Grundbegriffe der Wahrscheinlichkeitsrechnung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Grundbegriffe der Wahrscheinlichkeitsrechnung"

Transkript

1 Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich. Diese werden in diesem Anhang bereitgestellt. A Grundbegriffe der Wahrscheinlichkeitsrechnung TU Bergakademie Freiberg, WS 2004/05

2 Algorithmen und Datenstrukturen 350 A.1 Wahrscheinlichkeit Wahrscheinlichkeit wird definiert bezüglich eines Grundraums Ω, dessen Elemente ω Elementarereignisse genannt werden. Jedes Elementarereignis kann als mögliches Ergebnis eines Zufallsexperiments angesehen werden. Beispiel: Betrachte das Zufallsexperiment, zwei unterscheidbare Münzen zu werfen. Mit K=Kopf und Z=Zahl ist der Grundraum gegeben durch Ω = {KK, ZK, KZ, ZZ}. Ein Ereignis ist eine Teilmenge des Grundraums. Im obigen Beispiel wäre etwa das Ereignis, genau einen Kopf und eine Zahl zu werfen, gegeben durch {KZ, ZK} Ω. Die gesamte Menge Ω heißt sicheres Ereignis, das Ereignis heißt Nullereignis. Zwei Ereignisse A und B sind disjunkt, falls A B =.

3 Algorithmen und Datenstrukturen 351 A.1.1 Axiome der Wahrscheinlichkeit Eine Wahrscheinlichkeitsverteilung Pr auf einem Grundraum Ω ist eine Abbildung, welche Ereignissen reelle Zahlen zuordnet, sodass folgende Axiome erfüllt sind: 1. Pr(A) 0 für alle Ereignisse A. 2. Pr(Ω) = Pr(A B) = Pr(A) + Pr(B) für zwei disjunkte Ereignisse A, B. Allgemeiner: für jede abzählbare Folge paarweise disjunkter Ereignisse gilt ( ) Pr A i = Pr(A i ). i i Pr(A) heißt Wahrscheinlichkeit des Ereignisses A.

4 Algorithmen und Datenstrukturen 352 Folgerungen aus den Axiomen: Pr( ) = 0 A B Pr(A) Pr(B). Mit A := Ω \ A (Komplement von A) gilt Pr(A) = 1 Pr(A). Für zwei beliebige Ereignisse A, B gilt Pr(A B) = Pr(A) + Pr(B) Pr(A B) Pr(A) + Pr(B). Im Münzbeispiel: besitzen alle 4 Elementarereignisse dieselbe Wahrscheinlichkeit 1/4, so ist die W., mindestens einen Kopf zu werfen Pr({KK, KZ, ZK}) = Pr({KK}) + Pr({KZ}) + Pr({ZK}) = 3/4. Die W. echt weniger als einmal Kopf zu werfen ist Pr({ZZ}) = 1/4, also wirft man mit W. 1 1/4 = 3/4 mindestens einmal Kopf.

5 Algorithmen und Datenstrukturen 353 A.1.2 Diskrete Wahrscheinlichkeitsverteilungen Eine Wahrscheinlichkeitsverteilung heißt diskret, falls sie über einem endlichen oder abzählbaren Grundraum Ω definiert ist. Da Elementarereignisse paarweise disjunkt sind, gilt in diesem Fall für jedes Ereignis A Pr(A) = ω A Pr(ω). Ist Ω endlich und besitzt jedes Elementarereignis dieselbe Wahrscheinlichkeit 1/ Ω, so spricht man von einer Gleichverteilung.

6 Algorithmen und Datenstrukturen 354 Beispiel: Wurf einer fairen Münze, d.h. bei welcher Kopf und Zahl je mit Wahrscheinlichkeit 1 2 auftreten. Bei n-maligem Wurf ergibt sich die Gleichverteilung auf dem Grundraum Ω = {K, Z} n bestehend aus allen n-tupeln aus {K, Z}, d.h. Ω = 2 n, und jedes tritt auf mit Wahrscheinlichkeit 1/2 n. Für das Ereignis A = {Genau k Mal Kopf und n k Mal Zahl treten auf} gilt A = ( n k), denn es gibt genau soviele n-tupel aus {K, Z} n, in denen K k Mal auftritt. Somit gilt ( n k) Pr(A) = 2 n.

7 Algorithmen und Datenstrukturen 355 A.1.3 Kontinuierliche Gleichverteilung Hier ist Ω = [a, b] mit a < b, a, b R. Die kontinuierliche Gleichverteilung ist ein Beispiel, in dem nicht alle Teilmengen des Grundraums auch Ereignisse sind. Stattdessen geben wir ein Mengensystem an, auf dem Wahrscheinlichkeiten so definiert werden können, dass die Axiome erfüllt sind. Für jedes abgeschlossene Intervall [c, d] mit a c d b ordnet die kontinuierliche Gleichverteilung dem Ereignis [c, d] die Wahrscheinlichkeit zu. Pr([c, d]) = d c b a

8 Algorithmen und Datenstrukturen 356 Beachte: Pr([x, x]) = 0 Pr ( (c, d) ) = Pr([c, d]) Allgemein sind alle Ereignisse diejenigen Teilmengen von [a, b], welche als endliche oder abzählbare Vereinigung von offenen oder abgeschlossenen Intervallen dargstellt werden können.

