II. Elliptische Probleme

Größe: px
Ab Seite anzeigen:

Download "II. Elliptische Probleme"

Transkript

1 II. Elliptische Probleme II.1 Finite Differenzen: Grundidee II.2 Konvergenzaussagen II.3 Allgemeine Randbedingungen II.4 Gekrümmte Ränder Kapitel II (0) 1

2 Dirichlet Randwerte mit finiten Differenzen Einfachster Fall: Äquidistantes Gitter über dem Einheitsquadrat: Der Rand wird von unserem Gitter genau getroffen. (0, n+1) (n+1, n+1) Ω (0,1) (1,1) (n+1,1) (0,0) (1,0) (n+1,0) Homogene Dirichlet-Randbedingungen können hier direkt auf die Punktwerte angewendet werden. Wir erhalten die Bedingungen u 0,j = u n+1,j = u i,0 = u i,n+1 = 0, i = 0,...,n+1, j = 0,...,n+1. Dies funktioniert leider nur für sehr einfache Geometrien Kapitel II (fdm-dirichlet) 2

3 Finite Differenzen: Grundidee Ω = (0,1) 2. Partielle Differentialgleichung u = f in Ω, u = 0 auf Ω. Gitter x ij = (ih,jh), i,j = 0,...,n+1, h = 1/(n+1). Idee: Approximiere durch finite Differenzen, u(x ij ) = u ij 1 h 2( u i 1,j u i+1,j +4u ij u i,j 1 u i,j+1 ), i,j = 1,...,n Kapitel II (einführung12) 3

4 Finite Differenzensterne für L = 5 Punkt Stern, Ordnung 2 9 Punkt Stern, Ordnung 4 1/36 1/9 1/36 1/9 4/9 1/9 1/36 1/9 1/36 Vorfaktor 1 12 Differenzensterne sind Verallgemeinerungen der Differenzenquotienten für höhere Dimensionen Kapitel II (einführung03) 4

5 Finite Differenzen Linksseitiger (Rückwärts-) Differenzenquotient: u (x i ) u i u i 1 h Rechtsseitiger (Vorwärts-) Differenzenquotient: u (x i ) u i+1 u i h Zentraler (symmetrischer) Differenzenquotient: i 2 i 1 i i+1 i i 2 i 1 i i+1 i+2 1 i 2 i 1 i i+1 i+2 1 u (x i ) u i+1 u i 1 2h u (x i ) u i 1 2u i +u i+1 h 2 1/2 1/2 i 2 i 1 i i+1 i Wir approximieren die Ableitungsoperatoren der Differentialgleichung durch Punktauswertungen des Differenzenquotienten Kapitel II (einfuehrung13) 5

6 Verschiedene Nummerierungen des Gitters Eine äquidistante FDM Diskretisierung von Ω = (0,1) 2 liefert N Gleichungen für die N Unbekannten u (i,j). Werden die Unbekannten als Vektor u h R N angeordnet, so lässt sich das LGS als A h u h = h 2 f h schreiben. Die Nummerierung der Gitter hat dabei einen gro ssen Einfluss auf die Gestalt der Matrix A h. Beispielhaft einige Nummerierungen zu einem 3 3 Gitter zu homogenen Dirichlet- Randwerte mit dem 5 Punkt-Stern. (0,4) (1,4) (2,4) (3,4) (4,4) (0,3) (1,3) (2,3) (3,3) (4,3) (0,2) (1,2) (2,2) (3,2) (4,2) (0,1) (1,1) (2,1) (3,1) (4,1) Ω (0,0) (1,0) (2,0) (3,0) (4,0) (Hier also: N = 9) Kapitel II (FDMNummerierung) 6

7 (i,j) n h (j 1)+i. Lexikographische Nummerierung (1,3) (2,3) (3,3) (1,2) (2,2) (3,2) (1,1) (2,1) (3,1) Blocktridiagonale Gestalt (3 3 innere Punkte) A h = B 3 I 3 I 3 B 3 I 3, B 3 = , I 3 = I 3 B Kapitel II (FDMNummerierungLexikographisch) 7

8 Schachbrettordnungen Punktweise Schachbrettordnung [ ] 4I5 H A h = H T 4I 4 H = Zeilenweise Schachbrettordnung B 3 I 3 A h = B 3 I 3 I 3 I 3 B Kapitel II (FDMNummerierungSchachbrett) 8

9 Die Poisson-Matrix Lexikografische Nummerierung führt auf LGS A h u = f h mit A h = B n Id Id B n B n Id Rn Id B n 2 n 2, n 2 n+1 n 2 B n = Rn n. 1 4 n+1 n+2 2n 1 2 n Kapitel II (einführung12) 9

10 Besetzungstrukturen in verschiedenen Dimensionen nz = nz = nz = 304 Figure 1: Bandstruktur, 1D 3-Punkte Stern (links), 2D 5-Punkte Stern (mitte), 3D 7-Punkte Stern (rechts) Kapitel II (einführung10) 10

11 Advektions Diffusions Gleichung (Modellbeispiel) εu +βu = 0, x [0,1], u(0) = 0, u(1) = β = 0.0 β = 0.03 β = 0.1 β = 0.5 Lösung u(x) globale Pécletzahl: Pe gl = β 2ε Dominanz der Advektion bez. Diffusion Exakte Lösung: Funktionswert u(x) u(x) = exp(βx/ε) 1 exp(β/ε) 1 ε = x Achse Kapitel II (ellrwp01) 11

12 Zentraler Differenzenstern Diskretisierung 5 Diskrete Lösung u (x i ) u i+1 u i 1 2h u (x i ) u i 1 2u i +u i+1 h 2 lokale Pécletzahl: Oszillationen für Pe > 1 Pe = β h 2ε 2ε ε + h 2 β ε h 2 β 2ε ε + h β... ε h 2 β 2ε ε + h 2 β ε h 2 β 2ε Funktionswert u(x) Pe = Pe = Pe = solution u 1 u 2. u n 2 u n 1 x Achse = ε h 2 β Kapitel II (ellrwp02) 12

