Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt"

Transkript

1 Universität Basel Wirtschaftswissenschaftliches Zentrum Zufallsvariablen Dr. Thomas Zehrt Inhalt: 1. Einführung 2. Zufallsvariablen 3. Diskrete Zufallsvariablen 4. Stetige Zufallsvariablen 5. Erwartungswert und Varianz 6. Standardisierte Zufallsvariablen 7. Die Ungleichung von Tschebyschev

2 2 Teil 1 Einführung

3 Bei vielen Zufallsexperimenten tritt als Ergebnis direkt eine reelle Zahl auf und selbst wenn die auftretenden Ergebnisse keine Zahlenwerte sind, interessiert man sich häufig für einen durch den Versuchsausgang bestimmten Zahlenwert. 3 Mathematisch: Abbildung X von der Menge Ω in die reellen Zahlen (Zufallsvariable) Ω P [0,1] X IR Da das Ergebnis ω vom Zufall abhängt, wird auch der Zahlenwert X(ω) zufallsabhängig sein.

4 4 Beispiel Zufallsexperiment: Zweifacher Wurf eines Würfels Wahrscheinlichkeitsraum: Ω = { ω = (ω 1,ω 2 ) : ω i {1,...,6} } mit Gleichverteilung auf Ω (P(ω) = 1 36 ). Zufallsvariable: X : Ω {2,3,4,...,12} = R X R (ω 1,ω 2 ) ω 1 + ω 2 für alle (ω 1,ω 2 ) Ω X ist eine Funktion, die jedem Ergebnis des Experimentes die Augensumme zuordnet.

5 Der Raum Ω 5 2. Wurf Ω Wurf

6 6 Der Wahrscheinlichkeitsraum (Ω,P) 2. Wurf Ω P Wurf Auf jedem Ausgang ω des Experimentes lastet ein Gewicht P(ω)!

7 Für alle k {2,3,4,...,12} sei nun 7 X 1 (k) = {ω = (ω 1,ω 2 ) Ω : X(ω) = k} }{{} Ereignis:,,Augensumme ist gleich k Dann ist: P X (k) = P(X 1 (k)) die Wahrscheinlichkeit dafür, dass die Augensumme k (2 k 12) gewürfelt wird.

8 8 Beispiel: Grün: X 1 (4) und P X (4) = P(X 1 (4)) = 3 36 Gelb: X 1 (7) und P X (4) = P(X 1 (7)) = 6 36

9 9 Einzelwahrscheinlichkeiten P X (k): k Elemente in X 1 (k) X 1 (k) P X (k) 2 (1,1) 1 1/36 3 (1,2), (2,1) 2 2/36 4 (1,3), (2,2), (3,1) 3 3/36 5 (1,4), (2,3), (3,2), (4,1) 4 4/36 6 (1,5), (2,4), (3,3), (4,2), (5,1) 5 5/36 7 (1,6), (2,5), (3,4), (4,3), (5,2), (6,1) 6 6/36 8 (2,6), (3,5), (4,4), (5,3), (6,2) 5 5/36 9 (3,6), (4,5), (5,4), (6,3) 4 4/36 10 (4,6), (5,5), (6,4) 3 3/36 11 (5,6), (6,5) 2 2/36 12 (6,6) 1 1/36 0 P X (k) 1 für alle k = 2,...,12 alle Ereignisse X 1 (k) Ω sind disjunkt, ihre Vereinigung ist ganz Ω und 12 k=2 P X (k) = 1.

10 10 P X IRX

11 Damit haben wir gezeigt: Die Verknüpfung P X (k) definiert eine Wahrscheinlichkeitsverteilung über der Menge {2,...,12}. 11 Allgemein gegeben: (Ω, P) ein Wahrscheinlichkeitsraum X : Ω R Zufallsvariable R X = X(Ω) R das Bild von X P X = P(X 1 ) Dann ist das Paar (R X,P X ) ein Wahrscheinlichkeitsraum, d.h. P X ist eine Wahrscheinlichkeitsverteilung auf R X.

12 12 Zusammenfassung: Jede Zufallsvariable X ordnet der Menge Ω aller möglichen Ausgänge eines Zufallsexperimentes eine Teilmenge R X der reellen Zahlen zu und transportiert die Wahrscheinlichkeiten von Ereignissen aus Ω nach R X! Ω R X P P X P X heisst auch die Verteilung von X und wird meist wieder mit P bezeichnet.

13 13 Beispiele: Experiment Ω Zufallsvariable Beobachtung Kennzeichen Geschwindigkeit vorbeifahrender der Autos Autos {BS 01,...} X(BS 00) = 50 km h X(BL 01) = 40 km h... Auswahl einer Person Passnummern Körpergrösse {17,14,...} X(17 ) = 1.83 m X(14 ) = 1.59 m...

14 14 Teil 2 Zufallsvariablen

15 Meist von Interesse: Wahrscheinlichkeit, dass X(ω) in einem bestimmten Intervall I = [a, b] liegt, also dass X(ω) I gilt. Dazu betrachten wir die Gesamtheit aller Ergebnisse ω, für die X(ω) I gilt: A I = {ω Ω : X(ω) I}. 15 Ω A I ω ω 2 ω 5 ω 7 1 ω3 ω 4 ω 6 I X( ω 1 ) X( ω 5 ) IR

16 16 Für beliebige Abbildungen X : Ω R ist A I nicht notwendigerweise ein Ereignis (insbesondere, wenn man die Menge Ω grösser als nötig gewählt hat). Definition: Sei (Ω, P) ein Wahrscheinlichkeitsraum. Dann heisst eine Abbildung X : Ω R eine (reellwertige) Zufallsvariable, falls für alle Intervalle I R die Menge A I = {ω Ω : X(ω) I} Ω ein Ereignis ist. Insbesondere bedeutet das, dass wir A I eine Wahrscheinlichkeit zuordnen können.

