Beispiellösungen zu Blatt 67

Ähnliche Dokumente
Beispiellösungen zu Blatt 77

Beispiellösungen zu Blatt 98

Beispiellösungen zu Blatt 43

Beispiellösungen zu Blatt 101

Beispiellösungen zu Blatt 65

Beispiellösungen zu Blatt 81

Beispiellösungen zu Blatt 96

Beispiellösungen zu Blatt 57

schreiben, wobei p und q ganze Zahlen sind.

Beispiellösungen zu Blatt 68

Beispiellösungen zu Blatt 39

7. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen

Beispiellösungen zu Blatt 80

Beispiellösungen zu Blatt 10

01. Zahlen und Ungleichungen

Beispiellösungen zu Blatt 89

Beispiellösungen zu Blatt 9

Beispiellösungen zu Blatt 32

Beispiellösungen zu Blatt 99

2n n + 2. n + (1 + j) 1. 2n + 2 = 1. 2n + 2. (n + 1) + j + 2 1

Beispiellösungen zu Blatt 110

Beispiellösungen zu Blatt 94

Diskrete Mathematik 1 WS 2008/09

Grundlagen der Arithmetik und Zahlentheorie

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 4

Beispiellösungen zu Blatt 85

Beispiellösungen zu Blatt 26

1. Runde Aufgaben und Lösungen. Bundeswettbewerb Mathematik

Tag der Mathematik 2016

Aufgabe 1 25 Gegeben sind die Punkte A( ) B( 8 0 ) und C( 7 5 ).

Beispiellösungen zu Blatt 50

(Beispiel eines gleichschenkligen Dreiecks aus Gitterpunkten.)

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik

Lö sungen zu Wiederhölungsaufgaben Mathematik

Zahlen und Funktionen

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1. 1 Grundlagen 2. 2 Der Graph einer Funktion 4. 3 Umkehrbarkeit 5

Lösen von Gleichungen mittels Ungleichungen

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 4. Übungsblatt

Beispiellösungen zu Blatt 91

Beispiellösungen zu Blatt 27

Zusammenfassung: Beweisverfahren

Gleichungen, Ungleichungen, Beträge

Sätze über ganzrationale Funktionen

Mathematischer Vorbereitungskurs für Ökonomen

Zahlentheorie I - Tipps & Lösungen. Aktualisiert: 15. Oktober 2016 vers Teilbarkeit

Musterlösung zum Weihnahchtsübungsblatt. Teil 1 von Martin Fabricius. Aufgabe 1

Tag der Mathematik 2016

Grundlagen der Mathematik

Mathematisches Argumentieren und Beweisen Beweisarten Besipiele. Hagen Knaf, WS 2014/15

A N A L Y S I S I F Ü R T P H, U E ( ) 1. Übungstest (FR, ) (mit Lösung )

5. Sätze über komplexe Zahlen 5.0 Was lernen wir?

Beispiellösungen zu Blatt 38

Beispiellösungen zu Blatt 117 (Klasse 5 8)

Wirtschaftsmathematik: Mathematische Grundlagen

Einleitung. Wir schauen uns einige Probleme an, die wir im Laufe der Vorlesung genauer untersuchen werden.

1.3 Gleichungen und Ungleichungen

HM I Tutorium 2. Lucas Kunz. 3. November 2016

J Quadratwurzeln Reelle Zahlen

1 Vorbereitung: Potenzen 2. 2 Einstieg und typische Probleme 3

Wiederholung von Äquivalenzumformungen (Lösen linearer Gleichungen): Wiederholung von Äquivalenzumformungen (Lösen von Ungleichungen):

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 6. (n+1)!. Daraus folgt, dass e 1/x < (n+

Kapitel 3. Reihen und ihre Konvergenz

$Id: folgen.tex,v /05/31 12:40:06 hk Exp $ an 1 2 n 1 ist gerade, 3a n 1 + 1, a n 1 ist ungerade.

2. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 12 Saison 1962/1963 Aufgaben und Lösungen

Studienmaterial Einführung in das Rechnen mit Resten

Beispiellösungen zu Blatt 61

Beispiellösungen zu Blatt 117 (ab Klasse 9)

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5

Schritt 1: Bedeutung rationale bzw. irrationale Zahl klären

Übungen Mathematik I, M

Einführung der Quadratwurzel

14. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1974/1975 Aufgaben und Lösungen

Beispiellösungen zu Blatt 75

Grundlagen der Mathematik

Beispiellösungen zu Blatt 17

Städtewettbewerb Frühjahr 2009

Analysis I für Studierende der Ingenieurwissenschaften Lösungshinweise zu Blatt 1

Die Fakultät. Thomas Peters Thomas Mathe-Seiten 13. September 2003

(f(xi ) y i ) 2. minimal ist: man will also die Summe der quadratischen Abweichungen minimieren ... f(x i ) y i, i=1 (t x i) 2

Die Kanten der Grundfläche mit je 7 cm sind die Katheten a und b des rechtwinkligen Dreiecks, die Hypotenuse c ist die gesuchte Bodendiagonale c.

Zahlen und metrische Räume

Zusatzmaterial zur Mathematik I für E-Techniker Übung 1

Analysis I Lösung von Serie 9

TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG MATHEMATIK

Beispiellösungen zu Blatt 4

Irrationale Zahlen. Ausarbeitung zum Proseminar Modul 4c Unendlichkeit. angefertigt von. Felix Schultes. Dozentin: Fr.

6. Mathematik Olympiade 4. Stufe (DDR-Olympiade) Klasse 10 Saison 1966/1967 Aufgaben und Lösungen

Beispiellösungen zu Blatt 64

47. Österreichische Mathematik-Olympiade Gebietswettbewerb für Fortgeschrittene Lösungen

Beispiellösungen zu Blatt 7

1 Potenzen und Polynome

Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade

Mathematische Grundlagen der Ökonomie Übungsblatt 8

WURZEL Werkstatt Mathematik Polynome Grundlagen

4 Das Vollständigkeitsaxiom und irrationale Zahlen

Zuordnung von gemeinen Brüchen zu Dezimalbrüchen

Zusammenfassung: Beweisverfahren

f(x) = x f 1 (x) = x. Aufgabe 2. Welche der folgenden Funktionen sind injektiv, surjektiv, bijektiv?

Berechnung von Teilmengen

Reelle Zahlen (R)

Transkript:

µathematischer κorrespondenz- zirkel Mathematisches Institut Georg-August-Universität Göttingen Aufgabe Beispiellösungen zu Blatt 7 Finde alle natürlichen Zahlen n, für die n+9 eine natürliche Zahl ergibt. n 9 Sei allgemeiner k eine natürliche Zahl bestimme analog die Menge aller natürlichen Zahlen n, für die n+k eine natürliche Zahl ist. n k Wir betrachten gleich den allgemeinen Fall mit einer natürlichen Zahl k. Die an die gesuchte natürliche Zahl n gestellte Bedingung, dass auch n + k n k = n k + k n k = n k n k + k n k = + k n k eine natürliche Zahl ist zu denen null ja meistens) hinzugezählt wird, ist dann gleichbedeutend damit, dass k entweder oder auch eine natürliche n k Zahl ist. Aus dem ersten Fall folgt n k) = k, also n = k. In natürlichen Zahlen hat das genau eine n = k = 0. Da dann jedoch der Nenner n k auch null wäre, ist dies keine Lösung der Aufgabe. k Also ist eine natürliche Zahl. Weil der Zähler k nach Voraussetzung n k nichtnegativ ist, ist dies genau dann der Fall, wenn m := n k ein positiver Teiler von k ist. Also sind die Lösungen des Problems alle n N, die sich in der Form n = m + k schreiben lassen, wobei für m jeder positive Teiler von k gewählt werden kann. Für k = 0 bedeutet das übrigens, dass jede natürliche Zahl n ungleich null eine Lösung ist, wie man auch sofort am Bruch n+k n k = n n = sieht. Im Spezialfall k = 9 wiederum bedeutet dies, dass n 9 ein Teiler von sein muss, also eine der Zahlen,,,, 9,. Somit ergeben sich die Lösungen: n 0 5 7 n 9 9 n+9 9 0 7 4 n 9 Über die Frage, ob null eine natürliche Zahl ist, kann man sich hervorragend streiten, wenn man will... Wir hoffen, richtig beobachtet zu haben, dass in der Schule in der Regel null eine natürliche Zahl ist. Die Einschränkung auf positive Teiler ist für k = 0 nötig, da 0 zwar ein Teiler von 0 0 ist, aber 0 keine natürliche Zahl ist.

