GRACE-Datenanalyse mit dem Kalman-Filter

Größe: px
Ab Seite anzeigen:

Download "GRACE-Datenanalyse mit dem Kalman-Filter"

Transkript

1 . GRACE-Datenanalyse mit dem Kalman-Filter Wie gut lassen sich aus GRACE-Beobachtungen echte tägliche Schwerefeldlösungen bestimmen? 1 Enrico Kurtenbach, Torsten Mayer-Gürr, Annette Eicker Institut für Geodäsie und Geoinformation Professur für Astronomische, Physikalische und Mathematische Geodäsie Universität Bonn 5.Oktober 21

2 Motivation ITG-Grace21 das aktuelle Bonner GRACE-Schwerefeld Zeitraum: 2/24 bis 8/29 Produkte statisches Schwerefeld bis Grad und Ordnung 18 monatliche Schwerefelder bis Grad und Ordnung 12 tägliche Schwerefelder bis Grad und Ordnung 4 2 Tageslösungen bestimmt mit Kalman-Smoother stochastisches Prozessmodell aus geophysikalischen Modellen Lassen sich aus GRACE wirklich Tageslösungen bestimmen? video

3 Beobachtungsmodell Darstellung des zeitvariablen Gravitationspotentials der Erde V (λ, ϕ, r) = GM R N n= m= n c nm (t)c nm (λ, ϕ) + s nm (t)s nm (λ, ϕ) Bestimmung durch GRACE-Beobachtungen im GMM mit: x t = ( c nm l t + v t = A t x t mit C {l t, l t } = R 1 t l t v t A t s nm ) T t GRACE-Beobachtungen Verbesserungen Designmatrix Parametervektor 3

4 Beobachtungsmodell Aufstellen des Normalgleichungssystems (NGS) für einen Tag t A t R 1 1 t A t x t = A t Rt l t }{{}}{{} N t n t Tageslösung ˆx t = N 1 (min= , max= , avg=268.24, rms= ) t n t Standardabweichungen (min=2.4366, max=21991, avg= , rms= ) cm ewh e+4 cm ewt

5 Beobachtungsmodell Aufstellen des Normalgleichungssystems (NGS) fu r einen Tag t 1 At R 1 t At xt = At Rt lt } {z {z } nt Nt 4 Tageslo sung x t = N 1 t nt Standardabweichungen (min=2.4366, max=21991, avg= , rms= ) (min= , max= , avg=268.24, rms= ) E. Kurtenbach et al. 1 cm ewh cm ewt e+4 Ko ln,

6 Prozessmodell Annahme Der Zustand ˆx t des Schwerefeldes ändert sich nicht beliebig von einem Zeitschritt zum nächsten, sondern ist (irgendwie) vorhersagbar: x t = Bx t 1 + w Einführen von zusätzlichen Informationen (Prozessmodell) zur Stützung der Lösung Vorhersage ist charakterisiert durch Prozessdynamik B Prädiktionsfehler w N (, Q) mit Kovarianzmatrix Q PROBLEM: Prozessmodell der wahren Erde nicht zugänglich, da zu kompliziert! 5

7 Prozessmodell Annahme Der Zustand ˆx t des Schwerefeldes ändert sich nicht beliebig von einem Zeitschritt zum nächsten, sondern ist (irgendwie) vorhersagbar: x t = Bx t 1 + w Einführen von zusätzlichen Informationen (Prozessmodell) zur Stützung der Lösung Vorhersage ist charakterisiert durch Prozessdynamik B Prädiktionsfehler w N (, Q) mit Kovarianzmatrix Q PROBLEM: Prozessmodell der wahren Erde nicht zugänglich, da zu kompliziert! 5

8 Prozessmodell Angenommene zeitliche Evolution des Schwerefeldes x t = Bx t 1 + w Wahre Prozessdynamik B der Erde unbekannt B = f(ort, Zeit, ganz viel Physik) =? 6 Aber falls Kovarianzstruktur bekannt {( )} ( ) xt Σ Σ C =, Σ dann gilt [Moritz, 198]: x t 1 Σ T x t = Σ Σ 1 x t 1 + w mit w N (, Σ Σ Σ 1 Σ T )

9 Prozessmodell Angenommene zeitliche Evolution des Schwerefeldes x t = Bx t 1 + w Wahre Prozessdynamik B der Erde unbekannt B = f(ort, Zeit, ganz viel Physik) =? 6 Aber falls Kovarianzstruktur bekannt {( )} ( ) xt Σ Σ C =, Σ dann gilt [Moritz, 198]: x t 1 Σ T x t = Σ Σ 1 x t 1 + w mit w N (, Σ Σ Σ 1 Σ T )

10 Prozessmodell Kovarianzstruktur approximieren durch empirische Kovarianzmatrizen aus geophysikalischen Modellen m i Σ Σ = 1 N m i m T i N und i=1 Σ Σ = 1 N 1 N m i m T i 1 i=2 7 Wahre Dynamik des Erdschwerefeldes wird approximiert mit x t = Σ Σ 1 x t 1 + w mit w N (, Σ Σ Σ 1 ΣT )

11 Fusion von Prozess und Beobachtungen Prozessmodell x t = Σ Σ 1 x t 1 + w Beobachtungsmodell N t x t = n t Prädiktion 8 ˆx t = Bˆx + t 1 P t = BP + t 1 BT + Q Update P + t = ˆx + t = ˆx t + P + t ( (P t ) 1 + Nt ) 1 ( nt N tˆx t )

12 Simulationsstudie Prozessmodell aus Atmosphäre: ECMWF Ozean: OMCT Hydrologie: WGHM (min= , max= , avg= , rms= ) GRACE-Beobachtungen aus Atmosphäre: ECMWF Ozean: MOG2D Hydrologie: GLDAS (min= , max= , avg= , rms=3.3957) Zeitlicher RMS (in ewh [cm]) cm ewh Zeitlicher RMS (in ewh [cm])

13 Simulationsstudie Zeitlicher Verlauf für Punkt λ = 6, φ = 6 water height [cm] water height [cm] signal 12prediction (r = 91%) (rms = ) 8 4update (r = 98%) (rms = ) Simuliertes Signal (Soll) Prädiktion ˆx t ρ =.91 erms = 3.5cm Update ˆx + t ρ =.98 erms = 1.7cm signa pred upda 1

