Hydroinformatik II: Finite Differenzen Methode

Größe: px
Ab Seite anzeigen:

Download "Hydroinformatik II: Finite Differenzen Methode"

Transkript

1 Hydroinformatik II: Finite Differenzen Methode 1 Helmholtz Centre for Environmental Research UFZ, Leipzig 2 Technische Universität Dresden TUD, Dresden Dresden, 05. Juni /24 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2015

2 Vorlesungsplan Hydroinformatik II SoSe 2015 # Datum Thema Einführung, Grundlagen: Kontinuumsmechanik Grundlagen: Kontinuumsmechanik/Hydromechanik Maifeiertag HW: Einführung in Qt (Installation) Grundlagen: Partielle Differentialgleichungen / TEX Grundlagen: Numerische Methoden Pfingsten Numerik: Finite Differenzen Methode Grundlagen: Diffusionsprozesse Numerik: Übung explizite FDM Numerik: Implizite FDM Gerinnehydraulik: Theorie - Grundlagen Gerinnehydraulik: Saint-Venant Gleichung (= HSA) Gerinnehydraulik: Programmierung, Übung Kurs-Zusammenfassung und Abschluss 2/24 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2015

3 Konzept 3/24 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2015

4 Fahrplan Vorlesung Grundlagen der Finite Differenzen Methode Approximation methods Finite difference method FDM (Ch. 3) Taylor series expansion Derivatives Diffusion equation (Finite element method FEM Hydrosystemanalyse) 4/24 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2015

5 Näherungsverfahren 5/24 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2015

6 FDM Anwendungen - MODFLOW 6/24 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2015

7 Ableitungen 7/24 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2015

8 Taylor-Reihe in time u n+1 = u n +1 = m=0 in space m=0 t m m! x m m! [ m ] u n t m [ m ] u n x m (1) (2) 8/24 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2015

9 Trunkation u n+1 = u n + t [ ] u n + t2 t 2 [ 2 ] n u t 2 + 0( t 3 ) (3) u n +1 = u n + x [ ] u n + x 2 x 2 [ 2 ] n u x 2 + 0( x 3 ) (4) 9/24 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2015

10 1. Ableitung [ ] u n t = un+1 u n t t 2 [ 2 ] n u t 2 + 0( t 2 ) (5) [ ] u n = un +1 un x x x 2 [ 2 ] n u x 2 + 0( x 2 ) (6) 10/24 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2015

11 Differenzen-Schemata Forward difference approximation [ ] u n = un +1 un + 0( x) (7) x x Backward difference approximation [ ] u n = un u 1 n + 0( x) (8) x x Central difference approximation [ ] u n = un +1 un 1 + 0( x 2 ) (9) x 2 x 11/24 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2015

12 Zentrale Differenzen [ u u+1 n = u n + x x [ u u 1 n = u n x x ] n ] n + x x 2 2 [ 2 u x 2 [ 2 u x 2 ] n ] n + 0( x 3 ) 0( x 3 ) (10) Central difference approximation [ ] u n = un +1 un 1 + 0( x 2 ) (11) x 2 x 12/24 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2015

13 Ableitungen 13/24 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2015

14 2. Ableitung [ 2 ] n u x 2 1 x ( [ u x ] n +1 [ u x ] n ) un +1 2un + u n 1 x 2 (12) [ 2 ] n u x 2 = un +1 2un + u 1 n x 2 + x 2 12 [ 4 ] n u x (13) 14/24 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2015

15 Übersicht Differenzenverfahren 15/24 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2015

16 Diffusionsgleichung u t α 2 u x 2 = 0 (14) 16/24 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2015

17 Analytical solution for diffusion equation (Skript 5.2.2) Diffusion equation u t α 2 u x 2 = 0 (15) Analytical solution u = sin(πx)e αt2 (16) K: validity Übung 17/24 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2015

18 Übersicht Differenzenverfahren 18/24 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2015

19 Explizite FDM - FTCS Verfahren (Skript 3.2.2/4.1) PDE for diffusion processes u t u α 2 x 2 = 0 (17) forward time / centered space [ ] u n un+1 u n [ 2 ] n u t t x 2 un 1 2un + u+1 n x 2 (18) substitute u n+1 u n α un 1 2un + u+1 n t x 2 = 0 (19) FTCS scheme for diffusion equations u n+1 = u n + α t x 2 (un 1 2u n + u n +1) Ne = α t x 2 (20) 19/24 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2015

20 Eigenschaften numerischer Verfahren Analysis of approximation schemes consists of three steps: Develop the algebraic scheme, Check consistency of the algebraic approximate equation, Investigate stability behavior of the scheme. 20/24 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2015

21 Eigenschaften numerischer Verfahren Analysis of approximation schemes consists of three steps: Develop the algebraic scheme, u n+1 = u n + α t x 2 (un 1 2u n + u+1) n (21) Check consistency of the algebraic approximate equation, lim ˆL(u n ) L(u[t n, x ]) = 0 (22) t, x 0 Investigate stability behavior of the scheme. Ne = α t 1/2 (23) x 2 21/24 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2015

22 Lösung des FTCS Schemas Algebraische Schema u n+1 = u n + α t x 2 (un 1 2u n + u n +1) (24) Resultierendes Gleichungssystem u n+1 = Au n, n = 0, 1, 2,... (25) A = 1 2 α t x 2 α t x 2 α t x α t α t x 2 x α t x 2, u n = u n 2 u n 3... u n np 2 u n np 1 22/24 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2015

23 Explizite und implizite Differenzenverfahren 23/24 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2015

24 Implizites Differenzenverfahren: Next Lecture Algebraische Schema: [ 2 ] n+1 u x 2 un+1 1 2un+1 + u n+1 +1 x 2 (26) u n+1 u n t α un+1 1 2un+1 + u n+1 +1 x 2 = 0 (27) α t x 2 ( un un+1 u n+1 +1 ) + un+1 = u n (28) 24/24 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2015