13 Upwind Verfahren Wähle Vorwärts oder Rückwärts - Differenz so, dass die Matrix diagonaldominant ist. u (x i ) u i+1 u i, β < 0, h u (x i ) u i u i 1, β > 0. h Funktionswert u(x) Pe = 62.5 Pe = Pe = solution Upwind Verfahren Nachteil: Unsymmetrische Differenzen haben Ordnung 1, zentrale Ordnung 2 Vorteil: keine Oszillationen x Achse Kapitel II (ellrwp03) 13

14 Ersetze im Upwind Verfahren für β > 0 Numerische Viskosität ε u i+1 2u i +u i 1 h 2 +β u i u i 1 h = 0 den Term u i u i 1 = u i+1 u i 1 h u i+1 2u i +u i 1 h 2h 2 h 2. Dann erhält man folgende äquivalente Darstellung ε h u i+1 2u i +u i 1 h 2 mit der numerischen Viskosität ε h = ε ( 1+ β h ) 2ε +β u i+1 u i 1 2h = ε(1+pe). = 0 Kapitel II (ellrwp04) 14

15 Scharfetter Gummel Verallgemeinerung der Numerischen Viskosität zu Beispiele: ε h = ε(1+φ(pe)) mit lim Φ(t) = 0. t 0+ Φ(t) = 0 Φ(t) = t zentrale Differenz, Upwind Verfahren. Scharfetter Gummel: Φ(t) = t 1+B(2t) mit Bernoulli Funktion B(t) = t e t 1. Kapitel II (ellrwp05) 15

16 Scharfetter Gummel Das Scharfetter Gummel Verfahren nutzt die jeweiligen Vorteile des Upwind Verfahrens und der zentralen Differenzen aus: Upwind: keine Oszillationen Funktionswert u(x) Scharfetter Gummel Pe = 62.5 Pe = Pe = solution zentrale Differenz: höhere Ordnung x Achse Kapitel II (ellrwp06) 16

17 Konvergenzordnungen Diskrete L Norm bzgl. Knoten x i. Konvergenzordnungen Diskrete L Norm bzgl. sehr feinem Gitter mit mindestens Stützstellen in [0, 1]. Die diskrete Lösung wurde hierbei linear interpoliert. Konvergenzordnungen Fehler 10 2 Fehler zentrale Differenz Upwind Scharfetter Gummel Anzahl der Schritte 10 6 zentrale Differenz Upwind Scharfetter Gummel Anzahl der Schritte Das Scharfetter Gummel Verfahren besitzt an den Diskretisierungsknoten für das Modellbeispiel den Fehler 0. Kapitel II (ellrwp07) 17

18 Übersicht Verfahren Ordnung Oszillationen Pécletzahl Zentrale Differenzen 2 Ja h abh. Upwind 1 NEIN <1 Scharfetter Gummel 2 NEIN <1 Kapitel II (ellrwp08) 18

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB)

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Prof. R. Leithner, Dipl. Phys. E. Zander Wintersemester 2010/2011 Kapitel 8 Partielle

Mehr

Numerische Simulation mit finiten Elementen. O. Rheinbach

Numerische Simulation mit finiten Elementen. O. Rheinbach Numerische Simulation mit finiten Elementen O. Rheinbach Numerische Simulation mit finiten Elementen INHALT 0.1 Finite Differenzen in 2D 1. Einleitung 1.1 Vorbemerkungen 1.2 Rand- und Anfangswertaufgaben

Mehr

1 Einführung in die Numerik großer Gleichungssysteme. Themen: Die Poisson-Gleichung und ihre Diskretisierung

1 Einführung in die Numerik großer Gleichungssysteme. Themen: Die Poisson-Gleichung und ihre Diskretisierung 1 Einführung in die Numerik großer Gleichungssysteme Themen: Die Poisson-Gleichung und ihre Diskretisierung 1 Einführung in die Numerik großer Gleichungssysteme Themen: Die Poisson-Gleichung und ihre Diskretisierung

Mehr

Modellieren in der Angewandten Geologie II. Sebastian Bauer

Modellieren in der Angewandten Geologie II. Sebastian Bauer Modellieren in der Angewandten Geologie II Geohydromodellierung Institut für Geowissenschaften Christian-Albrechts-Universität zu Kiel CAU 3-1 Die Finite Elemente Method (FEM) ist eine sehr allgemeine

Mehr

Einführung FEM 1D - Beispiel

Einführung FEM 1D - Beispiel p. 1/28 Einführung FEM 1D - Beispiel /home/lehre/vl-mhs-1/folien/vorlesung/4_fem_intro/deckblatt.tex Seite 1 von 28 p. 2/28 Inhaltsverzeichnis 1D Beispiel - Finite Elemente Methode 1. 1D Aufbau Geometrie

Mehr

Kevin Caldwell. 18.April 2012

Kevin Caldwell. 18.April 2012 im Rahmen des Proseminars Numerische Lineare Algebra von Prof.Dr.Sven Beuchler 18.April 2012 Gliederung 1 2 3 Mathematische Beschreibung von naturwissenschaftlich-technischen Problemstellungen führt häufig

Mehr

Finite Elemente. Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 2015

Finite Elemente. Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 2015 Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 5 Aufgabe 8 (Speichertechniken) Finite Elemente Übung 5 a) Stellen Sie die Matrix

Mehr

5 Interpolation und Approximation

5 Interpolation und Approximation 5 Interpolation und Approximation Problemstellung: Es soll eine Funktion f(x) approximiert werden, von der die Funktionswerte nur an diskreten Stellen bekannt sind. 5. Das Interpolationspolynom y y = P(x)