14 Simulation verbesserte Version Korrelationskoeffizient AOH(t) ˆx + t (min=.37257, max= , avg=.86959, rms=.87275)

15 Simulation verbesserte Version Korrelationskoeffizient AOH(t) ˆx + t (min=.37257, max= , avg=.86959, rms=.87275) 1. Die spannende Frage 11 Welchen Anteil hat GRACE am Ergebnis?.9.8.7

16 Anteil der GRACE-Beobachtungen Zur Erinnerung: Update-Schritt lässt sich umformen zu ˆx + t = ˆx t + P + t ˆx + t = ( (P t ) 1 + Nt ) 1 Nt }{{} W GRACE t wobei ( nt N tˆx ) t ( (P ) ) 1 1 (P ) ˆx t + t + 1 Nt t }{{} Wt rot: Gewichtsmatrix für GRACE-only Lösung ˆx t blau: Gewichtsmatrix für prädizierten Zustand ˆx t ˆx t 12

17 Anteil der GRACE-Beobachtungen Hauptdiagonale von W GRACE t als Approximation degree percent s nm c nm 4

18 Anteil der GRACE-Beobachtungen Hauptdiagonale von W GRACE t als Approximation degree percent s nm c nm 4

19 Anteil der GRACE-Beobachtungen Hauptdiagonale von WtGRACE als Approximation percent degree snm 1 1 Ordnung m 15 2 cnm 3 4 (min=2.4366, max=21991, avg= , rms= ) ca. 15 Umla ufe pro Tag E. Kurtenbach et al cm ewt e+4 Ko ln,

20 Anteil der GRACE-Beobachtungen W GRACE t fortgepflanzt in den Ortsbereich (min= , max= , avg=17.19, rms= ) percent

21 Zusammenfassung Eingangsfrage: Lassen sich GRACE-Tageslösungen bestimmen? (min= , max= , avg=17.19, rms= ) Klare Antwort: Jein! punktuell über 8 Prozent GRACE-Anteil percent zumindest dort, wo GRACE flog Fortsetzung folgt... Einführung ortslokalisierender Basisfunktionen! Vortrag A. Eicker: Tägliche GRACE-Lösungen für regionale hydrologische Anwendungen (morgen 14:3h)

22 . GRACE-Datenanalyse mit dem Kalman-Filter Wie gut lassen sich aus GRACE-Beobachtungen echte tägliche Schwerefeldlösungen bestimmen? 16 Enrico Kurtenbach, Torsten Mayer-Gürr, Annette Eicker Institut für Geodäsie und Geoinformation Professur für Astronomische, Physikalische und Mathematische Geodäsie Universität Bonn 5.Oktober 21

23 Literatur Moritz, H. (198). Advanced Physical Geodesy. Wichmann, Karlsruhe. 17

Vergleich unterschiedlicher GOCE Orbit-Produkte

Vergleich unterschiedlicher GOCE Orbit-Produkte Vergleich unterschiedlicher GOCE Orbit-Produkte J. Schall, A. Shabanloui, J. Kusche 1 Institut für Geodäsie und Geoinformation IGG Astronomisch, Physikalische und Mathematische Geodäsie Universität Bonn

Mehr

Assimilierung von GRACE-Daten in ein hydrologisches Modell mit Hilfe eines Ensemble-Kalman-Filter Ansatzes

Assimilierung von GRACE-Daten in ein hydrologisches Modell mit Hilfe eines Ensemble-Kalman-Filter Ansatzes Assimilierung von GRACE-Daten in ein hydrologisches Modell mit Hilfe eines Ensemble-Kalman-Filter Ansatzes M. Schumacher, A. Eicker, E. Kurtenbach, J. Kusche (Universität Bonn) P. Döll, H. Hoffmann-Dobrev,

Mehr

Zeitliche Schwerevariationen und GRACE

Zeitliche Schwerevariationen und GRACE Zeitliche Schwerevariationen und GRACE Thomas Peters, Lorant Földvary Institut für Astronomische und Physikalische Geodäsie Technische Universität München Gliederung Zeitliche Schwerevariationen Übersicht

Mehr

Optimierte regionale Gravitationsfeldmodelle aus GOCE Daten

Optimierte regionale Gravitationsfeldmodelle aus GOCE Daten Optimierte regionale Gravitationsfeldmodelle aus GOCE Daten Judith Schall, Jürgen Kusche, Annette Eicker, Torsten Mayer-Gürr Institut für Geodäsie und Geoinformation, Astronomisch, Physikalische und Mathematische

Mehr

5. Auswertung der GRACE-Daten

5. Auswertung der GRACE-Daten 5. Auswertung der GRACE-Daten Nachdem im vorherigen Kapitel die Möglichkeiten des Kalman-Filter-Ansatzes zur Bestimmung kurzzeitiger Schwerevariationen anhand eines Simulationsszenarios nachgewiesen wurden,

Mehr

Approximation flächenhaft harmonischer Funktionen mittels bikubisch finiter Elemente

Approximation flächenhaft harmonischer Funktionen mittels bikubisch finiter Elemente . Session 6: Theoretische Geodäsie Approximation flächenhaft harmonischer Funktionen mittels bikubisch finiter Elemente 1 Jessica Franken Institut für Geodäsie und Geoinformation Professur für Theoretische

Mehr

Ausgleichungsrechnung - nach der Methode der kleinsten Quadrate -

Ausgleichungsrechnung - nach der Methode der kleinsten Quadrate - Computer Vision Ausgleichungsrechnung - nach der Methode der kleinsten Quadrate -.6.5 Problem Beispiel: Bestimmung der Parameter einer Gerade bei gegebenen x und fehlerhaften y y = ax+ b Beschreibung der

Mehr

Konvexe Optimierung zur Schätzung von Kovarianzfunktionen

Konvexe Optimierung zur Schätzung von Kovarianzfunktionen . Geodätische Woche 211 Konvexe Optimierung zur Schätzung von Kovarianzfunktionen 1 Lutz Roese-Koerner, Silvia Becker, Andreas Ernst und Wolf-Dieter Schuh Institut für Geodäsie und Geoinformation Professur