25 Implizites Differenzenverfahren: Next Lecture Algebraische Schema: [ 2 ] n+1 u x 2 un+1 1 2un+1 + u n+1 +1 x 2 (26) u n+1 u n t α un+1 1 2un+1 + u n+1 +1 x 2 = 0 (27) α t x 2 ( un un+1 u n+1 +1 ) + un+1 = u n (28) 24/24 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2015

26 Implizites Differenzenverfahren: Next Lecture Algebraische Schema: [ 2 ] n+1 u x 2 un+1 1 2un+1 + u n+1 +1 x 2 (26) u n+1 u n t α un+1 1 2un+1 + u n+1 +1 x 2 = 0 (27) α t x 2 ( un un+1 u n+1 +1 ) + un+1 = u n (28) 24/24 Prof. Dr.-Ing. habil. Olaf Kolditz Hydroinformatik II - SoSe 2015

Hydroinformatik II: Grundlagen der Kontinuumsmechanik

Hydroinformatik II: Grundlagen der Kontinuumsmechanik Hydroinformatik II: Grundlagen der Kontinuumsmechanik Robert Schlick 1 Helmholtz Centre for Environmental Research UFZ, Leipzig 2 Technische Universität Dresden TUD, Dresden Dresden, 28. April 2017 1/25

Mehr

Hydroinformatik II: Gerinnehydraulik

Hydroinformatik II: Gerinnehydraulik Hydroinformatik II: Gerinnehydraulik 1 Helmholtz Centre for Environmental Research UFZ, Leipzig 2 Technische Universität Dresden TUD, Dresden Dresden, 03. Juli 2015 1/35 Prof. Dr.-Ing. habil. Olaf Kolditz

Mehr

Hydroinformatik II: Gerinnehydraulik

Hydroinformatik II: Gerinnehydraulik Hydroinformatik II: Gerinnehydraulik 1 Helmholtz Centre for Environmental Research UFZ, Leipzig Technische Universität Dresden TUD, Dresden Dresden, 17. Juni 016 1/9 Prof. Dr.-Ing. habil. Olaf Kolditz

Mehr

Hydroinformatik II: Gerinnehydraulik

Hydroinformatik II: Gerinnehydraulik Hydroinformatik II: Gerinnehydraulik 1 Helmholtz Centre for Environmental Research UFZ, Leipzig 2 Technische Universität Dresden TUD, Dresden Dresden, 15. Juli 2016 1/36 Prof. Dr.-Ing. habil. Olaf Kolditz

Mehr

Hydroinformatik II: Grundlagen der Kontinuumsmechanik V3

Hydroinformatik II: Grundlagen der Kontinuumsmechanik V3 Hydroinformatik II: Grundlagen der Kontinuumsmechanik V3 1 Helmholtz Centre for Environmental Research UFZ, Leipzig 2 Technische Universität Dresden TUD, Dresden Dresden, 21. April / 05. Mai 2017 1/18

Mehr

Modellierung Hydrosysteme: Finite-Differenzen-Methode (FDM)

Modellierung Hydrosysteme: Finite-Differenzen-Methode (FDM) Modellierung Hydrosysteme: Finite-Differenzen-Methode (FDM) Prof. Dr.-Ing. habil. Olaf Kolditz 1 Helmholtz Centre for Environmental Research UFZ, Leipzig 2 Technische Universität Dresden TUD, Dresden Dresden,

Mehr

Angewandte Umweltsystemanalyse: Finite-Elemente-Methode (FEM) #3

Angewandte Umweltsystemanalyse: Finite-Elemente-Methode (FEM) #3 Angewandte Umweltsystemanalyse: Finite-Elemente-Methode (FEM) #3 Prof. Dr.-Ing. habil. Olaf Kolditz 1 Helmholtz Centre for Environmental Research UFZ, Leipzig 2 Technische Universität Dresden TUD, Dresden

Mehr

Hydrosystemanalyse: Finite-Elemente-Methode (FEM)

Hydrosystemanalyse: Finite-Elemente-Methode (FEM) Hydrosystemanalyse: Finite-Elemente-Methode (FEM) Prof. Dr.-Ing. habil. Olaf Kolditz 1 Helmholtz Centre for Environmental Research UFZ, Leipzig 2 Technische Universität Dresden TUD, Dresden Dresden, 17.

Mehr

Modellierung Hydrosysteme: Finite-Differenzen-Methode (FDM)

Modellierung Hydrosysteme: Finite-Differenzen-Methode (FDM) Modellierung Hydrosysteme: Finite-Differenzen-Methode (FDM) Prof. Dr.-Ing. habil. Olaf Kolditz 1 Helmholtz Centre for Environmental Research UFZ, Leipzig 2 Technische Universität Dresden TUD, Dresden Dresden,

Mehr

Modellierung von Hydrosystemen Numerische und daten-basierte Methoden 2018 implizite Finite-Differenzen-Methode Selke-Modell

Modellierung von Hydrosystemen Numerische und daten-basierte Methoden 2018 implizite Finite-Differenzen-Methode Selke-Modell Modellierung von Hydrosystemen Numerische und daten-basierte Methoden BHYWI-22-15 @ 2018 implizite Finite-Differenzen-Methode Selke-Modell Olaf Kolditz *Helmholtz Centre for Environmental Research UFZ

Mehr

Hydroinformatik I: Introduction

Hydroinformatik I: Introduction Hydroinformatik I: Introduction Prof. Dr.-Ing. habil. Olaf Kolditz 1 Helmholtz Centre for Environmental Research UFZ, Leipzig 2 Technische Universität Dresden TUD, Dresden Dresden, 13. Oktober 2017 1/28

Mehr

Hydroinformatik I: Synthese-Übung Sprachelemente

Hydroinformatik I: Synthese-Übung Sprachelemente Hydroinformatik I: Synthese-Übung Sprachelemente Prof. Dr.-Ing. habil. Olaf Kolditz 1 Helmholtz Centre for Environmental Research UFZ, Leipzig 2 Technische Universität Dresden TUD, Dresden Dresden, 29.

