Approximation flächenhaft harmonischer Funktionen mittels bikubisch finiter Elemente

Größe: px
Ab Seite anzeigen:

Download "Approximation flächenhaft harmonischer Funktionen mittels bikubisch finiter Elemente"

Transkript

1 . Session 6: Theoretische Geodäsie Approximation flächenhaft harmonischer Funktionen mittels bikubisch finiter Elemente 1 Jessica Franken Institut für Geodäsie und Geoinformation Professur für Theoretische Geodäsie Universität Bonn 9. Oktober 2013

2 Gliederung 1 Motivation 2 Grundlagen Gravitations- und Störpotential Simulationsstudie Finite Elemente in 1- und 2D 2 3 Umsetzung Referenzfläche Gesamtausgleich Implementation der Laplace-Gleichung Ergebnisse 4 Ausblick

3 Motivation Einsatzgebiet es werden genaue Kenntnisse über Schwereanomalien für alle Anwendungen benötigt, welche z.b. mit Satelliten-Orbits globalen Höhenreferenzsystemen oder der Definition der Meeresoberflächenhöhe arbeiten. Datengrundlage homogen verteilte Datenmengen aus historischen und aktuellen Satellitenmissionen (CHAMP, GRACE, GOCE) Schwereanomalie GOCE im Orbit 3

4 Motivation Einsatzgebiet es werden genaue Kenntnisse über Schwereanomalien für alle Anwendungen benötigt, welche z.b. mit Satelliten-Orbits globalen Höhenreferenzsystemen oder der Definition der Meeresoberflächenhöhe arbeiten. Datengrundlage homogen verteilte Datenmengen aus historischen und aktuellen Satellitenmissionen (CHAMP, GRACE, GOCE) Schwereanomalie GOCE im Orbit 3

5 Grundlage Gravitationspotential U, Normalpotential V und Störpotential T stehen über die Gleichung T = U V in Zusammenhang sie erfüllen alle die Laplace-Gleichung Quellenfrei im Aussenraum 4 U = 0, T = 0, V = 0 (in 2D-kartesischen Koordinaten) ist definiert als = 2 x y 2

6 Grundlage Gravitationspotential U, Normalpotential V und Störpotential T hier: nach oben gerichtete Fortsetzung des potentiellen Feldes Lösung des Randwert-Problems für die Laplace-Gleichung mit dem Dirichlet-Problem { Φ = 0 in Ω } Φ = ϕ in Ω 5 Bedeutung für die finite Elemente-Methode nur Messwerte auf dem Rand die Laplace-Bedingung sollte innerhalb der Fläche erfüllt sein es müssen genug Bedingungen vorliegen, um eine Unterbestimmung innerhalb des Gitters zu verhindern

7 Grundlage Gravitationspotential U, Normalpotential V und Störpotential T hier: nach oben gerichtete Fortsetzung des potentiellen Feldes Lösung des Randwert-Problems für die Laplace-Gleichung mit dem Dirichlet-Problem { Φ = 0 in Ω } Φ = ϕ in Ω 5 Bedeutung für die finite Elemente-Methode nur Messwerte auf dem Rand die Laplace-Bedingung sollte innerhalb der Fläche erfüllt sein es müssen genug Bedingungen vorliegen, um eine Unterbestimmung innerhalb des Gitters zu verhindern

8 Simulationsstudie harmonische Funktion implementieren, an welcher Modell-Beobachtungen an der Fläche abgegriffen werden können Beobachtungen auf dem Rand der rechteckigen Fläche generieren (an einer oder mehreren Seiten) Approximation der Fläche mit kubisch finiten Elementen über die Modell-Beobachtungen und unter Einbringung der Stetigkeits- und Laplace-Bedingungen Analyse der Güte der Rekonstruktion (Vorteil der modellhaften Referenzfläche nutzen) 6

9 Finite Elemente in 1D Ansatz: kubische Polynome f(x) = a 0 + a 1 (x x a ) + a 2 (x x a ) 2 + a 3 (x x a ) 3 Parameterübergang f(x) = C 0 (x)f(x a )+C 1 (x)f (x a )+C 3 (x)f(x e )+C 4 (x)f (x e ) Bedingungen für die zweite Ableitung 7 Lösung des Gleichungssystems führt zu einer in der zweiten Ableitung stetigen Approximation

10 Finite Elemente in 2D ähnliches Vorgehen mit zusätzlicher Variable y Gitter mit Rechteckelementen, Rechteckelement = Bogner-Fox-Schmit-Element Parameterübergang in Funktionswert, dessen Ableitung in x-, y- und xy-richtung in den Knotenpunkten 4 Unbekannte pro Knoten 8

11 Referenzfläche Die Funktion soll Laplace-Gleichung erfüllen harmonische Funktion f 1 (x) = e 10x sin(10y) + e 10+10x sin(10 10y) f 2 (x) = e 10+10x sin(10 10y) 9

12 Gesamtausgleich Berechnung Modell l + v = Ax B T x = b Σ{L} = Σ Gesamtausgleich (hier b = 0) [ A T Σ 1 ] ] A B [ x B T 0 k [ A = T Σ 1 ] l b 10 Vorteil: Der Rangdefekt der Designmatrix kann durch die Ergänzung mit der Bedingungsmatrix aufgehoben werden

13 Das Gitter und seine Parameter Betrachtete Knotenparameter 11

14 Das Gitter und seine Parameter 11

15 Die Laplace-Gleichung als Bedingung 12

16 Die Laplace-Gleichung als Bedingung 12

17 Die Laplace-Gleichung als Bedingung 12

18 Die Laplace-Gleichung als Bedingung 12

19 Die Laplace-Gleichung als Bedingung 13

20 Die Laplace-Gleichung als Bedingung 13

21 Die Laplace-Gleichung als Bedingung 13

22 Die Laplace-Gleichung als Bedingung 14

23 Die Laplace-Gleichung als Bedingung 14

24 Die Laplace-Gleichung als Bedingung 15

25 Die Laplace-Gleichung als Bedingung 15

26 Die Laplace-Gleichung als Bedingung es besteht eine lineare Abhängigkeit innerhalb der Laplace-Bedingungen singuläre Bedingungsmatrix es sind nur 3 Bedingungen pro Knoten zu implementieren 16 um eine Unterbestimmung zu verhindern sind 4 Bedingungen notwendig Ersatz der 4. Bedingung durch Restriktionen zur Stetigkeit der Fläche in der zweiten Ableitung 4. Bedingung: Differenz der gemischten zweiten Ableitungen (Differenz der zweiten Ableitungen ergäbe wieder eine lineare Abhängigkeit zu den Laplace-Bedingungen)

