "mit Grad k =", k; else print "4. Schritt:", n, "ist keine Primzahlpotenz"; else print "Setze q:=", p, " -> Miller-Rabin-Test (Schritt 2)"; else print "1. Schritt:", n, "ist ungerade -> Miller-Rabin-Test (Schritt 2)"; //2. Schritt: Miller-Rabin-Test print "2. Schritt: Anwendung des Miller-Rabin-Tests:"; //Teste höchstens 10 mal for b:=1 to 10 do a:=random(r); //Teste, ob a Einheit if (not (GCD(a,q) eq 1)) then print a, "nicht teilerfremd zu", q, ",also",q, "sicher nicht prim"; else //Teste, ob MR1 erfüllt ist x:=a^m; if (x eq 1) then print a, "^m=1, also", q, "hoechstens mit Wkeit", (1/4)^b, "nicht prim"; //Falls MR1 nicht erfüllt, teste, ob MR2 erfüllt else treffer:=false; s:=0; while ((not treffer) and (s lt t)) do if (x eq -1) then treffer:=true; print a,"^(m*2^", s, ")=-1, also hoechstens mit Wkeit", (1/4)^b, "nicht prim"; break; else s:=s+1; x:=x^2; end while; if (s eq t) then print a, "erfuellt die MR-Bedingung nicht, also ist", a, "Zeuge, dass", q, "nicht prim ist
18 -> Schritt 3"; //3. Schritt: Berechnung des ggt q:=n; d:=gcd(a^q-a,q); if (d eq 1) or (d eq q) then print n, "ist keine Primzahlpotenz"; else print "3. Schritt: ggt(",a,"^",q,"-",a,",",q,") =", d, " -> erneute Anwendung des Miller-Rabin-Tests (Schritt 2)"; break; end for; // 2. Schritt: Erneute Anwendung des Miller-Rabin-Tests n:=2197; q:=13; R:=ResidueClassRing(q); f:=factorization(q-1); t:=f[1][2]; m:=(q-1) div (2^t); print "2. Schritt: Erneute Anwendung des Miller-Rabin-Tests:"; //Teste höchstens 10 mal for b:=1 to 10 do a:=random(r); //Teste, ob a Einheit if (not (GCD(a,q) eq 1)) then print a,"nicht teilerfremd zu",q,",also",q,"sicher nicht prim"; else //Teste, ob MR1 erfüllt ist x:=a^m; if (x eq 1) then print a, "^m=1, also",q,"hoechstens mit Wkeit", (1/4)^b, "nicht prim"; Hier wird das zu untersuchende n eingetragen und das im Schritt 3 berechnete q übernommen. //Falls MR1 nicht erfüllt, teste, ob MR2 erfüllt else treffer:=false; s:=0; while ((not treffer) and (s lt t)) do if (x eq -1) then treffer:=true; print a,"^(m*2^", s, ")=-1, also",q,"hoechstens mit Wkeit", (1/4)^b, "nicht prim"; break; else s:=s+1; x:=x^2; end while; if (s eq t) then print a,"erfuellt die MR-Bedingung nicht, also ist",a,"zeuge, dass",q,"nicht prim ist -> Schritt 3"; //3. Schritt: Berechnung des ggt d:=gcd(a^q-a,q); if (d eq 1) or (d eq q) then print n, "ist keine Primzahlpotenz"; else print "3. Schritt: ggt(",a,"^",q,"-",a,",",q,") =", d, " -> Setze q:=",d,"und erneute Anwendung des Miller-Rabin-Tests (Schritt 2)"; break; end for;
19 //4. Schritt: Finaler Test n:=2197; q:=13; if IsPrime(q) then Hier wird das zu untersuchende n eingetragen und das im Schritt 3 berechnete q übernommen. //Mehrmaliges Dividieren k:=0; repeat k:=k+1; until (q^k ge n); if (q^k eq n) then print "4. Schritt:", n, "ist Primzahlpotenz von p =", q, "mit Grad k =", k; else print "4. Schritt:", n, "ist keine Primzahlpotenz, da",n,"=",q,"^k fuer kein k erfuellt ist"; else print "Setze q:=", q, " -> Miller-Rabin-Test (Schritt 2)"; Ausgabefenster MAGMA: n gerade 1. Schritt: 2048 ist gerade -> Finaler Test (Schritt 4) 4. Schritt: 2048 ist Primzahlpotenz von p = 2 mit Grad k = 11 Ausgabefenster MAGMA: n ungerade 1. Schritt: 2197 ist ungerade -> Miller-Rabin-Test (Schritt 