Mehr

Hydroinformatik II: Grundlagen Numerik V5

Hydroinformatik II: Grundlagen Numerik V5 Hydroinformatik II: Grundlagen Numerik V5 1 Helmholtz Centre for Environmental Research UFZ, Leipzig 2 Technische Universität Dresden TUD, Dresden Leipzig, 13. Mai 2016 1/27 Prof. Dr.-Ing. habil. Olaf

Mehr

BHYWI-22: Semester-Fahrplan: 2018

BHYWI-22: Semester-Fahrplan: 2018 BHYWI-22: Semester-Fahrplan: 2018 Vorlesungen & Übungen 1 / 31 Modellierung von Hydrosystemen Numerische und daten-basierte Methoden BHYWI-22-09 @ 2018 Finite-Differenzen-Methode Olaf Kolditz *Helmholtz

Mehr

Hydroinformatik II Prozess-Simulation und Systemanalyse

Hydroinformatik II Prozess-Simulation und Systemanalyse Version 9.01-5. August 2018 Hydroinformatik II Prozess-Simulation und Systemanalyse Prof. Dr.-Ing. Olaf Kolditz TU Dresden / UFZ Leipzig Angewandte Umweltsystemanalyse Department Umweltinformatik Sommersemester

Mehr

Hydroinformatik II Prozess-Simulation und Systemanalyse

Hydroinformatik II Prozess-Simulation und Systemanalyse Version 7.01-10. August 2016 Hydroinformatik II Prozess-Simulation und Systemanalyse Prof. Dr.-Ing. Olaf Kolditz TU Dresden / UFZ Leipzig Angewandte Umweltsystemanalyse Department Umweltinformatik Sommersemester

Mehr

Hydroinformatik I: Klassen

Hydroinformatik I: Klassen Hydroinformatik I: Klassen Prof. Dr.-Ing. habil. Olaf Kolditz 1 Helmholtz Centre for Environmental Research UFZ, Leipzig 2 Technische Universität Dresden TUD, Dresden Dresden, 27. November 2015 1/13 Prof.

Mehr

Modellierung Hydrosysteme: ] Finite-Differenzen-Methode (FDM)

Modellierung Hydrosysteme: ] Finite-Differenzen-Methode (FDM) Modellierung Hydrosysteme: ] Finite-Differenzen-Methode (FDM) Prof. Dr.-Ing. habil. Olaf Kolditz 1 Helmholtz Centre for Environmental Research UFZ, Leipzig 2 Technische Universität Dresden TUD, Dresden

Mehr

BHYWI-08: Semester-Fahrplan Vorlesungen 1 / 1

BHYWI-08: Semester-Fahrplan Vorlesungen 1 / 1 BHYWI-08: Semester-Fahrplan Vorlesungen 1 / 1 Hydroinformatik II Prozesssimulation und Systemanalyse BHYWI-08-11 @ 2018 Grundwasserhydraulik, Prinzip-Beispiel Olaf Kolditz *Helmholtz Centre for Environmental

Mehr

Modellierung Hydrosysteme: Finite-Differenzen-Methode (FDM)

Modellierung Hydrosysteme: Finite-Differenzen-Methode (FDM) Modellierung Hydrosysteme: Finite-Differenzen-Methode (FDM) Prof. Dr.-Ing. habil. Olaf Kolditz 1 Helmholtz Centre for Environmental Research UFZ, Leipzig 2 Technische Universität Dresden TUD, Dresden Dresden,

Mehr

Hydroinformatik I - WiSe 2018/2019 V5: Klassen

Hydroinformatik I - WiSe 2018/2019 V5: Klassen Hydroinformatik I - WiSe 2018/2019 V5: Klassen Prof. Dr.-Ing. habil. Olaf Kolditz 1 Helmholtz Centre for Environmental Research UFZ, Leipzig 2 Technische Universität Dresden TUD, Dresden 3 Center for Advanced

Mehr

Angewandte Umweltsystemanalyse: Finite-Elemente-Methode (FEM)

Angewandte Umweltsystemanalyse: Finite-Elemente-Methode (FEM) Angewandte Umweltsystemanalyse: Finite-Elemente-Methode (FEM) Prof. Dr.-Ing. habil. Olaf Kolditz 1 Helmholtz Centre for Environmental Research UFZ, Leipzig 2 Technische Universität Dresden TUD, Dresden

Mehr

Hydroinformatik I: Hello World

Hydroinformatik I: Hello World Hydroinformatik I: Hello World Prof. Dr.-Ing. habil. Olaf Kolditz 1 Helmholtz Centre for Environmental Research UFZ, Leipzig 2 Technische Universität Dresden TUD, Dresden Dresden, 27. Oktober 2017 1/21

Mehr

Hydroinformatik I: Klassen

Hydroinformatik I: Klassen Hydroinformatik I: Klassen Prof. Dr.-Ing. habil. Olaf Kolditz 1 Helmholtz Centre for Environmental Research UFZ, Leipzig 2 Technische Universität Dresden TUD, Dresden Dresden, 11. November 2016 1/20 Prof.