Lösungen zu Blatt 7 Aufgabe Zeige, dass die Jahreswechselzahl......5, die mit 007 Einsen und 00 Zweien und einer Fünf geschrieben wird, eine Quadratzahl ist. Wir formen die Jahreswechselzahl geschickt um und erhalten:......5 = } {{...} 0 009 + }{{...} 0 + 5 ) = 9 999 }{{...99} 0 009 + 999 }{{...99} 0 + 5 9 = 9 0 007 ) 0 009 + 0 007 ) 0 + 5 9 ) = 9 0 007+009 0 009 + 0 009 0 + 5 9 ) = 9 0 40 + 0 009 00 + 5 ) = 9 0 00+00 + 0 0 00 + 5 ) = 9 0 00 ) + 5 0 00 + 5 ) = 9 0 00 + 5 ) nach der ersten Binomischen Formel ) 0 00 + 5 =. Die Jahreswechselzahl ist also genau dann eine Quadratzahl, wenn 000 +5 eine natürliche Zahl, d.h. falls 0 00 + 5 durch teilbar ist. Da die Quersumme Q0 00 + 5) = + 5 = durch teilbar ist, ist auch die Zahl 0 00 +5 selbst durch teilbar. Man sieht die Teilbarkeit aber auch der Zahl direkt an, denn es gilt 0 00 + 5 ) = } 999 {{...99} 00-mal ) + + 5 = = } {{...} + = } {{...} 5. 00-mal Die Jahreswechselzahl ist damit die Quadratzahl......5 = }{{...} 5). 999 }{{...99} 00 mal ) +

Lösungen zu Blatt 7 Aufgabe Die Crew um Käpt n Sperling kreuzt im Nordmeer herum. Einige Schiffe werden gesichtet, doch der Chef bläst nie zum Angriff, was die Crew wundert. Darauf angesprochen, erklärt Sperling: Seht ihr das hell erleuchtete Haus da hinten auf der Insel? Das ist das Haus vom Nikolaus. Und die meisten Schiffe hier liefern ihm Nachschub für die Weihnachtsgeschenke, bei denen er dem Weihnachtsmann hilft. Ehrensache, dass wir die nicht plündern! Die Schiffe erkennt man übrigens an einem speziellen Flaggentyp: Auf ihr ist ein Streckenzug, dessen einzelne Strecken in der gegebenen Reihenfolge Längen haben, wie sie auch auftreten können, wenn man das bekannte Haus vom Nikolaus zeichnet. Ein Beispiel für einen Streckenzug, der auf einer echten Flagge abgebildet sein könnte, ist der Folgende:, denn durch Umformen des Streckenzuges erhält man: Welche der folgenden Flaggen sind echt, welche sind Fälschungen? : : : 4: 5: : 7: : Die Flaggen, 4, und sind Originale, die Flaggen,, 5 und 7 hingegen Fälschungen. Zunächst geben wir für die vier Originale je eine Möglichkeit an, aus dem gegebenen Streckenzug das Haus vom Nikolaus zu zeichnen:

