Verfahren zur Datenanalyse gemessener Signale

Größe: px
Ab Seite anzeigen:

Download "Verfahren zur Datenanalyse gemessener Signale"

Transkript

1 Verfahren zur Datenanalyse gemessener Signale Dr. rer. nat. Axel Hutt Vorlesung 4

2 zum Übungsblatt

3 Aufgabe 1: sin( (f 3Hz)5s) sin( (f +3Hz)5s) X T (f) 1 i f 3Hz f +3Hz Nullstellen: T=5s: T=1s: f=3hz+2/5s, 3Hz+4/5s, 3Hz+6/5s,. = 3.4Hz, 3.8Hz, 4.2Hz,. f=3hz+2/s, 3Hz+4s, 3Hz+6/s,. = 5Hz, 7Hz, 9Hz,. T=0.33 s: f=3hz+6/s, 3Hz+12s, 3Hz+18/s,. = 9Hz, 15Hz, 21Hz,.

4 Aufgabe 1: sin( (f 3Hz)5s) sin( (f +3Hz)5s) X T (f) 1 i f 3Hz f +3Hz Nullstellen: T=5s: T=1s: f=3hz+2/5s, 3Hz+4/5s, 3Hz+6/5s,. = 3.4Hz, 3.8Hz, 4.2Hz,. f=3hz+2/s, 3Hz+4s, 3Hz+6/s,. = 5Hz, 7Hz, 9Hz,. T=0.33 s: f=3hz+6/s, 3Hz+12s, 3Hz+18/s,. = 9Hz, 15Hz, 21Hz,. Vorsicht: 1/T=Δf

5 Aufgabe 2: Signal: T=100s, Δf=0.01 spectral leakage - Effekt: 1) z.bsp. charakterisiert durch Nullstellen bei Frequenzen 2 n/100s=n 0.02Hz also 0.02Hz, 0.04Hz,. 2) z.bsp. charakterisiert durch Abfall der Amplitude mit 1/f

6

7 Aufgabe 3: S( ) = Z 1 1 C( )e i2 d C( ) = C(0) = Z 1 1 Z 1 1 S( )e i2 d S( )d = E[x 2 (t)] = lim T!1 1 T Z T T x 2 (t)dt

8 Vorlesung 4

9 was ist Stationarität? Exkurs in Stochastischen Prozesse

10 Exkurs in Stochastischen Prozesse a) Zufallszahlen b) Wahrscheinlichkeit c) stochastische Prozesse d) Wahrscheinlichkeitsverteilungen e) Ergodizität und Stationarität

11 Exkurs in Stochastischen Prozesse a) Zufallszahlen b) Wahrscheinlichkeit c) Wahrscheinlichkeitsverteilungen d) stochastische Prozesse e) Ergodizität und Stationarität

12 Beispiel: man wirft einen idealen Würfel n-mal und erhält n Zufallszahlen xi, i=1,..,n {xi}={1,2,3,4,5,6} z.bsp. die Folge 3,4,1,5,6,6,2,. Beispiel: man wirft eine ideale Münze n-mal und erhält n Zufallszahlen xi, i=1,..,n {xi}={kopf,zahl} oder {xi}={0,1} z.bsp. die Folge 0,1,1,1,0,1,0,0,.

13 Exkurs in Stochastischen Prozesse a) Zufallszahlen b) Wahrscheinlichkeit c) Wahrscheinlichkeitsverteilungen d) stochastische Prozesse e) Ergodizität und Stationarität

14 Frage: wie oft tritt welche Zufallszahl auf? Histogramm: H(x i )={#X i X i, x i x/2 apple X i <x i + x/2} Δx: Intervall

15 Definition der Wahrscheinlichkeit eines Ereignisses: P (x i )= H(x i) n Beispiel: idealer Würfel hat 6 mögliche Augen, die gleich wahrscheinlich sind P (x i )= 1 6 Wahrscheinlichkeit einer geraden Augenzahl yi,i=1,2,3: P (y i )= 3 6 = 1 2

16 Exkurs in Stochastischen Prozesse a) Zufallszahlen b) Wahrscheinlichkeit c) Wahrscheinlichkeitsdichte d) stochastische Prozesse e) Ergodizität und Stationarität

17 wichtige Eigenschaft: nx i=1 p(x i )=1 p(xi) : Wahrscheinlichkeitsdichte falls Zufallsvariable kontinuierlich ist, z.bsp. x 2 R Z D p(x)x =1 p(x): Wahrscheinlichkeitsdichte P (y) = Z x2 x 1 p(x)dx Wahrscheinlichkeit, einen Wert y zu finden mit x 1 apple y<x 2

18 Frage: wie gross ist die Wahrscheinlichkeit, eine Zufallszahl kleiner als y zu erhalten? kumulative Wahrscheinlichkeitsverteilung P (X apple x) = X i,x i applex H(x i ) n