Mehr

Finite Difference Method (FDM)

Finite Difference Method (FDM) Finite Difference Method (FDM) home/lehre/vl-mhs-1-e/folien/vorlesung/2a_fdm/cover_sheet.tex page 1 of 15. p.1/15 Table of contents 1. Problem 2. Governing Equation 3. Finite Difference-Approximation 4.

Mehr

Hydroinformatik I: Referenzen und Zeiger

Hydroinformatik I: Referenzen und Zeiger Hydroinformatik I: Referenzen und Zeiger Prof. Dr.-Ing. habil. Olaf Kolditz 1 Helmholtz Centre for Environmental Research UFZ, Leipzig 2 Technische Universität Dresden TUD, Dresden Dresden, 08. Januar

Mehr

Hydrosystemanalyse: Finite-Elemente-Methode (FEM)

Hydrosystemanalyse: Finite-Elemente-Methode (FEM) Hydrosystemanalyse: Prof. Dr.-Ing. habl. Olaf Koldtz 1 Helmholtz Centre for Envronmental Research UFZ, Lepzg 2 Technsche Unverstät Dresden TUD, Dresden Dresden, 03. Jul 2015 1/31 Prof. Dr.-Ing. habl. Olaf

Mehr

Hydroinformatik I: Hello World

Hydroinformatik I: Hello World Hydroinformatik I: Hello World Prof. Dr.-Ing. habil. Olaf Kolditz 1 Helmholtz Centre for Environmental Research UFZ, Leipzig 2 Technische Universität Dresden TUD, Dresden Dresden, 28. Oktober 2016 1/15

Mehr

Geometrie und Mathematische Physik Differentialgeometrie I 10 m Diskrete Geometrie I 10 m Geometrie I 10 m Geometrische Grundlagen der linearen

Geometrie und Mathematische Physik Differentialgeometrie I 10 m Diskrete Geometrie I 10 m Geometrie I 10 m Geometrische Grundlagen der linearen Übersicht über die mathematischen Module der Bachelor- und Masterstudiengänge Mathematik, Wirtschaftsmathematik und Technomathematik Sommersemester 2017 Modul LP Prüfungsform 1 Pflichtmodule Bachelor Mathematik,

Mehr

Hydroinformatik I - WiSe 2018/2019 V11: BigData

Hydroinformatik I - WiSe 2018/2019 V11: BigData Hydroinformatik I - WiSe 2018/2019 V11: BigData Prof. Dr.-Ing. habil. Olaf Kolditz 1 Helmholtz Centre for Environmental Research UFZ, Leipzig 2 Technische Universität Dresden TUD, Dresden 3 Center for

Mehr

- Numerik in der Physik - Simulationen, DGL und Co. Max Menzel

- Numerik in der Physik - Simulationen, DGL und Co. Max Menzel - Numerik in der Physik - Simulationen, DGL und Co. Max Menzel 4.1.2011 1 Übersicht Differenzialgleichungen? Was ist das? Wo gibt es das? Lösen von Differenzialgleichungen Analytisch Numerisch Anwendungen

Mehr

Numerical Methods of Electromagnetic Field Theory I (NFT I) Numerische Methoden der Elektromagnetischen Feldtheorie I (NFT I) /

Numerical Methods of Electromagnetic Field Theory I (NFT I) Numerische Methoden der Elektromagnetischen Feldtheorie I (NFT I) / Numerical Methods of Electromagnetic Field Theory I (NFT I) Numerische Methoden der Eletromagnetischen Feldtheorie I (NFT I) / 11th Lecture / 11. Vorlesung Dr.-Ing. René Marlein marlein@uni-assel.de http://www.tet.e-techni.uni-assel.de

Mehr

D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski. Serie 1

D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski. Serie 1 D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski Serie 1 Best before: Di. 8.3 / Mi. 9.3, in den Übungsgruppen Koordinatoren: Alexander Dabrowski, HG G 52.1, alexander.dabrowski@sam.math.ethz.ch

Mehr

Simulationstechnik V

Simulationstechnik V Simulationstechnik V Vorlesung/Praktikum an der RWTH Aachen Numerische Simulation von Strömungsvorgängen B. Binninger Institut für Technische Verbrennung Templergraben 64 2. Teil 2-1 1) Welche Garantie

Mehr

Simulationstechnik V

Simulationstechnik V Simulationstechnik V Vorlesung/Praktikum an der RWTH Aachen Numerische Simulation von Strömungsvorgängen B. Binninger Institut für Technische Verbrennung Templergraben 64 2. Teil 2-1 1) Welche Garantie

Mehr

Simulationstechnik V

Simulationstechnik V Simulationstechnik V Vorlesung/Praktikum an der RWTH Aachen Numerische Simulation von Strömungsvorgängen B. Binninger Institut für Technische Verbrennung Templergraben 64 2. Teil 2-1 1) Welche Garantie

Mehr

Finite Differenzen Methode (FDM)

Finite Differenzen Methode (FDM) Finite Differenzen Methode (FDM) /home/lehre/vl-mhs-1/folien/vorlesung/2_fdm/deckblatt_fdm.tex Seite 1 von 15. p.1/15 Inhaltsverzeichnis 1. Problemdarstellung 2. Bilanzgleichungen 3. Finite Differenzen-Approximation

Mehr

Hydroinformatik I: Strings

Hydroinformatik I: Strings Hydroinformatik I: Strings Prof. Dr.-Ing. habil. Olaf Kolditz 1 Helmholtz Centre for Environmental Research UFZ, Leipzig 2 Technische Universität Dresden TUD, Dresden Dresden, 04. Dezember 2015 1/20 Prof.