9 Algorithmen und Datenstrukturen 357 A.1.4 Bedingte Wahrscheinlichkeit und Unabhängigkeit Bedingte Wahrscheinlichkeit beschreibt Zufallsexperimente, über deren Ausgang bereits Teilinformationen bekannt sind. Beispiel: Beim Wurf zweier fairer Münzen sei bekannt, dass eine der beiden Kopf zeige. Wie groß ist die Wahrscheinlichkeit, dass beide Kopf zeigen? Die Vorinformation schließt das Ereignis {ZZ} aus. Da die verbleibenden drei Ereignisse gleich wahrscheinlich sind, ist die Antwort 1/3. Die bedingte Wahrscheinlichkeit eines Ereignisses A unter der Annahme, dass Ereignis B eingetreten ist, wird definiert als Pr(A B) := Pr(A B), sofern Pr(B) 0. Pr(B)

10 Algorithmen und Datenstrukturen 358 Im Beispiel: A = {KK}, Pr(A) = 1/4, B = {ZK, KZ, KK}, Pr(B) = 3/4, und somit Pr(A B) = 1/4 3/4 = 1/3. Zwei Ereignisse heißen unabhängig, falls Pr(A B) = Pr(A) Pr(B), was, falls Pr(B) 0, äquivalent ist mit Pr(A B) = Pr(A).

11 Algorithmen und Datenstrukturen 359 A.1.5 Der Satz von Bayes Nach Definition bedingter Wahrscheinlichkeit gilt Pr(A B) = Pr(B) Pr(A B) = Pr(A) Pr(B A). Auflösen nach Pr(A B) ergibt den Satz von Bayes, wonach Pr(A B) = Pr(A) Pr(B A). (A.1) Pr(B)

12 Algorithmen und Datenstrukturen 360 Wegen B = (B A) (B A) und da die Ereignisse B A und B A disjunkt erhalten wir mit Pr(B) = Pr(B A) + Pr(B A) = Pr(A) Pr(B A) + Pr(A) Pr(B A) die äquivalente Formulierung Pr(A B) = Pr(A) Pr(B A) Pr(A) Pr(B A) + Pr(A) Pr(B A)

13 Algorithmen und Datenstrukturen 361 Der Bayessche Satz vereinfacht oft die Berechnung bedingter Wahrscheinlichkeiten. Beispiel: Gegeben seien zwei Münzen, die eine fair, die andere so beschaffen, dass sie stets Kopf liefert. Wir betrachten ein Zufallsexperiment bestehent aus drei unabhängigen Ereignissen 1. Eine der beiden Münzen wird zufällig ausgewählt. 2. Diese Münze wird geworfen. 3. Diese Münze wird ein zweites Mal geworfen. Angenommen die Münze zeigt beide Male Kopf. Wie groß ist die Wahrscheinlichkeit, dass in 1. die nicht-faire Münze ausgewählt wurde?

14 Algorithmen und Datenstrukturen 362 Lösung mit Bayesschem Satz: Wir definieren die Ereignisse A := {Die nicht-faire Münze wurde ausgewählt}, B := {Die geworfene Münze zeigt zweimal Kopf}. Wir wollen Pr(A B) bestimmen. Es gelten Pr(A) = 1 2, Pr(B A) = 1, Pr(A) = 1 2 sowie Pr(B A) = 1 4, und somit (1/2) 1 Pr(A B) = (1/2) 1 + (1/2) (1/4) = 4 5.

15 Algorithmen und Datenstrukturen 363 A.2 Diskrete Zufallsvariable Eine (diskrete) Zufallsvariable X ist eine Funktion von einem endlichen oder abzählbaren Grundraum in die reellen Zahlen. Dadurch wird jedem Elementarereignis eine Zahl zugeordnet, und eine Wahrscheinlichkeitsverteilung auf den reellen Zahlen induziert. a Für eine Zufallsvariable X und x R definieren wir das Ereignis X = x als X 1 ({x}) = {ω Ω : X(ω) = x}, und somit Pr(X = x) = Pr({ω}). {ω Ω:X(ω)=x} Die Funktion f(x) = Pr(X = x) ist die Wahrscheinlichkeitsdichte der Zufallsvariable X. a Zufallsvariable können auch für überabzählbare Grundräume definiert werden, was aber gewisse technische Feinheiten beinhaltet die für unsere Belange nicht erforderlich sind. A.2 Diskrete Zufallsvariable TU Bergakademie Freiberg, WS 2004/05