27 Die Laplace-Gleichung als Bedingung es besteht eine lineare Abhängigkeit innerhalb der Laplace-Bedingungen singuläre Bedingungsmatrix es sind nur 3 Bedingungen pro Knoten zu implementieren 16 um eine Unterbestimmung zu verhindern sind 4 Bedingungen notwendig Ersatz der 4. Bedingung durch Restriktionen zur Stetigkeit der Fläche in der zweiten Ableitung 4. Bedingung: Differenz der gemischten zweiten Ableitungen (Differenz der zweiten Ableitungen ergäbe wieder eine lineare Abhängigkeit zu den Laplace-Bedingungen)

28 Ergebnisse Die approximierte Fläche Approx. Nr. 1, Darstellung: approx. Fläche 17 Referenzfläche 1

29 Ergebnisse Anzahl der Flächenelemente Approx. Nr. 3, Darstellung: Differenzbild Approx. Nr. 2, Darstellung: approx. Fläche 18 Approx. Nr. 4, Darstellung: Differenzbild

30 Ergebnisse modifizierte Beobachtungen Approx. Nr. 5, Darstellung: approx. Fläche Approx. Nr. 7, Darstellung: approx. Fläche 19 Approx. Nr. 6, Darstellung: approx. Fläche

31 Ergebnisse Zusammenfassung Beste Approximation der Referenzfläche bisher bestes Ergebnis ohne Restriktionen, nur mit Krümmungsminimierung Vermutung: Funktionsvorgabe stimmt gut mit den Eigenschaften der Krümmungsminimierung zusammen empfindlich in Bezug auf Rauschen erfüllt nicht die Laplace-Gleichung 20 Robuste Approximation mit Restriktionen unempfindlich in Bezug auf Rauschen Approximationen schon ab einer Modellbeobachtung pro Randelement möglich Seiten ohne Modellbeobachtungen sind möglich, solange Pseudobeobachtungen den Rangdefekt auffangen (keine Rekonstruktion des eigentlichen Verlaufs) erfüllt nur in den Knotenpunkten die Laplace-Gleichung, innerhalb der Elemente ist die Laplace-Gleichung nicht erfüllt

32 Ergebnisse Zusammenfassung Beste Approximation der Referenzfläche bisher bestes Ergebnis ohne Restriktionen, nur mit Krümmungsminimierung Vermutung: Funktionsvorgabe stimmt gut mit den Eigenschaften der Krümmungsminimierung zusammen empfindlich in Bezug auf Rauschen erfüllt nicht die Laplace-Gleichung 20 Robuste Approximation mit Restriktionen unempfindlich in Bezug auf Rauschen Approximationen schon ab einer Modellbeobachtung pro Randelement möglich Seiten ohne Modellbeobachtungen sind möglich, solange Pseudobeobachtungen den Rangdefekt auffangen (keine Rekonstruktion des eigentlichen Verlaufs) erfüllt nur in den Knotenpunkten die Laplace-Gleichung, innerhalb der Elemente ist die Laplace-Gleichung nicht erfüllt

33 Ausblick Ersatz der bikubisch finiten Elemente durch stückweise harmonische Funktionen (wahlweise vollständige Polynome) Übertragung in einen Quader Anwendung auf reale Datensätze 21 Quader berührt Sphäre am Boden

34 . Vielen Dank für Ihre Aufmerksamkeit! 22

35 Literatur G. Jager, A. Kunoth, W.-D. Schuh (2012). Approximate continuation of harmonic functions in geodesy: A spline based least squares approach with regularization Journal of Computational and Applied Mathematics 237(2013), Franken, J. (2012). Flächenhafte Modellierung orts - und zeitabhängiger Höhenänderungen. Bachelorarbeit, Institut für Geodäsie und Geoinformation der Rheinischen Friedrich-Wilhelms-Universität Bonn. B. Hofmann-Wellenhof, H. Moritz (2005). Physical Geodesy. Springer Wien New York, 2. Auflage. 23

mit Ungleichungen als Restriktionen Quadratische Programmierung Gliederung Geodätische Woche 2009 Lutz Roese-Koerner und Wolf-Dieter Schuh

mit Ungleichungen als Restriktionen Quadratische Programmierung Gliederung Geodätische Woche 2009 Lutz Roese-Koerner und Wolf-Dieter Schuh . Geodätische Woche 29 Quadratische Programmierung mit Ungleichungen als Restriktionen 1 Lutz Roese-Koerner und Wolf-Dieter Schuh Institut für Geodäsie und Geoinformation Professur für Theoretische Geodäsie

Mehr

Mathematische Modelle zur flächenhaften Approximation punktweise gemessener Bodensenkungen auf Basis von Präzisionsnivellements

Mathematische Modelle zur flächenhaften Approximation punktweise gemessener Bodensenkungen auf Basis von Präzisionsnivellements Mathematische Modelle zur flächenhaften Approximation punktweise gemessener Bodensenkungen auf Basis von Präzisionsnivellements GeoMonitoring 2015, Clausthal-Zellerfeld Christoph Holst & Heiner Kuhlmann

Mehr

Polynominterpolation mit Matlab.

Polynominterpolation mit Matlab. Polynominterpolation mit Matlab. Die Matlab-Funktion polyfit a = polyfit(x,f,n-1); berechnet die Koeffizienten a = (a(1),a(2),...,a(n)); des Interpolationspolynoms p(x) = a(1)*x^(n-1) + a(2)*x^(n-2) +...