2) 2. Schritt: Anwendung des Miller-Rabin-Tests: 1633 erfuellt die MR-Bedingung nicht, also ist 1633 Zeuge, dass 2197 nicht prim ist -> Schritt 3 3. Schritt: ggt( 1633 ^ , 2197 ) = 13 -> erneute Anwendung des Miller-Rabin-Tests (Schritt 2) 2. Schritt: Erneute Anwendung des Miller-Rabin-Tests: 10 ^(m*2^ 0 )=-1, also 13 hoechstens mit Wkeit 1/4 nicht prim 6 ^(m*2^ 1 )=-1, also 13 hoechstens mit Wkeit 1/16 nicht prim 4 ^(m*2^ 0 )=-1, also 13 hoechstens mit Wkeit 1/64 nicht prim 5 ^(m*2^ 1 )=-1, also 13 hoechstens mit Wkeit 1/256 nicht prim 4 ^(m*2^ 0 )=-1, also 13 hoechstens mit Wkeit 1/1024 nicht prim 5 ^(m*2^ 1 )=-1, also 13 hoechstens mit Wkeit 1/4096 nicht prim 11 ^(m*2^ 1 )=-1, also 13 hoechstens mit Wkeit 1/16384 nicht prim 4 ^(m*2^ 0 )=-1, also 13 hoechstens mit Wkeit 1/65536 nicht prim 2 ^(m*2^ 1 )=-1, also 13 hoechstens mit Wkeit 1/ nicht prim 5 ^(m*2^ 1 )=-1, also 13 hoechstens mit Wkeit 1/ nicht prim 4. Schritt: 2197 ist Primzahlpotenz von p = 13 mit Grad k = 3
Probabilistische Primzahltests
23.01.2006 Motivation und Überblick Grundsätzliches Vorgehen Motivation und Überblick Als Primzahltest bezeichnet man ein mathematisches Verfahren, mit dem ermittelt wird, ob eine gegebene Zahl eine Primzahl
Ganzzahlige Division mit Rest
Modulare Arithmetik Slide 1 Ganzzahlige Division mit Rest Für a,b Æ mit a b gibt es stets eine Zerlegung von a der Form a = q b+r mit 0 r b 1. Hierbei gilt q = a b (salopp formuliert: b passt q-mal in
Kanonische Primfaktorzerlegung
Mathematik I für Informatiker Zahlen p. 1 Kanonische Primfaktorzerlegung Jede natürliche Zahl n kann auf eindeutige Weise in der Form n = p α 1 1 pα 2 2... pα k k geschrieben werden, wobei k N 0, α i N
9. Primitivwurzeln. O. Forster: Einführung in die Zahlentheorie
9. Primitivwurzeln 9.1. Satz. Sei G eine zyklische Gruppe der Ordnung m und g G ein erzeugendes Element. Das Element a := g k, k Z, ist genau dann ein erzeugendes Element von G, wenn k zu m teilerfremd
Einführung in die Java- Programmierung
Einführung in die Java- Programmierung Dr. Volker Riediger Tassilo Horn riediger [email protected] WiSe 2012/13 1 Rückblick Datentypen (int, long, double, boolean, String) Variablen und Variablendeklarationen
Übersicht Shell-Scripten
!!!! Wichtig: Bei Shell-Scripten enden die Zeilen nicht mit einem Strichpunkt!!!! Erste Zeile eines Shell-Scripts: #! /bin/bash Variablen in Shell-Scripts: Variablennamen müssen mit einem Buchstaben beginnen,
Einführung in die Programmierung mit VBA
Einführung in die Programmierung mit VBA Vorlesung vom 07. November 2016 Birger Krägelin Inhalt Vom Algorithmus zum Programm Programmiersprachen Programmieren mit VBA in Excel Datentypen und Variablen
3. Diskrete Mathematik
Diophantos von Alexandria um 250 Georg Cantor 1845-1918 Pythagoras um 570 v. Chr Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 3: Diskrete Mathematik 3.1 Zahlentheorie: Abzählbarkeit,
Vortrag zum Proseminar: Kryptographie
Vortrag zum Proseminar: Kryptographie Thema: Oliver Czernik 6.12.2005 Historie Michael Rabin Professor für Computerwissenschaft Miller-Rabin-Primzahltest Januar 1979 April 1977: RSA Asymmetrisches Verschlüsselungssystem
Oft kommt es darauf an, Potenzen a n mod m zu berechnen. Dabei kann n eine sehr groÿe Zahl sein.