Mehr

Tägliche GRACE-Lösungen für regionale hydrologische Anwendungen

Tägliche GRACE-Lösungen für regionale hydrologische Anwendungen Täglche GRACE-Lösungen für regonale hydrologsche Anwendungen Annette Ecker, Enrco Kurtenbach, Torsten Mayer-Gürr Insttut für Geodäse und Geonformaton, Un Bonn Geodätsche Woche 6. Oktober 2010 Köln Annette

Mehr

Einfluss nicht-gezeiten-bedingter Auflasteffekte durch Atmosphäre, Ozean und Hydrologie auf globale GNSS-Lösungen

Einfluss nicht-gezeiten-bedingter Auflasteffekte durch Atmosphäre, Ozean und Hydrologie auf globale GNSS-Lösungen Einfluss nicht-gezeiten-bedingter Auflasteffekte durch Atmosphäre, Ozean und Hydrologie auf globale GNSS-Lösungen S. Franke (1), Ole Roggenbuck (1), D. Thaller (2), R. Dach (3), P. Steigenberger (4) (1)

Mehr

Analyse von zeitlichen Variationen bei unregelmäßig vorliegenden räumlichen Daten

Analyse von zeitlichen Variationen bei unregelmäßig vorliegenden räumlichen Daten . Analyse von zeitlichen Variationen bei unregelmäßig vorliegenden räumlichen Daten Geodätische Woche 2010 1 Andreas Ernst und Wolf-Dieter Schuh 7. Oktober 2010 Motivation Räumliche Daten entstehen inzwischen

Mehr

Algorithmen für geographische Informationssysteme. 6. Vorlesung: 14. Mai 2014

Algorithmen für geographische Informationssysteme. 6. Vorlesung: 14. Mai 2014 Algorithmen für geographische Informationssysteme 6. Vorlesung: 14. Mai 2014 Ausgleichung bei linearem funktionalen Modell Beispiel 2: Ausgleichung von Höhendifferenzen P 2 Δh 2,3 = 7.0 m P 3 Δh 1,2 =

Mehr

igg Institut für Geodäsie und Geoinformation

igg Institut für Geodäsie und Geoinformation igg Institut für Geodäsie und Geoinformation Schriftenreihe 24 Enrico Kurtenbach Entwicklung eines Kalman-Filters zur Bestimmung kurzzeitiger Variationen des Erdschwerefeldes aus Daten der Satellitenmission

Mehr

Titelmaster. Katharina Franz, Maike Schumacher, Jürgen Kusche

Titelmaster. Katharina Franz, Maike Schumacher, Jürgen Kusche Titelmaster Entwicklung von Fehlermodellen für Klimadaten am Beispiel von Niederschlag für die Assimilation von Schwerefelddaten in hydrologische Modelle, Maike Schumacher, Jürgen Kusche Institut für Geodäsie

Mehr

Quantifizierung einzelner Beiträge zum Meeresspiegel durch Kombination von Schwerefeld- und Altimeterdaten

Quantifizierung einzelner Beiträge zum Meeresspiegel durch Kombination von Schwerefeld- und Altimeterdaten Quantifizierung einzelner Beiträge zum Meeresspiegel durch Kombination von Schwerefeld- und Altimeterdaten L. Jensen, R. Rietbroek, A. Löcher, J. Kusche Universität Bonn 11.10.2012 Geodätische Woche, Hannover

Mehr

Beispiel: Positionsschätzung

Beispiel: Positionsschätzung Das Kalman Filter Beispiel: Positionsschätzung Beispiel: Positionsschätzung. Messung: mit Varianz Daraus abgeleitete Positionsschätzung: mit Varianz ˆX = = f f ( y ) y 3 Beispiel: Positionsschätzung. Messung:

Mehr

Computer Vision: Kalman Filter

Computer Vision: Kalman Filter Computer Vision: Kalman Filter D. Schlesinger TUD/INF/KI/IS D. Schlesinger () Computer Vision: Kalman Filter 1 / 8 Bayesscher Filter Ein Objekt kann sich in einem Zustand x X befinden. Zum Zeitpunkt i

Mehr

Indoor Location Tracking and Information System

Indoor Location Tracking and Information System Master Thesis Indoor Location Tracking and Information System Thomas Blocher tblocher@ee.oulu.fi TU Graz Österreich IMST GmbH Deutschland Indoor Location Tracking and Information System p. 1/14 Gliederung

Mehr

Zeitreihenanalyse. H.P. Nachtnebel. Institut für Wasserwirtschaft, Hydrologie und konstruktiver Wasserbau. Definitionen und Anwendung

Zeitreihenanalyse. H.P. Nachtnebel. Institut für Wasserwirtschaft, Hydrologie und konstruktiver Wasserbau. Definitionen und Anwendung .. Zeitreihenanalyse H.P. Nachtnebel Institut für Wasserwirtschaft, Hydrologie und konstruktiver Wasserbau Definitionen und Anwendung Definition Zeitreihe zeitliche Abfolge von Messwerten, deren Auftreten

Mehr

kleinsten Quadraten Session 4: Angewandte Geodäsie und GNSS Geodätische Woche, 29. September 2011, Nürnberg

kleinsten Quadraten Session 4: Angewandte Geodäsie und GNSS Geodätische Woche, 29. September 2011, Nürnberg von von Session 4: Angewandte Geodäsie und GNSS Corinna Harmening Jens-André Geodätisches Institut Leibniz Universität Hannover Geodätische Woche, 29. September 2011, Nürnberg 1 / 12 Motivation von Abb.

Mehr

Hauptdierentialanalyse

Hauptdierentialanalyse Hauptdierentialanalyse Jan Ditscheid TU Dortmund Seminar funktionale Datenanalyse 19.11.2015 1 / 40 1 Wozu HDA? 2 Denition des Problems 3 HDA am Beispiel 4 Techniken zur HDA 5 Beurteilung der Anpassung

Mehr

Dekorrelationsfilter und ihre Validierung am Beispiel von GOCE Messreihen

Dekorrelationsfilter und ihre Validierung am Beispiel von GOCE Messreihen . Geodätische Woche Dekorrelationsfilter und ihre Validierung am Beispiel von GOCE Messreihen 1 Ina Krasbutter u. Wolf-Dieter Schuh Institut für Geodäsie und Geoinformation Professur für Theoretische Geodäsie

Mehr

Analyse der EOP-Zeitreihen aus Daten des ITRF2008

Analyse der EOP-Zeitreihen aus Daten des ITRF2008 Mathis Bloßfeld, Manuela Seitz, Detlef Angermann Deutsches Geodätisches Forschungsinstitut Geodätische Woche 2009 Forschungsarbeiten im Rahmen der Forschergruppe Erdrotation und globale dynamische Prozesse

Mehr

Spektralanalyse. Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann!