Mehr

GRACE-Datenanalyse mit dem Kalman-Filter

GRACE-Datenanalyse mit dem Kalman-Filter . GRACE-Datenanalyse mit dem Kalman-Filter Wie gut lassen sich aus GRACE-Beobachtungen echte tägliche Schwerefeldlösungen bestimmen? 1 Enrico Kurtenbach, Torsten Mayer-Gürr, Annette Eicker Institut für

Mehr

Klassische Polynom Interpolation.

Klassische Polynom Interpolation. Klassische Polynom Interpolation. Bestimme ein Polynom (höchstens) n ten Grades p n (x) = a 0 + a 1 x + a 2 x 2 +... + a n x n, das die gegebenen Daten interpoliert, d.h. p n (x i ) = f i, 0 i n. Erster

Mehr

Numerik für Ingenieure I Wintersemester 2008

Numerik für Ingenieure I Wintersemester 2008 1 / 32 Numerik für Ingenieure I Wintersemester 2008 J. Michael Fried Lehrstuhl Angewandte Mathematik III 23.1.2009 2 / 32 Wiederholung Stückweise Polynominterpolation Stückweise lineare Interpolierende

Mehr

Gitterfreie Methoden. Florian Hewener. 29. Oktober 2013

Gitterfreie Methoden. Florian Hewener. 29. Oktober 2013 Gitterfreie Methoden 1D 2D Florian Hewener 29. Oktober 2013 Gliederung 1 Interpolationsprobleme Problemstellung Haar-Räume 2 Mehrdimensionale Polynominterpolation 3 Splines Kubische Splines und natürliche

Mehr

Mathematik II: Übungsblatt 03 : Lösungen

Mathematik II: Übungsblatt 03 : Lösungen N.Mahnke Mathematik II: Übungsblatt 03 : Lösungen Verständnisfragen 1. Was bestimmt die erste Ableitung einer Funktion f : D R R im Punkt x 0 D? Die erste Ableitung einer Funktion bestimmt deren Steigung

Mehr

18.2 Implizit definierte Funktionen

18.2 Implizit definierte Funktionen 18.2 Implizit definierte Funktionen Ziel: Untersuche Lösungsmengen von nichtlinearen Gleichungssystemen g(x) = 0 mit g : D R m, D R n, d.h. betrachte m Gleichungen für n Unbekannte mit m < n, d.h. wir

Mehr

Teil 2: Kurven und Flächen. Kurven und Flächen. Kurven. Parametrische Objekte. Kurven: 1D-Objekte Flächen: 2D-Objekte, basierend auf Kurven

Teil 2: Kurven und Flächen. Kurven und Flächen. Kurven. Parametrische Objekte. Kurven: 1D-Objekte Flächen: 2D-Objekte, basierend auf Kurven Parametrische Objekte Kurven und Flächen Kurven: 1D-Objekte Flächen: 2D-Objekte, basierend auf Kurven Kurven Welche Form der Darstellung? Beispiel: 2D-Linie Explizit: y = k x + d x = (x, y) T Implzit:

Mehr

Teil 2: Kurven und Flächen

Teil 2: Kurven und Flächen Parametrische Objekte Kurven und Flächen Kurven: 1D-Objekte Flächen: 2D-Objekte, basierend auf Kurven Kurven Welche Form der Darstellung? Beispiel: 2D-Linie Explizit: y = k x + d x = (x, y) T Implzit:

Mehr

Gliederung. Interpolation vs. Approximation. Gliederung (cont.)

Gliederung. Interpolation vs. Approximation. Gliederung (cont.) - Trajektoriengenerierung Gliederung Jianwei Zhang zhang@informatik.uni-hamburg.de Fakultät für Mathematik, Informatik und Naturwissenschaften Technische Aspekte Multimodaler Systeme 5. Juni 2012 Allgemeine

Mehr

5 Interpolation und Approximation

5 Interpolation und Approximation 5 Interpolation und Approximation Problemstellung: Es soll eine Funktion f(x) approximiert werden, von der die Funktionswerte nur an diskreten Stellen bekannt sind. 5. Das Interpolationspolynom y y = P(x)

Mehr

Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt

Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt Übersicht Partielle Differentialgleichungen, Approximation der Lösung Finite Elemente, lineare und höhere Ansatzfunktionen Dünn

Mehr

Dekorrelationsfilter und ihre Validierung am Beispiel von GOCE Messreihen

Dekorrelationsfilter und ihre Validierung am Beispiel von GOCE Messreihen . Geodätische Woche Dekorrelationsfilter und ihre Validierung am Beispiel von GOCE Messreihen 1 Ina Krasbutter u. Wolf-Dieter Schuh Institut für Geodäsie und Geoinformation Professur für Theoretische Geodäsie

Mehr

6. Polynom-Interpolation

6. Polynom-Interpolation 6. Polynom-Interpolation 1 6.1. Klassische Polynom-Interpolation 2 6.2. Lösung mit Hilfe Lagrange scher Basisfunktionen 3 6.3. Lösung mit Hilfe Newton scher Basisfunktionen 4 6.4. Fehlerabschätzung für

Mehr

gekrümmte Flächen / Freiformflächen (analog zur Kurvendarstellung)

gekrümmte Flächen / Freiformflächen (analog zur Kurvendarstellung) 7. Modelle für Flächen gekrümmte Flächen / Freiformflächen (analog zur Kurvendarstellung) man unterscheidet 2 Typen: finite Interpolationen / Approximationen: endliche Zahl von Stützstellen / Kontrollpunkten

Mehr

u(x, 0) = g(x) : 0 x 1 u(0, t) = u(1, t) = 0 : 0 t T

u(x, 0) = g(x) : 0 x 1 u(0, t) = u(1, t) = 0 : 0 t T 8.1 Die Methode der Finiten Differenzen Wir beschränken uns auf eindimensionale Probleme und die folgenden Anfangs und Anfangsrandwertprobleme 1) Cauchy Probleme für skalare Erhaltungsgleichungen, also

Mehr

Finite Elemente Methoden (aus der Sicht des Mathematikers)