Mehr

Hydroinformatik I: Referenzen und Zeiger

Hydroinformatik I: Referenzen und Zeiger Hydroinformatik I: Referenzen und Zeiger Prof. Dr.-Ing. habil. Olaf Kolditz 1 Helmholtz Centre for Environmental Research UFZ, Leipzig 2 Technische Universität Dresden TUD, Dresden Dresden, 06. Januar

Mehr

Übung zur Numerik linearer und nichtlinearer Parameterschätzprobleme A. Franke-Börner, M. Helm

Übung zur Numerik linearer und nichtlinearer Parameterschätzprobleme A. Franke-Börner, M. Helm Übung zur Numerik linearer und nichtlinearer Parameterschätzprobleme A. Franke-Börner, M. Helm Numerik Parameterschätzprobleme INHALT 1. 1D Wärmeleitungsgleichung 1.1 Finite-Differenzen-Diskretisierung

Mehr

Grundlagen und Grundgleichungen der Strömungsmechanik

Grundlagen und Grundgleichungen der Strömungsmechanik Inhalt Teil I Grundlagen und Grundgleichungen der Strömungsmechanik 1 Einführung... 3 2 Hydromechanische Grundlagen... 7 2.1 Transportbilanz am Raumelement... 7 2.1.1 Allgemeine Transportbilanz... 7 2.1.2

Mehr

Partielle Differentialgleichungen. Hofer Joachim/Panis Clemens

Partielle Differentialgleichungen. Hofer Joachim/Panis Clemens 9.11.2010 Contents 1 Allgemein 2 1.1 Definition................................................. 2 1.2 Klassifikation............................................... 2 1.3 Lösbarkeit.................................................

Mehr

Bewertung von europäischen und amerikanischen Optionen

Bewertung von europäischen und amerikanischen Optionen Bewertung von europäischen und amerikanischen Optionen 3. Vortrag - Mathematische Analyse / Beweise und Numerische Resultate Technische Universität Berlin Institut für Mathematik 1. Februar 2008 Inhaltsverzeichnis

Mehr

Serie 2. D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Luc Grosheintz

Serie 2. D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Luc Grosheintz D-MATH Numerische Methoden FS 206 Dr. Vasile Gradinaru Luc Grosheintz Serie 2 Abgabedatum: Di. 4.3 / Mi. 5.3 oder früher, in den Übungsgruppen Koordinatoren: Luc Grosheintz, HG J 46, luc.grosheintz@sam.math.ethz.ch

Mehr

Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik'

Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik' Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik' 1. Diskretisierung in der Zeit: Die Evolutionsgleichung Kurzzusammenfassung Zur Erprobung der Verfahren zur zeitlichen Diskretisierung

Mehr

NUMERISCHE VERFAHREN für Naturwissenschaftler und Ingenieure

NUMERISCHE VERFAHREN für Naturwissenschaftler und Ingenieure NUMERISCHE VERFAHREN für Naturwissenschaftler und Ingenieure Eine computerorientierte Einführung Von Prof. Dr. sc. nat. HUBERT SCHWETLICK Prof. Dr. sc. nat. HORST KRETZSCHMAR Mit 74 Bildern und 34 Tabellen

Mehr

Inhalt, Ablauf, Organisation, Prüfung,...

Inhalt, Ablauf, Organisation, Prüfung,... Inhalt, Ablauf, Organisation, Prüfung,... Vorlesung Einführung in das Wissenschaftliche Rechnen Sommersemester 2016 Einführung in das Wissenschaftliche Rechnen Sommersemester 2016, Simon Baumstark, Patrick

Mehr

Vorstellung der Schwerpunkte und Profillinien

Vorstellung der Schwerpunkte und Profillinien FB Mathematik und SC SimTech IANS Vorstellung der Schwerpunkte und Profillinien Institut für Angewandte Analysis und Numerische Simulation Sommersemester 2017 Lehre und Forschung am IANS created with worditout.com/word-cloud/create

Mehr

Hydroinformatik I: Strings

Hydroinformatik I: Strings Hydroinformatik I: Strings Prof. Dr.-Ing. habil. Olaf Kolditz 1 Helmholtz Centre for Environmental Research UFZ, Leipzig 2 Technische Universität Dresden TUD, Dresden Dresden, 10. November 2017 1/20 Prof.

Mehr

Unstetige Galerkin-Verfahren und die lineare Transportgleichung. Tobias G. Pfeiffer Freie Universität Berlin

Unstetige Galerkin-Verfahren und die lineare Transportgleichung. Tobias G. Pfeiffer Freie Universität Berlin Unstetige Galerkin-Verfahren und die lineare Transportgleichung Tobias G. Pfeiffer Freie Universität Berlin Seminar DG-Verfahren, 26. Mai 2009 , Voraussetzungen & Ziele Voraussetzungen Kenntnisse in Numerik

Mehr

Lineare Gleichungssysteme Hierarchische Matrizen

Lineare Gleichungssysteme Hierarchische Matrizen Kompaktkurs Lineare Gleichungssysteme Hierarchische Matrizen M. Bebendorf, O. Steinbach O. Steinbach Lineare Gleichungssysteme SIMNET Kurs 24. 27.4.26 / 6 Numerische Simulation stationäre und instationäre

Mehr

Numerik partieller Differentialgleichungen für Ingenieure

Numerik partieller Differentialgleichungen für Ingenieure Numerik partieller Differentialgleichungen für Ingenieure Von ir. J. J.I.M. van Kan und ir. A. Segal Technische Universität Delft Aus dem Niederländischen übersetzt von Burkhard Lau, Technische Universität

Mehr

u(x, 0) = g(x) : 0 x 1 u(0, t) = u(1, t) = 0 : 0 t T

u(x, 0) = g(x) : 0 x 1 u(0, t) = u(1, t) = 0 : 0 t T 8.1 Die Methode der Finiten Differenzen Wir beschränken uns auf eindimensionale Probleme und die folgenden Anfangs und Anfangsrandwertprobleme 1) Cauchy Probleme für skalare Erhaltungsgleichungen, also