Mehr

Finite Elemente Methoden (aus der Sicht des Mathematikers)

Finite Elemente Methoden (aus der Sicht des Mathematikers) Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt Übersicht: Partielle Differentialgleichungen, Approximation der Lösung, Finite Elemente, lineare und höhere Ansatzfunktionen, Dünn

Mehr

D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski. Serie 9

D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski. Serie 9 D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski Serie 9 Best Before: 24.5/25.5, in den Übungsgruppen (2 wochen) Koordinatoren: Alexander Dabrowski, HG G 52.1, alexander.dabrowski@sam.math.ethz.ch

Mehr

Simulationstechnik V

Simulationstechnik V Simulationstechnik V Vorlesung/Praktikum an der RWTH Aachen Numerische Simulation von Strömungsvorgängen B. Binninger Institut für Technische Verbrennung Templergraben 64 4. Teil Finite-Volumen-Methode

Mehr

Numerische Verfahren zur Lösung der Monge-Ampère-Gleichung

Numerische Verfahren zur Lösung der Monge-Ampère-Gleichung für zur Lösung der Monge-Ampère-Gleichung Yasemin Hafizogullari Institut für Geometrie und Praktische Mathematik RWTH Aachen Vortrag zum Seminar im Wintersemester 2009/2010 Ein Transportproblem für? für

Mehr

Kurze Einführung in die Finite-Elemente-Methode

Kurze Einführung in die Finite-Elemente-Methode Kurze Einführung in die Finite-Elemente-Methode Stefan Girke Wissenschaftliches Rechnen 23 Die Finite-Elemente-Methode In diesem Skript soll eine kurze Einführung in die Finite-Elemente-Methode gegeben

Mehr

Glättung durch iterative Verfahren

Glättung durch iterative Verfahren Numerische Methoden in der Finanzmathematik II Sommersemester 211 Glättung durch iterative Verfahren Vorlesung Numerische Methoden in der Finanzmathematik II Sommersemester 211 Numerische Methoden in der

Mehr

Schwache Lösungstheorie

Schwache Lösungstheorie Kapitel 4 Schwache Lösungstheorie Bemerkung 4.1 Motivation. Dieses Kapitel stellt eine Erweiterung des Lösungsbegriffes von partiellen Differentialgleichungen vor die schwache Lösung. Diese Erweiterung

Mehr

Berechnungsmethoden der Energie- und Verfahrenstechnik Methode der gewichteten Residuen

Berechnungsmethoden der Energie- und Verfahrenstechnik Methode der gewichteten Residuen Berechnungsmethoden der Energie- und Verfahrenstechnik Methode der gewichteten Residuen Giuseppe Bonfigli IFD, ETH-Zürich 3. Juni 21 Giuseppe Bonfigli (IFD, ETH-Zürich) Gewichtete Residuen 3. Juni 21 1

Mehr

Numerische Verfahren zur Lösung der Monge-Ampère-Gleichung

Numerische Verfahren zur Lösung der Monge-Ampère-Gleichung Verfahren zur Lösung der Monge-Ampère-Gleichung Yasemin Hafizogullari Institut für Geometrie und Praktische Mathematik RWTH Aachen Seminar zu aktuellen Themen der Numerik im Wintersemester 2010/2011 1

Mehr

Finite Differenzen Methode (FDM)

Finite Differenzen Methode (FDM) Finite Differenzen Methode (FDM) /home/lehre/vl-mhs-1/folien/vorlesung/2_fdm/deckblatt_fdm.tex Seite 1 von 15. p.1/15 Inhaltsverzeichnis 1. Problemdarstellung 2. Bilanzgleichungen 3. Finite Differenzen-Approximation

Mehr

Lineare Gleichungssysteme Hierarchische Matrizen

Lineare Gleichungssysteme Hierarchische Matrizen Kompaktkurs Lineare Gleichungssysteme Hierarchische Matrizen M. Bebendorf, O. Steinbach O. Steinbach Lineare Gleichungssysteme SIMNET Kurs 24. 27.4.26 / 6 Numerische Simulation stationäre und instationäre

Mehr

Aufgabe 3: Lösung der Poissongleichung

Aufgabe 3: Lösung der Poissongleichung Universität Hamburg Übungsblatt 3 zum Praktikum Fachbereich Informatik Paralleles Programmieren für Wissenschaftliches Rechnen Geowissenschaftler im SS 2014 Prof. T. Ludwig, H. Lenhart, N. Hübbe Abgabe:

Mehr

Numerische Verfahren zur Lösung der Monge-Ampère-Gleichung, Teil II

Numerische Verfahren zur Lösung der Monge-Ampère-Gleichung, Teil II für zur Lösung der Monge-Ampère-Gleichung, Teil II Andreas Platen Institut für Geometrie und Praktische Mathematik RWTH Aachen Seminar zur Approximationstheorie im Wintersemester 2009/2010 1 / 27 Gliederung

Mehr

NUMERISCHE MATHEMATIK I

NUMERISCHE MATHEMATIK I D-MATH ETH Zürich, 22. August 2011 Prof. Ch. Schwab NUMERISCHE MATHEMATIK I 1. Interpolation und Quadratur (25 P.) a) Sei [a, b] R 1 mit a < b ein beschränktes Intervall, und f C 2 ([a, b]). Zeigen Sie,

Mehr

ANALYSE NUMERISCHER VERFAHREN

ANALYSE NUMERISCHER VERFAHREN ANALYSE NUMERISCHER VERFAHREN von Eugene Isaacson Professor für Mathematik Leiter des Rechenzentrums Courant Institute of Mathematical Sciences New York University und Herbert Bishop Keller Professor für

Mehr

Inhaltsverzeichnis Partielle Differentialgleichungen und ihre T ypeneinteilung B eispiele...