Finite Elemente Methoden (aus der Sicht des Mathematikers) Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt Übersicht: Partielle Differentialgleichungen, Approximation der Lösung, Finite Elemente, lineare und höhere Ansatzfunktionen, Dünn

Mehr

Optimierte regionale Gravitationsfeldmodelle aus GOCE Daten

Optimierte regionale Gravitationsfeldmodelle aus GOCE Daten Optimierte regionale Gravitationsfeldmodelle aus GOCE Daten Judith Schall, Jürgen Kusche, Annette Eicker, Torsten Mayer-Gürr Institut für Geodäsie und Geoinformation, Astronomisch, Physikalische und Mathematische

Mehr

Übungen zu Splines Lösungen zu Übung 20

Übungen zu Splines Lösungen zu Übung 20 Übungen zu Splines Lösungen zu Übung 20 20.1 Gegeben seien in der (x, y)-ebene die 1 Punkte: x i 6 5 4 2 1 0 1 2 4 5 6 y i 1 1 1 1 1 + 5 1 + 8 4 1 + 8 1 + 5 1 1 1 1 (a) Skizzieren Sie diese Punkte. (b)

Mehr

Interpolation und Approximation von Funktionen

Interpolation und Approximation von Funktionen Kapitel 6 Interpolation und Approximation von Funktionen Bei ökonomischen Anwendungen tritt oft das Problem auf, dass eine analytisch nicht verwendbare (oder auch unbekannte) Funktion f durch eine numerisch

Mehr

QUASI-SPLINE-INTERPOLATION BEZÜGLICH GLEICHMÄSSIGER UNTERTEILUNGEN

QUASI-SPLINE-INTERPOLATION BEZÜGLICH GLEICHMÄSSIGER UNTERTEILUNGEN QUASI-SPLINE-INTERPOLATION BEZÜGLICH GLEICHMÄSSIGER UNTERTEILUNGEN IRYNA FEUERSTEIN Es wir ein Verfahren zur Konstruktion einer quasiinterpolierenden Funktion auf gleichmäßig verteilten Konten vorgestellt.

Mehr

Exakte Differentialgleichungen

Exakte Differentialgleichungen Exakte Differentialgleichungen M. Vock Universität Heidelberg Seminar Mathematische Modellierung am 11.11.2008 Gliederung Differentialgleichungen eine erste Begegnung Definition Gewöhnliche DGL Die exakte

Mehr

3 Das Programm 3. 4 Dateien 4. 5 Aufgaben 4. 6 Ausblick 5

3 Das Programm 3. 4 Dateien 4. 5 Aufgaben 4. 6 Ausblick 5 Contents 1 Ziele dieser Uebung 1 2 Finite-Differenzen-Methode 1 3 Das Programm 3 4 Dateien 4 5 Aufgaben 4 6 Ausblick 5 1 Ziele dieser Uebung 1.1 Einleitung Wir erweitern das Problem aus der letzten Uebung

Mehr

Darstellungsformen von Funktionen

Darstellungsformen von Funktionen http://www.flickr.com/photos/ishida/1805420435/in/pool-streetlampsoftheworld Darstellungsformen von Funktionen 1 E X f (x) Y Abb. 1: Konzept einer Funktion f (x): Abbildung einer Menge auf die andere Die

Mehr

Extremwerte von Funktionen mehrerer reeller Variabler

Extremwerte von Funktionen mehrerer reeller Variabler Extremwerte von Funktionen mehrerer reeller Variabler Bei der Bestimmung der Extrema von (differenzierbaren) Funktionen f : R n R ist es sinnvoll, zuerst jene Stellen zu bestimmen, an denen überhaupt ein

Mehr

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB)

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Prof. R. Leithner, Dipl. Phys. E. Zander Wintersemester 2010/2011 Kapitel 8 Partielle

Mehr

H.J. Oberle Analysis II SoSe Interpolation

H.J. Oberle Analysis II SoSe Interpolation HJ Oberle Analysis II SoSe 2012 7 Interpolation 71 Allgemeine Problemstellung Interpolation ist die Kunst, zwischen den Zeilen einer Tabelle zu lesen (Rutishauser) Von f : R R seien Funktionswerte (x j,

Mehr

Klausur Mathematik I

Klausur Mathematik I Klausur Mathematik I (E-Techniker/Mechatroniker/Informatiker/W-Ingenieure). September 7 (Hans-Georg Rück) Aufgabe (6 Punkte): a) Berechnen Sie alle komplexen Zahlen z mit der Eigenschaft Re(z) = und (z

Mehr

Temperaturverteilung auf einer homogenen Platte

Temperaturverteilung auf einer homogenen Platte Temperaturverteilung auf einer homogenen Platte Ch. Sommer, H. Sormann und W. Kernbichler 30. Januar 2002 Inhaltsverzeichnis 1 Kurzbeschreibung 2 2 Programmbeschreibung 3 3 Theoretische Grundlagen 4 4

Mehr

Johannes Veit. 8. Januar 2016

Johannes Veit. 8. Januar 2016 Finite im Ein Blick über den Tellerrand... mit FreeFem++ 8. Januar 2016 im 1 2 im 3 4 Gliederung 5 im 1 2 im 3 4 Gliederung 5 dem Einheitsquadrat Laplace - Gleichung: im u(x) = 0 Man betrachte das Problem

Mehr

1. Anhang: Spline-Funktionen

1. Anhang: Spline-Funktionen C:\D\DOKU\NUM KURS\SPLINE.TEX C:\UG\.AI 20. Juli 1998 Vorbemerkung: Wenn der Satz stimmt, daß jede Formel eines Textes die Leserzahl halbiert, dann brauche ich bei grob geschätzt 40 Formeln etwa 2 40 =

Mehr

Übung zur Numerik linearer und nichtlinearer Parameterschätzprobleme A. Franke-Börner, M. Helm

Übung zur Numerik linearer und nichtlinearer Parameterschätzprobleme A. Franke-Börner, M. Helm Übung zur Numerik linearer und nichtlinearer Parameterschätzprobleme A. Franke-Börner, M. Helm Numerik Parameterschätzprobleme INHALT 1. 1D Wärmeleitungsgleichung 1.1 Finite-Differenzen-Diskretisierung