16 Algorithmen und Datenstrukturen 364 Aus den Axiomen folgt Pr(X = x) 0 sowie x Pr(X = x) = 1. Beispiel: Werfen zweier Würfel Sind diese ungezinkt, so liegt Gleichverteilung vor, d.h. jedes des 36 Elementarereignisse besitzt die Wahrscheinlichkeit 1/36. Die Zufallsvariable X sei definiert als das Maximum der beiden geworfenen Augenzahlen. So ist etwa Pr(X = 3) = 5/36, da X genau den Elementarereignissen den Funktionswert 3 zuordnet. (1, 3), (2, 3), (3, 3), (3, 2) und (3, 1) A.2 Diskrete Zufallsvariable TU Bergakademie Freiberg, WS 2004/05

17 Algorithmen und Datenstrukturen 365 Sind X und Y zwei auf demselben Grundraum definierte Zufallsvariable, so bezeichnet man die auf R 2 definierte Funktion f(x, y) = Pr({X = x und Y = y}) als gemeinsame Wahrscheinlichkeitsdichte von X und Y. Für festes y gilt Pr(Y = y) = x Pr({X = x und Y = y}) und analog für festes x Pr(X = x) = y Pr({X = x und Y = y}) Nach de Definition der bedingten Wahrscheinlichkeit ist Pr(X = x Y = y) = Pr({X = x und Y = y}) Pr(Y = y) A.2 Diskrete Zufallsvariable TU Bergakademie Freiberg, WS 2004/05

18 Algorithmen und Datenstrukturen 366 Zwei Zufallsvariablen heißen unabhängig, falls für alle x, y die Ereignisse {X = x} und {Y = y} unabhängig sind, oder äquivalent Pr({X = x und Y = y}) = Pr(X = x) Pr(Y = y). A.2 Diskrete Zufallsvariable TU Bergakademie Freiberg, WS 2004/05

19 Algorithmen und Datenstrukturen 367 A.2.1 Erwartungswert einer Zufallsvariable Da Wahrscheinlichkeitsverteilungen sehr viel Information enthalten ist es hilfreich, einige Größen zu definieren, welche die wichtigsten Eigenschaften von Zufallsvariablen zusammenfassen. Der Erwartungswert (Mittelwert, Erwartung) einer diskreten Zufallsvariable X ist definiert als E[X] := x Pr(X = x) x (sofern die Summe endlich ist bzw. absolut konvergiert). Der Erwartungswert von X wird auch mit µ X oder einfach µ bezeichnet. A.2 Diskrete Zufallsvariable TU Bergakademie Freiberg, WS 2004/05

20 Algorithmen und Datenstrukturen 368 Beispiel: Sie werfen zwei faire Münzen und erhalten für jeden Kopf 3 Euro, müssen aber für jede Zahl 2 Euro bezahlen. Der Erwartungswert der Zufallsvariable X, die Ihren Gewinn angibt, ergibt sich zu E[X] = 6 Pr({KK}) + 1 Pr({ZK, KZ}) 4 Pr({ZZ}) = 6 1/ /2 4 1/4 = 1. Eine wichtige Eigenschaft des Erwartungswerts ist die Linearität, d.h. für beliebige Zufallsvariable X gilt E[X + Y ] = E[X] + E[Y ] (selbst wenn X und Y nicht unabhängig sind). A.2 Diskrete Zufallsvariable TU Bergakademie Freiberg, WS 2004/05

21 Algorithmen und Datenstrukturen 369 Ist X eine Zufallsvariable und g eine Funktion einer Veränderlichen, so ist durch Y (ω) := g(x(ω)) eine neue Zufallsvariable definiert. Hierfür ist der Erwartungswert E[g(X)] = x g(x) Pr(X = x), sofern die Summe existiert. Für die spezielle Funktion g(x) = ax, a eine Konstante, ergibt sich E[aX] = ae[x], d.h. für Zufallsvariablen X, Y und Konstanten a, b gilt stets E[aX + by ] = ae[x] + be[y ]. A.2 Diskrete Zufallsvariable TU Bergakademie Freiberg, WS 2004/05

22 Algorithmen und Datenstrukturen 370 Sind X, Y unabhängige Zufallsvariable, für welche die Erwartung existiert, so gilt E[XY ] = xy Pr({X = x und Y = y}) x y = xy Pr(X = x) Pr(Y = y) x y ( ) ( ) = x Pr(X = x) y Pr(Y = y) x = E[X] E[Y ]. Allgemeiner: sind die Zufallsvariablen X 1,..., X n paarweise unabhängig, so gilt E[X 1 X 2 X n ] = E[X 1 ]E[X 2 ] E[X n ]. y A.2 Diskrete Zufallsvariable TU Bergakademie Freiberg, WS 2004/05