19 Beispiele von Wahrscheinlichkeitsdichten: p(x) p(x) p(x) Variable x Variable x Gleichverteilung Normalverteilung (Gaussverteilung) bimodale Verteilung Variable x

20 Statistische Eigenschaften von Verteilungen: Erwartungswert E [f(x)] = Z D f(x)p(x)dx erstes Moment (erster Kumulant) zweites Moment Z E [x] = E x 2 = D Z xp(x)dx = x D x 2 p(x)dx (Mittelwert) zweiter Kumulant E (x E[x]) 2 = Z D (x E[x]) 2 p(x)dx = 2 (Varianz)

21 Mehrere Zufallsvariablen: p(x 1 ; x 2 ;...; x N ) multivariate Wahscheinlichkeitsdichte! mit N Variablen (joint probability density) p(x k,...,x k+l )= {z } M Variablen Z D Z D Z D p(x 1 ;...; x N ) dx 1 dx k 1 dx k+l+1 dx N {z } multivariate Wahscheinlichkeitsdichte mit N-M Variablen: Marginalverteilung (Randverteilung) N M Terme p(x k x l ) bedingte Wahscheinlichkeitsdichte! (conditional probability distribution)

22 p(x 1,x 2 )=p(x 1 x 2 )p(x 2 ) = p(x 2 x 1 )p(x 1 ) p(x 2 x 1 )= p(x 1 x 2 ) p(x 1 ) p(x 2) Bayes-Regel Beispiel: p(modell Beobachtung) = p(beobachtung Modell) p(beobachtung) p(modell)

23 Exkurs in Stochastischen Prozesse a) Zufallszahlen b) Wahrscheinlichkeit c) Wahrscheinlichkeitsdichte d) stochastische Prozesse e) Ergodizität und Stationarität

24 stochastischer Prozess: Folge von Zufallsvariablen, die eine zeitliche Evolution eines Systems beschreibt

25 Beispiel: Wiener-Prozess Zeitserie von Zufallsvariablen ξ(t) 0 10 Zeit t Zufallsvariablen sind unabhängig (weisses Rauschen), ihre Wahrscheinlichkeitsdichte ist eine Gauss-Verteilung

26 Wiener-Prozess: W k+1 = W k + k k 2 N 0 k : weisses Gauss sches Rauschen W(t) Zeit t

27 weisses Rauschen: h k l i = D kl unkorrelierte Zufallszahlen h (t) (t )i = D ( ) Wiener-Khinchin Theorem: F[h (t) (t )i](f) =P (f) P (f) =const alle Frequenzen mit gleichem Beitrag

28 Spektren von Rauschprozessen siehe Übungsblatt Leistung Frequenz

29 Beispiel einer allgemeineren Formulierung x(t) : stochastischer Prozess x(t) kann von x(t ), 0 apple < 1 abhängen, also x(t k+1 )=f(x k,x k 1,x k 2,...) System mit Gedächtnis Spezialfall: x(t k+1 )=f(x k ) System ohne Gedächtnis dieser stochastische Prozess heißt Markov-Prozess

30 Formulierung eines allgemeinen Markov-Prozesses x(t) : stochastischer Markov-Prozess Zeit kontinuierlich dx(t) =f(x(t))dt + appledw (t) Zeit diskret dw: Rauschprozess κ: Rauschstärke x(t k )=f(x(t k )) t + apple W (t k ) W (t k )=W (t k+1 ) W (t k ) x(t k )=x(t k+1 ) x(t k )

31 Formulierung als Langevin-Gleichung: Zeit kontinuierlich ẋ(t) =f(x(t)) + apple (t) ξ: Rauschprozess ohne Rauschen: ẋ(t) =f(x(t))

32 Exkurs in Stochastischen Prozesse a) Zufallszahlen b) Wahrscheinlichkeit c) Wahrscheinlichkeitsdichte d) stochastische Prozesse e) Ergodizität und Stationarität

33 Wie wird Wahrscheinlichkeitsdichte p berechnet? Beispiel: verschiedene Lösungen von ẋ(t) = x(t)+0.1 (t) mit identischen Anfangsbedingungen x(0) (t) : normalverteilte Zufallszahlen mit Mittelwert=0, Varianz=1

34 p1(x,t): Bestimmung über die Schar von Lösungen zu einem bestimmten Zeitpunkt t t=0.05 t=10 t=47.5 σ 2 =0.005 σ 2 =0.05 σ 2 =0.05 p2(x): Erwartungswert über die Zeit in einer Lösung σ 2 =0.05

35 Erkenntnis: Wahrscheinlichkeitsdichte p1(x,t) variiert über die Zeit Wahrscheinlichkeitsdichte p2(x) zeitunabhängig Wahrscheinlichkeitsdichten gleich für grosse Zeiten p1(x,t) p2(x) Wahrscheinlichkeitsdichten verschieden für kleine Zeiten p1(x,t) p2(x)