Mehr

1-, 2-, 3D-Modelle: Überblick, Vergleich und Anwendung

1-, 2-, 3D-Modelle: Überblick, Vergleich und Anwendung Fakultät Informatik > Angewandte Informatik > Technische Informationssysteme Studentischer Vortrag 1-, 2-, 3D-Modelle: Überblick, Vergleich und Anwendung Mai, Tuan Linh Dresden, 17.Jan.2011 Inhalt 1. Motivation

Mehr

~ Grundlagen. Differential- Nichtlineare gleichungen "-- rechnung mit. mehreren Variablen Optimierung ~ J. Integralrechnung 5

~ Grundlagen. Differential- Nichtlineare gleichungen -- rechnung mit. mehreren Variablen Optimierung ~ J. Integralrechnung 5 Abhängigkeitsgraph Vorbereitungsband Grundlagen I 1 13 I- Lineare Algebra 3 Differential- 2 14 und Lineare Unendliche Reihen Integralrechnung Optimierung.. DiHerential-.. J Gewöhnliche 71 Differential-

Mehr

Übersicht über die mathematischen Module der Bachelor- und Masterstudiengänge Mathematik, Wirtschaftsmathematik und Technomathematik

Übersicht über die mathematischen Module der Bachelor- und Masterstudiengänge Mathematik, Wirtschaftsmathematik und Technomathematik Übersicht über die mathematischen Module der Bachelor- und Masterstudiengänge Mathematik, Wirtschaftsmathematik und Technomathematik Modul LP Prüfungsform 1 Pflichtmodule Bachelor Mathematik, Wirtschaftsmathematik

Mehr

Modellierung von Hydrosystemen

Modellierung von Hydrosystemen Universität Stuttgart - Institut für Wasserbau Prof. Dr.-Ing. Rainer Helmig Pfaffenwaldring 61, 70550 Stuttgart (Vaihingen) http://www.iws.uni-stuttgart.de Name, Vorname: Matrikelnummer: G-05 Umweltströmungsmechanik

Mehr

Modellierung des Tumorwachstums

Modellierung des Tumorwachstums Modellierung des Tumorwachstums Ansgar Jüngel TU Wien asc.tuwien.ac.at/ juengel (Einige Bilder wurden aus Copyrightgründen entfernt.) Ansgar Jüngel (TU Wien) Tumorwachstum asc.tuwien.ac.at/ juengel 1 /

Mehr

Institut für Numerische Mathematik

Institut für Numerische Mathematik Institut für Numerische Mathematik Ulrich Langer Bachelor - Infoabend Linz, 17 Jänner 2019 http://www.numa.uni-linz.ac.at/ U. Langer (JKU + RICAM) Institut für Numerische Mathematik Linz, 17 Jänner 2019

Mehr

Euler-Approximation. Leonie van de Sandt. TU Dortmund Prof. Dr. Christine Müller. 5. Juni 2012

Euler-Approximation. Leonie van de Sandt. TU Dortmund Prof. Dr. Christine Müller. 5. Juni 2012 Euler-Approximation Leonie van de Sandt TU Dortmund Prof. Dr. Christine Müller 5. Juni 2012 Leonie van de Sandt (TU Dortmund) Euler-Approximation 5. Juni 2012 1 / 26 Inhaltsverzeichnis 1 Einleitung Leonie

Mehr

Extrapolationsverfahren für nichtlineare zweidimensionale Diffusionsprobleme

Extrapolationsverfahren für nichtlineare zweidimensionale Diffusionsprobleme Universität des Saarlandes Fachbereich Mathematik Extrapolationsverfahren für nichtlineare zweidimensionale Diffusionsprobleme Diplomarbeit zur Erlangung des akademischen Grades eines Diplom-Mathematikers

Mehr

Numerik für Ingenieure II

Numerik für Ingenieure II Numerik für Ingenieure II Prof. Dr. Dimitri Kuzmin Lehrstuhl für Angewandte Mathematik III Universität Erlangen-Nürnberg kuzmin@am.uni-erlangen.de http://www.mathematik.uni-dortmund.de/ kuzmin/numingii.html

Mehr

PVK Numerische Methoden Tag 1

PVK Numerische Methoden Tag 1 PVK Numerische Methoden Tag 1 Lucas Böttcher ETH Zürich Institut für Baustoffe Wolfgang-Pauli-Str. 27 HIT G 23.8 8093 Zürich lucasb@ethz.ch June 19, 2017 Lucas Böttcher (ETH Zürich) PVK Numerik June 19,

Mehr

Hydroinformatik I Abschluss C++ Big Data

Hydroinformatik I Abschluss C++ Big Data Hydroinformatik I Abschluss C++ Olaf Kolditz *Helmholtz Centre for Environmental Research UFZ 1 Technische Universität Dresden TUDD 2 Centre for Advanced Water Research CAWR 15. Dezember 2017 - Dresden

Mehr

14 Numerik hyperbolischer Differentialgleichungen

14 Numerik hyperbolischer Differentialgleichungen Numerik II 256 14 Numerik hyperbolischer Differentialgleichungen Während parabolische PDG Diffusionsvorgänge modellieren stellen hyperbolische PDG Modelle für Wellenphänomene dar. Wichtigste Anwendungsgebiete

Mehr

3 Das Programm 3. 4 Dateien 4. 5 Aufgaben 4. 6 Ausblick 5

3 Das Programm 3. 4 Dateien 4. 5 Aufgaben 4. 6 Ausblick 5 Contents 1 Ziele dieser Uebung 1 2 Finite-Differenzen-Methode 1 3 Das Programm 3 4 Dateien 4 5 Aufgaben 4 6 Ausblick 5 1 Ziele dieser Uebung 1.1 Einleitung Wir erweitern das Problem aus der letzten Uebung