Oft kommt es darauf an, Potenzen a n mod m zu berechnen. Dabei kann n eine sehr groÿe Zahl sein. 3 1384788374932954500363985493554603584759389 mod 28374618732464817362847326847331872341234 Wieso kann ein
Algorithmentheorie Randomisierung. Robert Elsässer
Algorithmentheorie 03 - Randomisierung Robert Elsässer Randomisierung Klassen von randomisierten Algorithmen Randomisierter Quicksort Randomisierter Primzahltest Kryptographie 2 1. Klassen von randomisierten
Lösungsvorschläge zu den Aufgaben auf Übungsblatt 07. x Dy y x
Lösungsvorschläge zu den Aufgaben auf Übungsblatt 07 Aufgabe 1. Es seien R ein kommutativer Ring mit 1 und D R. Wir schreiben { ) x Dy QR, D) = x, y R}. y x Dann ist QR, D) abgeschlossen bezüglich der
Übung zu Einführung in die Informatik # 11
Übung zu Einführung in die Informatik # 11 Tobias Schill [email protected] 22. Januar 2016 Aktualisiert am 22. Januar 2016 um 11:36 Erstklausur: Mi, 24.02.2016 von 10-12Uhr Aufgabe 1* Aufgabe
KOP / FBS - Programmierung
KOP / FBS - Programmierung Programmieren in Anweisungsliste Programmieren in strukturierten Text Programmieren in Kontaktplan Programmieren in Funktionsbausteinsprache KOP Programmierung (1) 2 1 Neues
KV Software Engineering Übungsaufgaben SS 2005
KV Software Engineering Übungsaufgaben SS 2005 Martin Glinz, Silvio Meier, Nancy Merlo-Schett, Katja Gräfenhain Übung 1 Aufgabe 1 (10 Punkte) Lesen Sie das Originalpapier von Dijkstra Go To Statement Considered
Übungskomplex Reelle Zahlen. Rechnen mit Gleitkommazahlen
Übungskomplex Reelle Zahlen Rechnen mit Gleitkommazahlen Hinweise zur Übung Benötigter Vorlesungsstoff Einheiten 1-3 (C-Tutorial) Einheiten Reelle Zahlen 61 Aufgabe Kreisberechnung a) Schreiben Sie zwei
2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik
Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,
Aufgabe Total Punkte
Lösung der Informatikprüfung Klasse 4 Sa Kantonsschule XY 2007 Name :...Vorname :... Du hast 90 Minuten Zeit. Spicken ist nicht erlaubt (Die Prüfung wird sofort eingezoegen und Deine mögliche Bestnote
Theoretische Informatik SS 03 Übung 3
Theoretische Informatik SS 03 Übung 3 Aufgabe 1 a) Sind die folgenden Funktionen f : partiell oder total: f(x, y) = x + y f(x, y) = x y f(x, y) = x y f(x, y) = x DIV y? Hierbei ist x DIV y = x y der ganzzahlige
Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler
Kapitel 3: Die Sätze von Euler, Fermat und Wilson In diesem Kapitel wollen wir nun die eulersche -Funktion verwenden, um einen berühmten Satz von Euler zu formulieren, aus dem wir dann mehrere interessante
Kurs 1575, Musterlösung zur Winter Klausur 2003/04
Kurs 1575, Musterlösung zur Klausur im Wintersemester 2003/04 1 Kurs 1575, Musterlösung zur Winter Klausur 2003/04 Aufgabe 1: Römische Zahlen Wer kennt das Problem nicht: Sie stehen vor einer Inschrift,
Rechnen modulo n. Bernhard Ganter. Institut für Algebra TU Dresden D-01062 Dresden
Rechnen modulo n Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden [email protected] Kanonische Primfaktorzerlegung Jede natürliche Zahl n > 0 kann auf eindeutige Weise in der
Probabilistische Primzahltests
Probabilistische Primzahltests Daniel Tanke 11. Dezember 2007 In dieser Arbeit wird ein Verfahren vorgestellt, mit welchem man relativ schnell testen kann, ob eine ganze Zahl eine Primzahl ist. Für einen
Zahlentheorie I - Tipps & Lösungen. Aktualisiert: 15. Oktober 2016 vers Teilbarkeit