Spektralanalyse. Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann! Spektralanalyse Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann! Mit der Spektralanalyse können wir Antworten auf folgende Fragen bekommen:

Mehr

Lyapunov-Exponenten. Analyse des Langzeitverhaltens ( t ) eines physikalischen Systems:

Lyapunov-Exponenten. Analyse des Langzeitverhaltens ( t ) eines physikalischen Systems: Analyse des Langzeitverhaltens ( t ) eines physikalischen Systems: - t tritt bei konkreten beobachteten Systemen nicht auf t >> τ (τ: charakteristische Systemzeit) - t: Dauer der Beobachtung, Prognosezeitraum,...

Mehr

Combination of time series of excitation functions considering the common original observations

Combination of time series of excitation functions considering the common original observations Geodätische Woche Köln, Deutschland, 5.-8. Oktober 2010 P9: Combined analysis and validation of Earth rotation models and observations GIH, DGFI, TUM Combination of time series of excitation functions

Mehr

Bewegungsdetektion mit GNSS durch Schätzung der Empfängergeschwindigkeit basierend auf Dopplerbeobachtungen

Bewegungsdetektion mit GNSS durch Schätzung der Empfängergeschwindigkeit basierend auf Dopplerbeobachtungen Bewegungsdetektion mit GNSS durch Schätzung der Empfängergeschwindigkeit basierend auf Dopplerbeobachtungen Roland Hohensinn, Alain Geiger Institute for Geodesy and Photogrammetry, ETH Zürich Geodätische

Mehr

Variationen des Antarktischen Zirkumpolarstroms aus zeitlich höher aufgelösten GRACE-Schwerefeldern

Variationen des Antarktischen Zirkumpolarstroms aus zeitlich höher aufgelösten GRACE-Schwerefeldern Variationen des Antarktischen Zirkumpolarstroms aus zeitlich höher aufgelösten GRACE-Schwerefeldern Inga Bergmann, Henryk Dobslaw, Maik Thomas GFZ, 1.3 Erdsystem-Modellierung Session 2: Schwerefeld (28.09.2011,

Mehr

Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2.

Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2. Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2. Lineare Korrelation Annahme: var(x 1 ),var(x 2 ) (0, ). Der Koeffizient

Mehr

Neue Verfahren zur Erfassung unterirdischer Wasserressourcen

Neue Verfahren zur Erfassung unterirdischer Wasserressourcen Neue Verfahren zur Erfassung unterirdischer Wasserressourcen Andreas Güntner Deutsches GeoForschungsZentrum Potsdam (GFZ) Sektion 5.4 Hydrologie Wettzell, 16.05.2013 Die Erde: Der Blaue Planet Wasser bedeckt

Mehr

GEODÄSIE UND HYDROLOGIE GEMEINSAM ZUM ERFOLGREICHEN RESOURCENMANAGEMENT. Matthias Weigelt

GEODÄSIE UND HYDROLOGIE GEMEINSAM ZUM ERFOLGREICHEN RESOURCENMANAGEMENT. Matthias Weigelt GEODÄSIE UND HYDROLOGIE GEMEINSAM ZUM ERFOLGREICHEN RESOURCENMANAGEMENT Matthias Weigelt weigelt@gis.uni-stuttgart.de 18.11.2011 Wasser als Lebensgrundlage Lebensraum Erholungsraum Nahrungsquelle Transportweg

Mehr

3 Trend- und Saisonkomponenten

3 Trend- und Saisonkomponenten 3 Trend- und Saisonkomponenten Schritte bei der Analyse von Zeitreihendaten : Plot ; Identifikation von Strukturbrüchen, Ausreißern etc. ; Modellansatz, z.b. klassisches Komponentenmodell X t = m t + s

Mehr

Multi-dimensionale Signalanpassung durch Spline-Funktionen

Multi-dimensionale Signalanpassung durch Spline-Funktionen Keynote: Session 6 Theoretische Geodäsie Multi-dimensionale Signalanpassung durch Spline-Funktionen Michael Schmidt Deutsches Geodätisches Forschungsinstitut (DGFI), München, Germany Email: schmidt@dgfi.badw.de

Mehr

Ornstein-Uhlenbeck-Prozesse

Ornstein-Uhlenbeck-Prozesse Ornstein-Uhlenbeck-Prozesse M. Gruber 3. 4 214 Zusammenfassung Der Ornstein-Uhlenbeck-Prozess (oft abgekürzt OU-Prozess) ist ein spezieller stochastischer Prozess, der nach den beiden niederländischen

Mehr

Seminar im Wintersemester 2010/2011: Quantitative und implementierte Methoden der Marktrisikobewertung

Seminar im Wintersemester 2010/2011: Quantitative und implementierte Methoden der Marktrisikobewertung M.Sc. Brice Hakwa hakwa@uni-wuppertal.de Seminar im Wintersemester 2010/2011: Quantitative und implementierte Methoden der Marktrisikobewertung - Zusammenfassung zum Thema: Berechnung von Value-at-Risk

Mehr

Klausur zur Vorlesung Analyse mehrdimensionaler Daten, Lösungen WS 2010/2011; 6 Kreditpunkte, 90 min

Klausur zur Vorlesung Analyse mehrdimensionaler Daten, Lösungen WS 2010/2011; 6 Kreditpunkte, 90 min Klausur, Analyse mehrdimensionaler Daten, WS 2010/2011, 6 Kreditpunkte, 90 min 1 Prof. Dr. Fred Böker 21.02.2011 Klausur zur Vorlesung Analyse mehrdimensionaler Daten, Lösungen WS 2010/2011; 6 Kreditpunkte,

Mehr

3 Trend- und Saisonkomponenten

3 Trend- und Saisonkomponenten 3 Trend- und Saisonkomponenten Schritte bei der Analyse von Zeitreihendaten : Plot ; Identifikation von Strukturbrüchen, Ausreißern etc. ; Modellansatz, z.b. klassisches Komponentenmodell X t = m t + s