23 Algorithmen und Datenstrukturen 371 A.2.2 Varianz und Standardabweichung Der Erwartungswert einer Zufallsvariable gibt keine Auskunft darüber, wie weit die Werte dieser Zufallsvariablen darum streuen. Gilt etwa für zwei Zufallsvariable X und Y Pr(X = 1/4) = Pr(X = 3/4) = 1/2, Pr(Y = 0) = Pr(Y = 1) = 1/2, sowie so liegen trotz E[X] = E[Y ] = 1/2 die Werte von Y weiter vom Erwartungswert entfernt als die von X. Die Varianz quantifiziert diese Streuung. A.2 Diskrete Zufallsvariable TU Bergakademie Freiberg, WS 2004/05

24 Algorithmen und Datenstrukturen 372 Die Varianz einer Zufallsvariablen X mit Erwartungswert E[X] ist definiert durch Var[X] := E[(X E[X]) 2 ] = E[X 2 2XE[X] + E[X] 2 ] = E[X 2 ] 2E[X E[X]] + E[X] 2 = E[X 2 ] 2E[X] 2 + E[X] 2 = E[X 2 ] E[X] 2. Für skalare Vielfache ax, a konstant, ergibt sich Var[aX] = a 2 Var[X]. Für unabhängige Zufallsvariable X, Y gilt Var[X + Y ] = Var[X] + Var[Y ]. A.2 Diskrete Zufallsvariable TU Bergakademie Freiberg, WS 2004/05

25 Algorithmen und Datenstrukturen 373 Entsprechend gilt für n paarweise unabhängige Zufallsvariablen X 1,..., X n Var[X X n ] = Var[X 1 ] + + Var[X n ]. Die Standardabweichung einer Zufallsvariablen X ist die (nichtnegative) Wurzel der Varianz von X, und wird mit σ oder σ X bezeichnet. Mit σ 2 wird oft auch die Varianz bezeichnet. A.2 Diskrete Zufallsvariable TU Bergakademie Freiberg, WS 2004/05

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal Beispiel 37 Wir werfen eine Münze so lange, bis zum ersten Mal Kopf erscheint. Dies geschehe in jedem Wurf unabhängig mit Wahrscheinlichkeit p. Wir definieren dazu die Zufallsvariable X := Anzahl der Würfe.

Mehr

2 Zufallsvariable und Verteilungsfunktionen

2 Zufallsvariable und Verteilungsfunktionen 8 2 Zufallsvariable und Verteilungsfunktionen Häufig ist es so, dass den Ausgängen eines Zufallexperiments, d.h. den Elementen der Ereignisalgebra, eine Zahl zugeordnet wird. Das wollen wir etwas mathematischer

Mehr

8. Formelsammlung. Pr[ ] = 0. 0 Pr[A] 1. Pr[Ā] = 1 Pr[A] A B = Pr[A] Pr[B] DWT 8.1 Gesetze zum Rechnen mit Ereignissen 203/467 Ernst W.

8. Formelsammlung. Pr[ ] = 0. 0 Pr[A] 1. Pr[Ā] = 1 Pr[A] A B = Pr[A] Pr[B] DWT 8.1 Gesetze zum Rechnen mit Ereignissen 203/467 Ernst W. 8. Formelsammlung 8.1 Gesetze zum Rechnen mit Ereignissen Im Folgenden seien A und B, sowie A 1,..., A n Ereignisse. Die Notation A B steht für A B und zugleich A B = (disjunkte Vereinigung). A 1... A

Mehr

3. Kombinatorik und Wahrscheinlichkeit

3. Kombinatorik und Wahrscheinlichkeit 3. Kombinatorik und Wahrscheinlichkeit Es geht hier um die Bestimmung der Kardinalität endlicher Mengen. Erinnerung: Seien A, B, A 1,..., A n endliche Mengen. Dann gilt A = B ϕ: A B bijektiv Summenregel:

Mehr

Paarweise Unabhängigkeit vs. Unabhängigkeit

Paarweise Unabhängigkeit vs. Unabhängigkeit Paarweise Unabhängigkeit vs. Unabhängigkeit Beispiel: Wir betrachten das Szenario von zuvor. Wissen bereits, dass A 1, A 2 und A 1, B unabhängig sind. Analog folgt, dass A 2 und B unabhängige Ereignisse

Mehr

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt Universität Basel Wirtschaftswissenschaftliches Zentrum Zufallsvariablen Dr. Thomas Zehrt Inhalt: 1. Einführung 2. Zufallsvariablen 3. Diskrete Zufallsvariablen 4. Stetige Zufallsvariablen 5. Erwartungswert

Mehr

Zentralübung Diskrete Wahrscheinlichkeitstheorie

Zentralübung Diskrete Wahrscheinlichkeitstheorie Zentralübung Diskrete Wahrscheinlichkeitstheorie Christian Ivicevic (christian.ivicevic@tum.de) Technische Universität München 14. Juni 2017 Agenda Disclaimer und wichtige Hinweise Übungsaufgaben Disclaimer