Inhaltsverzeichnis Partielle Differentialgleichungen und ihre T ypeneinteilung B eispiele... Inhaltsverzeichnis 1 Partielle Differentialgleichungen und ihre Typeneinteilung... 1 1.1 Beispiele... 1 1.2 Typeneinteilungen bei Gleichungen zweiter Ordnung... 5 1.3 Typeneinteilungen bei Systemen erster

Mehr

Grundlagen und Grundgleichungen der Strömungsmechanik

Grundlagen und Grundgleichungen der Strömungsmechanik Inhalt Teil I Grundlagen und Grundgleichungen der Strömungsmechanik 1 Einführung... 3 2 Hydromechanische Grundlagen... 7 2.1 Transportbilanz am Raumelement... 7 2.1.1 Allgemeine Transportbilanz... 7 2.1.2

Mehr

3 Das Programm 3. 4 Dateien 4. 5 Aufgaben 4. 6 Ausblick 5

3 Das Programm 3. 4 Dateien 4. 5 Aufgaben 4. 6 Ausblick 5 Contents 1 Ziele dieser Uebung 1 2 Finite-Differenzen-Methode 1 3 Das Programm 3 4 Dateien 4 5 Aufgaben 4 6 Ausblick 5 1 Ziele dieser Uebung 1.1 Einleitung Wir erweitern das Problem aus der letzten Uebung

Mehr

Finite Elemente Methode für elliptische Differentialgleichungen

Finite Elemente Methode für elliptische Differentialgleichungen Finite Elemente Methode für elliptische Differentialgleichungen Michael Pokojovy 8. Oktober 2007 Das Ritzsche Verfahren Sei R n ein beschränktes offenes Gebiet mit abschnittsweise glattem Rand S. Betrachte

Mehr

Einführung in partielle Differentialgleichungen

Einführung in partielle Differentialgleichungen vdf - Lehrbücher und Skripten Einführung in partielle Differentialgleichungen für Ingenieure, Chemiker und Naturwissenschaftler von Norbert Hungerbühler 2., durchgesehene Auflage 2 Einführung in partielle

Mehr

(45 Min) als auch schriftlich im Rahmen einer Ausarbeitung zu präsentieren. 1. Gusfield: Algorithms on strings, trees and sequences.

(45 Min) als auch schriftlich im Rahmen einer Ausarbeitung zu präsentieren. 1. Gusfield: Algorithms on strings, trees and sequences. 1. Thema: Dynamische Programmierung Das Prinzip des dynamischen Programmierens wird bei der Lösung kombinatorischer Optimierungsprobleme eingesetzt. Grundidee ist, das Problem auf kleinere Teilprobleme

Mehr

Extrapolationsverfahren für nichtlineare zweidimensionale Diffusionsprobleme

Extrapolationsverfahren für nichtlineare zweidimensionale Diffusionsprobleme Universität des Saarlandes Fachbereich Mathematik Extrapolationsverfahren für nichtlineare zweidimensionale Diffusionsprobleme Diplomarbeit zur Erlangung des akademischen Grades eines Diplom-Mathematikers

Mehr

Übungen zu Partielle Differentialgleichungen, WS 2016

Übungen zu Partielle Differentialgleichungen, WS 2016 Übungen zu Partielle Differentialgleichungen, WS 2016 Ulisse Stefanelli 16. Januar 2017 1 Beispiele 1. Betrachten Sie die Beispiele von nichtlinearen PDG und Systemen, die wir im Kurs diskutiert haben,

Mehr

Inverse und implizite Funktionen

Inverse und implizite Funktionen Kapitel 8 Inverse und implizite Funktionen Josef Leydold Mathematik für VW WS 2017/18 8 Inverse und implizite Funktionen 1 / 21 Inverse Funktion Sei f : D f R n W f R m, x y f(x). Eine Funktion f 1 : W

Mehr

Lineare Iterationsverfahren: Definitionen

Lineare Iterationsverfahren: Definitionen Lineare Iterationsverfahren: Definitionen 1. Ein Lösungsverfahren zur Berechnung von Ax = b heißt iterativ, falls ausgehend von einem Startwert x eine Folge x k von Iterierten bestimmt wird. 2. Ein Iterationsverfahren

Mehr

2.2 Lineare Gleichungssysteme (LGS)

2.2 Lineare Gleichungssysteme (LGS) 2.2 Lineare Gleichungssysteme (LGS) Definition 2.2.. Ein LGS über einem Körper K von m Gleichungen in n Unbekannten x,..., x n ist ein Gleichungssystem der Form a x + a 2 x 2 +... + a n x n = b a 2 x +

Mehr

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt.

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Kapitel 3 Konvexität 3.1 Konvexe Mengen Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Definition 3.1 Konvexer Kegel. Eine Menge Ω R n heißt konvexer Kegel, wenn mit x

Mehr

Wiederholung von Linearer Algebra und Differentialrechnung im R n

Wiederholung von Linearer Algebra und Differentialrechnung im R n Wiederholung von Linearer Algebra und Differentialrechnung im R n 1 Lineare Algebra 11 Matrizen Notation: Vektor x R n : x = x 1 x n = (x i ) n i=1, mit den Komponenten x i, i {1,, n} zugehörige Indexmenge:

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Nichtlineare Gleichungssysteme Jetzt: Numerische Behandlung nichtlinearer GS f 1 (x 1,..., x n ) =0. f n (x 1,..., x n ) =0 oder kurz f(x) = 0 mit f : R n R n Bemerkung: Neben dem direkten Entstehen bei

Mehr

Einführung. Vita Rutka. Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik SS 2009