17 Bezeichnungen Für die Wahrscheinlichkeiten des Ereignisses A I und ähnlicher Ereignisse, die sich direkt über die Zufallsvariable X darstellen lassen, schreiben wir abkürzend: 17 P(X = x 0 ) = P( {ω Ω : X(ω) = x 0 } ) P(X I) = P( {ω Ω : X(ω) I} ) = P(A I ) P(a X b) = P( {ω Ω : a X(ω) b} ) P(X b) = P( {ω Ω : X(ω) b} ).

18 18 Diese Wahrscheinlichkeiten lassen sich mit Hilfe der sogenannten Verteilungsfunktion berechnen. Sei X eine Zufallsvariable auf dem Wahrscheinlichkeitsraum (Ω, P). Dann heisst die Abbildung F : R [0,1] mit F(x) = P(X x) = P( X x) Verteilungsfunktion der Zufallsvariablen.

19 Aufgabe 1 Ein Laplace-Würfel wird dreimal geworfen. Die Zufallsvariable X bezeichne die Anzahl, wie oft eine gerade Zahl geworfen wurde. Bestimmen Sie die Verteilung und die Verteilungsfunktion von X und stellen Sie diese graphisch dar. 19

20 20 Eigenschaften von Verteilungsfunktionen F ist monoton wachsend F ist rechtsseitig stetig, d.h. F(x) = lim h>0,h 0 F(x + h) lim x F(x) = 0 lim x F(x) = 1

21 21 Rechenregeln für Verteilungsfunktionen Für alle a,b R mit a < b gilt: P(X < a) = P(X a) P(X = a) = F(a) P(X = a) P(X > a) = 1 F(a) P(X a) = 1 F(a) + P(X = a) P(a < X b) = F(b) F(a) P(a < X < b) = F(b) F(a) P(X = b) P(a X < b) = F(b) F(a) P(X = b) + P(X = a)

22 22 Im folgenden unterscheiden wir zwei Typen von Zufallsvariablen diskrete Zufallsvariablen: R X = X(Ω) ist eine abzählbare Menge, z.b. 0,1,2,...,100 stetige Zufallsvariablen: R X = X(Ω) ist eine überabzählbare Menge, z.b. [0,200].

23 Teil 3 Diskrete Zufallsvariablen 23

24 24 Eine Zufallsvariable X heisst diskret, wenn ihr Wertebereich endlich oder abzählbar unendlich ist. Wir können alle möglichen Werte von X durchnumerieren: R X = X(Ω) = {x 1,x 2,x 3,...}. Diskrete Zufallsvariablen nehmen in der Regel ganzzahlige Werte an und entstehen meist durch Zählprozesse.

25 Nimmt die diskrete Zufallsvariable die Werte {x 1,x 2,...} an, so gehört zu jedem Wert x j das Ereignis X = x j und dessen Wahrscheinlichkeit 25 p j := P(X = x j ), j = 1,2,3,... Die Verteilungsfunktion von X hat dann die Gestalt F(x) = P(X x) = x j x p j.

26 26 Graphisch kann man eine diskrete Wahrscheinlichkeitsverteilung auf folgende Weise darstellen: in einem Stabdiagramm: über jeder Stelle x j errichtet man einen Stab der Länge p j, durch den Graphen der Verteilungsfunktion F

27 Stabdiagramm 27 P X IRX Verteilungsfunktion P X IRX

28 28 Teil 4 Stetige Zufallsvariablen

29 Zunächst benötigen wir den hier wichtigen Begriff einer Dichte. 29 Eine Funktion f heisst Dichte oder Wahrscheinlichkeitsdichte falls sie die folgenden Eigenschaften hat: 1. f(t) 0 für alle t R, 2. f(t) ist stetig bis auf abzählbar viele Punkte, 3. f(t) dt = 1.

30 30 Eine Zufallsvariable heisst stetig mit der Dichte f falls sich die Verteilungsfunktion F : R [0,1] in der folgenden Weise schreiben lässt: F(x) = x f(t) dt. Die Verteilungsfunktion F ist eine Stammfunktion der zugehörigen Dichte! Satz Die Wahrscheinlichkeit, dass eine stetige Zufallsvariable einen beliebigen Wert x 0 annimmt, ist gleich Null: P(X = x 0 ) = 0

31 Beweis: Sei x 0 R und wir betrachten das Intervall (x 0 δ,x 0 ]. Dann gilt zunächst allgemein: 31 P(x 0 δ < X x 0 ) = F(x 0 ) F(x 0 δ) also P(X = x 0 ) = lim δ 0 P(x 0 δ < X x 0 ) = lim δ 0 [F(x 0 ) F(x 0 δ)] = F(x 0 ) F(x 0 ) = 0. Bei stetigen Zufallsvariablen sind Punktereignisse X = x i nicht von Interesse!!

32 32 Zusammenfassung: Wahrscheinlichkeit, dass X P(a X b) einen Wert zwischen a und b = P(a < X < b) annimmt = P(a X < b) Ausgedrückt durch die Verteilungsfunktion = F(b) F(a) Ausgedrückt durch die = Dichte: b a f(t) dt

33 33 Die Dichte einer Zufallsvariablen X: y f(t) t a b P(a X b) = b a f(t)dt ist der Flächeninhalt unter der Kurve zwischen den Grenzen a und b und dieser Flächeninhalt entspricht der Wahrscheinlichkeit dafür, dass unsere Zufallsvariable X einen Wert zwischen a und b annimmt.