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmann W Wu Herbstsemester 26 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 2 Aufgabe 2 Welche der folgenden Aussagen sind korrekt? (i) Jedes

Mehr

Mathematische Methoden für Informatiker

Mathematische Methoden für Informatiker Prof. Dr. Fachrichtung Mathematik Institut für Algebra www.math.tu-dresden.de/ baumann Ulrike.Baumann@tu-dresden.de 13.04.2018 Inhalt des Moduls Sommersemester 2018 Analysis und Anwendungen in der Numerischen

Mehr

Nebenfach Mathematik im Informatik-Studium. Martin Gugat FAU: Friedrich-Alexander-Universität Erlangen-Nürnberg 26.

Nebenfach Mathematik im Informatik-Studium. Martin Gugat FAU: Friedrich-Alexander-Universität Erlangen-Nürnberg 26. Nebenfach Mathematik im Informatik-Studium Martin Gugat martin.gugat@fau.de FAU: Friedrich-Alexander-Universität Erlangen-Nürnberg 26. Oktober 2016 Motivation Die rigorose Analyse von Algorithmen erfordert

Mehr

Finite Difference Method (FDM) Integral Finite Difference Method (IFDM)

Finite Difference Method (FDM) Integral Finite Difference Method (IFDM) Finite Difference Method (FDM) Integral Finite Difference Method (IFDM) home/lehre/vl-mhs-1-e/cover sheet.tex. p.1/29 Table of contents 1. Finite Difference Method (FDM) 1D-Example (a) Problem and Governing

Mehr

1D-Example - Finite Difference Method (FDM)

1D-Example - Finite Difference Method (FDM) D-Example - Finite Difference Method (FDM) h left. Geometry A = m 2 = m ents 4m q right x 2. Permeability k f = 5 m/s 3. Boundary Conditions q right = 4 m/s y m 2 3 4 5 h left = 5 m x x x x home/baumann/d_beispiel/folie.tex.

Mehr

II. Elliptische Probleme

II. Elliptische Probleme II. Elliptische Probleme II.1 Finite Differenzen: Grundidee II.2 Konvergenzaussagen II.3 Allgemeine Randbedingungen II.4 Gekrümmte Ränder Kapitel II (0) 1 Dirichlet Randwerte mit finiten Differenzen Einfachster

Mehr

(45 Min) als auch schriftlich im Rahmen einer Ausarbeitung zu präsentieren. 1. Gusfield: Algorithms on strings, trees and sequences.

(45 Min) als auch schriftlich im Rahmen einer Ausarbeitung zu präsentieren. 1. Gusfield: Algorithms on strings, trees and sequences. 1. Thema: Dynamische Programmierung Das Prinzip des dynamischen Programmierens wird bei der Lösung kombinatorischer Optimierungsprobleme eingesetzt. Grundidee ist, das Problem auf kleinere Teilprobleme

Mehr

Waermeleitungsgleichung

Waermeleitungsgleichung Waermeleitungsgleichung October 26, 2018 1 Ausführliche Diskussion des Wärmeleitungsgleichungs-Beispiels der Vorlesung Wir betrachten die folgende Aufgabe: Ein Stab der Länge π (auf dem Zahlenstrahl von

Mehr

Modellieren in der Angewandten Geologie II. Sebastian Bauer

Modellieren in der Angewandten Geologie II. Sebastian Bauer Modellieren in der Angewandten Geologie II Geohydromodellierung Institut für Geowissenschaften Christian-Albrechts-Universität zu Kiel CAU 3-1 Die Finite Elemente Method (FEM) ist eine sehr allgemeine

Mehr

Prof. Dr.-Ing. Christopher Bode. Finite-Elemente-Methode

Prof. Dr.-Ing. Christopher Bode. Finite-Elemente-Methode Prof. Dr.-Ing. Christopher Bode Finite-Elemente-Methode Kapitel 1: Einleitung BEUTH Hochschule für Technik Berlin Prof. Dr.-Ing. C. Bode 2 Was ist FEM? Die FEM ist ein mathematisches Verfahren zur Lösung

Mehr

Schwache Lösung der Stokes-Gleichungen für nicht-newton'sche Fluide

Schwache Lösung der Stokes-Gleichungen für nicht-newton'sche Fluide Daniel Janocha Aus der Reihe: e-fellows.net stipendiaten-wissen e-fellows.net (Hrsg.) Band 1064 Schwache Lösung der Stokes-Gleichungen für nicht-newton'sche Fluide Weak solution of the Stokes equations

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen Partielle Differentialgleichungen Michael Hinze (zusammen mit Peywand Kiani) Department Mathematik Schwerpunkt Optimierung und Approximation, Universität Hamburg 8. April 2009 Beachtenswertes Die Veranstaltung

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 0 0090 Aufgabe Punkte: Betrachten Sie das lineare Gleichungssystem Ax = b mit A = 0 und b

Mehr

Finite-Differenzen-Verfahren hoher Genauigkeit

Finite-Differenzen-Verfahren hoher Genauigkeit Universität Stuttgart, Fakultät Luft- und Raumfahrttechnik und Geodäsie - Vorlesung Finite-Differenzen-Verfahren Master-Studium, Spezialisierung 2 Semesterwochenstunden im SS, 3 LPs/ECTS Dr. Markus J.