Mehr

Kapitel II Kontinuierliche Wahrscheinlichkeitsräume

Kapitel II Kontinuierliche Wahrscheinlichkeitsräume Kapitel II Kontinuierliche Wahrscheinlichkeitsräume 1. Einführung 1.1 Motivation Interpretation der Poisson-Verteilung als Grenzwert der Binomialverteilung. DWT 1.1 Motivation 211/476 Beispiel 85 Wir betrachten

Mehr

4 Diskrete Wahrscheinlichkeitsverteilungen

4 Diskrete Wahrscheinlichkeitsverteilungen 4 Diskrete Wahrscheinlichkeitsverteilungen 4.1 Wahrscheinlichkeitsräume, Ereignisse und Unabhängigkeit Definition: Ein diskreter Wahrscheinlichkeitsraum ist ein Paar (Ω, Pr), wobei Ω eine endliche oder

Mehr

Finanzmathematische Modelle und Simulation

Finanzmathematische Modelle und Simulation Finanzmathematische Modelle und Simulation WS 9/1 Rebecca Henkelmann In meiner Ausarbeitung Grundbegriffe der Stochastik I, geht es darum die folgenden Begriffe für die nächsten Kapitel einzuführen. Auf

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

KAPITEL 5. Erwartungswert

KAPITEL 5. Erwartungswert KAPITEL 5 Erwartungswert Wir betrachten einen diskreten Wahrscheinlichkeitsraum (Ω, P) und eine Zufallsvariable X : Ω R auf diesem Wahrscheinlichkeitsraum. Die Grundmenge Ω hat also nur endlich oder abzählbar

Mehr

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s X. Zufallsgrößen ================================================================= 10.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

Einführung in die Wahrscheinlichkeitsrechnung

Einführung in die Wahrscheinlichkeitsrechnung Marco Cattaneo Institut für Statistik Ludwig-Maximilians-Universität München Sommersemester 2011 1. Wahrscheinlichkeitsrechnung 2. Diskrete Zufallsvariable 3. Stetige Zufallsvariable 4. Grenzwertsätze

Mehr

6: Diskrete Wahrscheinlichkeit

6: Diskrete Wahrscheinlichkeit Stefan Lucks Diskrete Strukturen (WS 2009/10) 219 6: Diskrete Wahrscheinlichkeit 6: Diskrete Wahrscheinlichkeit Stefan Lucks Diskrete Strukturen (WS 2009/10) 220 Wahrscheinlichkeitsrechnung Eines der wichtigsten

Mehr

Technische Universität München

Technische Universität München Stand der Vorlesung Kapitel 2: Auffrischung einiger mathematischer Grundlagen Mengen, Potenzmenge, Kreuzprodukt (Paare, Tripel, n-tupel) Relation: Teilmenge MxN Eigenschaften: reflexiv, symmetrisch, transitiv,

Mehr

Satz 18 (Satz von der totalen Wahrscheinlichkeit)

Satz 18 (Satz von der totalen Wahrscheinlichkeit) Ausgehend von der Darstellung der bedingten Wahrscheinlichkeit in Gleichung 1 zeigen wir: Satz 18 (Satz von der totalen Wahrscheinlichkeit) Die Ereignisse A 1,..., A n seien paarweise disjunkt und es gelte

Mehr

Stochastik. 1. Wahrscheinlichkeitsräume

Stochastik. 1. Wahrscheinlichkeitsräume Stochastik 1. Wahrscheinlichkeitsräume Ein Zufallsexperiment ist ein beliebig oft und gleichartig wiederholbarer Vorgang mit mindestens zwei verschiedenen Ergebnissen, bei dem der Ausgang ungewiß ist.

Mehr

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung 2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von

Mehr

Kapitel 2 Mathematische Grundlagen

Kapitel 2 Mathematische Grundlagen Kapitel 2 Mathematische Grundlagen Ziel: Einführung/Auffrischung einiger mathematischer Grundlagen 2.1 Mengen, Relationen, Ordnungen Definition: Eine Menge ist eine Zusammenfassung von wohlbestimmten und

Mehr

5 Erwartungswerte, Varianzen und Kovarianzen

5 Erwartungswerte, Varianzen und Kovarianzen 47 5 Erwartungswerte, Varianzen und Kovarianzen Zur Charakterisierung von Verteilungen unterscheidet man Lageparameter, wie z. B. Erwartungswert ( mittlerer Wert ) Modus (Maximum der Wahrscheinlichkeitsfunktion,

Mehr

MafI I: Logik & Diskrete Mathematik (Autor: Gerrit (-Arthur) Gruben)

MafI I: Logik & Diskrete Mathematik (Autor: Gerrit (-Arthur) Gruben) Musterlösung zum. Aufgabenblatt zur Vorlesung MafI I: Logik & Diskrete Mathematik (Autor: Gerrit (-Arthur Gruben. Wahrscheinlichkeiten I ( Punkte Die Seiten von zwei Würfeln sind mit den folgenden Zahlen