Mehr

Numerik gewöhnlicher Differentialgleichungen

Numerik gewöhnlicher Differentialgleichungen Numerik gewöhnlicher Differentialgleichungen 4.4 Anfangsrandwertprobleme Die Diskretisierung von zeitabhängigen partiellen Differentialgleichungen mit der Linienmethode führt auf Systeme gewöhnlicher Dgl

Mehr

Modellierung und Simulation von Mischvorgängen in einem Rührer - Bachelorarbeit -

Modellierung und Simulation von Mischvorgängen in einem Rührer - Bachelorarbeit - Modellierung und Simulation von Mischvorgängen in einem Rührer - Bachelorarbeit - Dies Mathematicus 211 25. November 211 Gliederung 1 Motivation: Mischvorgänge in einem Rührer 2 Mathematische Modellierung

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Fakultät II Institut für Mathematik WS /5 G. Bärwol, A. Gündel-vom-Hofe..5 Februar Klausur Analysis II für Ingenieurswissenschaften Lösungsskizze. Aufgabe 6Punkte Bestimmen

Mehr

Approximation durch Polynome

Approximation durch Polynome durch n Anwendungen: zur Vereinfachung einer gegebenen Funktion durch einen Polynomausdruck. Dann sind übliche Rechenoperation +,,, / möglich. zur Interpolation von Daten einer Tabelle n Beispiel Trotz

Mehr

Konvexe Optimierung zur Schätzung von Kovarianzfunktionen

Konvexe Optimierung zur Schätzung von Kovarianzfunktionen . Geodätische Woche 211 Konvexe Optimierung zur Schätzung von Kovarianzfunktionen 1 Lutz Roese-Koerner, Silvia Becker, Andreas Ernst und Wolf-Dieter Schuh Institut für Geodäsie und Geoinformation Professur

Mehr

Mathematik - Antwortblatt Klausur

Mathematik - Antwortblatt Klausur Mathematik - Antwortblatt Klausur 30..09 Aufgabe: 0 Punkte a) Allgemein heißt eine Funktion f (x) stetig an der Stelle x 0, wenn die folgenden Bedingungen erfüllt sind (2 Punkte): f (x 0 )=lim h 0 f (x

Mehr

Approximationsverfahren für die Kurvendarstellung

Approximationsverfahren für die Kurvendarstellung Approximationsverfahren für die Kurvendarstellung (a) Bézier-Kurven spezielle Form polynomialer Kurven spezifiziert durch n+1 Kontrollpunkte P 0, P 1,..., P n Kurve läuft nicht durch alle Kontrollpunkte,

Mehr

FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK

FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK Sommersemester 006 Zahl der Blätter: 5 Blatt 1 s. unten Hilfsmittel: Literatur, Manuskript, keine Taschenrechner und sonstige elektronische Rechner Zeit:

Mehr

4 Gewöhnliche Differentialgleichungen

4 Gewöhnliche Differentialgleichungen 4 Gewöhnliche Differentialgleichungen 4.1 Einleitung Definition 4.1 Gewöhnliche Differentialgleichung n-ter Ordnung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten

Mehr

II. Elliptische Probleme

II. Elliptische Probleme II. Elliptische Probleme II.1 Finite Differenzen: Grundidee II.2 Konvergenzaussagen II.3 Allgemeine Randbedingungen II.4 Gekrümmte Ränder Kapitel II (0) 1 Dirichlet Randwerte mit finiten Differenzen Einfachster

Mehr

Dipl.-Ing. Christoph Erath 10. November FVM-BEM Kopplung. Was gewinnen wir, wenn wir zwei numerische Methoden miteinander koppeln?

Dipl.-Ing. Christoph Erath 10. November FVM-BEM Kopplung. Was gewinnen wir, wenn wir zwei numerische Methoden miteinander koppeln? Dipl.-Ing. Christoph Erath 10. November 2007 FVM-BEM Kopplung Was gewinnen wir, wenn wir zwei numerische Methoden miteinander koppeln? Seite 2 FVM-BEM Kopplung 10. November 2007 Dipl.-Ing. Christoph Erath

Mehr

FEM isoparametrisches Konzept

FEM isoparametrisches Konzept FEM isoparametrisches Konzept home/lehre/vl-mhs--e/deckblatt.tex. p./ Inhaltsverzeichnis. Interpolationsfunktion für die finiten Elemente. Finite-Element-Typen. Geometrie. Interpolations-Ansatzfunktion

Mehr

Hauptseminar: Moderne Simulationsmethoden

Hauptseminar: Moderne Simulationsmethoden Hauptseminar: Moderne Simulationsmethoden Finite Elemente Methode von Galerkin Tanja Heich Fachbereich 08 Johannes Gutenberg-Universität Mainz 02. November 2017 Hauptseminar Moderne Simulationsmethoden

Mehr

1 Einführung, Terminologie und Einteilung

1 Einführung, Terminologie und Einteilung Zusammenfassung Kapitel V: Differentialgleichungen 1 Einführung, Terminologie und Einteilung Eine gewöhnliche Differentialgleichungen ist eine Bestimmungsgleichung um eine Funktion u(t) einer unabhängigen

Mehr

31 Die Potentialgleichung

31 Die Potentialgleichung 3 Die Potentialgleichung Die Potentialgleichung oder auch Poisson-Gleichung ist die lineare Gleichung zweiter Ordnung u = f in einem Gebiet R n. Im homogenen Fall f = 0 spricht man auch von der Laplace-

Mehr

Übungsaufgaben zu den mathematischen Grundlagen von KM

Übungsaufgaben zu den mathematischen Grundlagen von KM TUM, Institut für Informatik WS 2003/2004 Prof Dr Thomas Huckle Andreas Krahnke, MSc Dipl-Inf Markus Pögl Übungsaufgaben zu den mathematischen Grundlagen von KM 1 Bestimmen Sie die Darstellung von 1 4