36 Definition: starke Stationarität: p(x 1 (t k );...; x N (t k )) = p(x 1 (t k + );...; x N (t k + )) 2 R Definition: Stationarität im weiteren Sinn: E [x(t)] = µ 8t 2 R E (x(t) E[x]) 2 = 2 (t) < 1 Cov(x(t 1 ),y(t 2 )) = Cov(x(t 1 + ),y(t 2 + )) 2 R Cov(x(t 1 ),y(t 2 )) = E [(x(t 1 ) x)(y(t 2 ) ȳ)]

37 falls ein Signal stationär ist und falls Scharmittel = Zeitmittel System ist ergodisch

38 zurück zum Beispiel: stochastischer Prozess ist stationär für grosse Zeiten stochastischer Prozess ist ergodisch für grosse Zeiten

39 stochastischer Prozess stationär nicht stationär ergodisch nicht ergodisch

40 wo gibt es denn Zufallsprozesse in biologischen Systemen? in Neuronen: Öffnungsrate der gates in Ionenkanälen in Tierpopulationen: Geburt oder Tod von Tieren nicht vorhersagbar allgemein: Zufall kann auch Prozesse beschreiben, deren Ursache und Dynamik unbekannt ist

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.)

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) 1 Zusammenfassung Bedingte Verteilung: P (y x) = P (x, y) P (x) mit P (x) > 0 Produktsatz P (x, y) = P (x y)p (y) = P (y x)p (x) Kettenregel

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Wahrscheinlichkeiten

Wahrscheinlichkeiten Wahrscheinlichkeiten August, 2013 1 von 21 Wahrscheinlichkeiten Outline 1 Wahrscheinlichkeiten 2 von 21 Wahrscheinlichkeiten Zufallsexperimente Die möglichen Ergebnisse (outcome) i eines Zufallsexperimentes

Mehr

Statistik I für Betriebswirte Vorlesung 4

Statistik I für Betriebswirte Vorlesung 4 Statistik I für Betriebswirte Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 25. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Review)

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Review) Einige Konzepte aus der Wahrscheinlichkeitstheorie (Review) 1 Diskrete Zufallsvariablen (Random variables) Eine Zufallsvariable X(c) ist eine Variable (genauer eine Funktion), deren Wert vom Ergebnis c

Mehr

A. Grundlagen der Stochastik

A. Grundlagen der Stochastik A. Grundlagen der Stochastik Satz A.1 (Axiome der Wahrscheinlichkeit). Folgende Axiome der Wahrscheinlichkeit können definiert werden: (1) Die Wahrscheinlichkeit P(A) eines Ergebnisses A bei einem Experiment

Mehr

A. Grundlagen der Stochastik

A. Grundlagen der Stochastik A. Grundlagen der Stochastik Satz A.1 (Axiome der Wahrscheinlichkeit). Folgende Axiome der Wahrscheinlichkeit können definiert werden: (1) Die Wahrscheinlichkeit P(A) eines Ergebnisses A bei einem Experiment

Mehr

Theoretische Biophysik - Statistische Physik

Theoretische Biophysik - Statistische Physik Theoretische Biophysik - Statistische Physik 10. Vorlesung Pawel Romanczuk Wintersemester 2018 http://lab.romanczuk.de/teaching/ 1 Brownsche Bewegung Zusammenfassung letzte VL Formulierung über Newtonsche

Mehr

Adaptive Systeme. Sommersemester Prof. Dr. -Ing. Heinz-Georg Fehn. Prof. Dr. rer. nat. Nikolaus Wulff

Adaptive Systeme. Sommersemester Prof. Dr. -Ing. Heinz-Georg Fehn. Prof. Dr. rer. nat. Nikolaus Wulff Adaptive Systeme Sommersemester 2015 Prof. Dr. -Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff 1 Adaptive Systeme Adaptives System: ein System, das

Mehr

Wahrscheinlichkeitstheorie 2

Wahrscheinlichkeitstheorie 2 Wahrscheinlichkeitstheorie 2 Caroline Sporleder Computational Linguistics Universität des Saarlandes Sommersemester 2011 19.05.2011 Caroline Sporleder Wahrscheinlichkeitstheorie 2 (1) Wiederholung (1):

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 24. Oktober 2007 1. Statistik Wir denken an Experimente, bei deren Durchführung die Variable X, um die es dabei geht, verschiedene Werte annehmen

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 15. April 2019 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 1. April

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, 4. Mai 2017 Dr. Michael O. Distler

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Mainz, 8. Juni 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

Numerische Methoden und Algorithmen in der Physik

Numerische Methoden und Algorithmen in der Physik Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 08.01.2009 Numerische Methoden und Algorithmen in der Physik Hartmut Stadie 1/ 32 Einführung Wahrscheinlichkeit Verteilungen