Einführung. Vita Rutka. Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik SS 2009 Einführung Vita Rutka Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik SS 2009 Was ist FEM? Die Finite-Elemente-Methode (FEM) ist ein numerisches Verfahren zur näherungsweisen Lösung,

Mehr

Ein adaptives Differenzenverfahren für Konvektions- Diffusionsgleichungen

Ein adaptives Differenzenverfahren für Konvektions- Diffusionsgleichungen Ein adaptives Differenzenverfahren für Konvektions- Diffusionsgleichungen Dissertation zur Erlangung des akademischen Grades eines Doktor der Naturwissenschaften (Dr. rer. nat.) vorgelegt im März 2006

Mehr

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

Übersicht zur Numerik II für Ingenieure

Übersicht zur Numerik II für Ingenieure Übersicht zur Numerik II für Ingenieure Petr Tichý und Jörg Liesen Technische Universität Berlin 19. Februar 2004 Modellierung Real world Problem Mathematisches Modell (Differentialgleichung) Diskretisierung

Mehr

MODELLBILDUNG. Modellierung und Simulation von Strömen

MODELLBILDUNG. Modellierung und Simulation von Strömen MODELLBILDUNG Modellierung und Simulation von Strömen Prof. Dr. Hans Babovsky Technische Universität Ilmenau, SS 2008 1 1 Konzept Wir wollen für ein Teilchensystem (Gasteilchen in der Luft, Rußteilchen

Mehr

1 Einführung, Terminologie und Einteilung

1 Einführung, Terminologie und Einteilung Zusammenfassung Kapitel V: Differentialgleichungen 1 Einführung, Terminologie und Einteilung Eine gewöhnliche Differentialgleichungen ist eine Bestimmungsgleichung um eine Funktion u(t) einer unabhängigen

Mehr

Finite Differenzen Verfahren

Finite Differenzen Verfahren Kapitel 2 Finite Differenzen Verfahren 2.1 Finite Differenzen Bemerkung 2.1 Idee. Die grundlegende Idee von Finite Differenzen Verfahren besteht darin, dass man die Ableitungen in der Differentialgleichung

Mehr

Teil XIII. Simulation mit PDEs: Wärmeleitungsgleichung

Teil XIII. Simulation mit PDEs: Wärmeleitungsgleichung Teil XIII Simulation mit PDEs: Wärmeleitungsgleichung IN8008, Wintersemester 2011/2012 284 ODE vs. PDE Differentialgleichungen bei der Molekulardynamik: nur eine unabhängige Variable: Zeit gewöhnliche

Mehr

Numerik partieller Differentialgleichungen für Ingenieure

Numerik partieller Differentialgleichungen für Ingenieure Numerik partieller Differentialgleichungen für Ingenieure Von ir. J. J.I.M. van Kan und ir. A. Segal Technische Universität Delft Aus dem Niederländischen übersetzt von Burkhard Lau, Technische Universität

Mehr

Finite Elemente Modellierung

Finite Elemente Modellierung Finite Elemente Modellierung Modellerstellung Diskretisierung des Kontinuums Methode der Finite Elemente Anwendungsbeispiele der FEM Zugstab: Kraftmethode Zugstab: Energiemethode Zugstab: Ansatzfunktion

Mehr

Numerik partieller Differentialgleichungen

Numerik partieller Differentialgleichungen Technische Universität Dresden Skript: Numerik partieller Differentialgleichungen Verfasser Franziska Kühn Daten Prof. Dr. Hans-Görg Roos Wintersemester 1/13 Hauptstudium Inhaltsverzeichnis Einführung

Mehr

Modellierung, Simulation, Optimierung Diskretisierung 1

Modellierung, Simulation, Optimierung Diskretisierung 1 Modellierung, Simulation, Optimierung Diskretisierung Prof. Michael Resch Dr. Martin Bernreuther, Dr. Natalia Currle-Linde, Dr. Martin Hecht, Uwe Küster, Dr. Oliver Mangold, Melanie Mochmann, Christoph

Mehr

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

Vorkonditionierer. diskrete stationäre Eulergleichungen

Vorkonditionierer. diskrete stationäre Eulergleichungen Übersicht Bernhard Pollul,, RWTH Templergraben 55, 52056, E-mail: pollul@igpm.rwth-aachen.de Vorkonditionierer für diskrete stationäre Eulergleichungen 1/13 1., Teilprojekt B4 2. Vorkonditionierung 3.

Mehr

Schwache Lösung der Stokes-Gleichungen für nicht-newton'sche Fluide

Schwache Lösung der Stokes-Gleichungen für nicht-newton'sche Fluide Daniel Janocha Aus der Reihe: e-fellows.net stipendiaten-wissen e-fellows.net (Hrsg.) Band 1064 Schwache Lösung der Stokes-Gleichungen für nicht-newton'sche Fluide Weak solution of the Stokes equations

Mehr

Tutorial: Numerisch Differenzieren

Tutorial: Numerisch Differenzieren (basierend auf dem Skript Numerik für Ingenieure von R. Axthelm) Aufgabenstellung: Von ihrem GPS-Gerät bekommen sie alle 12 Sekunden ihre aktuelle Position zugeschickt. Daraus können sie das unten dargestellte

Mehr

Berechnungsmethoden der Energie- und Verfahrenstechnik

Berechnungsmethoden der Energie- und Verfahrenstechnik Institute of Fluid Dynamics Berechnungsmethoden der Energie- und Verfahrenstechnik Prof. Dr. Leonhard Kleiser c L. Kleiser, ETH Zürich Transition zur Turbulenz in einem drahlbehafteten Freistrahl. S. Müller,

Mehr

3 Gemischte Diskretisierungen und Sattelpunktprobleme

3 Gemischte Diskretisierungen und Sattelpunktprobleme Finite Elemente II 67 3 Gemischte Diskretisierungen und Sattelpunktprobleme Der Begriff gemischte Diskretisierung (mixed method) bezeichnet die FE- Diskretisierung eines Variationsproblems, in welchem

Mehr

Numerische Behandlung linearer und semilinearer partieller differentiell-algebraischer Systeme mit Runge-Kutta-Methoden.