Mehr

Analysis in einer Variable für LAK SS Priv.-Doz. Dr.(USA) Maria Charina

Analysis in einer Variable für LAK SS Priv.-Doz. Dr.(USA) Maria Charina Analysis in einer Variable für LAK SS 2018 Priv.-Doz. Dr.(USA) Maria Charina Analysis in einer Variable für LAK SS 2018 Priv.-Doz. Dr.(USA) Maria Charina Analysis ist die Theorie der Differential- und

Mehr

Bestimmung einer ganzrationalen Funktionenschar

Bestimmung einer ganzrationalen Funktionenschar Bestimmung einer ganzrationalen Funktionenschar x Gesucht ist eine Schar f a ganzrationaler Funktionen. Grades, deren Graphen durch A(0 ) und B( ) verlaufen und in A die Steigung a haben. Funktionenschar

Mehr

Algebraische Statistik ein junges Forschungsgebiet. Dipl.-Math. Marcus Weber

Algebraische Statistik ein junges Forschungsgebiet. Dipl.-Math. Marcus Weber Algebraische Statistik ein junges Forschungsgebiet Dipl.-Math. Marcus Weber Disputationsvortrag 15. Februar 2006 Gliederung 1. Statistische Modelle 2. Algebraische Interpretation statistischer Probleme

Mehr

Numerik II Numerik Elliptischer Differentialgleichungen

Numerik II Numerik Elliptischer Differentialgleichungen Numerik II 207 12 Numerik Elliptischer Differentialgleichungen 12 Numerik Elliptischer Differentialgleichungen TU Bergakademie Freiberg, SS 2010 Numerik II 208 12.1 Die Laplace-Gleichung in einem Quadrat

Mehr

Finite Elemente am Beispiel der Poissongleichung

Finite Elemente am Beispiel der Poissongleichung am Beispiel der Poissongleichung Roland Tomasi 11.12.2013 Inhalt 1 2 3 Poissongleichung Sei R n ein Gebiet mit abschnittsweise glattem Rand und f L 2 (). Wir suchen u : R, so dass u = f in, u = 0 Physikalische

Mehr

Mathematik-Vorkurs. Übungsaufgaben. im Sommersemester 2012

Mathematik-Vorkurs. Übungsaufgaben. im Sommersemester 2012 Mathematik-Vorkurs Übungsaufgaben im Sommersemester 2012 Goethe Universität-Frankfurt am Main Prof. Dr. Heinz D. Mathes Professur für Produktionswirtschaft 1 Aufgaben zu Thema 1 Aufgabe 1.1: Lesen Sie

Mehr

Numerische Verfahren

Numerische Verfahren Numerische Verfahren Interpolation Prof Dr-Ing K Warendorf, Prof Dr-Ing P Wolfsteiner Hochschule für Angewandte Wissenschaften München Fakultät 03 WS 13/14 Prof Dr-Ing K Warendorf (Fakultät 03) Numerische

Mehr

(c) Gegeben sei der zweidimensionale Raum L mit den Basisfunktionen. [ φ i, φ j ] 3 i,j=1 =

(c) Gegeben sei der zweidimensionale Raum L mit den Basisfunktionen. [ φ i, φ j ] 3 i,j=1 = 1. (a) i. Wann besitzt A R n n eine eindeutige LR-Zerlegung mit R invertierbar? ii. Definieren Sie die Konditionszahl κ(a) einer Matrix A bzgl. einer Norm.! iii. Welche Eigenschaften benötigt eine Matrix

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 13 Dr. Ana Cannas Serie 13: Online Test Einsendeschluss: 31. Januar 214 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

Übungsblatt 3 Musterlösung

Übungsblatt 3 Musterlösung Numerik gewöhnlicher Differentialgleichungen MA4 - SS6 Übungsblatt Musterlösung Sei M,N N und f C M+N+ (B) eine komplexe Funktion, B eine kompakte Menge. Die Padé Approximation PN M (f)(x) ist die rationale

Mehr

Zweidimensionale Exploration mittels Gravimetrie

Zweidimensionale Exploration mittels Gravimetrie Zweidimensionale Exploration mittels Gravimetrie Dipl. Math. Sandra Möhringer TU Kaiserslautern Fraunhofer ITWM Geothermiekongress 2012 Karlsruhe 13. November 2012 Sicht der Mathematik: Kaiserslauterer

Mehr

Approximationsverfahren

Approximationsverfahren Fakultät Informatik, Institut für Angewandte Informatik, Professur für Technische Informationssysteme Approimationsverfahren zur Überführung nichtäquidistanter Messwertfolgen in äquidistante Zeitreihen

Mehr

Numerische Mathematik I: Grundlagen

Numerische Mathematik I: Grundlagen Numerische Mathematik I: Grundlagen 09.10.2017 Inhalt der Lehrveranstaltung Inhaltlich sollen Sie in der Lehrveranstaltung Numerische Mathematik I insbesondere vertraut gemacht werden mit der Numerik linearer

Mehr

Titelmaster. Geodätische Woche. 3-D Phase Unwrapping Algorithmen zur Lösung der Phasenmehrdeutigkeiten in D-InSAR Stapeln

Titelmaster. Geodätische Woche. 3-D Phase Unwrapping Algorithmen zur Lösung der Phasenmehrdeutigkeiten in D-InSAR Stapeln Titelmaster Geodätische Woche 3-D Phase Unwrapping Algorithmen zur Lösung der Phasenmehrdeutigkeiten in D-InSAR Stapeln Sebastian Walzog, Ina Loth, Lutz Roese-Koerner, Wolf-Dieter Schuh Institut für Geodäsie

Mehr

2. Methode der Randelemente

2. Methode der Randelemente 2. Methode der Randelemente Bei allgemeinen Schall abstrahlenden Flächen lässt sich der Schalldruck an einem beliebigen Punkt im Raum aus einem Integral über auf der Fläche definierte Funktionen berechnen.