Mehr

3.3 Bedingte Wahrscheinlichkeit

3.3 Bedingte Wahrscheinlichkeit 28 3.3 Bedingte Wahrscheinlichkeit Oft ist die Wahrscheinlichkeit eines Ereignisses B gesucht unter der Bedingung (bzw. dem Wissen), dass ein Ereignis A bereits eingetreten ist. Man bezeichnet diese Wahrscheinlichkeit

Mehr

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus

Mehr

1.5 Erwartungswert und Varianz

1.5 Erwartungswert und Varianz Ziel: Charakterisiere Verteilungen von Zufallsvariablen durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere: a) durchschnittlicher Wert Erwartungswert, z.b.

Mehr

Kapitel 5. Stochastik

Kapitel 5. Stochastik 76 Kapitel 5 Stochastik In diesem Kapitel wollen wir die Grundzüge der Wahrscheinlichkeitstheorie behandeln. Wir beschränken uns dabei auf diskrete Wahrscheinlichkeitsräume Ω. Definition 5.1. Ein diskreter

Mehr

Erwartungswert und Varianz von Zufallsvariablen

Erwartungswert und Varianz von Zufallsvariablen Kapitel 7 Erwartungswert und Varianz von Zufallsvariablen Im Folgenden sei (Ω, A, P ) ein Wahrscheinlichkeitsraum. Der Erwartungswert von X ist ein Lebesgue-Integral (allerdings allgemeiner als in Analysis

Mehr

1.5 Erwartungswert und Varianz

1.5 Erwartungswert und Varianz Ziel: Charakterisiere Verteilungen von Zufallsvariablen (Bildbereich also reelle Zahlen, metrische Skala) durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere:

Mehr

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen.

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen. Dieses Quiz soll Ihnen helfen, Kapitel 2.5-2. besser zu verstehen. Frage Wir betrachten ein Würfelspiel. Man wirft einen fairen, sechsseitigen Würfel. Wenn eine oder eine 2 oben liegt, muss man 2 SFr zahlen.

Mehr

Diskrete Zufallsvariable

Diskrete Zufallsvariable Diskrete Zufallsvariablen Slide 1 Diskrete Zufallsvariable Wir gehen von einem diskreten W.-raum Ω aus. Eine Abbildung X : Ω Ê heißt diskrete (numerische) Zufallsvariable oder kurz ZV. Der Wertebereich

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück STOCHASTISCHE UNABHÄNGIGKEIT Annika Pohlmann Philipp Oel Wilhelm Dück 1 GLIEDERUNG 1) Bedingte Wahrscheinlichkeiten 2) Unabhängigkeit für mehr als zwei Ereignisse 3) Unabhängigkeit für Zufallsvariable

Mehr

Satz 16 (Multiplikationssatz)

Satz 16 (Multiplikationssatz) Häufig verwendet man die Definition der bedingten Wahrscheinlichkeit in der Form Damit: Pr[A B] = Pr[B A] Pr[A] = Pr[A B] Pr[B]. (1) Satz 16 (Multiplikationssatz) Seien die Ereignisse A 1,..., A n gegeben.

Mehr

Diskrete Strukturen WiSe 2012/13 in Trier

Diskrete Strukturen WiSe 2012/13 in Trier Diskrete Strukturen WiSe 2012/13 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 11. Januar 2013 1 Diskrete Strukturen Gesamtübersicht Organisatorisches und Einführung Mengenlehre Relationen

Mehr

67 Zufallsvariable, Erwartungswert, Varianz

67 Zufallsvariable, Erwartungswert, Varianz 67 Zufallsvariable, Erwartungswert, Varianz 67.1 Motivation Oft möchte man dem Resultat eines Zufallsexperiments eine reelle Zahl zuordnen. Der Gewinn bei einem Glücksspiel ist ein Beispiel hierfür. In

Mehr

Kapitel I Diskrete Wahrscheinlichkeitsräume

Kapitel I Diskrete Wahrscheinlichkeitsräume Kapitel I Diskrete Wahrscheinlichkeitsräume 1. Grundlagen Definition 1 1 Ein diskreter Wahrscheinlichkeitsraum ist durch eine Ergebnismenge Ω = {ω 1, ω 2,...} von Elementarereignissen gegeben. 2 Jedem

Mehr

i Pr(X = i). Bsp: Sei X die Summe zweier Würfe eines Würfels. Dann gilt E[X] =

i Pr(X = i). Bsp: Sei X die Summe zweier Würfe eines Würfels. Dann gilt E[X] = Erwartungswert Definition Erwartungswert Der Erwartungswert einer diskreten ZV ist definiert als E[X] = i i Pr(X = i). E[X] ist endlich, falls i i Pr(X = i) konvergiert, sonst unendlich. Bsp: Sei X die

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Grundlagen der Wahrscheinlichkeitstheorie

Grundlagen der Wahrscheinlichkeitstheorie Priv.-Doz. Dr. H. Steinacker Wintersemester 2013/2014 Grundlagen der Wahrscheinlichkeitstheorie betrachte Wiederholungen eines Experimentes, gleicher Vorbereitung (z.b. Würfeln, Dart werfen, Doppelspaltexperiment,...)