Mehr

Zusammenfassung der 8. Vorlesung

Zusammenfassung der 8. Vorlesung Zusammenfassung der 8. Vorlesung Beschreibung und Analyse dynamischer Systeme im Zustandsraum Steuerbarkeit eines dynamischen Systems Unterscheidung: Zustandssteuerbarkeit, Zustandserreichbarkeit Unterscheidung:

Mehr

Stochastik-Praktikum

Stochastik-Praktikum Stochastik-Praktikum Zeitreihenanalyse Peter Frentrup Humboldt-Universität zu Berlin 19. Dezember 2017 (Humboldt-Universität zu Berlin) Zeitreihenanalyse 19. Dezember 2017 1 / 13 Übersicht 1 Zeitreihen

Mehr

GOCE Schwerefeld-Gradienten: Geophysikalische

GOCE Schwerefeld-Gradienten: Geophysikalische GOCE Schwerefeld-Gradienten: Geophysikalische Modellierung am Beispiel des Japan-Tohoku-Oki Erdbeben M. Fuchs, J. Bouman, C. Haberkorn, V. Lieb, M. Schmidt Deutsches Geodätisches Forschungsinstitut(DGFI)

Mehr

8 Stichprobenkennwerteverteilung

8 Stichprobenkennwerteverteilung 8 Stichprobenkennwerteverteilung 8.1 Vorbemerkungen 8.2 Die Normalverteilung: Teil 2 8.3 Die t Verteilung 8.4 Normalverteilungs Approximation: Der zentrale Grenzwertsatz 8.1 Vorbemerkungen Daten x 1,...,

Mehr

Reelle Zufallsvariablen

Reelle Zufallsvariablen Kapitel 3 eelle Zufallsvariablen 3. Verteilungsfunktionen esultat aus der Maßtheorie: Zwischen der Menge aller W-Maße auf B, nennen wir sie W B ), und der Menge aller Verteilungsfunktionen auf, nennen

Mehr

DFG-Projekt He1433/21-2

DFG-Projekt He1433/21-2 DFG-Projekt He1433/21-2 1 Lösung des GRWP mittels analytischer Fortsetzung (1) Marych (1969) und Moritz (1969) Analytische (harmonische) Fortsetzung von g von der Erdoberfläche auf die (normale) Niveaufläche

Mehr

Gewöhnliche Autokorrelationsfunktion (ACF) eines stationären Prozesses {X t } t Z zum Lag h

Gewöhnliche Autokorrelationsfunktion (ACF) eines stationären Prozesses {X t } t Z zum Lag h 5. Die partielle Autokorrelationsfunktion 5.1 Definition, Berechnung, Schätzung Bisher: Gewöhnliche Autokorrelationsfunktion (ACF) eines stationären Prozesses {X t } t Z zum Lag h ρ X (h) = Corr(X t, X

Mehr

Flachheit Eine nützliche Methodik auch für lineare Systeme

Flachheit Eine nützliche Methodik auch für lineare Systeme Flachheit Eine nützliche Methodik auch für lineare Systeme Michael Zeitz Institut für Systemdynamik Universität Stuttgart Flachheits-Methodik [FLIESS et al. 92ff] Lineare SISO und MIMO Systeme M. Zeitz

Mehr

Das magische Quadrat für stochastische Prozesse

Das magische Quadrat für stochastische Prozesse . Geodätische Woche Das magische Quadrat für stochastische Prozesse 1 Institut für Geodäsie und Geoinformation Professur für Theoretische Geodäsie - Universität Bonn Ina Krasbutter, Boris Kargoll, Wolf-Dieter

Mehr

Ökonometrische Modelle

Ökonometrische Modelle Ökonometrische Modelle Stichwörter: Dynamische Modelle Lagstrukturen Koyck sche Lagstruktur Zeitreihenmodelle Mehrgleichungsmodelle Strukturform reduzierte Form o1-13.tex/0 Lüdeke-Modell für die BRD C

Mehr

Seminarvortrag. Euler-Approximation. Marian Verkely TU Dortmund

Seminarvortrag. Euler-Approximation. Marian Verkely TU Dortmund Seminarvortrag Euler-Approximation Marian Verkely TU Dortmund 03.12.14 1 / 33 Inhaltsverzeichnis 1 Motivation 2 Simulierte Prozesse 3 Euler-Approximation 4 Vasicek-Prozess: Vergleich analytische Lösung

Mehr

Statistische Kennwerte und -funktionen. Dr.-Ing. habil. H. Nobach

Statistische Kennwerte und -funktionen. Dr.-Ing. habil. H. Nobach Statistische Kennwerte und -funktionen Dr.-Ing. habil. H. Nobach 1. Einführung Statistische Kennwerte und -funktionen, wie Mittelwert Varianz Wahrscheinlichkeitsdichte Autokorrelation spektrale Leistungsdichte

Mehr

Statistik - Fehlerrechnung - Auswertung von Messungen

Statistik - Fehlerrechnung - Auswertung von Messungen Statistik - Fehlerrechnung - Auswertung von Messungen TEIL II Vorbereitungskurs F-Praktikum B (Physik), RWTH Aachen Thomas Hebbeker Eindimensionaler Fall: Parameterbestimmung - Beispiele [Übung] Mehrdimensionaler

Mehr

Statistik I für Betriebswirte Vorlesung 4

Statistik I für Betriebswirte Vorlesung 4 Statistik I für Betriebswirte Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 25. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

Dynamik des lokalen Strom/Spannungsverhaltens von Nafion-Membranen

Dynamik des lokalen Strom/Spannungsverhaltens von Nafion-Membranen Dynamik des lokalen Strom/Spannungsverhaltens von Nafion-Membranen Präsentation der Ergebnisse der Aversumsprojekte 2009 Steffen ink a Wolfgang G. Bessler, b A. Masroor, b Emil Roduner a a Universität

Mehr

Kalibrierung von GRACE Akzelerometerdaten und deren Einfluss auf die Schätzung der thermosphärischen Neutraldichte

Kalibrierung von GRACE Akzelerometerdaten und deren Einfluss auf die Schätzung der thermosphärischen Neutraldichte . Masterarbeit Kalibrierung von GRACE Akzelerometerdaten und deren Einfluss auf die Schätzung der thermosphärischen Neutraldichte 1 M.Sc. Kristin Vielberg Universität Bonn Institute für Geodäsie and Geoinformation