Mehr

Statistische Kennwerte und -funktionen. Dr.-Ing. habil. H. Nobach

Statistische Kennwerte und -funktionen. Dr.-Ing. habil. H. Nobach Statistische Kennwerte und -funktionen Dr.-Ing. habil. H. Nobach 1. Einführung Statistische Kennwerte und -funktionen, wie Mittelwert Varianz Wahrscheinlichkeitsdichte Autokorrelation spektrale Leistungsdichte

Mehr

Fokker-Planck Gleichung

Fokker-Planck Gleichung Fokker-Planck Gleichung Max Haardt WWU Münster 21. November 2008 Inhalt 1 Einleitung Langevin Gleichung Fokker-Planck Gleichung 2 Herleitung Mastergleichung Kramers-Moyal Entwicklung Fokker-Planck Gleichung

Mehr

Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood

Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood KARLSRUHER INSTITUT FÜR TECHNOLOGIE (KIT) 0 KIT 06.01.2012 Universität des Fabian Landes Hoffmann Baden-Württemberg und nationales Forschungszentrum

Mehr

Statistische Grundlagen

Statistische Grundlagen Statistische Grundlagen 2 2.1 Motivation Dieses Kapitel gibt eine kurze Übersicht über die im weiteren Verlauf des Buches benötigten mathematischen und statistischen Grundlagen. Zu Beginn wird der Begriff

Mehr

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Wahrscheinlichkeitstheorie und Statistik Definitionen und Sätze Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2018 2.5.2018 Diskrete Wahrscheinlichkeitsräume Diskreter

Mehr

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s X. Zufallsgrößen ================================================================= 10.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung

Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Grundlagen Überblick Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Klassifikation bei bekannter Wahrscheinlichkeitsverteilung Entscheidungstheorie Bayes-Klassifikator

Mehr

Kalmanfiter (1) Typische Situation für den Einsatz von Kalman-Filtern

Kalmanfiter (1) Typische Situation für den Einsatz von Kalman-Filtern Kalmanfiter (1) Typische Situation für den Einsatz von Kalman-Filtern Vorlesung Robotik SS 016 Kalmanfiter () Kalman-Filter: optimaler rekursiver Datenverarbeitungsalgorithmus optimal hängt vom gewählten

Mehr

Chi-Quadrat-Verteilung

Chi-Quadrat-Verteilung Chi-Quadrat-Verteilung Wikipedia http://de.wikipedia.org/wiki/chi-quadrat-verteilung 1 von 7 6/18/2009 6:13 PM Chi-Quadrat-Verteilung aus Wikipedia, der freien Enzyklopädie Die Chi-Quadrat-Verteilung ist

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 20. April 2017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 18.

Mehr

Klausur: Diskrete Strukturen I

Klausur: Diskrete Strukturen I Universität Kassel Fachbereich 0/ 5.03.0 Dr. Sebastian Petersen Klausur: Diskrete Strukturen I Aufgabe. (8 Punkte) a) Sei X = {0, }. Geben Sie die Potenzmenge P (X) (durch Auflisten ihrer Elemente) an.

Mehr

Grundlagen der Wahrscheinlichkeitstheorie

Grundlagen der Wahrscheinlichkeitstheorie Priv.-Doz. Dr. H. Steinacker Wintersemester 2013/2014 Grundlagen der Wahrscheinlichkeitstheorie betrachte Wiederholungen eines Experimentes, gleicher Vorbereitung (z.b. Würfeln, Dart werfen, Doppelspaltexperiment,...)

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus

Mehr

Einführung und Grundlagen

Einführung und Grundlagen Kapitel 1 Einführung und Grundlagen Generelle Notation: Ω, A, P sei ein W-Raum im Hintergrund nie weiter spezifiziert Die betrachteten Zufallsvariablen seien auf Ω definiert, zb X : Ω, A M, A, wobei M,

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 6. Vorlesung - 2018 Diskrete ZG eine diskrete ZG X wird vollständig durch ihre Wahrscheinlichkeitsverteilung beschrieben ( ) x1 x X 2... x i... = p 1 p 2... p i... P(X (a, b]) = und die Verteilungsfunktion

Mehr

Kapitel 8: Zeitdiskrete Zufallssignale

Kapitel 8: Zeitdiskrete Zufallssignale ZHAW, DSV2, 2007, Rumc, 8-1 Kapitel 8: Zeitdiskrete Zufallssignale Inhaltsverzeichnis 1. STOCHASTISCHER PROZESS...1 2. STATISTISCHE EIGENSCHAFTEN EINER ZUFALLSVARIABLEN...2 3. STATISTISCHE EIGENSCHAFTEN

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

Stochastik Wiederholung von Teil 1

Stochastik Wiederholung von Teil 1 Stochastik Wiederholung von Teil 1 Andrej Depperschmidt Sommersemester 2016 Wahrscheinlichkeitsraum Definition Das Tripple (Ω, A, P) heißt Wahrscheinlichkeitsraum, falls gilt: (i) A ist eine σ-algebra,