34 34 Aufgabe 2 An einer Haltestelle kommt pünktlich alle 20 Minuten ein Tram an. Eine Person geht, ohne auf die Uhr zu schauen, an die Haltestelle und nimmt das nächste Tram. Die Zufallsvariable T bezeichne die Wartezeit in Minuten. Modellieren Sie die Verteilung von T mit einer geeigneten Dichte und bestimmen Sie damit P(T < 10) P(T > 5) P(5 < T < 8).

35 Teil 5 Erwartungswert und Varianz 35

36 36 X sei eine Zufallsvariable. Dann ist der Erwartungswert E(X) = µ wie folgt definiert. 1. Falls X diskret mit den endlich vielen Werten {x 1,x 2,...,x n } ist, so gilt: n E(X) = x i } P(X {{ = x i } ) i=1 p i 2. Falls X stetig mit zugehöriger Dichte f ist, so gilt: E(X) = t f(t) dt

37 Die Varianz Var(X) = σ 2 der Zufallsvariablen X mit µ = E(X) ist wie folgt definiert Falls X diskret mit den endlich vielen Werten {x 1,x 2,...,x n } ist, so gilt: n Var(X) = (x i µ) 2 } P(X {{ = x i } ) i=1 p i 2. Falls X stetig mit zugehöriger Dichte f ist, so gilt: Var(X) = (t µ) 2 f(t) dt Die positive Quadratwurzel der Varianz heisst Standartabweichung von X.

38 38 y f(t) E(X) V(X) E(X) t E(X) + V(X Der Erwartungswert E(X) kann als Schwerpunkt der mit der Dichte belasteten reellen Zahlengerade interpretiert werden. Die Varianz misst die durchschnittliche Abweichung der Werte von X vom Erwartungswert E(X). Da sich die obige Dichte weit auf der Achse ausbreitet, wird Var(X) hier relativ gross sein.

39 39 Rechenregeln für Erwartungswert und Varianz Seien X,Y Zufallsvariablen und a,b,c reelle Zahlen. Dann gelten: 1. E(aX + by + c) = a E(X) + b E(Y) + c 2. Var(aX + b) = a 2 Var(X) 3. Verschiebungssatz der Varianz Var(X) = E(X 2 ) [E(X)] 2

40 40 Aufgabe 3 Sei X die Augenzahl beim einmaligen Wurf eines Laplace-Würfels. Bestimmen Sie den Erwartungswert und die Standardabweichung.

41 Teil 6 Standardisierte Zufallsvariablen 41

42 42 Eine Zufallsvariable heisst standardisiert falls E(X) = 0 und Var(X) = 1 gilt. Satz Ist X eine beliebige Zufallsvariable, dann ist die Zufallsvariable standardisiert. Y = X E(X) Var(X) Y heisst die Standardisierung von X.

43 Aufgabe 4 Zeigen Sie, dass für jede Zufallsvariable X die neue Zufallsvariable 43 standardisiert ist. Y = X E(X) V ar(x)

44 44 Teil 7 Die Ungleichung von Tschebyschev

45 Sei X eine beliebige Zufallsvariable. Dann gilt für jede positive Zahl c: 45 P( X E(X) c ) Var(X) c 2 d.h. man kann relativ leicht die Wahrscheinlichkeit abschätzen, mit der X einen Wert ausserhalb des um den Erwartungswert symmetrischen Intervalls annimmt. [E(X) c,e(x) + c]

46 46 Mit der Abkürzung µ = E(X): µ c µ + c µ Der blau gekennzeichnete Flächeninhalt ausserhalb des Intervalls [µ c,µ + c] ist stets kleiner als der Wert Var(X) c 2.

47 Alternative Ungleichung von Tschebyschev 47 Sei X eine beliebige Zufallsvariable. Dann gilt für jede positive Zahl c: P( X E(X) < c ) = 1 P( X E(X) c ) 1 Var(X) c 2 Also P( X E(X) < c ) 1 Var(X) c 2

48 48 Aufgabe 5 Von einer stetigen Zufallsvariablen X sei nur bekannt, dass sie den Erwartungswert 15 und die Varianz 4 besitzt. 1. Wie gross ist P(10 X 20) mindestens? 2. Bestimmen Sie das kleinste, symmetrisch um 15 gelegene Intervall der Form [15 c, 15+c], in welches mit einer Wahrscheinlichkeit von mindestens 0.9 die Werte von X fallen.

49 Anwendung der Ungleichung von Tschebyschev: kσ- Bereiche 49 Frage: Was liefert uns die Ungleichung von Tschebyschev für spezielle Wahlen der Konstanten c? Abkürzungen: µ = E(X) σ 2 = Var(X) Wahlen von c: c = k σ für k = 1,2 und 3 Ungleichung: P( X µ < k σ ) 1 σ2 k 2 σ 2 = 1 1 k 2

50 50 1. k = 1, die 1 σ-regel P( X µ < σ ) 1 1 = 0 2. k = 2, die 2 σ-regel P( X µ < 2 σ ) = k = 3, die 3 σ-regel P( X µ < 3 σ ) = 8 9

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

3.3 Bedingte Wahrscheinlichkeit

3.3 Bedingte Wahrscheinlichkeit 28 3.3 Bedingte Wahrscheinlichkeit Oft ist die Wahrscheinlichkeit eines Ereignisses B gesucht unter der Bedingung (bzw. dem Wissen), dass ein Ereignis A bereits eingetreten ist. Man bezeichnet diese Wahrscheinlichkeit

Mehr

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten Zufallsgrößen Ergebnisse von Zufallsexperimenten werden als Zahlen dargestellt 0 Einführung Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Hypothesentests

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Zufallsgröße: X : Ω R mit X : ω Anzahl der geworfenen K`s

Zufallsgröße: X : Ω R mit X : ω Anzahl der geworfenen K`s 4. Zufallsgrößen =============================================================== 4.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