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, May 29, 2017 Dr. Michael O. Distler

Mehr

Kalman-Filter und Target Tracking

Kalman-Filter und Target Tracking Kalman-Filter und Target Tracking Peter Poschmann Hochschule für Technik und Wirtschaft Dresden Fakultät Informatik/Mathematik 23. März 2016 Inhalt 1 Kalman-Filter Einleitung Eindimensionaler Kalman-Filter

Mehr

1 Lambert-Beersches Gesetz

1 Lambert-Beersches Gesetz Physikalische Chemie II Lösung 6 23. Oktober 205 Lambert-Beersches Gesetz Anhand des idealen Gasgesetzes lässt sich die Teilchenkonzentration C wie folgt ausrechnen: C = N V = n N A V pv =nrt = N A p R

Mehr

Der diskrete Kalman Filter

Der diskrete Kalman Filter Der diskrete Kalman Filter Fachbereich: Informatik Betreuer: Marc Drassler Patrick Winkler 1168954 6. Dezember 2004 Technische Universität Darmstadt Simulation und Systemoptimierung Darmstadt Dribbling

Mehr

Erdsystemmodellierung: Von geodätischen Beobachtungsdaten zum Prozessverständnis

Erdsystemmodellierung: Von geodätischen Beobachtungsdaten zum Prozessverständnis Erdsystemmodellierung: Von geodätischen Beobachtungsdaten zum Prozessverständnis M. Thomas, I. Sasgen, H. Dobslaw, J. Wickert Deutsches GeoForschungsZentrum GFZ, Numerische Modellierung: Ein Werkzeug für

Mehr

Präzise Einfrequenz-Positionierung mit dem Galileo E5 Breitbandsignal

Präzise Einfrequenz-Positionierung mit dem Galileo E5 Breitbandsignal Präzise Einfrequenz-Positionierung mit dem Galileo E5 Breitbandsignal Geodätische Woche 2011 / InterGEO Nürnberg 28. September 2011 Ing. habil. Torben Schüler Stefan Junker Herman Diessongo Prof. Dr.-Ing.

Mehr

Schwerefeldmissionen als Beitrag zur Erdsystemforschung

Schwerefeldmissionen als Beitrag zur Erdsystemforschung Schwerefeldmissionen als Beitrag zur Erdsystemforschung Institut für Astronomische und Physikalische Geodäsie TU München 1 Einleitung & Motivation Ozean. Transport Ozeanzirkulation Massen- and wärmetransp.

Mehr

Wechselkurse und Finanzmarkt-Indizes

Wechselkurse und Finanzmarkt-Indizes 8. Mai 2008 Inhaltsverzeichnis 1 Wechselkurse Einführung Wechselkurs US Dollar - Deutsche Mark Statistischer Prozess 2 Reinjektion Eigenschaften der Fluktuationen von x(τ) 3 Diffusion auf Finanzmärkten

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 8.6.13 Arbeitszeit: 1 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Multivariate Verteilungen und Copulas

Multivariate Verteilungen und Copulas Multivariate Verteilungen und Copulas Zufallsvektoren und Modellierung der Abhängigkeiten Ziel: Modellierung der Veränderungen der Risikofaktoren X n = (X n,1, X n,2,..., X n,d ) Annahme: X n,i und X n,j

Mehr

Dynamische Systeme und Zeitreihenanalyse // Zustandsraummodelle und Kalman Filter 15 p.2/??

Dynamische Systeme und Zeitreihenanalyse // Zustandsraummodelle und Kalman Filter 15 p.2/?? Dynamische Systeme und Zeitreihenanalyse Zustandsraummodelle und Kalman Filter Kapitel 15 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Zustandsraummodelle

Mehr

Euler-Approximation. Leonie van de Sandt. TU Dortmund Prof. Dr. Christine Müller. 5. Juni 2012

Euler-Approximation. Leonie van de Sandt. TU Dortmund Prof. Dr. Christine Müller. 5. Juni 2012 Euler-Approximation Leonie van de Sandt TU Dortmund Prof. Dr. Christine Müller 5. Juni 2012 Leonie van de Sandt (TU Dortmund) Euler-Approximation 5. Juni 2012 1 / 26 Inhaltsverzeichnis 1 Einleitung Leonie

Mehr

Raum-zeitlich korrelierte stochastische Beschreibung des Modellfehlers in ICON-EPS und COSMO-D2-EPS

Raum-zeitlich korrelierte stochastische Beschreibung des Modellfehlers in ICON-EPS und COSMO-D2-EPS Raum-zeitlich korrelierte stochastische Beschreibung des Modellfehlers in ICON-EPS und COSMO-D2-EPS T. Heppelmann, M. Sprengel, C. Gebhardt, M. Buchhold Fachtagung Energiemeteorologie Goslar 05.06.2018

Mehr

In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y

In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y Approximationen In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y y = f (x) x Um das Arbeiten mit einer komplizierten Funktion zu vermeiden, können wir versuchen, diese Funktion

Mehr

Ensemble-Vorhersage. von Nils Kaiser Seminar Medienmeteorologie im WS 06/07

Ensemble-Vorhersage. von Nils Kaiser Seminar Medienmeteorologie im WS 06/07 Ensemble-Vorhersage von Nils Kaiser Seminar Medienmeteorologie im WS 06/07 Was ist die Wettervorhersage? 2 Gliederung 1. Einleitung 2. Numerische Wettervorhersage 3. Erzeugen eines Ensembles 4. Bewertung

Mehr

Zeitreihenanalyse. Seminar Finanzmathematik. Andreas Dienst SS Einleitung - Begrüßung - Motivation - Inhaltsangabe. 2.