Mehr

Rechnernutzung in der Physik

Rechnernutzung in der Physik Rechnernutzung in der Physik Teil 3 Statistische Methoden in der Datenanalyse Roger Wolf 15. Dezember 215 INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) PHYSICS FACULTY KIT University of the State of

Mehr

Woche 2: Zufallsvariablen

Woche 2: Zufallsvariablen Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 19/21, 29.04.2019 Wahrscheinlichkeit und Statistik Patric Müller WBL 2019 Teil III Zufallsvariablen Wahrscheinlichkeit

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

x p 2 (x )dx, Hinweis: es ist nicht erforderlich, zu integrieren!

x p 2 (x )dx, Hinweis: es ist nicht erforderlich, zu integrieren! Aufgabe T- Gegeben seien zwei normalverteilte Zufallsvariablen X N(µ, σ) 2 und X 2 N(µ 2, σ2) 2 mit pdf p (x) bzw. p 2 (x). Bestimmen Sie x (als Funktion der µ i, σ i, sodass x p (x )dx = + x p 2 (x )dx,

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 7 1 Inhalt der heutigen Übung Statistik und Wahrscheinlichkeitsrechnung Vorrechnen der Hausübung D.9 Gemeinsames Lösen der Übungsaufgaben D.10: Poissonprozess

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und

Mehr

Übung 1: Wiederholung Wahrscheinlichkeitstheorie

Übung 1: Wiederholung Wahrscheinlichkeitstheorie Übung 1: Wiederholung Wahrscheinlichkeitstheorie Ü1.1 Zufallsvariablen Eine Zufallsvariable ist eine Variable, deren numerischer Wert solange unbekannt ist, bis er beobachtet wird. Der Wert einer Zufallsvariable

Mehr

Zufallsvariablen. Erwartungswert. Median. Perzentilen

Zufallsvariablen. Erwartungswert. Median. Perzentilen Zufallsvariablen. Erwartungswert. Median. Perzentilen Jörn Loviscach Versionsstand: 22. Januar 2010, 10:46 1 Zufallsvariablen Wenn ein Zufallsexperiment eine Zahl als Ergebnis liefert, nennt man diese

Mehr

Wechselkurse und Finanzmarkt-Indizes

Wechselkurse und Finanzmarkt-Indizes 8. Mai 2008 Inhaltsverzeichnis 1 Wechselkurse Einführung Wechselkurs US Dollar - Deutsche Mark Statistischer Prozess 2 Reinjektion Eigenschaften der Fluktuationen von x(τ) 3 Diffusion auf Finanzmärkten

Mehr

Modellierung- und Simulation Mathis Plewa ( )

Modellierung- und Simulation Mathis Plewa ( ) Inhaltsverzeichnis Abbildungsverzeichnis... 1 Übungsaufgabe: Zufallsgeneratoren und Histogramme... 2 Standard Gleichverteilung... 2 Gaußverteilung... 3 Exponentialverteilung... 4 Übungsaufgabe: Geometrische

Mehr

Beispiel: Zufallsvariable

Beispiel: Zufallsvariable Beispiel: Zufallsvariable 3 Münzen werden unabhängig voneinander geworfen. Jede Münze kann entweder Kopf oder Zahl zeigen. Man ist nur an der Zahl der Köpfe interessiert. Anzahl Kopf Elementarereignis

Mehr

Wahrscheinlichkeitsrechnung und stochastische Prozesse

Wahrscheinlichkeitsrechnung und stochastische Prozesse Kapitel 7 Wahrscheinlichkeitsrechnung und stochastische Prozesse Zufallsvariable, Wahrscheinlichkeitsdichte, Markov-Prozess ( Zukunft hängt von der Vergangenheit nur über die Gegenwart ab. 7. Einführung

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung Heute Die Binomialverteilung Poissonverteilung Approximation der Binomialverteilung durch die Normalverteilung Arbeiten mit Wahrscheinlichkeitsverteilungen Die Binomialverteilung Man werfe eine Münze n

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

Kennwerteverteilungen von Häufigkeiten und Anteilen

Kennwerteverteilungen von Häufigkeiten und Anteilen Kennwerteverteilungen von Häufigkeiten und Anteilen SS200 6.Sitzung vom 29.05.200 Die hypergeometrische Verteilung Wahrscheinlichkeitsverteilung der Häufigkeit eines binären Merkmals bei Einfacher Zufallsauswahl

Mehr

Winter-Semester 2017/18. Moderne Theoretische Physik IIIa. Statistische Physik

Winter-Semester 2017/18. Moderne Theoretische Physik IIIa. Statistische Physik Winter-Semester 2017/18 Moderne Theoretische Physik IIIa Statistische Physik Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Do 11:30-13:00, Lehmann Raum 022, Geb 30.22 http://www.tkm.kit.edu/lehre/