4 Diskrete Wahrscheinlichkeitsverteilungen

4 Diskrete Wahrscheinlichkeitsverteilungen 4 Diskrete Wahrscheinlichkeitsverteilungen 4.1 Wahrscheinlichkeitsräume, Ereignisse und Unabhängigkeit Definition: Ein diskreter Wahrscheinlichkeitsraum ist ein Paar (Ω, Pr), wobei Ω eine endliche oder

Mehr

3. Kombinatorik und Wahrscheinlichkeit

3. Kombinatorik und Wahrscheinlichkeit 3. Kombinatorik und Wahrscheinlichkeit Es geht hier um die Bestimmung der Kardinalität endlicher Mengen. Erinnerung: Seien A, B, A 1,..., A n endliche Mengen. Dann gilt A = B ϕ: A B bijektiv Summenregel:

Mehr

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung lausthal Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Begriffe Definition: Unter einem Zufallsexperiment versteht man einen,

Mehr

Wahrscheinlichkeitsrechnung und Quantentheorie

Wahrscheinlichkeitsrechnung und Quantentheorie Physikalische Chemie II: Atombau und chemische Bindung Winter 2013/14 Wahrscheinlichkeitsrechnung und Quantentheorie Messergebnisse können in der Quantenmechanik ganz prinzipiell nur noch mit einer bestimmten

Mehr

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

9 Erwartungswert, Varianz und Standardabweichung einer Zufallsgröÿe

9 Erwartungswert, Varianz und Standardabweichung einer Zufallsgröÿe Übungsmaterial 9 Erwartungswert, Varianz und Standardabweichung einer Zufallsgröÿe 9. Erwartungswert Fragt man nach dem mittleren Wert einer Zufallsgröÿe X pro Versuch, so berechnet man den Erwartungswert

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

Lernzusammenfassung für die Klausur. Inhaltsverzeichnis. Stochastik im SS 2001 bei Professor Sturm

Lernzusammenfassung für die Klausur. Inhaltsverzeichnis. Stochastik im SS 2001 bei Professor Sturm Stochastik im SS 2001 bei Professor Sturm Lernzusammenfassung für die Klausur Hallo! In diesem Text habe ich die wichtigsten Dinge der Stochastikvorlesung zusammengefaÿt, jedenfalls soweit, wie ich bis

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

Kapitel 5. Stochastik

Kapitel 5. Stochastik 76 Kapitel 5 Stochastik In diesem Kapitel wollen wir die Grundzüge der Wahrscheinlichkeitstheorie behandeln. Wir beschränken uns dabei auf diskrete Wahrscheinlichkeitsräume Ω. Definition 5.1. Ein diskreter

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

Übung 1: Wiederholung Wahrscheinlichkeitstheorie

Übung 1: Wiederholung Wahrscheinlichkeitstheorie Übung 1: Wiederholung Wahrscheinlichkeitstheorie Ü1.1 Zufallsvariablen Eine Zufallsvariable ist eine Variable, deren numerischer Wert solange unbekannt ist, bis er beobachtet wird. Der Wert einer Zufallsvariable

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 5 Hilfsmittel aus der Kombinatorik 7 Bedingte

Mehr

Aufgaben zu Kapitel 38

Aufgaben zu Kapitel 38 Aufgaben zu Kapitel 38 Aufgaben zu Kapitel 38 Verständnisfragen Aufgabe 38. Welche der folgenden vier Aussagen sind richtig:. Kennt man die Verteilung von X und die Verteilung von Y, dann kann man daraus

Mehr

Definition 2.1 Der Erwartungswert einer diskreten Zufallsvariablen mit Wahrscheinlichkeitsfunktion

Definition 2.1 Der Erwartungswert einer diskreten Zufallsvariablen mit Wahrscheinlichkeitsfunktion Kapitel 2 Erwartungswert 2.1 Erwartungswert einer Zufallsvariablen Definition 2.1 Der Erwartungswert einer diskreten Zufallsvariablen mit Wahrscheinlichkeitsfunktion È ist definiert als Ü ÜÈ Üµ Für spätere

Mehr

0, t 0,5

0, t 0,5 XIII. Die Normalverteilung ==================================================================. Der lokale Grenzwertsatz --------------------------------------------------------------------------------------------------------------

Mehr

Diskrete Strukturen WiSe 2012/13 in Trier

Diskrete Strukturen WiSe 2012/13 in Trier Diskrete Strukturen WiSe 2012/13 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 11. Januar 2013 1 Diskrete Strukturen Gesamtübersicht Organisatorisches und Einführung Mengenlehre Relationen

Mehr

2. Zufallsvariable, Verteilungsfunktion, Erwartungswert,

2. Zufallsvariable, Verteilungsfunktion, Erwartungswert, 2. Zufallsvariable, Verteilungsfunktion, Erwartungswert, momentenerzeugende Funktion Ziel des Kapitels: Mathematische Präzisierung der Konzepte Zufallsvariable Verteilungsfunktion Dichtefunktion Erwartungswerte

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion Kapitel 12 Stetige Zufallsvariablen 12.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig

Mehr

Übungsaufgaben, Statistik 1

Übungsaufgaben, Statistik 1 Übungsaufgaben, Statistik 1 Kapitel 3: Wahrscheinlichkeiten [ 4 ] 3. Übungswoche Der Spiegel berichtet in Heft 29/2007 von folgender Umfrage vom 3. und 4. Juli 2007:,, Immer wieder werden der Dalai Lama

Mehr

Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung?

Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung? Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße Von Florian Modler In diesem Artikel möchte ich einen kleinen weiteren Exkurs zu meiner Serie Vier Wahrscheinlichkeitsverteilungen geben

Mehr

Weihnachtszettel zur Vorlesung. Stochastik I. Wintersemester 2011/2012

Weihnachtszettel zur Vorlesung. Stochastik I. Wintersemester 2011/2012 Weihnachtszettel zur Vorlesung Stochastik I Wintersemester 0/0 Aufgabe. Der Weihnachtsmann hat vergessen die Weihnachtsgeschenke mit Namen zu beschriften und muss sie daher zufällig verteilen. Dabei enthält

Mehr

Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind:

Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind: Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Inhalte Themen dieses Kapitels sind: Das Konzept stetiger Zufallsvariablen Die

Mehr

Übungen zur Stochastik, Blatt Nr. 1

Übungen zur Stochastik, Blatt Nr. 1 Prof. Dr. A. Stoffel SS 202 Übungen zur Stochastik, Blatt Nr. ) Zwei Würfel werden gleichzeitig oder nacheinander geworfen. a) Schreiben Sie alle Elemente des Grundraums in Form einer Matrix auf. b) Wie

Mehr

Stochastik. Prof. Dr. Ulrich Horst. Wintersemester 2013/2014

Stochastik. Prof. Dr. Ulrich Horst. Wintersemester 2013/2014 Stochastik Prof. Dr. Ulrich Horst Wintersemester 3/4 Institut für Mathematik Mathematisch-Naturwissenschaftliche Fakultät II Humboldt-Universität zu Berlin Dieses Skript wurde von Alexander Prang in Anlehnung

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR STOCHASTIK SS 2007 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Dipl.-Math. oec. W. Lao Klausur (Maschineningenieure) Wahrscheinlichkeitstheorie und Statistik vom 2.9.2007 Musterlösungen

Mehr

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung 4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung Häufig werden mehrere Zufallsvariablen gleichzeitig betrachtet, z.b. Beispiel 4.1. Ein Computersystem bestehe aus n Teilsystemen. X i sei der Ausfallzeitpunkt

Mehr

Abschlussprüfung 1998 zum Erwerb der Fachhochschulreife an Berufsoberschulen

Abschlussprüfung 1998 zum Erwerb der Fachhochschulreife an Berufsoberschulen BOS 12 NT 98 Seite 1 Abschlussprüfung 1998 zum Erwerb der Fachhochschulreife an Berufsoberschulen Mathematik (nichttechnische Ausbildungsrichtungen) (Arbeitszeit für eine A- und eine S-Aufgabe insgesamt

Mehr

Elemente der Stochastik (SoSe 2016) 10. Übungsblatt

Elemente der Stochastik (SoSe 2016) 10. Übungsblatt Dr. M. Weimar 3.06.206 Elemente der Stochastik (SoSe 206) 0. Übungsblatt Aufgabe (2+2+2+2+3= Punkte) Zur zweimaligen Drehung des nebenstehenden Glücksrads (mit angenommener Gleichverteilung bei jeder Drehung)

Mehr

Allgemeine Wahrscheinlichkeitsräume

Allgemeine Wahrscheinlichkeitsräume Kapitel 3 Allgemeine Wahrscheinlichkeitsräume 3. Einleitung Wir hatten schon bemerkt, dass der Begriff des diskreten Wahrscheinlichkeitsraums nicht ausreicht, um das unendliche Wiederholen eines Zufallsexperiments

Mehr

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen 6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Bisher: Diskrete Zufallsvariablen,

Mehr

8. Stetige Zufallsvariablen

8. Stetige Zufallsvariablen 8. Stetige Zufallsvariablen Idee: Eine Zufallsvariable X ist stetig, falls ihr Träger eine überabzählbare Teilmenge der reellen Zahlen R ist. Beispiel: Glücksrad mit stetigem Wertebereich [0, 2π] Von Interesse

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik. Mögliche Ergebnisse, auch Elementarereignisse bezeichnet

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik. Mögliche Ergebnisse, auch Elementarereignisse bezeichnet Kapitel 10 Zufall und Wahrscheinlichkeit 10.1. Grundbegriffe Wahrscheinlichkeitsrechnung Zufallsvorgang Klein-Omega ω Groß-Omega Ω Stellt Modelle bereit, die es erlauben zufallsabhängige Prozesse abzuschätzen

Mehr

Diskrete Wahrscheinlichkeitsverteilungen

Diskrete Wahrscheinlichkeitsverteilungen Diskrete Wahrscheinlichkeitsverteilungen Worum geht es in diesem Modul? Zufallsvariablen Wahrscheinlichkeitsverteilungen Maßzahlen theoretischer Verteilungen Eigenschaften von Erwartungswert und Varianz

Mehr

Vorlesung 8a. Kovarianz und Korrelation

Vorlesung 8a. Kovarianz und Korrelation Vorlesung 8a Kovarianz und Korrelation 1 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und E[Y 2 ] < ist Cov[X, Y ] := E [ (X EX)(Y EY ) ] Insbesondere

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Ungleichungen Inhalt: 1. Grundlegendes 2. Lineare Ungleichungen 3. Ungleichungen mit

Mehr

σ-algebren, Definition des Maßraums

σ-algebren, Definition des Maßraums σ-algebren, Definition des Maßraums Ziel der Maßtheorie ist es, Teilmengen einer Grundmenge X auf sinnvolle Weise einen Inhalt zuzuordnen. Diese Zuordnung soll so beschaffen sein, dass dabei die intuitiven

Mehr

Basistext - Wahrscheinlichkeitsrechnung

Basistext - Wahrscheinlichkeitsrechnung Basistext - Wahrscheinlichkeitsrechnung Die Wahrscheinlichkeitsrechnung beschäftigt sich mit Vorgängen, die in ihrem Ausgang unbestimmt sind. Sie versucht mögliche Ergebnisse der Vorgänge zu quantifizieren.