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

WAHRSCHEINLICHKEITSRECHNUNG

WAHRSCHEINLICHKEITSRECHNUNG WAHRSCHEINLICHKEITSRECHNUNG Mathematischer Teil In der Wahrscheinlichkeitsrechnung haben wir es mit Zufallsexperimenten zu tun, d.h. Ausgang nicht vorhersagbar. Grundbegriffe Zufallsexperiment und Ergebnisse

Mehr

Wahrscheinlichkeit (Teschl/Teschl 2, Kap. 26)

Wahrscheinlichkeit (Teschl/Teschl 2, Kap. 26) Wahrscheinlichkeit (Teschl/Teschl 2, Kap. 26) Gegeben Menge Ω (Wahscheinlichkeitsraum, Menge aller möglichen Ausgänge eines Zufallsexperiments), Abbildung P : P(Ω) [0, 1] (Wahrscheinlichkeit): Jeder Teilmenge

Mehr

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass f Z (z) = Pr[Z = z] = x W X Pr[X + Y = z X = x] Pr[X = x] = x W X Pr[Y = z x] Pr[X = x] = x W X f X (x) f Y (z x). Den Ausdruck

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik. PD Dr. U. Ludwig. Vorlesung 7 1 / 19

Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik. PD Dr. U. Ludwig. Vorlesung 7 1 / 19 Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik PD Dr. U. Ludwig Vorlesung 7 1 / 19 2.2 Erwartungswert, Varianz und Standardabweichung (Fortsetzung) 2 / 19 Bedingter Erwartungswert

Mehr

Kapitel II Kontinuierliche Wahrscheinlichkeitsraume

Kapitel II Kontinuierliche Wahrscheinlichkeitsraume Kapitel II Kontinuierliche Wahrscheinlichkeitsraume 1. Einfuhrung 1.1 Motivation Interpretation der Poisson-Verteilung als Grenzwert der Binomialverteilung. DWT 1.1 Motivation 195/460 Beispiel 78 Wir betrachten

Mehr

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung lausthal Begriffe Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Definition: Unter einem Zufallsexperiment versteht man einen,

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

Beispiel: Zufallsvariable

Beispiel: Zufallsvariable Beispiel: Zufallsvariable 3 Münzen werden unabhängig voneinander geworfen. Jede Münze kann entweder Kopf oder Zahl zeigen. Man ist nur an der Zahl der Köpfe interessiert. Anzahl Kopf Elementarereignis

Mehr

Zusammenfassung Stochastik

Zusammenfassung Stochastik Zusammenfassung Stochastik Die relative Häufigkeit Ein Experiment, dessen Ausgang nicht vorhersagbar ist, heißt Zufallsexperiment (ZE). Ein Würfel wird 40-mal geworfen, mit folgendem Ergebnis Augenzahl

Mehr

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung lausthal Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Begriffe Definition: Unter einem Zufallsexperiment versteht man einen,

Mehr

Satz 16 (Multiplikationssatz)

Satz 16 (Multiplikationssatz) Haug verwendet man die Denition der bedingten Wahrscheinlichkeit in der Form Damit: Pr[A \ B] = Pr[BjA] Pr[A] = Pr[AjB] Pr[B] : (1) Satz 16 (Multiplikationssatz) Seien die Ereignisse A 1 ; : : : ; A n

Mehr

Kapitel 2 Mathematische Grundlagen

Kapitel 2 Mathematische Grundlagen Kapitel 2 Mathematische Grundlagen Ziel: Einführung/Auffrischung einiger mathematischer Grundlagen 2.1 Mengen, Relationen, Ordnungen Definition: Eine Menge ist eine Zusammenfassung von wohlbestimmten und

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

Woche 2: Zufallsvariablen

Woche 2: Zufallsvariablen Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 17/19, 24.04.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Teil III Zufallsvariablen Wahrscheinlichkeit

Mehr

Statistik II für Wirtschaftswissenschaftler

Statistik II für Wirtschaftswissenschaftler Fachbereich Mathematik 20.04.2017 Dr. Hefter & Dr. Herzwurm Übungsblatt 0 Keine Abgabe. Gegeben seien die Mengen A 1 =, A 2 = {1}, A 3 = {1, 1}, A 4 = {1, 3}, A 5 = {1, 2, 4}, A 6 = {1, 2, 3, 4}. a) Bestimmen