Mehr

Stochastik Praktikum Markov Chain Monte Carlo Methoden

Stochastik Praktikum Markov Chain Monte Carlo Methoden Stochastik Praktikum Markov Chain Monte Carlo Methoden Humboldt-Universität zu Berlin 14.10.2010 Problemstellung Wie kann eine Zufallsstichprobe am Computer simuliert werden, deren Verteilung aus einem

Mehr

Eine Zufallsvariable X sei stetig gleichverteilt im Intervall [0,5]. Die Wahrscheinlichkeit P(2< x <4) ist dann

Eine Zufallsvariable X sei stetig gleichverteilt im Intervall [0,5]. Die Wahrscheinlichkeit P(2< x <4) ist dann 4. Übung Themenkomplex: Zufallsvariablen und ihre Verteilung Aufgabe 1 Für eine stetige Zufallsvariable gilt: a) P (x = t) > 0 b) P (x 1) = F (1) c) P (x = 1) = 0 d) P (x 1) = 1 F(1) e) P (x 1) = 1 F(1)

Mehr

1 Multivariate Zufallsvariablen

1 Multivariate Zufallsvariablen 1 Multivariate Zufallsvariablen 1.1 Multivariate Verteilungen Definition 1.1. Zufallsvariable, Zufallsvektor (ZV) Sei Ω die Ergebnismenge eines Zufallsexperiments. Eine (univariate oder eindimensionale)

Mehr

Spektralanalyse physiologischer Signale

Spektralanalyse physiologischer Signale Spektralanalyse physiologischer Signale Dr. rer. nat. Axel Hutt Vorlesung 1 - WS 2016/17 über mich Studium der Physik an U Stuttgart Promotion: Nichtlineare Dynamik in Gehirnsignalen Forschung in Neurowissenschaften

Mehr

Wird der zeitliche Verlauf einer stochastischen Last mehrfach gemessen, so ergeben sich unterschiedliche zeitliche Verläufe.

Wird der zeitliche Verlauf einer stochastischen Last mehrfach gemessen, so ergeben sich unterschiedliche zeitliche Verläufe. 2. Stochastische Lasten Wird der zeitliche Verlauf einer stochastischen Last mehrfach gemessen, so ergeben sich unterschiedliche zeitliche Verläufe. Jede Messung liefert eine Realisierung des stochastischen

Mehr

Übungsblätter zu Methoden der Empirischen Sozialforschung III: Inferenzstatistik. Lösungsblatt zu Nr. 2

Übungsblätter zu Methoden der Empirischen Sozialforschung III: Inferenzstatistik. Lösungsblatt zu Nr. 2 Martin-Luther-Universität Halle-Wittenberg Institut für Soziologie Dr. Wolfgang Langer 1 Übungsblätter zu Methoden der Empirischen Sozialforschung III: Inferenzstatistik Lösungsblatt zu Nr. 2 1. Für die

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Zufallsvariable Erinnerung: Merkmal, Merkmalsausprägung Deskriptive Statistik:

Mehr

UE Statistik I für VWL, WS 05/06

UE Statistik I für VWL, WS 05/06 UE Statistik I für VWL, WS 05/06 Beispielsammlung 1. Zeigen Sie, dass die folgenden Rechenregeln für das Summenzeichen gelten, wobei die Summe durch n x i = x 1 + x 2 +... + x n 1 + x n, definiert ist.

Mehr

Statistik für Ingenieure Vorlesung 3

Statistik für Ingenieure Vorlesung 3 Statistik für Ingenieure Vorlesung 3 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 14. November 2017 3. Zufallsgrößen 3.1 Zufallsgrößen und ihre Verteilung Häufig sind

Mehr

Numerische Methoden und Algorithmen in der Physik

Numerische Methoden und Algorithmen in der Physik Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 15.01.2009 Numerische Methoden und Algorithmen in der Physik Christian Autermann 1/ 47 Methode der kleinsten Quadrate

Mehr

Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood

Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood Hauptseminar - Methoden der experimentellen Teilchenphysik WS 2011/2012 Fabian Hoffmann 2. Dezember 2011 Inhaltsverzeichnis 1 Einleitung

Mehr

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt Universität Basel Wirtschaftswissenschaftliches Zentrum Zufallsvariablen Dr. Thomas Zehrt Inhalt: 1. Einführung 2. Zufallsvariablen 3. Diskrete Zufallsvariablen 4. Stetige Zufallsvariablen 5. Erwartungswert

Mehr

Statistik III. Walter Zucchini Fred Böker Andreas Stadie

Statistik III. Walter Zucchini Fred Böker Andreas Stadie Statistik III Walter Zucchini Fred Böker Andreas Stadie Inhaltsverzeichnis 1 Zufallsvariablen und ihre Verteilung 1 1.1 Diskrete Zufallsvariablen........................... 1 1.2 Stetige Zufallsvariablen............................