Schweizer Mathematik-Olympiade smo osm Zahlentheorie I - Tipps & Lösungen Aktualisiert: 15. Oktober 2016 vers. 1.2.0 1 Teilbarkeit Einstieg 1.1 Zeige, dass 900 ein Teiler von 10! ist. Tipp: Schreibe 900
Programmieren I. Kapitel 5. Kontrollfluss
Programmieren I Kapitel 5. Kontrollfluss Kapitel 5: Kontrollfluss Ziel: Komplexere Berechnungen im Methodenrumpf Ausdrücke und Anweisungen Fallunterscheidungen (if, switch) Wiederholte Ausführung (for,
Arithmetik und Algebra
Willkommen Gliederung "Hallo Welt!" für Fortgeschrittene Friedrich-Alexander-Universität Erlangen-Nürnberg Institut für Informatik Lehrstuhl 2 7. Juni 2005 Willkommen Gliederung Gliederung 1 Repräsentation
WURZEL Werkstatt Mathematik Polynome Grundlagen Teil II
Die WURZEL Werkstatt Mathematik Polynome Grundlagen Teil II Polynome nur zu addieren, multiplizieren oder dividieren ist auf die Dauer langweilig. Polynome können mehr. Zum Beispiel ist es manchmal gar
Java 8. Elmar Fuchs Grundlagen Programmierung. 1. Ausgabe, Oktober 2014 JAV8
Java 8 Elmar Fuchs Grundlagen Programmierung 1. Ausgabe, Oktober 2014 JAV8 5 Java 8 - Grundlagen Programmierung 5 Kontrollstrukturen In diesem Kapitel erfahren Sie wie Sie die Ausführung von von Bedingungen
Grundlagen der Arithmetik und Zahlentheorie
Grundlagen der Arithmetik und Zahlentheorie 1.0 Teilbarkeit In diesem Abschnitt werden wir einerseits die ganzen Zahlen an sich studieren und dabei besonders wichtige Zahlen, die Primzahlen, entsprechend
Informatik I Übung, Woche 40
Giuseppe Accaputo 2. Oktober, 2014 Plan für heute 1. Fragen & Nachbesprechung Übung 2 2. Zusammenfassung der bisherigen Vorlesungsslides 3. Tipps zur Übung 3 Informatik 1 (D-BAUG) Giuseppe Accaputo 2 Nachbesprechung
Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr.
Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Kurzweil Florian Franzmann André Diehl Kompiliert am 10. April 2006 um 18:33
IT-Sicherheit. Jun.-Prof. Dr. Gábor Erdélyi. Siegen, 15. November 2016 WS 2016/2017
IT-Sicherheit WS 2016/2017 Jun.-Prof. Dr. Gábor Erdélyi Lehrstuhl für Entscheidungs- und Organisationstheorie, Universität Siegen Siegen, 15. November 2016 Wiederholung Warum IT-Sicherheit? Grundlagen
Kapitel 2. Kapitel 2 Natürliche und ganze Zahlen
Natürliche und ganze Zahlen Inhalt 2.1 2.1 Teiler 12 12 60 60 2.2 2.2 Primzahlen 2, 2, 3, 3, 5, 5, 7, 7, 11, 11, 13, 13,...... 2.3 2.3 Zahldarstellungen 17 17 = (1 (10 0 0 1) 1) 2 2 2.4 2.4 Teilbarkeitsregeln
Kurs 1613 Einführung in die imperative Programmierung
Aufgabe 1 Gegeben sei die Prozedur BubbleSort: procedure BubbleSort(var iofeld:tfeld); { var hilf:integer; i:tindex; j:tindex; vertauscht:boolean; i:=1; repeat vertauscht := false; for j := 1 to N - i
4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9
Chr.Nelius: Zahlentheorie (SS 2007) 9 4. ggt und kgv (4.1) DEF: Eine ganze Zahl g heißt größter gemeinsamer Teiler (ggt) zweier ganzer Zahlen a und b, wenn gilt: GGT 0 ) g 0 GGT 1 ) g a und g b GGT 2 )
Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt
Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung
Lösungen zu Aufgabe 3 Mathematik
Lösungen zu Aufgabe 3 Mathematik David Ploog, Frithjof Schulze Aufgabe 1. Die Dreieckszahlen kleiner als 100 sind 1, 3, 6, 10, 15, 1, 8, 36, 45, 55, 66, 78, 91. Diese Zahlen folgen der Vorschrift d n =
Hast du auch wirklich versucht, die Aufgaben einmal selbständig zu lösen? Wenn nicht, tue es, bevor du dir die Lösungen anschaust!