Mehr

Beweis. Bauer (4. Auflage, 1991), S , Hoffmann-Jørgensen, Vol. I, S. 457.

Beweis. Bauer (4. Auflage, 1991), S , Hoffmann-Jørgensen, Vol. I, S. 457. Exkurs A: Bedingte Erwartungswerte, bedingte Verteilungen (Ω, A, P ) sei W-Raum, X : Ω IR P-quasiintegrierbar, F A Unter - σ- Algebra. E(X F) = E P (X F) (Version des) bedingter Erwartungswert von X unterf

Mehr

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Wichtige Tatsachen und Formeln zur Vorlesung Mathematische Grundlagen für das Physikstudium 3 Franz Embacher http://homepage.univie.ac.at/franz.embacher/

Mehr

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 9. Übung SS 16: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 9. Übung SS 16: Woche vom Übungsaufgaben 9. Übung SS 16: Woche vom 5. 6. 10. 6. 2016 Stochastik III: Totale Wkt., S.v.Bayes, Diskrete ZG Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

Aufgabe 3 Was ist der Erwartungswert der größten gezogenen Zahl M beim Zahlenlotto 6 aus 49 (ohne Zusatzzahl)?

Aufgabe 3 Was ist der Erwartungswert der größten gezogenen Zahl M beim Zahlenlotto 6 aus 49 (ohne Zusatzzahl)? Erwartungswert Aufgaben Aufgabe Bei der Flugplatz Party haben Sie die Wahl ob Sie 3 Euro Eintritt bezahlen, oder Sie würfeln den Eintrittspreis mit einem normalen Würfel. Die Frage die sich dabei stellt

Mehr

Diskrete Verteilungen

Diskrete Verteilungen KAPITEL 6 Disrete Verteilungen Nun werden wir verschiedene Beispiele von disreten Zufallsvariablen betrachten. 1. Gleichverteilung Definition 6.1. Eine Zufallsvariable X : Ω R heißt gleichverteilt (oder

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

Übungen zur Mathematik für Pharmazeuten

Übungen zur Mathematik für Pharmazeuten Blatt 1 Aufgabe 1. Wir betrachten den Ereignisraum Ω = {(i,j) 1 i,j 6} zum Zufallsexperiment des zweimaligem Würfelns. Sei A Ω das Ereignis Pasch, und B Ω das Ereignis, daß der erste Wurf eine gerade Augenzahl

Mehr

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK)

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) für Studierende des Maschinenbaus vom 7. Juli (Dauer: 8 Minuten) Übersicht über die

Mehr

Mathematik für Ökonomen 1

Mathematik für Ökonomen 1 Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Herbstemester 2008 Mengen, Funktionen und Logik Inhalt: 1. Mengen 2. Funktionen 3. Logik Teil 1 Mengen

Mehr

Klausur zur Vorlesung,,Algorithmische Mathematik II

Klausur zur Vorlesung,,Algorithmische Mathematik II Institut für angewandte Mathematik, Institut für numerische Simulation Sommersemester 2015 Prof. Dr. Anton Bovier, Prof. Dr. Martin Rumpf Klausur zur Vorlesung,,Algorithmische Mathematik II Bitte diese

Mehr

Lösungen ausgewählter Übungsaufgaben zum Buch. Elementare Stochastik (Springer Spektrum, 2012) Teil 3: Aufgaben zu den Kapiteln 5 und 6

Lösungen ausgewählter Übungsaufgaben zum Buch. Elementare Stochastik (Springer Spektrum, 2012) Teil 3: Aufgaben zu den Kapiteln 5 und 6 1 Lösungen ausgewählter Übungsaufgaben zum Buch Elementare Stochastik (Springer Spektrum, 2012) Teil 3: Aufgaben zu den Kapiteln 5 und 6 Aufgaben zu Kapitel 5 Zu Abschnitt 5.1 Ü5.1.1 Finden Sie eine maximum-likelihood-schätzung

Mehr

Mengen, Funktionen und Logik

Mengen, Funktionen und Logik Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Mengen, Funktionen und Logik Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Bedingte Wahrscheinlichkeiten und Unabhängigkeit

Bedingte Wahrscheinlichkeiten und Unabhängigkeit Kapitel 5 Bedingte Wahrscheinlichkeiten und Unabhängigkeit Mitunter erhält man über das Ergebnis eines zufälligen Versuches Vorinformationen. Dann entsteht die Frage, wie sich für den Betrachter, den man

Mehr

M13 Übungsaufgaben / pl

M13 Übungsaufgaben / pl Die Histogramme von Binomialverteilungen werden bei wachsendem Stichprobenumfang n immer flacher und breiter. Dem Maximum einer solchen Verteilung kommt daher keine allzu große Wahrscheinlichkeit zu. Vielmehr

Mehr

Übungen zur Wahrscheinlichkeitstheorie und Statistik

Übungen zur Wahrscheinlichkeitstheorie und Statistik Übungen zur Wahrscheinlichkeitstheorie und Statistik Prof. Dr. C. Löh/M. Blank Blatt 0 vom 16. April 2012 Aufgabe 1 (Wahrscheinlichkeitsräume). Welche der folgenden Aussagen sind wahr? Begründen Sie jeweils

Mehr

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen.

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen. Dieses Quiz soll Ihnen helfen, Kapitel 2.5-2. besser zu verstehen. Frage Wir betrachten ein Würfelspiel. Man wirft einen fairen, sechsseitigen Würfel. Wenn eine oder eine 2 oben liegt, muss man 2 SFr zahlen.