Mehr

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp Datenanalyse PHY31 Herbstsemester 016 Olaf Steinkamp 36-J- olafs@physik.uzh.ch 044 63 55763 Vorlesungsprogramm Einführung, Messunsicherheiten, Darstellung von Messdaten Grundbegriffe der Wahrscheinlichkeitsrechnung

Mehr

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Institut für Experimentelle Kernphysik Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Prof. Dr. T. Müller Dr. F. Hartmann Blatt 1 Bearbeitung: 28.10.2011

Mehr

Numerische Verfahren zur Lösung der Monge-Ampère-Gleichung, Teil II

Numerische Verfahren zur Lösung der Monge-Ampère-Gleichung, Teil II für zur Lösung der Monge-Ampère-Gleichung, Teil II Andreas Platen Institut für Geometrie und Praktische Mathematik RWTH Aachen Seminar zur Approximationstheorie im Wintersemester 2009/2010 1 / 27 Gliederung

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 240/476 c Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 240/476 c Ernst W. Mayr 1.4.4 Laplace-Prinzip in kontinuierlichen Wahrscheinlichkeitsräumen Das folgende Beispiel zeigt, dass im kontinuierlichen Fall die Bedeutung von gleichwahrscheinlich nicht immer ganz klar sein muss. Bertrand

Mehr

Numerische Verfahren

Numerische Verfahren Numerische Verfahren Jens-Peter M. Zemke zemke@tu-harburg.de Institut für Numerische Simulation Technische Universität Hamburg-Harburg 08.04.2008 TUHH Jens-Peter M. Zemke Numerische Verfahren 1 / 68 Übersicht

Mehr

Ionosphärenbestimmung mit verschiedenen geodätischen Weltraumverfahren

Ionosphärenbestimmung mit verschiedenen geodätischen Weltraumverfahren Ionosphärenbestimmung mit verschiedenen geodätischen Weltraumverfahren Todorova S. 1, Hobiger T. 2,1, Weber R. 1, Schuh H. 1 (1) Institut für Geodäsie und Geophysik, Technische Universität Wien, Österreich

Mehr

Stofftransport. Frieder Hafner- Dietrich Sames Hans-Dieter Voigt. Mathematische Methoden

Stofftransport. Frieder Hafner- Dietrich Sames Hans-Dieter Voigt. Mathematische Methoden Frieder Hafner- Dietrich Sames Hans-Dieter Voigt Wärmeund Stofftransport Mathematische Methoden Mit 280 Abbildungen Springer-Verlag Berlin Heidelberg NewYork London Paris Tokyo HongKong Barcelona Budapest

Mehr

Modellieren in der Angewandten Geologie II. Sebastian Bauer

Modellieren in der Angewandten Geologie II. Sebastian Bauer Modellieren in der Angewandten Geologie II Geohydromodellierung Institut für Geowissenschaften Christian-Albrechts-Universität zu Kiel CAU 3-1 Die Finite Elemente Method (FEM) ist eine sehr allgemeine

Mehr

Der Satz von Taylor. Kapitel 7

Der Satz von Taylor. Kapitel 7 Kapitel 7 Der Satz von Taylor Wir haben bereits die Darstellung verschiedener Funktionen, wie der Exponentialfunktion, der Cosinus- oder Sinus-Funktion, durch unendliche Reihen kennen gelernt. In diesem

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 26/7 (2.3.27). (a) Bestimmen Sie die kartesische Form von z = 5i 2i und z 2 = ( ) 9 3 2 2 i. (b) Bestimmen Sie sämtliche

Mehr

Analyse von zeitlichen Variationen bei unregelmäßig vorliegenden räumlichen Daten

Analyse von zeitlichen Variationen bei unregelmäßig vorliegenden räumlichen Daten . Analyse von zeitlichen Variationen bei unregelmäßig vorliegenden räumlichen Daten Geodätische Woche 2010 1 Andreas Ernst und Wolf-Dieter Schuh 7. Oktober 2010 Motivation Räumliche Daten entstehen inzwischen

Mehr

Das magische Quadrat für stochastische Prozesse

Das magische Quadrat für stochastische Prozesse . Geodätische Woche Das magische Quadrat für stochastische Prozesse 1 Institut für Geodäsie und Geoinformation Professur für Theoretische Geodäsie - Universität Bonn Ina Krasbutter, Boris Kargoll, Wolf-Dieter

Mehr

9. Parametrische Kurven und Flächen

9. Parametrische Kurven und Flächen 9. Parametrische Kurven und Flächen Polylinien bzw. Polygone sind stückweise lineare Approximationen für Kurven bzw. Flächen Nachteile: hohe Zahl von Eckpunkten für genaue Repräsentation erforderlich interaktive

Mehr

Der Taylorsche Satz Herleitung und Anwendungen

Der Taylorsche Satz Herleitung und Anwendungen Der Taylorsche Satz Herleitung und Anwendungen Joachim Schneider Juni 2004 Zusammenfassung Es wird ein enfacher Beweis des Taylorsche Satz über die lokale Approximierbarkeit hinreichend glatter Funktionen

Mehr

Die Rolle von Merging-Units und. Verteilungssystemen

Die Rolle von Merging-Units und. Verteilungssystemen Die Rolle von Merging-Units und der asynchronen Abtastung in Verteilungssystemen Symposium Energieinnovation EnInnov 2010 Verfasser: DI Emanuel Fuchs Projektleiter: Univ.-Prof. DI Dr. Lothar Fickert Technische

Mehr

Partielle Differentialgleichungen Kapitel 11

Partielle Differentialgleichungen Kapitel 11 Partielle Differentialgleichungen Kapitel Die Laplace- und Poisson- Gleichungen Die Struktur bei elliptischen Gleichungen zweiter Ordnung ist nicht wesentlich verschieden bei Operatoren mit konstanten

Mehr

Mathematische Modellierung am Rechner I. Frank Fischer Institut für Informatik Sommersemester 2018

Mathematische Modellierung am Rechner I. Frank Fischer Institut für Informatik Sommersemester 2018 Mathematische Modellierung am Rechner I Frank Fischer Institut für Informatik Sommersemester 2018 Wiederholung: Algebraische Strukturen Mathematik Eine algebraische Struktur ist ein Tupel (X,,,... ) mit