Chr.Nelius: Zahlentheorie (SoSe 2016) 1 14. Aufgabenblatt ZAHLENTHEORIE (für Master G und HRG) Lösungen Hast du auch wirklich versucht, die Aufgaben einmal selbständig zu lösen? Wenn nicht, tue es, bevor
3: Zahlentheorie / Primzahlen
Stefan Lucks Diskrete Strukturen (WS 2009/10) 96 3: Zahlentheorie / Primzahlen 3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 97 Definition 37 (Teiler, Vielfache, Primzahlen,
Chr.Nelius: Zahlentheorie (WS 2006/07) ggt und kgv
ChrNelius: Zahlentheorie (WS 2006/07) 8 3 ggt und kgv Wir erinnern uns hoffentlich an die folgenden Definitionen des ggt s und des kgv s zweier ganzer Zahlen (31) DEF: Eine ganze Zahl g heißt größter gemeinsamer
Eine JAVA Einführung ... Quellcode:... COMA Übung 3. T.Bosse. A.Griewank. Vorschau JAVA Programme Sprachen Kate
COMA Eine Einführung Quellcode: Anweisung(en)1 Wiederhole: T.Bosse Anweisung(en) 2 Einfache Schleifen (z.b. for-loop) Wiederhole: Falls (Bedingung) wahr, tue: Anweisung(en) 2 sonst führe Verzweigungen
Schleifenprogrammierung in C/C++, Fortran und Pascal
Schleifenprogrammierung in C/C++, Fortran und Pascal Stefan Ackermann Mathematisches Institut der Universität Leipzig 8. April 2009 1 Die kopfgesteuerte Schleife Bei der kopfgesteuerten Schleife steht
4.Grundsätzliche Programmentwicklungsmethoden
4.Grundsätzliche Programmentwicklungsmethoden 1.1 Grundlage strukturierter und objektorientierter Programmierung Begriff Software Engineering - umfaßt den gezielten Einsatz von Beschreibungsmitteln, Methoden
Informatik B von Adrian Neumann
Musterlösung zum 7. Aufgabenblatt vom Montag, den 25. Mai 2009 zur Vorlesung Informatik B von Adrian Neumann 1. Java I Schreiben Sie ein Java Programm, das alle positiven ganzen Zahlen 0 < a < b < 1000
Gleichungen und Ungleichungen
Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme. Kapitel 3 Gleichungen und Ungleichungen linke Seite = rechte Seite Grundmenge: Menge aller Zahlen, die wir als Lösung der Gleichung
1 Zahlentheorie. 1.1 Kongruenzen
3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern
Zahlentheorie I. smo osm. Thomas Huber. Inhaltsverzeichnis. Aktualisiert: 1. August 2016 vers Teilbarkeit 2.
Schweizer Mathematik-Olympiade smo osm Zahlentheorie I Thomas Huber Aktualisiert: 1. August 2016 vers. 1.0.0 Inhaltsverzeichnis 1 Teilbarkeit 2 2 ggt und kgv 3 3 Abschätzungen 6 1 Teilbarkeit Im Folgenden
3. Grundanweisungen in Java
3. Grundanweisungen in Java Die Grundanweisungen entsprechen den Prinzipien der strukturierten Programmierung 1. Zuweisung 2. Verzweigungen 3. Wiederholungen 4. Anweisungsfolge (Sequenz) Die Anweisungen
Syntax der Sprache PASCAL
Syntax der Sprache PASCAL Buchstaben A B C D E F G H I J K L M N O P Q R S T U V W X Y Z a b c d e f g h i j k l m n o p q r s t u v w x y z Ziffern 0 1 2 3 4 5 6 7 8 9 Sonderzeichen und Wortsymbole +
Der Algorithmus von Bresenham
Der Algorithmus von Bresenham Das Bresenham-Verfahren beruht im wesentlichen auf zwei grundsätzliche Beobachtungen: - Es reicht ein Verfahren aus um Geraden mit einer Steigung im Bereich von null bis eins
Das Quadratische Reziprozitätsgesetz. Stefanie Beule Sebastian Schrage
Das Quadratische Rezirozitätsgesetz Stefanie Beule Sebastian Schrage 06. November 007 Inhaltsverzeichnis 3 Das Quadratische Rezirozitätsgesetz Notation.............................................. A Das