Zeitreihenanalyse. Seminar Finanzmathematik. Andreas Dienst SS Einleitung - Begrüßung - Motivation - Inhaltsangabe. 2. Seminar Finanzmathematik - Begrüßung - Motivation - Inhaltsangabe 3. Zusammen - fassung Zeitreihenanalyse Andreas Dienst SS 2006 Zeitreihen: Definition und Motivation - Begrüßung - Motivation - Inhaltsangabe

Mehr

Brownsche Bewegung. M. Gruber. 19. März Zusammenfassung

Brownsche Bewegung. M. Gruber. 19. März Zusammenfassung Brownsche Bewegung M. Gruber 19. März 2014 Zusammenfassung Stochastische Prozesse, Pfade; Brownsche Bewegung; Eigenschaften der Brownschen Bewegung: Kovarianz, Stationarität, Selbstähnlichkeit, quadratische

Mehr

2 Mengen bzgl. Knoten r (Wurzel): A = {Knoten v mit ungerader Weglänge (r,v)} B = {Knoten v mit gerader Weglänge (r,v)}

2 Mengen bzgl. Knoten r (Wurzel): A = {Knoten v mit ungerader Weglänge (r,v)} B = {Knoten v mit gerader Weglänge (r,v)} K. 1.2: t P D. Pt tz Lt ü At E, LS11 3. VO 30. Ot 2006 Ü Ot: Pü / Ü Pt t ü tt G Pt t ü G x t 2 Püt ü Fü: Ü VO 2 Ü 2: 6LP A: Zä Gt Sz Ft t NEU: ( ätt : äß tv tt Ü, t ) ü Pü: St VO Ü, 20 t Püt Ltw: Ü VO

Mehr

Verfahren zur Datenanalyse gemessener Signale

Verfahren zur Datenanalyse gemessener Signale Verfahren zur Datenanalyse gemessener Signale Dr. rer. nat. Axel Hutt Vorlesung 4 zum Übungsblatt Aufgabe 1: sin( (f 3Hz)5s) sin( (f +3Hz)5s) X T (f) 1 i f 3Hz f +3Hz Nullstellen: T=5s: T=1s: f=3hz+2/5s,

Mehr

Datenmodelle, Regression

Datenmodelle, Regression Achte Vorlesung, 15. Mai 2008, Inhalt Datenmodelle, Regression Anpassen einer Ausgleichsebene Polynomiale Regression rationale Approximation, Minimax-Näherung MATLAB: polyfit, basic fitting tool Regression

Mehr

Modellierung eines dynamischen Motorprüfstands. Modellbildung Identifikation Simulink-Modell Optimale Regelung

Modellierung eines dynamischen Motorprüfstands. Modellbildung Identifikation Simulink-Modell Optimale Regelung Modellierung eines dynamischen Motorprüfstands Modellbildung Identifikation Simulink-Modell Optimale Regelung Josef Blumenschein Patrick Schrangl Aufgaben Modellbildung und Identifikation " Verbrennungsmotor

Mehr

Berufsreifprüfung Mathematik

Berufsreifprüfung Mathematik BRP Mathematik VHS Floridsdorf 08.10.2011 Seite 1/3 Berufsreifprüfung Mathematik Volkshochschule Floridsdorf / Herbsttermin 2011 1. Ein Brückenbogen besteht aus zwei Parabeln zweiter Ordnung (siehe Skizze).

Mehr

Probeklausur zu Mathematik 3 für Informatik Lösungshinweise (ohne Garantie auf Fehlefreiheit)

Probeklausur zu Mathematik 3 für Informatik Lösungshinweise (ohne Garantie auf Fehlefreiheit) Gunter Ochs 9. Juni 05 Probeklausur zu Mathematik für Informatik Lösungshinweise ohne Garantie auf Fehlefreiheit. Sei fx x x. a Bestimmen Sie den Grenzwert lim x fx. Da an der Stelle x Zähler Nenner Null

Mehr

Computergestützte Datenanalyse in der Kern- und Teilchenphysik

Computergestützte Datenanalyse in der Kern- und Teilchenphysik Computergestützte Datenanalysein der Kern- und Teilchenphysik p. 1/?? Computergestützte Datenanalyse in der Kern- und Teilchenphysik Vorlesung 4 Jan Friedrich Computergestützte Datenanalysein der Kern-

Mehr

Step-Down Prozeduren

Step-Down Prozeduren Step-Down Prozeduren zur Kontrolle der Family-Wise Error Rate WS 2010/2011 Jakob Gierl HU Berlin 07.02.2011 1 / 19 Modell Schrittweise Step-Down Modell mathematische Stichprobe X 1,..., X n iid im R J

Mehr

Ein Vergleich der aktuellsten ITRS-Realisierungen: ITRF2014, DTRF2014 und JTRF2014

Ein Vergleich der aktuellsten ITRS-Realisierungen: ITRF2014, DTRF2014 und JTRF2014 Deutsches Geodätisches Forschungsinstitut (DGFI-TUM) Technische Universität München Ein Vergleich der aktuellsten ITRS-Realisierungen: ITRF2014, DTRF2014 und JTRF2014 Mathis Bloßfeld, Detlef Angermann,

Mehr

Einführung in die Statistischen Methoden und GRETL - Übung

Einführung in die Statistischen Methoden und GRETL - Übung Einführung in die Statistischen Methoden und GRETL - Übung Andrija Mihoci Elena Silyakova Ladislaus von Bortkiewicz Chair of Statistics Humboldt Universität zu Berlin http://lvb.wiwi.hu-berlin.de Motivation

Mehr

Eine Welt aus Zahlen. Wie funktionieren Computersimulationen?

Eine Welt aus Zahlen. Wie funktionieren Computersimulationen? Eine Welt aus Zahlen. Wie funktionieren Computersimulationen? Steffen Börm Christian-Albrechts-Universität zu Kiel Night of the Profs 2016 S. Börm (CAU Kiel) Computersimulationen 18. November 2016 1 /

Mehr

Virialentwicklung. Janek Landsberg Fakultät für Physik, LMU München. Janek Landsberg. Die Virialentwicklung. Verschiedene Potentiale

Virialentwicklung. Janek Landsberg Fakultät für Physik, LMU München. Janek Landsberg. Die Virialentwicklung. Verschiedene Potentiale Die Warum Fakultät für Physik, LMU München 14.06.2006 Die Warum 1 Die Der zweite Virialkoeffizient 2 Hard-Sphere-Potential Lennard-Jones-Potential 3 Warum 4 Bsp. Hard-Sphere-Potential Asakura-Oosawa-Potential

Mehr

GNSS/IMU Integration für die präzise Bestimmung einer Flugtrajektorie

GNSS/IMU Integration für die präzise Bestimmung einer Flugtrajektorie GNSS/IMU Integration für die präzise Bestimmung einer Flugtrajektorie Fabian Hinterberger Institut für Geodäsie und Geophysik, Tu Wien 18. Nov. 2011 1 Motivation Motivation Gegenüberstellung Eigenschaften