Mehr

01. Differentialrechnung in mehreren Variablen - 2. Teil

01. Differentialrechnung in mehreren Variablen - 2. Teil 01. Differentialrechnung in mehreren Variablen - 2. Teil Im folgenden werden die meisten Konzepte für Funktionen von 2 Variablen erklärt. In manchen Fällen können diese Konzepte unmittelbar auf Funktionen

Mehr

Übungsblatt 2 Musterlösung

Übungsblatt 2 Musterlösung MSE SS17 Übungsblatt Musterlösung Lösung 5 (Transformation von Variablen) Zur Transformation gehen wir analog zur Vorlesung vor. Zunächst bestimmen wir die durch die PDGL definierte Matrix A und deren

Mehr

5. Gitter, Gradienten, Interpolation Gitter. (Rezk-Salama, o.j.)

5. Gitter, Gradienten, Interpolation Gitter. (Rezk-Salama, o.j.) 5. Gitter, Gradienten, Interpolation 5.1. Gitter (Rezk-Salama, o.j.) Gitterklassifikation: (Bartz 2005) (Rezk-Salama, o.j.) (Bartz 2005) (Rezk-Salama, o.j.) Allgemeine Gitterstrukturen: (Rezk-Salama, o.j.)

Mehr

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man:

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man: AM3: Differenzial- und Integralrechnung im R n 1 Begriffe f : x 1 f 1 x 1, x 2,..., x n ) x 2... f 2 x 1, x 2,..., x n )... x n f m x 1, x 2,..., x n ) }{{}}{{} R n R m aus Platzgründen schreibt man: f

Mehr

Iterative Methods for Improving Mesh Parameterizations

Iterative Methods for Improving Mesh Parameterizations Iterative Methods for Improving Mesh Parameterizations Autoren: Shen Dong & Michael Garland, SMI 07 Nicola Sheldrick Seminar Computergrafik April 6, 2010 Nicola Sheldrick (Seminar Computergrafik)Iterative

Mehr

9 Differentialrechnung für Funktionen in n Variablen

9 Differentialrechnung für Funktionen in n Variablen $Id: diff.tex,v.7 29/7/2 3:4:3 hk Exp $ $Id: ntaylor.tex,v.2 29/7/2 3:26:42 hk Exp $ 9 Differentialrechnung für Funktionen in n Variablen 9.6 Lagrange Multiplikatoren Die Berechnung von Maxima und Minima

Mehr

Klausur zum Grundkurs Höhere Mathematik I

Klausur zum Grundkurs Höhere Mathematik I Name, Vorname: Studiengang: Matrikelnummer: 2 4 5 6 Z Punkte Note Klausur zum Grundkurs Höhere Mathematik I für BNC, GtB, MB, EC, TeM, VT, KGB, WWT, ESM, FWK, BGi, WiW 22. Februar 2007, 8.00 -.00 Uhr Zugelassene

Mehr

Gliederung. Gliederung (cont.) Gliederung (cont.)

Gliederung. Gliederung (cont.) Gliederung (cont.) - Gliederung Jianwei Zhang zhang@informatik.uni-hamburg.de Fakultät für Mathematik, Informatik und Naturwissenschaften Technische Aspekte Multimodaler Systeme 11. Mai 2010 Allgemeine Informationen Einführung

Mehr

D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski. Serie 9

D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski. Serie 9 D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski Serie 9 Best Before: 24.5/25.5, in den Übungsgruppen (2 wochen) Koordinatoren: Alexander Dabrowski, HG G 52.1, alexander.dabrowski@sam.math.ethz.ch

Mehr

Vergleich unterschiedlicher GOCE Orbit-Produkte

Vergleich unterschiedlicher GOCE Orbit-Produkte Vergleich unterschiedlicher GOCE Orbit-Produkte J. Schall, A. Shabanloui, J. Kusche 1 Institut für Geodäsie und Geoinformation IGG Astronomisch, Physikalische und Mathematische Geodäsie Universität Bonn

Mehr

DIFFERENTIATION PARAMETERABHÄNGIGER INTEGRALE

DIFFERENTIATION PARAMETERABHÄNGIGER INTEGRALE DIFFERENTIATION PARAMETERABHÄNGIGER INTEGRALE Zusammenfassung. Ergänzend zur Übung vom 06.06.203 soll hier die Leibnizregel für die Differentiation parameterabhängiger Integrale formuliert und bewiesen

Mehr

Segmentierung und Datenapproximation von Laserscanneraufnahmen mittels statistischer Methoden

Segmentierung und Datenapproximation von Laserscanneraufnahmen mittels statistischer Methoden Segmentierung und Datenapproximation von Laserscanneraufnahmen mittels statistischer Methoden Ingo Neumann, Jens-André Paffenholz und Nico Lindenthal GEODÄTISCHES INSTITUT HANNOVER Session: Laserscanning

Mehr

Differentiation und Taylorentwicklung. Thomas Fehm

Differentiation und Taylorentwicklung. Thomas Fehm Differentiation und Taylorentwicklung Thomas Fehm 4. März 2009 1 Differentiation in R 1.1 Grundlagen Definition 1 (Ableitung einer Funktion) Es sei f eine Funktion die auf dem Intervall I R definiert ist.

Mehr

Entwicklung einer hp-fast-multipole-

Entwicklung einer hp-fast-multipole- Entwicklung einer hp-fast-multipole- Boundary-Elemente-Methode Übersicht: 1. Motivation 2. Theoretische Grundlagen a) Boundary-Elemente-Methode b) Fast-Multipole-Methode 3. Erweiterungen a) Elementordnung

Mehr

Gedächtnisprotokoll GGET 3 Klausur Vorwort:

Gedächtnisprotokoll GGET 3 Klausur Vorwort: Gedächtnisprotokoll GGET 3 Klausur 2010 Vorwort: Es handelt sich wieder einmal um ein Gedächtnisprotokoll, das direkt nach der Klausur erstellt wurde. Die Aufgaben entsprechen also in grober Näherung dem

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SoSe 20 Institut für Informatik Prof Dr Thomas Huckle Dipl-Inf Christoph Riesinger Dipl-Math Jürgen Bräckle Numerisches Programmieren, Übungen Musterlösung 6 Übungsblatt:

Mehr