Imperative vs. Funktionale Programmierung
Beispiel: Entwerfe eine Funktion, die testet, ob eine Zahl n eine Primzahl ist oder nicht. Beobachtung: (1) Wenn n Primzahl ist, ist die Menge der Teiler von n leer. (2) Die Menge der Teiler von n sind
Zahlentheorie, Arithmetik und Algebra I
Zahlentheorie, Arithmetik und Algebra I Viktoria Ronge 04.06.2014 Viktoria Ronge Zahlentheorie, Arithmetik und Algebra I 04.06.2014 1 / 63 Übersicht 1 Modulare Arithmetik 2 Primzahlen 3 Verschiedene Teiler
Kurs 1613 Einführung in die imperative Programmierung Musterlösung zur Nachklausur am
1 Aufgabe 1 Analysiert man das Verfahren anhand des angegebenen Beispiels, ist schnell zu erkennen, dass das erste Element von infeld2 nach outfeld an Index 2 kopiert wird, das zweite den Index 4 bekommt,
Bash-Scripting Linux-Kurs der Unix-AG
Bash-Scripting Linux-Kurs der Unix-AG Zinching Dang 02. Juli 2013 Was ist ein Bash-Script? Aneinanderreihung von Befehlen, die ausgeführt werden Bedingte und wiederholende Ausführung möglich Nützlich bei
Quadrate und Wurzelziehen modulo p
Quadrate und Wurzelziehen modulo p Sei im Folgenden p eine Primzahl größer als. Wir möchten im Körper Z p Quadratwurzeln ziehen. Die Quadrierabbildung Q :Z p Z p ist aber nicht surjektiv, daher gibt es
1 Potenzen und Polynome
1 Potenzen und Polynome Für eine reelle Zahl x R und eine natürliche Zahl n N definieren wir x n := x x x... x }{{} n-mal Einschub über die bisher aufgetretenen mathematischen Symbole: Definition mittels
Steuerung von Programmabläufen. Vorlesung Computergestützte Mathematik zur Linearen Algebra. Lehrstuhl für Angewandte Mathematik Sommersemester 2009
Steuerung von Programmabläufen Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Sommersemester 2009 7. und 14. Mai 2009 For-Schleifen Bisher: Matlab -Kommandos
Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie
Prof. Dr. Sebastian Iwanowski DM4 Folie 1 Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 4: Zahlentheorie Beutelspacher 5 Lang 7, Biggs 20, 22, 23 (jeweils teilweise,
Ein Turbo-Pascal-Programm zur Umrechnung vom Dezimalsystem in andere Zahlensysteme
Ein Turbo-Pascal-Programm zur Umrechnung vom Dezimalsystem in andere Zahlensysteme Stefan Ackermann Mathematisches Institut der Universität Leipzig 11. November 2005 Zusammenfassung Dezimalzahlen bzw.
3. Der größte gemeinsame Teiler
Chr.Nelius: Zahlentheorie (SoSe 2016) 18 3. Der größte gemeinsame Teiler (3.1) DEF: a und b seien beliebige ganze Zahlen. a) Eine ganze Zahl t heißt gemeinsamer Teiler von a und b, wenn gilt t a und t
Diskrete Mathematik Kongruenzen
Diskrete Mathematik Kongruenzen 31. Mai 2006 1 Inhaltsverzeichnis 1. Einleitung 2. Prime Restklassen 3. Die Sätze von Euler und Fermat 4. Lineare Kongruenzen 5. Systeme 2 Einleitung 3 Fragestellung Wie
Grundzüge der Wirtschaftsinformatik WS 2002/03. Wiederholung Java. Programmierzyklus. Heiko Rossnagel Problem
Grundzüge der Wirtschaftsinformatik WS 2002/03 Wiederholung Java Heiko Rossnagel www.m-lehrstuhl.de accelerate.com Grundzüge der Wirtschaftsinformatik WS 2002/03 1 Programmierzyklus Problem Formulierung
Übersicht. Einführung in Perl Datenstrukturen I. Datentypen Übersicht (1) Kernbegriffe. Kernbegriffe. Einführung der Datentypen.