Mehr

1. Übung. Prozessregelungen von den Grundlagen zu Advanced Control. Dipl.-Ing. Konstantin Machleidt

1. Übung. Prozessregelungen von den Grundlagen zu Advanced Control. Dipl.-Ing. Konstantin Machleidt 1. Übung Prozessregelungen von den Grundlagen zu Advanced Control Dipl.-Ing. Konstantin Machleidt Weiterbildungskurs 26. 27.09.2013 am Karl-Winnacker-Institut der DECHEMA e.v. TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

Das Wetter: schön aber kompliziert Wettervorhersage von damals bis Heute. Reto Stauffer

Das Wetter: schön aber kompliziert Wettervorhersage von damals bis Heute. Reto Stauffer Das Wetter: schön aber kompliziert Wettervorhersage von damals bis Heute Reto Stauffer Das Wetter: schön aber kompliziert Was steckt eigentlich hinter einer falschen Vorhersage Geschichte der Meteorologie

Mehr

Lineare Klassifikatoren

Lineare Klassifikatoren Universität Potsdam Institut für Informatik Lehrstuhl Lineare Klassifikatoren Christoph Sawade, Blaine Nelson, Tobias Scheffer Inhalt Klassifikationsproblem Bayes sche Klassenentscheidung Lineare Klassifikator,

Mehr

mit Ungleichungen als Restriktionen Quadratische Programmierung Gliederung Geodätische Woche 2009 Lutz Roese-Koerner und Wolf-Dieter Schuh

mit Ungleichungen als Restriktionen Quadratische Programmierung Gliederung Geodätische Woche 2009 Lutz Roese-Koerner und Wolf-Dieter Schuh . Geodätische Woche 29 Quadratische Programmierung mit Ungleichungen als Restriktionen 1 Lutz Roese-Koerner und Wolf-Dieter Schuh Institut für Geodäsie und Geoinformation Professur für Theoretische Geodäsie

Mehr

Multivariate Verteilungen

Multivariate Verteilungen Multivariate Verteilungen Zufallsvektoren und Modellierung der Abhängigkeiten Ziel: Modellierung der Veränderungen der Risikofaktoren X n = (X n,1, X n,2,..., X n,d ) Annahme: X n,i und X n,j sind abhängig

Mehr

u(x, 0) = g(x) : 0 x 1 u(0, t) = u(1, t) = 0 : 0 t T

u(x, 0) = g(x) : 0 x 1 u(0, t) = u(1, t) = 0 : 0 t T 8.1 Die Methode der Finiten Differenzen Wir beschränken uns auf eindimensionale Probleme und die folgenden Anfangs und Anfangsrandwertprobleme 1) Cauchy Probleme für skalare Erhaltungsgleichungen, also

Mehr

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar "Statistische Methoden in der Physik"

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar Statistische Methoden in der Physik Studentenseminar "Statistische Methoden in der Physik" Gliederung 1 2 3 Worum geht es hier? Gliederung 1 2 3 Stichproben Gegeben eine Beobachtungsreihe x = (x 1, x 2,..., x n ): Realisierung der n-dimensionalen

Mehr

Übungsblatt 02. PHYS4100 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti,

Übungsblatt 02. PHYS4100 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, Übungsblatt 2 PHYS4 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@physik.uni-ulm.de) 2. 4. 25 22. 4. 25 Aufgaben. Das Plancksche Strahlungsgesetz als Funktion der

Mehr

DSGE-Modelle. Linearisierung und Lösung. Institut für Ökonometrie und Wirtschaftsstatistik Münster

DSGE-Modelle. Linearisierung und Lösung. Institut für Ökonometrie und Wirtschaftsstatistik Münster DSGE-Modelle Linearisierung und Lösung Dr. Andrea Beccarini Willi Mutschler, M.Sc. Institut für Ökonometrie und Wirtschaftsstatistik Münster willi.mutschler@uni-muenster.de Sommersemester 2012 Willi Mutschler

Mehr

Übung 7: Methode der kleinsten Quadrate

Übung 7: Methode der kleinsten Quadrate ZHAW, DSV2, 2007, Rumc, 1/8 Übung 7: Methode der kleinsten Quadrate Aufgabe 1: Lineare Annäherung im Skalarprodukt-Raum. Finden Sie für den Vektor y = [2 2 2] T eine Linearkombination y e der Vektoren

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, 4. Mai 2017 Dr. Michael O. Distler

Mehr

Teil 2: Kurven und Flächen. Kurven und Flächen. Kurven. Parametrische Objekte. Kurven: 1D-Objekte Flächen: 2D-Objekte, basierend auf Kurven

Teil 2: Kurven und Flächen. Kurven und Flächen. Kurven. Parametrische Objekte. Kurven: 1D-Objekte Flächen: 2D-Objekte, basierend auf Kurven Parametrische Objekte Kurven und Flächen Kurven: 1D-Objekte Flächen: 2D-Objekte, basierend auf Kurven Kurven Welche Form der Darstellung? Beispiel: 2D-Linie Explizit: y = k x + d x = (x, y) T Implzit:

Mehr

Teil 2: Kurven und Flächen

Teil 2: Kurven und Flächen Parametrische Objekte Kurven und Flächen Kurven: 1D-Objekte Flächen: 2D-Objekte, basierend auf Kurven Kurven Welche Form der Darstellung? Beispiel: 2D-Linie Explizit: y = k x + d x = (x, y) T Implzit:

Mehr

Mathematische Modelle zur flächenhaften Approximation punktweise gemessener Bodensenkungen auf Basis von Präzisionsnivellements

Mathematische Modelle zur flächenhaften Approximation punktweise gemessener Bodensenkungen auf Basis von Präzisionsnivellements Mathematische Modelle zur flächenhaften Approximation punktweise gemessener Bodensenkungen auf Basis von Präzisionsnivellements GeoMonitoring 2015, Clausthal-Zellerfeld Christoph Holst & Heiner Kuhlmann

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 1/13/14) Dozent: J. von Delft Übungen: B. Kubala Klausur zur Vorlesung T1: Theoretische Mechanik, SoSe 008 (3. Juli 007) Bearbeitungszeit:

Mehr