Numerische Behandlung linearer und semilinearer partieller differentiell-algebraischer Systeme mit Runge-Kutta-Methoden. Numerische Behandlung linearer und semilinearer partieller differentiell-algebraischer Systeme mit Runge-Kutta-Methoden Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer.

Mehr

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom Prof. Dr. M. Kaßmann Fakultät für Mathematik Wintersemester 2011/2012 Universität Bielefeld Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom 27.10.2011 Aufgabe III.1 (4 Punkte) Sei Ω R

Mehr

Approximationstheorie und Approximationspraxis

Approximationstheorie und Approximationspraxis Approximationstheorie und Approximationspraxis Martin Wagner Bergische Universität Wuppertal Fachbereich C - Mathematik und Naturwissenschaften AG Optmierung und Approximation 3. Februar 2010 1 / 20 Motivation

Mehr

1 Einführung Allgemeine Bemerkungen Einleitende Beispiele Überblick... 10

1 Einführung Allgemeine Bemerkungen Einleitende Beispiele Überblick... 10 Inhaltsverzeichnis 1 Einführung...................................................... 1 1.1 Allgemeine Bemerkungen....................................... 1 1.2 Einleitende Beispiele...........................................

Mehr

Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen

Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen Wintersemester 2012/201 Zwischentest Teil 1: 1. Was bedeuten die Bezeichnungen O(h) und o(h)? (Definition) (siehe Skript!)

Mehr

13 Beispiel: Poisson-Gleichung

13 Beispiel: Poisson-Gleichung 13 Beispiel: Poisson-Gleichung Etwas komplizierter wird die Simulation, wenn wir mehr als eine Raumdimension haben während sich im Eindimensionalen die Unbekannten einfach der Reihe nach in eine Liste

Mehr

Die Interpolationsaufgabe besteht darin, eine (einfache) Funktion u n U n zu finden,

Die Interpolationsaufgabe besteht darin, eine (einfache) Funktion u n U n zu finden, Kapitel 3 Interpolation 31 Einführung Bemerkung 31 Motivation, Aufgabenstellung Gegeben seien eine Funktion f C([a,b]) und x i [a,b], i = 0,n, mit a x 0 < x 1 < < x n b (31) Die Interpolationsaufgabe besteht

Mehr

1 Die Problemstellung

1 Die Problemstellung Institut für Wissenschaftliches Rechnen Technische Universität Braunschweig Prof. Hermann G. Matthies, Ph.D. ScientifiComputing Wir wollen als erstes das in diesem Praktikum zu behandelnde Problem aus

Mehr

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2.

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2. MATHEMATISCHES INSTITUT PROF. DR. ACHIM SCHÄDLE 9.8.7 KLAUSUR zur Numerik I mit Lösungen Aufgabe : ( Punkte) [ wahr falsch ]. Die maximale Ordnung einer s-stufigen Quadraturformel ist s. [ ]. Der Clenshaw

Mehr

Finite Element Approximation auf der Basis geometrischer Zellen

Finite Element Approximation auf der Basis geometrischer Zellen Finite Element Approximation auf der Basis geometrischer Zellen Peter Milbradt, Axel Schwöppe Institut für Bauinformatik, Universität Hannover Die Methode der Finiten Elemente ist ein numerisches Verfahren

Mehr

Analysis I. Guofang Wang Universität Freiburg

Analysis I. Guofang Wang Universität Freiburg Universität Freiburg 30.11.2016 5. Teilmengen von R und von R n Der R n ist eine mathematische Verallgemeinerung: R n = {x = (x 1,..., x n ) : x i R} = } R. {{.. R }. n mal Für x R ist x der Abstand zum

Mehr

Mathematisches Proseminar - Rotationssymmetrisches Wirbelstromproblem

Mathematisches Proseminar - Rotationssymmetrisches Wirbelstromproblem Mathematisches Proseminar - Rotationssymmetrisches Wirbelstromproblem Daniel Leumann 9. Oktober 3 Inhaltsverzeichnis Zusammenfassung 3 Methoden 4. Schwache Lösung... 4. DasGalerkin-Verfahren... 4.3 FiniteElementeMethode...

Mehr

WS 2014/15 FINITE-ELEMENT-METHODE JUN.-PROF. D. JUHRE

WS 2014/15 FINITE-ELEMENT-METHODE JUN.-PROF. D. JUHRE 2.5 ANFANGSRANDWERTPROBLEM DER ELASTOMECHANIK Charakterisierung Die Zusammenfassung der in den vorangehenden Folien entwickelten Grundgleichungen des dreidimensionalen Kontinuums bildet das Anfangsrandwertproblem

Mehr

KAPITEL 8. Interpolation

KAPITEL 8. Interpolation KAPITEL 8. Interpolation 8.2 Lagrange-Interpolationsaufgabe für Polynome Wir beschränken uns auf die Lagrange-Interpolation mit Polynomen. Der Raum der Polynome vom Grad n: Stützstellen: Π n = { n j=0

Mehr

Einige grundlegende partielle Differentialgleichungen

Einige grundlegende partielle Differentialgleichungen Einige grundlegende partielle Differentialgleichungen H. Abels 17. Oktober 2010 H. Abels (U Regensburg) Grundlegende PDGLn 17. Oktober 2010 1 / 14 Transportgleichung Eine der einfachsten Differentialgleichungen