Lösungen zu Blatt 7 4 Flagge : Flagge 4: Flagge : Flagge : 5 7 5 4 4 7 5 7 4 5 4 7 Betrachten wir nun die mutmaßlichen Fälschungen: Flagge : Diese Flagge muss eine Fälschung sein, da man die beiden langen Diagonalen beim Haus vom Nikolaus nicht direkt nacheinander zeichnen kann. Flagge : Da das Haus vom Nikolaus bekanntlich aus genau acht Geradenstücken besteht, dieser Streckenzug aber neun Teile hat, ist auch Flagge eine Fälschung. Flagge 5: Im Haus vom Nikolaus laufen nur in den beiden unteren Punkten eine ungerade Anzahl von Kanten zusammen. Daher müssen diese beiden Punkte Anfangs- und Endpunkt des Streckenzuges sein. Insbesondere darf also das Dach bestehend aus den beiden kurzen Diagonalen) nicht am Ende des Streckenzuges sein, damit ist auch diese Fälschung enttarnt. Flagge 7: In einem Originalstreckenzug, bei dem eine lange Diagonale direkt am Dach bestehend aus den beiden kurzen Diagonalen) anschließt, dürfte zwischen Dach und der zweiten langen Diagonale nur eine gerade Anzahl von Stücken der Länge liegen. Ansonsten würde die zweite Diagonale in einer Ecke starten, auf welche auch schon die erste Diagonale trifft. Aufgabe 4 Die Funktion f habe die Eigenschaft fx) fy) x y für alle reellen Zahlen x, y. Zeige, dass f eine konstante Funktion ist. Wir benutzen die sogenannte Dreiecksungleichung: Für alle reellen Zahlen a und b gilt a + b a + b. Für alle, die diese in sehr vielen Fällen nützliche Ungleichung nicht kennen, folgt unten ein Beweis.

Lösungen zu Blatt 7 5 Seien nun x, y reelle Zahlen. Für die Vorstellung reicht es, an x y zu denken für die Rechnung ist es unerheblich.) Sei weiterhin n eine positive ganze Zahl. Dann gilt: fx) fy) = fx) f x + ) n y x) + f x + n ) y x) fy) x fx) f + ) n y x) + f x + ) n y x) fy) nach der Dreiecksungleichung = x fx) f + ) n y x) + f x + ) n y x) f x + n ) y x) + f x + n ) y x) fy) x fx) f + ) n y x) + f x + ) n y x) f x + ) n y x) + f x + ) n y x) fy) nach der Dreiecksungleichung... x fx) f + ) n y x) + f x + ) n y x) f +... + f x + n ) y x) fy) n Wir haben nun n Summanden der Form f x + k ) n y x) f x + k + x)) n y x + n y x) ) mit k {0,,..., n }. Nach der Voraussetzung aus der Aufgabenstellung gilt für jeden dieser Summanden f x + k ) n y x) f x + k + x)) n y x + kn ) y x) x + k + )) y x) n = ) n y x) = n y x). Also erhält man fx) fy) n y x) +... + ny x) = n n y x) = n y x).

Lösungen zu Blatt 7 Für feste x und y sowie wachsendes n wird der Term auf der rechten Seite der Ungleichung immer kleiner, nämlich kleiner als jede Zahl größer null. Somit muss fx) fy) = 0 sein. Da x und y beliebige reelle Zahlen waren, gilt somit fx) = fy) für alle reellen x, y, d.h. f ist konstant. Beweis der Dreiecksungleichung: Wir unterscheiden, ob die Summe a + b positiv oder nichtnegativ ist, und benutzen jeweils, dass x x gilt unabhängig davon, ob die reelle Zahl x negativ, null oder positiv ist. Fall I: Sei a + b > 0. Dann ist a + b = a + b a + b. Fall II: Sei a + b 0. Dann ist a + b = a + b) = a) + b) a + b. http://www.math.uni-goettingen.de/zirkel Stand: 4. Februar 00