Übersicht Kernbegriffe Einführung der Datentypen Skalare im Detail Vergleichsoperatoren Standardeingabe chomp-operator while-schleife Perl, 24.10.03 Datentypen I 1 Datentypen Übersicht (1) Datentyp Erklärung
Zahlentheorie, Arithmetik und Algebra 1
Zahlentheorie, Arithmetik und Algebra 1 Monika Huber 24.6.2015 Monika Huber Zahlentheorie, Arithmetik und Algebra 1 24.6.2015 1 / 52 Übersicht Modulare Arithmetik Größter gemeinsamer Teiler Primzahlen
R a i n e r N i e u w e n h u i z e n K a p e l l e n s t r G r e v e n T e l / F a x / e
R a i n e r N i e u w e n h u i z e n K a p e l l e n s t r. 5 4 8 6 2 8 G r e v e n T e l. 0 2 5 7 1 / 9 5 2 6 1 0 F a x. 0 2 5 7 1 / 9 5 2 6 1 2 e - m a i l r a i n e r. n i e u w e n h u i z e n @ c
F r e i t a g, 3. J u n i
F r e i t a g, 3. J u n i 2 0 1 1 L i n u x w i r d 2 0 J a h r e a l t H o l l a, i c h d a c h t e d i e L i n u x - L e u t e s i n d e i n w e n i g v e r n ü n f t i g, a b e r j e t z t g i b t e
C.3 Funktionen und Prozeduren
C3 - Funktionen und Prozeduren Funktionsdeklarationen in Pascal auch in Pascal kann man selbstdefinierte Funktionen einführen: Funktionen und Prozeduren THEN sign:= 0 Funktion zur Bestimmung des Vorzeichens
1.2. Teilbarkeit und Kongruenz
1.2. Teilbarkeit und Kongruenz Aus den Begriffen der Teilbarkeit bzw. Teilers ergeben sich die Begriffe Rest und Restklassen. Natürliche Zahlen, die sich nur durch sich selbst oder die 1 dividieren lassen,
Einführung in die Algebra
Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 19 Algebraisch abgeschlossene Körper Wir haben zuletzt erwähnt, dass ein lineares Polynom X a über einem Körper stets irreduzibel
TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK
TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK WS 11/12 Einführung in die Informatik II Übungsblatt 2 Univ.-Prof. Dr. Andrey Rybalchenko, M.Sc. Ruslán Ledesma Garza 8.11.2011 Dieses Blatt behandelt
1.4 Die Ackermannfunktion
a : N 2 N : Beispiele: a(0, y) = y + 1, a(x, 0) = a(x 1, 1), x > 0, a(x, y) = a(x 1, a(x, y 1)), x, y > 0. Beh.: a(1, y) = y + 2 Bew. durch Induktion über y: a(1, 0) = a(0, 1) = 2 = 0+2. a(1, y + 1) =
Zufallsprimzahlen und eine Revolution in der Kryptographie Stefan Edelkamp
Zufallsprimzahlen und eine Revolution in der Kryptographie Stefan Edelkamp Fakultät für Mathematik und Informatik Universität of Bremen Übersicht des Vortrags 1 Einfache Kryptosysteme 2 Einmalschlüssel
Lösungen der Aufgaben
Lösungen der Aufgaben Aufgabe 1.3.1 Es gibt 42 mögliche Verschlüsselungen. Aufgabe 2.3.4 Ergebnisse sind 0, 4 und 4 1 = 4. Aufgabe 2.3.6 Da in Z 9 10 = 1 ist, erhalten wir x = c 0 + + c m = c 0 + + c m.
WIEDERHOLUNG (BIS ZU BLATT 7)
Universität Bielefeld SS 2016 WIEDERHOLUNG (BIS ZU BLATT 7) JULIA SAUTER Wir wiederholen, welche Aufgabentypen bis zu diesem Zeitpunkt behandelt worden sind. Auf der nächsten Seite können Sie sich selber
1. Übung Elemente der Zahlentheorie SS2016
1. Übung Elemente der Zahlentheorie SS2016 1. Sei n IN eine natürliche Zahl. Zeigen Sie mit Hilfe vollständiger Induktion: (a) 1+2+3+...+(n 1)+n = n(n+1), 2 (b) 1+4+9+...+(n 1) 2 +n 2 = n(n+1)(2n+1), 6
Lösen von Gleichungen mittels Ungleichungen
Lösen von Gleichungen mittels Ungleichungen. März 00 Die Aufgaben sind mit Schwierigkeitsstufen leicht, mittel, schwer markiert. Aufgabe (leicht) Ermittle alle nichtnegativen reellen Zahlen a, b, c, für
kgv-berechnung Invertieren modulo m Simultane Kongruenzen Restklassenringe Modulare Arithmetik Euler sche Funktion Sätze von Fermat und Euler
Modulare Arithmetik Slide 5 kgv-berechnung Invertieren modulo m Simultane Kongruenzen Restklassenringe Modulare Arithmetik Euler sche Funktion Sätze von Fermat und Euler Modulare Arithmetik Slide 6 kgv-berechnung
Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra
Effiziente Algorithmen und Datenstrukturen I Kapitel 10: Lineare Algebra Christian Scheideler WS 2008 19.02.2009 Kapitel 10 1 Überblick Notation Arithmetik auf großen Zahlen (Addition und Multiplikation)
Faktorisierung mit Elliptischen Kurven
Universität Bremen FB 3 - Institut für Mathematik Wintersemester 2010 / 2011 Seminar der WE AlZAGK: Faktorisierung und diskreter Logarithmus Betreuer: Prof. Jens Gamst Schriftliche Ausarbeitung zum Thema:
In beiden Fällen auf Datenauthentizität und -integrität extra achten.