Mehr

5. Übungsblatt zur Mathematik II für BI, MaWi, WI(BI), AngGeo und UI

5. Übungsblatt zur Mathematik II für BI, MaWi, WI(BI), AngGeo und UI Fachbereich Mathematik Prof Dr K Ritter Dr M Slassi M Fuchssteiner SS 9 9 Mai 9 5 Übungsblatt zur Mathematik II für BI, MaWi, WI(BI, AngGeo und UI Gruppenübung Aufgabe G (a Betrachten Sie die Vektoren

Mehr

Finite Elemente I 2. 1 Variationstheorie

Finite Elemente I 2. 1 Variationstheorie Finite Elemente I 2 1 Variationstheorie 1 Variationstheorie TU Bergakademie Freiberg, SoS 2007 Finite Elemente I 3 1.1 Bilinearformen Definition 1.1 Sei V ein reeller normierter Vektorraum. Eine Bilinearform

Mehr

NUMERISCHE MATHEMATIK II 1. (Studiengang Mathematik) Prof. Dr. Hans Babovsky. Institut für Mathematik. Technische Universität Ilmenau WS 2001/2002

NUMERISCHE MATHEMATIK II 1. (Studiengang Mathematik) Prof. Dr. Hans Babovsky. Institut für Mathematik. Technische Universität Ilmenau WS 2001/2002 NUMERISCHE MATHEMATIK II 1 (Studiengang Mathematik) Prof Dr Hans Babovsky Institut für Mathematik Technische Universität Ilmenau WS 2001/2002 1 Korrekturen, Kommentare und Verbesserungsvorschläge bitte

Mehr

Numerik von Anfangswertaufgaben Teil II

Numerik von Anfangswertaufgaben Teil II Institut für Numerische Mathematik und Optimierung Numerik von Anfangswertaufgaben Teil II Numerik partieller Differentialgleichungen Oliver Ernst Hörerkreis: 6. Mm, 8. Mm Sommersemester 2012 Inhalt 1.

Mehr

Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben. Eine kurze Einführung in Quasi Newton Verfahren

Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben. Eine kurze Einführung in Quasi Newton Verfahren Ergänzungen zu dem Buch Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben von Carl Geiger und Christian Kanzow (Springer Verlag, 1999) Eine kurze Einführung in Quasi Newton Verfahren

Mehr

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0.

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0. Mehrdimensionale Dierenzialrechnung 9 Optimierung 9 Optimierung Definition Seien U R n oen, f : U R, x U x heiÿt lokales Maximum, falls eine Umgebung V U von x existiert mit y V : fx fy x heiÿt lokales

Mehr

Reelle Zufallsvariablen

Reelle Zufallsvariablen Kapitel 3 eelle Zufallsvariablen 3. Verteilungsfunktionen esultat aus der Maßtheorie: Zwischen der Menge aller W-Maße auf B, nennen wir sie W B ), und der Menge aller Verteilungsfunktionen auf, nennen

Mehr

Klausur zu Analysis II - Lösungen

Klausur zu Analysis II - Lösungen Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf Dr. Axel Grünrock WS 1/11 11..11 Klausur zu Analysis II - Lösungen 1. Entscheiden Sie, ob die folgenden Aussagen richtig oder falsch sind.

Mehr

Flagellenlokalisationen

Flagellenlokalisationen und Philipps-Universität Marburg 27. Januar 2017 und Überblick und Überblick und Mathematik und Biologie und Fachbereich Mathematik und Informatik Numerik AG Prof. Stephan Dahlke Prof. Bernhard Schmitt

Mehr

Approximation flächenhaft harmonischer Funktionen mittels bikubisch finiter Elemente

Approximation flächenhaft harmonischer Funktionen mittels bikubisch finiter Elemente . Session 6: Theoretische Geodäsie Approximation flächenhaft harmonischer Funktionen mittels bikubisch finiter Elemente 1 Jessica Franken Institut für Geodäsie und Geoinformation Professur für Theoretische

Mehr

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Prof. C. Greiner, Dr. H. van Hees Wintersemester 2012/2013 Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Aufgabe 1: Bruchrechnung Lösen Sie die folgenden Gleichungen nach x auf (a) x x 2 1

Mehr

Partielle Differentialgleichungen Kapitel 11

Partielle Differentialgleichungen Kapitel 11 Partielle Differentialgleichungen Kapitel Die Laplace- und Poisson- Gleichungen Die Struktur bei elliptischen Gleichungen zweiter Ordnung ist nicht wesentlich verschieden bei Operatoren mit konstanten

Mehr

5. Numerische Differentiation. und Integration

5. Numerische Differentiation. und Integration 5. Numerische Differentiation und Integration 1 Numerische Differentiation Problemstellung: Gegeben ist eine differenzierbare Funktion f : [a,b] R und x (a,b). Gesucht sind Näherungen für die Ableitungen

Mehr

Klausurlösung Einführung in Numerische Methoden und FEM Universität Siegen, Department Maschinenbau,

Klausurlösung Einführung in Numerische Methoden und FEM Universität Siegen, Department Maschinenbau, Universität Siegen, Department Maschinenbau, 7.7. Aufgabe y 3 l 3 3 F l l x Das dargestellte Fachwerk soll statisch mit Hilfe der FEM untersucht werden. Die Knoten und Elemente sind in der Abbildung nummeriert.