Mehr

7. Stochastische Prozesse und Zeitreihenmodelle

7. Stochastische Prozesse und Zeitreihenmodelle 7. Stochastische Prozesse und Zeitreihenmodelle Regelmäßigkeiten in der Entwicklung einer Zeitreihe, um auf zukünftige Entwicklung zu schließen Verwendung zu Prognosezwecken Univariate Zeitreihenanalyse

Mehr

TU DORTMUND Sommersemester 2018

TU DORTMUND Sommersemester 2018 Fakultät Statistik. April 08 Blatt Aufgabe.: Wir betrachten das Zufallsexperiment gleichzeitiges Werfen zweier nicht unterscheidbarer Würfel. Sei A das Ereignis, dass die Augensumme beider Würfel ungerade

Mehr

Gauß-Prozess-Regression

Gauß-Prozess-Regression Bayessche Regression und Gaußprozesse Dr. rer. nat. Johannes Riesterer Motivation Kriging Der südafrikanische Bergbauingenieur Danie Krige versuchte 1951, eine optimale Interpolationsmethode für den Bergbau

Mehr

Einführung in die angewandte Stochastik

Einführung in die angewandte Stochastik Einführung in die angewandte Stochastik Fabian Meyer 5. April 2018 Inhaltsverzeichnis 1 Wahrscheinlichkeitsrechnung 3 1.1 Definitionen................................... 3 1.2 Wahrscheinlichkeitsmaß, Wahrscheinlichkeitsverteilung,

Mehr

Mathematica: u=5;s=1;plot[exp[-0.5((x-u)/s)^2],{x,0,10}] 76

Mathematica: u=5;s=1;plot[exp[-0.5((x-u)/s)^2],{x,0,10}] 76 4. Normalverteilung Gauß'sche Glockenkurve: P(a X b) = b 1 x 1 a e dx 1 0.8 0.6 0.4 0. 4 6 8 10 Mathematica: u=5;s=1;plot[exp[-0.5((x-u)/s)^],{x,0,10}] 76 Zentraler Grenzwertsatz: Es sei X 1, X,... eine

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 2. November 2009 Poisson-Verteilung Die Poisson-Verteilung ist gegeben durch: P(r) = µr e µ r! Der Mittelwert ist: r = µ Die Varianz ergibt sich aus

Mehr

Fakultät Verkehrswissenschaften Friedrich List Professur für Ökonometrie und Statistik, insb. im Verkehrswesen. Statistik II

Fakultät Verkehrswissenschaften Friedrich List Professur für Ökonometrie und Statistik, insb. im Verkehrswesen. Statistik II Statistik II 1. Ergänzungen zur Wahrscheinlichkeitstheorie Fakultät Verkehrswissenschaften Friedrich List Professur für Ökonometrie und Statistik, insb. im Verkehrswesen Statistik II 1. Ergänzungen zur

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilung diskreter Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

3. Leistungsdichtespektren

3. Leistungsdichtespektren Stochastische Prozesse: 3. Leistungsdichtespektren Wird das gleiche Geräusch mehrmals gemessen, so ergeben sich in der Regel unterschiedliche zeitliche Verläufe des Schalldrucks. Bei Geräuschen handelt

Mehr

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung 4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung Häufig werden mehrere Zufallsvariablen gleichzeitig betrachtet, z.b. Beispiel 4.1. Ein Computersystem bestehe aus n Teilsystemen. X i sei der Ausfallzeitpunkt

Mehr

Computer in der Wissenschaft

Computer in der Wissenschaft Dr. Michael O. Distler distler@uni-mainz.de Mainz, 8. Januar 2014 Methode der kleinsten Quadrate Geschichte: Von Legendre, Gauß und Laplace zu Beginn des 19. Jahrhunderts eingeführt. Die Methode der kleinsten

Mehr

Zeitreihenanalyse. Seminar Finanzmathematik. Andreas Dienst SS Einleitung - Begrüßung - Motivation - Inhaltsangabe. 2.

Zeitreihenanalyse. Seminar Finanzmathematik. Andreas Dienst SS Einleitung - Begrüßung - Motivation - Inhaltsangabe. 2. Seminar Finanzmathematik - Begrüßung - Motivation - Inhaltsangabe 3. Zusammen - fassung Zeitreihenanalyse Andreas Dienst SS 2006 Zeitreihen: Definition und Motivation - Begrüßung - Motivation - Inhaltsangabe

Mehr

Finanzmathematische Modelle und Simulation

Finanzmathematische Modelle und Simulation Finanzmathematische Modelle und Simulation WS 9/1 Rebecca Henkelmann In meiner Ausarbeitung Grundbegriffe der Stochastik I, geht es darum die folgenden Begriffe für die nächsten Kapitel einzuführen. Auf

Mehr

Grundbegriffe der Stochastik II

Grundbegriffe der Stochastik II Grundbegriffe der Stochastik II Henrik Gebauer 6. Oktober 9 Zusammenfassung Dieser Vortrag dient der Wiederholung zentraler Begriffe der kontinuierlichen Stochastik. Wahrscheinlichkeitsverteilungen Sei