Stromchiffren Verschlüsseln eines Stroms von Daten m i (Bits/Bytes) mithilfe eines Schlüsselstroms k i in die Chiffretexte c i. Idee: Im One-Time Pad den zufälligen Schlüssel durch eine pseudo-zufällige
Eine kurze Tabelle soll uns erste Einsichten erleichtern. Der Strich heißt, dass es eine solche Darstellung nicht gibt.
Summen von Quadraten 1 Physikalische Motivation Eine schwingende Saite hat eine Grundfrequenz F, die von Länge, Dicke, Beschaffenheit der Saite und so fort abhängt Neben dieser Grundfrequenz gibt es auch
Einfache Ausdrücke Datentypen Rekursive funktionale Sprache Franz Wotawa Institut für Softwaretechnologie [email protected]
Inhalt SWP Funktionale Programme (2. Teil) Einfache Ausdrücke Datentypen Rekursive funktionale Sprache Franz Wotawa Institut für Softwaretechnologie [email protected] Interpreter für funktionale Sprache
(1 + o(1)) n ln(n) π(n) =
Satz 164. (Euklid): Es gibt unendlich viele Primzahlen Beweis. (Widerspruch:) Angenommen, es gäbe nur k < viele Primzahlen p 1,...,p k. Es ist dann q := (p 1 p 2... p k ) + 1 eine Zahl, die nicht durch
Abschnitt: Algorithmendesign und Laufzeitanalyse
Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher
Die Involutfunktion Inhalt
Die Involutfunktion Inhalt Inhalt...1 Grundlagen... Basic-Programm...3 Programm-Ablaufplan Involut rekursiv...3 Programm Involut rekursiv...4 Programme für CASIO fx-7400g PLUS...5 Involutfunktion...5 Involut
13. Binäre Suchbäume
1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),
Kombinatorische Optimierung
Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 4 Programm des
Rabin Verschlüsselung 1979
Rabin Verschlüsselung 1979 Idee: Rabin Verschlüsselung Beobachtung: Berechnen von Wurzeln in Z p ist effizient möglich. Ziehen von Quadratwurzeln in Z N ist äquivalent zum Faktorisieren. Vorteil: CPA-Sicherheit
Übersicht Programmablaufsteuerung
Übersicht Programmablaufsteuerung Konditionale Verzweigung: if - else switch-anweisung Schleifenkonstrukte: while, do - while for Schleife Sprung-Anweisungen: break, continue, goto, return Anweisungen
Äquivalenzrelation Restklassen Teilbarkeit in Z Kleiner Satz von Fermat Satz von Euler Eulersche ϕ-funktion
Äquivalenzrelation Restklassen Teilbarkeit in Z Kleiner Satz von Fermat Satz von Euler Eulersche ϕ-funktion Äquivalenzrelation Nehmen wir die Menge A = {,,,,,,,,}, z.b. nummerierte Personen. Unter Berücksichtigung
Prof. S. Krauter Kombinatorik. WS Blatt06_Lsg.doc
Prof. S. Krauter Kombinatorik. WS-05-06. Blatt06_Lsg.doc Aufgaben zur Siebformel: 1. Formulieren Sie die Siebformel ausführlich und explizit für die Vereinigung von 2, 3 bzw. 4 Mengen A, B, C und D. Machen
Arbeitsblatt Gleichungen höheren Grades
Mathematik-Service Dr. Fritsch www.math-service.de Tel. 061/776 Arbeitsblatt Gleichungen höheren Grades 1. Lösen Sie folgenden quadratischen Gleichungen mittels quadratischer Ergänzung! (a) x x + = 0 (b)
3. Diskrete Mathematik
Diophantos von Alexandria, um 250 Georg Cantor, 1845-1918 Pythagoras um 570 v. Chr Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 3: Diskrete Mathematik 3.1 Zahlentheorie: Abzählbarkeit,
LOOP-Programme: Syntaktische Komponenten
LOOP-Programme: Syntaktische Komponenten LOOP-Programme bestehen aus folgenden Zeichen (syntaktischen Komponenten): Variablen: x 0 x 1 x 2... Konstanten: 0 1 2... Operationssymbole: + Trennsymbole: ; :=
11. Übung zur Vorlesung. Zahlentheorie. im Wintersemester 2015/16
11. Übung zur Vorlesung Aufgabe 41. Zeige, dass das Polynom (X 2 13)(X 2 17)(X 2 13 17) Z[X] modulo jeder natürlichen Zahl n N eine Nullstelle hat, aber keine Nullstelle in Z besitzt. Aufgabe 42. Sei p