Mehr

Kapitel 2 Mathematische Grundlagen

Kapitel 2 Mathematische Grundlagen Kapitel 2 Mathematische Grundlagen Ziel: Einführung/Auffrischung einiger mathematischer Grundlagen 2.1 Mengen, Relationen, Ordnungen Definition: Eine Menge ist eine Zusammenfassung von wohlbestimmten und

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 0.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

K8 Stetige Zufallsvariablen Theorie und Praxis

K8 Stetige Zufallsvariablen Theorie und Praxis K8 Stetige Zufallsvariablen Theorie und Praxis 8.1 Theoretischer Hintergrund Wir haben (nicht abzählbare) Wahrscheinlichkeitsräume Meßbare Funktionen Zufallsvariablen Verteilungsfunktionen Dichten in R

Mehr

Kapitel 3. Ein Statistisches Intermezzo. Strange events permit themselves the luxury of occurring. (Charlie Chan)

Kapitel 3. Ein Statistisches Intermezzo. Strange events permit themselves the luxury of occurring. (Charlie Chan) Kapitel 3 Ein Statistisches Intermezzo Strange events permit themselves the luxury of occurring. (Charlie Chan) Unsere Umwelt produziert am laufenden Band Ergebnisse wie Wolken, Aktienkurse, Herzinfarkte

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 3. Vorlesung - 21.10.2016 Bedingte Wahrscheinlichkeit In einer Urne sind 2 grüne und 3 blaue Kugeln. 2 Kugeln werden ohne Zürücklegen gezogen. Welches ist die Wahrscheinlichkeit, dass : a) man eine grüne

Mehr

Kapitel 2 Wahrscheinlichkeitsrechnung

Kapitel 2 Wahrscheinlichkeitsrechnung Motivation bisher: Beschreibung von Datensätzen = beobachteten Merkmalsausprägungen Frage: Sind Schlußfolgerungen aus diesen Beobachtungen möglich? Antwort: Ja, aber diese gelten nur mit einer bestimmten

Mehr

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung Mathematik: LehrerInnenteam Arbeitsblatt 7-7. Semester ARBEITSBLATT Erwartungswert, Varianz und Standardabweichung Die Begriffe Varianz und Standardabweichung sind uns bereits aus der Statistik bekannt

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Die Schreibweise x M bedeutet, dass das Objekt x in der Menge M liegt. Ist dies nicht der Fall, dann schreibt man

Die Schreibweise x M bedeutet, dass das Objekt x in der Menge M liegt. Ist dies nicht der Fall, dann schreibt man Die Schreibweise x M bedeutet, dass das Objekt x in der Menge M liegt. Ist dies nicht der Fall, dann schreibt man x / M. Man sagt, M ist Teilmenge von N und schreibt M N, wenn für jedes x M auch x N gilt.

Mehr

Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff

Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff Zufallsgrößen 2.5 Zufallsgrößen 2.5.1 Verteilungsfunktion einer Zufallsgröße 2.5.2 Wahrscheinlichkeits- und Dichtefunktion Wahrscheinlichkeitsfunktion einer diskreten Zufallsgröße Dichtefunktion einer

Mehr

, dt. $+ f(x) = , - + < x < +, " > 0. " 2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) =

, dt. $+ f(x) = , - + < x < +,  > 0.  2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) = 38 6..7.4 Normalverteilung Die Gauß-Verteilung oder Normal-Verteilung ist eine stetige Verteilung, d.h. ihre Zufallsvariablen können beliebige reelle Zahlenwerte annehmen. Wir definieren sie durch die

Mehr

Übungen zu bedingten Erwartungswerten. Tutorium Stochastische Prozesse 13. Dezember 2016

Übungen zu bedingten Erwartungswerten. Tutorium Stochastische Prozesse 13. Dezember 2016 Übungen zu bedingten Erwartungswerten Tutorium Stochastische Prozesse 13. Dezember 2016 Bedingter Erwartungswert Definition Sei X eine reellwertige Zufallsvariable auf (Ω, A, P), so dass E[ X ]

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

Satz 16 (Multiplikationssatz)

Satz 16 (Multiplikationssatz) Häufig verwendet man die Definition der bedingten Wahrscheinlichkeit in der Form Damit: Pr[A B] = Pr[B A] Pr[A] = Pr[A B] Pr[B]. (1) Satz 16 (Multiplikationssatz) Seien die Ereignisse A 1,..., A n gegeben.

Mehr

Grundbegriffe der Wahrscheinlichkeitstheorie

Grundbegriffe der Wahrscheinlichkeitstheorie KAPITEL 1 Grundbegriffe der Wahrscheinlichkeitstheorie 1. Zufallsexperimente, Ausgänge, Grundmenge In der Stochastik betrachten wir Zufallsexperimente. Die Ausgänge eines Zufallsexperiments fassen wir

Mehr

Wahrscheinlichkeiten

Wahrscheinlichkeiten Wahrscheinlichkeiten August, 2013 1 von 21 Wahrscheinlichkeiten Outline 1 Wahrscheinlichkeiten 2 von 21 Wahrscheinlichkeiten Zufallsexperimente Die möglichen Ergebnisse (outcome) i eines Zufallsexperimentes

Mehr

Spezielle stetige Verteilungen

Spezielle stetige Verteilungen Spezielle stetige Verteilungen schon bekannt: Die Exponentialverteilung mit Parameter k R, k > 0 hat die Dichte f (x) = ke kx für x 0 und die Verteilungsfunktion F (x) = 1 e kx für x 0. Eigenschaften Für

Mehr

Kapitel 5. Univariate Zufallsvariablen. 5.1 Diskrete Zufallsvariablen

Kapitel 5. Univariate Zufallsvariablen. 5.1 Diskrete Zufallsvariablen Kapitel 5 Univariate Zufallsvariablen Im ersten Teil dieses Skriptes haben wir uns mit Daten beschäftigt und gezeigt, wie man die Verteilung eines Merkmals beschreiben kann. Ist man nur an der Population