Mehr

Mehrdimensionale Zufallsvariablen

Mehrdimensionale Zufallsvariablen Mehrdimensionale Zufallsvariablen Im Folgenden Beschränkung auf den diskreten Fall und zweidimensionale Zufallsvariablen. Vorstellung: Auswerten eines mehrdimensionalen Merkmals ( ) X Ỹ also z.b. ω Ω,

Mehr

Zufallsvariablen rekapituliert

Zufallsvariablen rekapituliert Zufallsvariablen rekapituliert Wolfgang Konen TH Köln, Campus Gummersbach April 2016 Mai 2017 Wolfgang Konen (TH Köln) Zufallsvariablen April 2016 Mai 2017 1 / 12 1 Einleitung 2 Zufallsvariablen 3 Linearität

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, May 29, 2017 Dr. Michael O. Distler

Mehr

Datenanalyse in der Physik. Vorlesung 2. Wahrscheinlichkeit in der Physik

Datenanalyse in der Physik. Vorlesung 2. Wahrscheinlichkeit in der Physik Datenanalyse in der Physik Vorlesung 2 Wahrscheinlichkeit in der Physik Prof. Dr. J. Mnich DESY und Universität Hamburg Datenanalyse in der Physik Vorlesung 2 p. 1 Wahrscheinlichkeit in der Physik Warum

Mehr

6. Kontinuierliche Zufallsgrößen. Beispiel 1: Die Exponentialverteilungen Sei λ > 0. Setzen

6. Kontinuierliche Zufallsgrößen. Beispiel 1: Die Exponentialverteilungen Sei λ > 0. Setzen 6. Kontinuierliche Zufallsgrößen Definition: Eine Z. G. ξ ist absolut stetig mit (Wahrscheinlichkeits-) Dichte f : R R, wenn gilt: P ( a ξ < b ) = b a f(x) dx (a < b) allgem. Eigenschaften einer Dichte

Mehr

Woche 2: Zufallsvariablen

Woche 2: Zufallsvariablen Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 17/19, 24.04.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Teil III Zufallsvariablen Wahrscheinlichkeit

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 112 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

Zuverlässigkeitstheorie

Zuverlässigkeitstheorie 3. Grundbegriffe der Wahrscheinlichkeitsrechnung Prof. Jochen Seitz Fachgebiet Kommunikationsnetze 20. November 2008 Übersicht Gesetz der großen Zahlen von Bernoulli 1 Gesetz der großen Zahlen von Bernoulli

Mehr

Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Stetige Verteilungen

Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Stetige Verteilungen Materialien zur Lösung der folgenden Aufgaben: - in Übung 3 beigefügte Tabelle Wahrscheinlichkeitsverteilungen diskreter und stetiger Zufallsgrößen - Übersicht - beigefügte Tabelle spezieller stetiger

Mehr

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5 4 Verteilungen und ihre Kennzahlen 1 Kapitel 4: Verteilungen und ihre Kennzahlen A: Beispiele Beispiel 1: Eine diskrete Zufallsvariable X, die nur die Werte 1,, 3, 4, 5 mit positiver Wahrscheinlichkeit

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 240/476 c Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 240/476 c Ernst W. Mayr 1.4.4 Laplace-Prinzip in kontinuierlichen Wahrscheinlichkeitsräumen Das folgende Beispiel zeigt, dass im kontinuierlichen Fall die Bedeutung von gleichwahrscheinlich nicht immer ganz klar sein muss. Bertrand

Mehr

Teil VI. Gemeinsame Verteilungen. Lernziele. Beispiel: Zwei Würfel. Gemeinsame Verteilung

Teil VI. Gemeinsame Verteilungen. Lernziele. Beispiel: Zwei Würfel. Gemeinsame Verteilung Zusammenfassung: diskrete und stetige Verteilungen Woche 4: Verteilungen Patric Müller diskret Wahrscheinlichkeitsverteilung p() stetig Wahrscheinlichkeitsdichte f ()

Mehr

Methoden der Statistik Markov Chain Monte Carlo Methoden

Methoden der Statistik Markov Chain Monte Carlo Methoden Methoden der Statistik Markov Chain Monte Carlo Methoden Humboldt-Universität zu Berlin 08.02.2013 Problemstellung Wie kann eine Zufallsstichprobe am Computer simuliert werden, deren Verteilung aus einem

Mehr

Stefan Hunn. 21.Juni

Stefan Hunn. 21.Juni Fakultät für Physik 21.Juni Übersicht 1 2 3 4 5 zeitabhängige Zufallsvariablen Zeitunabhängige Ω = Menge der möglichen exp. Ergebnisse Zeitabhängige X : Ω R zeitunabh. Zufallvariable X : Ω R R; ω t X (t,

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung 11. Vorlesung Jochen Köhler 10.05.011 1 Inhalt der heutigen Vorlesung Zusammenfassung Parameterschätzung Übersicht über Schätzung und Modellbildung Modellevaluation

Mehr