Mehr

Partielle Differenzialgleichungen FE-Methode. Finite Elemente. Fakultät Grundlagen. April 2011

Partielle Differenzialgleichungen FE-Methode. Finite Elemente. Fakultät Grundlagen. April 2011 Finite Elemente Fakultät Grundlagen April 2011 Fakultät Grundlagen Finite Elemente Übersicht 1 Lösungsmethoden Balkenbiegung Wärmeleitung 2 Fakultät Grundlagen Finite Elemente Folie: 2 Lösungsmethoden

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 14/15 Dr. Hanna Peywand Kiani 27.01.2015 Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Die ins Netz gestellten

Mehr

KAPITEL 5. Nichtlineare Gleichungssysteme

KAPITEL 5. Nichtlineare Gleichungssysteme KAPITEL 5. Nichtlineare Gleichungssysteme Beispiel 5.1. Gravitationskraft zwischen zwei Punktmassen m 1 und m 2 mit gegenseitigem Abstand r: F = G m 1m 2 r 2, wobei G = 6.67 10 11 Nm 2 /kg. Gravitationsfeld

Mehr

Numerik partieller Differentialgleichungen I

Numerik partieller Differentialgleichungen I Numerik partieller Differentialgleichungen I Bernd Simeon Skriptum zur Vorlesung im Sommersemester 2013 TU Kaiserslautern, Fachbereich Mathematik 1. Beispiele und Typeinteilung 2. Finite Differenzen für

Mehr

10 Die Methode der finiten Elemente für ein parabolisches Problem

10 Die Methode der finiten Elemente für ein parabolisches Problem 1 Die Methode der finiten Elemente für ein parabolisches Problem In diesem Kapitel untersuchen wir die Approximation von Lösungen der Modell-Wärmeleitungsgleichung in zwei räumlichen Dimensionen mithilfe

Mehr

Teil XIII. Simulation von Partiellen Differentialgleichungen (PDE): Wärmeleitungsgleichung

Teil XIII. Simulation von Partiellen Differentialgleichungen (PDE): Wärmeleitungsgleichung Teil XIII Simulation von Partiellen Differentialgleichungen (PDE): Wärmeleitungsgleichung IN8008, Wintersemester 2014/2015 325 ODE vs. PDE Differentialgleichungen bei der Molekulardynamik: nur eine unabhängige

Mehr

94 Kapitel 2. Finite-Elemente-Verfahren. 13 Aspekte der Implementierung

94 Kapitel 2. Finite-Elemente-Verfahren. 13 Aspekte der Implementierung 94 apitel 2. Finite-Elemente-Verfahren 3 Aspekte der Implementierung Die Lösung einer (linearen) PDE mit der FEM gliedert sich in folgende Unterpunkte: () Modellierung des Gebietes (z. B. mit CAD) und

Mehr

Klassifikation von partiellen Differentialgleichungen

Klassifikation von partiellen Differentialgleichungen Kapitel 2 Klassifikation von partiellen Differentialgleichungen Die meisten partiellen Differentialgleichungen sind von 3 Grundtypen: elliptisch, hyperbolisch, parabolisch. Betrachte die allgemeine Dgl.

Mehr

Optimale Steuerung, Prof.Dr. L. Blank 1. II Linear-quadratische elliptische Steuerungsprobleme

Optimale Steuerung, Prof.Dr. L. Blank 1. II Linear-quadratische elliptische Steuerungsprobleme Optimale Steuerung, Prof.Dr. L. Blank 1 II Linear-quadratische elliptische Steuerungsprobleme Zuerst: Zusammenstellung einiger Begriffe und Aussagen aus der Funktionalanalysis (FA), um dann etwas über

Mehr

Die Modellierung einer Lithium-Batterie Zwischenpräsentation zum Praktikum Nichtlineare Modellierung in den Naturwissenschaften

Die Modellierung einer Lithium-Batterie Zwischenpräsentation zum Praktikum Nichtlineare Modellierung in den Naturwissenschaften MÜNSTER Die Modellierung einer Lithium-Batterie Zwischenpräsentation zum Praktikum Nichtlineare Modellierung in den Naturwissenschaften Christoph Fricke, Natascha von Aspern, Carla Tameling 12.06.2012

Mehr

Einführung FEM, 1D - Beispiel

Einführung FEM, 1D - Beispiel Einführung FEM, D - Beispiel home/eichel/lehre/mhs/fem_intro/deckblatt.tex. p./6 Inhaltsverzeichnis D Beispiel - Finite Elemente Methode. D Aufbau Geometrie 2. Bilanzgleichungen 3. Herleitung der Finiten

Mehr

Numerik für Ingenieure II

Numerik für Ingenieure II Numerik für Ingenieure II Prof. Dr. Dimitri Kuzmin Lehrstuhl für Angewandte Mathematik III Universität Erlangen-Nürnberg kuzmin@am.uni-erlangen.de http://www.mathematik.uni-dortmund.de/ kuzmin/numingii.html

Mehr

8 Interpolation. 8.1 Problemstellung. Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen. x 0 < x 1 <... < x n.

8 Interpolation. 8.1 Problemstellung. Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen. x 0 < x 1 <... < x n. 8 Interpolation 81 Problemstellung Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen x 0 < x 1 < < x n Eingabedaten: (x 0, f 0 ),(x 1, f 1 ),,(x n, f n ) Gegebene Daten (x j, f j ) Analysis

Mehr

Bildverarbeitung: Diffusion Filters. D. Schlesinger ()Bildverarbeitung: Diffusion Filters 1 / 10

Bildverarbeitung: Diffusion Filters. D. Schlesinger ()Bildverarbeitung: Diffusion Filters 1 / 10 Bildverarbeitung: Diffusion Filters D. Schlesinger ()Bildverarbeitung: Diffusion Filters 1 / 10 Diffusion Idee Motiviert durch physikalische Prozesse Ausgleich der Konzentration eines Stoffes. Konzentration

Mehr

Angewandte Strömungssimulation

Angewandte Strömungssimulation Angewandte Strömungssimulation 6. Vorlesung Stefan Hickel Finite - Volumen - Methode Finite - Volumen - Methode! Das Rechengebiet wird in nicht überlappende Bereiche (= finite Volumina) unterteilt.! Jedem

Mehr