Mehr

Numerische Methoden 7. Übungsblatt

Numerische Methoden 7. Übungsblatt Karlsruher Institut für Technologie (KIT) SS 01 Institut für Analysis Prof Dr Michael Plum Dipl-Mathtechn Rainer Mandel Numerische Methoden 7 Übungsblatt Aufgabe 17: Quadratur II Die Menge aller Polynome

Mehr

Übungen zum Ferienkurs Analysis II 2014

Übungen zum Ferienkurs Analysis II 2014 Übungen zum Ferienkurs Analysis II 4 Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar zu begründen. Schreiben

Mehr

Newton-Verfahren zur optimalen Steuerung nichtlinearer elliptischer Randwertaufgaben

Newton-Verfahren zur optimalen Steuerung nichtlinearer elliptischer Randwertaufgaben Newton-Verfahren zur optimalen Steuerung nichtlinearer elliptischer Randwertaufgaben Patrick Knapp Berichtseminar zur Bachelorarbeit Universität Konstanz 14.12.2010 Einleitung Aufgabenstellung min J(y,

Mehr

Grundlagen der Numerischen Mathematik Sommersemester Kapitel 0. Jun.-Prof. Dr. Thorsten Raasch (JGU Mainz) 23. April 2014

Grundlagen der Numerischen Mathematik Sommersemester Kapitel 0. Jun.-Prof. Dr. Thorsten Raasch (JGU Mainz) 23. April 2014 Grundlagen der Numerischen Mathematik Sommersemester 2014 Kapitel 0 Jun.-Prof. Dr. Thorsten Raasch Johannes Gutenberg-Universität Mainz Institut für Mathematik 23. April 2014 Numerik Was ist das? Was ist

Mehr

Institut für Strömungsmechanik und Elektron. Rechnen im Bauwesen der Universität Hannover

Institut für Strömungsmechanik und Elektron. Rechnen im Bauwesen der Universität Hannover ! H W B - Bibliothek!nv.-Nr. p Institut für Strömungsmechanik und Elektron. Rechnen im Bauwesen der Universität Hannover BERICHT NR. 24/1987 Technische Universität Darmslacit Bibliothek Wasser und Umwelt

Mehr

Entwicklung von Differenzenschemata für geometrische Singularitäten

Entwicklung von Differenzenschemata für geometrische Singularitäten Entwicklung von Differenzenschemata für geometrische Singularitäten Graz, Österreich herwig.grogger@fh-joanneum.at DGLR-Fachausschußsitzung T 2.3 Strömungsakustik / Fluglärm DLR Braunschweig 4. Februar

Mehr

Hydroinformatik I: IO - Files

Hydroinformatik I: IO - Files Hydroinformatik I: IO - Files Prof. Dr.-Ing. habil. Olaf Kolditz 1 Helmholtz Centre for Environmental Research UFZ, Leipzig 2 Technische Universität Dresden TUD, Dresden Dresden, 02. Dezember 2016 1/24

Mehr

Reihenentwicklungen von Lösungen (I) 1 Einleitung

Reihenentwicklungen von Lösungen (I) 1 Einleitung Vortrag zum Seminar Gewöhnliche Differentialgleichungen, 22.11.2011 Carmen Freuen Ziel dieses Vortrages ist es, die Reihenentwicklung von Lösungen linearer Differentialgleichungen vorzustellen und zu untersuchen.

Mehr

D-MATH Mass und Integral FS 2018 Prof. Dr. Urs Lang. Lösung - Serie 2. + A k = A c k Ac k 0

D-MATH Mass und Integral FS 2018 Prof. Dr. Urs Lang. Lösung - Serie 2. + A k = A c k Ac k 0 D-MATH Mass und Integral FS 2018 Prof. Dr. Urs Lang Lösung - Serie 2 Abgabetermin: Mittwoch, 07.03.2018 in die Fächli im HG F 28. Homepage der Vorlesung: https://metaphor.ethz.ch/x/2018/fs/401-2284-00l/

Mehr

1/15. Das n-körper Problem. Numerische Mathematik 1 WS 2011/12

1/15. Das n-körper Problem. Numerische Mathematik 1 WS 2011/12 1/15 Das n-körper Problem Numerische Mathematik 1 WS 2011/12 Ziel 2/15 Beschreibung der Bewegung von n N Punktmassen im luftleeren Raum (hier R 2 ), wobei jede Masse auf jede andere Masse eine gewisse

Mehr

Numerische Akustik. Ennes Sarradj, Gesellschaft für Akustikforschung Dresden mbh

Numerische Akustik. Ennes Sarradj, Gesellschaft für Akustikforschung Dresden mbh Numerische Akustik Ennes Sarradj, Gesellschaft für Akustikforschung Dresden mbh 1 Einleitung Akustischen Messungen und Berechnungen sind mittlerweile in vielen Fällen nicht ohne Einsatz eines Computers

Mehr

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB)

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Prof. R. Leithner, Dipl. Phys. E. Zander Wintersemester 2010/2011 Kapitel 8 Partielle

Mehr

Numerische Methoden. Thomas Huckle Stefan Schneider. Eine Einführung für Informatiker, Naturwissenschaftler, Ingenieure und Mathematiker.

Numerische Methoden. Thomas Huckle Stefan Schneider. Eine Einführung für Informatiker, Naturwissenschaftler, Ingenieure und Mathematiker. Thomas Huckle Stefan Schneider Numerische Methoden Eine Einführung für Informatiker, Naturwissenschaftler, Ingenieure und Mathematiker 2. Auflage Mit 103 Abbildungen und 9 Tabellen 4Q Springer Inhaltsverzeichnis

Mehr

Simulationstechnik V

Simulationstechnik V Simulationstechnik V Vorlesung/Praktikum an der RWTH Aachen Numerische Simulation von Strömungsvorgängen B. Binninger Institut für Technische Verbrennung Templergraben 64 4. Teil Finite-Volumen-Methode

Mehr