Mehr

Schätzer und Konfidenzintervalle

Schätzer und Konfidenzintervalle Kapitel 2 Schätzer und Konfidenzintervalle Bisher haben wir eine mathematische Theorie entwickelt, die es uns erlaubt, gewisse zufällige Phänomene zu modellieren. Zum Beispiel modellieren wir die Anzahl

Mehr

MafI I: Logik & Diskrete Mathematik (Autor: Gerrit (-Arthur) Gruben)

MafI I: Logik & Diskrete Mathematik (Autor: Gerrit (-Arthur) Gruben) Musterlösung zum. Aufgabenblatt zur Vorlesung MafI I: Logik & Diskrete Mathematik (Autor: Gerrit (-Arthur Gruben. Wahrscheinlichkeiten I ( Punkte Die Seiten von zwei Würfeln sind mit den folgenden Zahlen

Mehr

Ü b u n g s b l a t t 10

Ü b u n g s b l a t t 10 Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel. 6. 2007 Ü b u n g s b l a t t 0 Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden. Lösungen von -Aufgaben

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Grundbegriffe der Wahrscheinlichkeit

Grundbegriffe der Wahrscheinlichkeit Kapitel 0 Grundbegriffe der Wahrscheinlichkeit 0.1 Der Wahrscheinlichkeitsraum Definition 0.1.1. Ein Wahrscheinlichkeitsraum ist ein Tripel (Ω, F, P), wobei Ω eine nichtleere Menge, F eine σ-algebra von

Mehr

Einführung in die Wahrscheinlichkeitsrechnung

Einführung in die Wahrscheinlichkeitsrechnung Einführung in die Wahrscheinlichkeitsrechnung Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) Wahrscheinlichkeitsrechnung

Mehr

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit 3 Bedingte Wahrscheinlichkeit, Unabhängigkeit Bisher : (Ω, A, P) zur Beschreibung eines Zufallsexperiments Jetzt : Zusatzinformation über den Ausgang des Experiments, etwa (das Ereignis) B ist eingetreten.

Mehr

1 Elemente der Wahrscheinlichkeitstheorie

1 Elemente der Wahrscheinlichkeitstheorie H.-J. Starkloff Unendlichdimensionale Stochastik Kap. 01 11. Oktober 2010 1 1 Elemente der Wahrscheinlichkeitstheorie 1.1 Messbare Räume Gegeben seien eine nichtleere Menge Ω und eine Menge A von Teilmengen

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

Übungsblatt 9. f(x) = e x, für 0 x

Übungsblatt 9. f(x) = e x, für 0 x Aufgabe 1: Übungsblatt 9 Basketball. Ein Profi wirft beim Training aus einer Entfernung von sieben Metern auf den Korb. Er trifft bei jedem Wurf mit einer Wahrscheinlichkeit von p = 1/2. Die Zufallsvariable

Mehr

Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel "GlücksPasch" an.

Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel GlücksPasch an. Aufgabe 4 Glückspasch" (16 Punkte) Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel "GlücksPasch" an. Spielregeln: Einsatz 1. Der Mitspieler würfelt mit 2 Oktaederwürfeln. Fällt ein Pasch,

Mehr

Vorlesung 8b. Bedingte Erwartung, bedingte Varianz, bedingte Verteilung, bedingte Wahrscheinlichkeiten

Vorlesung 8b. Bedingte Erwartung, bedingte Varianz, bedingte Verteilung, bedingte Wahrscheinlichkeiten Vorlesung 8b Bedingte Erwartung, bedingte Varianz, bedingte Verteilung, bedingte Wahrscheinlichkeiten 1 Wie gehabt, denken wir uns ein zufälliges Paar X = (X 1,X 2 ) auf zweistufige Weise zustande gekommen:

Mehr

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch 6 Stetige Verteilungen 1 Kapitel 6: Stetige Verteilungen A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch dargestellt. 0.2 6

Mehr

Kenngrößen von Zufallsvariablen

Kenngrößen von Zufallsvariablen Kenngrößen von Zufallsvariablen Die Wahrscheinlichkeitsverteilung kann durch die sogenannten Kenngrößen beschrieben werden, sie charakterisieren sozusagen die Verteilung. Der Erwartungswert Der Erwartungswert

Mehr

2.2 Ereignisse und deren Wahrscheinlichkeit

2.2 Ereignisse und deren Wahrscheinlichkeit 2.2 Ereignisse und deren Wahrscheinlichkeit Literatur: [Papula Bd., Kap. II.2 und II.], [Benning, Kap. ], [Bronstein et al., Kap. 1.2.1] Def 1 [Benning] Ein Zufallsexperiment ist ein beliebig oft wiederholbarer,

Mehr

Musterlösung Klausur,,Einführung in die W theorie

Musterlösung Klausur,,Einführung in die W theorie Institut für angewandte Mathematik Wintersemester 3/4 Andreas Eberle, Lisa Hartung / Patrick Müller Musterlösung Klausur,,Einführung in die W theorie. (Zufallsvariablen und ihre Verteilung) a) Was ist

Mehr

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente Mehrstufige Zufallsexperimente Inhalt 6.1 6.1 Mehrstufige Experimente 6.2 6.2 Bedingte Wahrscheinlichkeiten Seite 2 6.1 Mehrstufige Experimente Grundvorstellung: Viele Viele Experimente werden der der

Mehr

Satz 18 (Satz von der totalen Wahrscheinlichkeit)

Satz 18 (Satz von der totalen Wahrscheinlichkeit) Ausgehend von der Darstellung der bedingten Wahrscheinlichkeit in Gleichung 1 zeigen wir: Satz 18 (Satz von der totalen Wahrscheinlichkeit) Die Ereignisse A 1,..., A n seien paarweise disjunkt und es gelte

Mehr