Mehr

Das Zweikinderproblem

Das Zweikinderproblem Das Zweikinderproblem Definition Zweikinderproblem Eine Familie besitzt zwei Kinder. Wie groß ist die Wahrscheinlichkeit Pr[ Beide Kinder sind Mädchen. Eines der Kinder ist ein Mädchen ]? Lösung: Sei A

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

Stochastische Unabhängigkeit. 01. Dezember 2014

Stochastische Unabhängigkeit. 01. Dezember 2014 Stochastische Unabhängigkeit 0. Dezember 204 Der Begriff der Unabhängigkeit Großbritannien, im November 999. Die Anwältin Sally Clark wird wegen Mordes an ihren Kindern angeklagt. Clark geriet unter Verdacht

Mehr

Weihnachtszettel zur Vorlesung. Stochastik I. Wintersemester 2011/2012

Weihnachtszettel zur Vorlesung. Stochastik I. Wintersemester 2011/2012 Weihnachtszettel zur Vorlesung Stochastik I Wintersemester 0/0 Aufgabe. Der Weihnachtsmann hat vergessen die Weihnachtsgeschenke mit Namen zu beschriften und muss sie daher zufällig verteilen. Dabei enthält

Mehr

Teil II. Wahrscheinlichkeitsrechnung

Teil II. Wahrscheinlichkeitsrechnung Teil II Wahrscheinlichkeitsrechnung Deskriptive Statistik und Wahrscheinlichkeitsrechnung (SS 2014) Folie 129 5 Zufallsexperimente Inhaltsverzeichnis (Ausschnitt) 5 Zufallsexperimente Ergebnisse Ereignisse

Mehr

Teil II. Wahrscheinlichkeitsrechnung. Inhaltsverzeichnis (Ausschnitt) Zufallsexperimente (Zufallsvorgänge) Ergebnisse

Teil II. Wahrscheinlichkeitsrechnung. Inhaltsverzeichnis (Ausschnitt) Zufallsexperimente (Zufallsvorgänge) Ergebnisse 5 Zufallsexperimente Inhaltsverzeichnis (Ausschnitt) Teil II Wahrscheinlichkeitsrechnung 5 Zufallsexperimente Ergebnisse Ereignisse Wahrscheinlichkeiten Deskriptive Statistik und Wahrscheinlichkeitsrechnung

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 11. November 2010 1 Erwartungswert und Varianz Erwartungswert Varianz und Streuung Rechenregeln Binomialverteilung

Mehr

Zufallsvariable: Verteilungen & Kennzahlen

Zufallsvariable: Verteilungen & Kennzahlen Mathematik II für Biologen 12. Juni 2015 Zufallsvariable Kennzahlen: Erwartungswert Kennzahlen: Varianz Kennzahlen: Erwartungstreue Verteilungsfunktion Beispiel: Exponentialverteilung Kennzahlen: Erwartungswert

Mehr

Psychologische Methodenlehre und Statistik I

Psychologische Methodenlehre und Statistik I Psychologische Methodenlehre und Statistik I Pantelis Christodoulides & Karin Waldherr SS 2013 Pantelis Christodoulides & Karin Waldherr Psychologische Methodenlehre und Statistik I 1/61 Zufallsexperiment

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr 1.4.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen Sei X eine kontinuierliche Zufallsvariable. Wir können aus X leicht eine diskrete Zufallsvariable konstruieren, indem wir

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 15.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Unabhängige Zufallsvariablen

Unabhängige Zufallsvariablen Kapitel 9 Unabhängige Zufallsvariablen Die Unabhängigkeit von Zufallsvariablen wird auf die Unabhängigkeit von Ereignissen zurückgeführt. Im Folgenden sei Ω, A, P ) ein Wahrscheinlichkeitsraum. Definition

Mehr

2.2 Ereignisse und deren Wahrscheinlichkeit

2.2 Ereignisse und deren Wahrscheinlichkeit 2.2 Ereignisse und deren Wahrscheinlichkeit Literatur: [Papula Bd., Kap. II.2 und II.], [Benning, Kap. ], [Bronstein et al., Kap. 1.2.1] Def 1 [Benning] Ein Zufallsexperiment ist ein beliebig oft wiederholbarer,

Mehr

Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung?

Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung? Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße Von Florian Modler In diesem Artikel möchte ich einen kleinen weiteren Exkurs zu meiner Serie Vier Wahrscheinlichkeitsverteilungen geben

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

Wahrscheinlichkeitsrechnung [probability]

Wahrscheinlichkeitsrechnung [probability] Wahrscheinlichkeitsrechnung [probability] Hinweis: Die Wahrscheinlichkeitsrechnung ist nicht Gegenstand dieser Vorlesung. Es werden lediglich einige Begriffsbildungen bereitgestellt und an Beispielen erläutert,

Mehr

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten Zufallsgrößen Ergebnisse von Zufallsexperimenten werden als Zahlen dargestellt 0 Einführung Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Hypothesentests

Mehr

Kapitel 8: Zufallsvektoren

Kapitel 8: Zufallsvektoren Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse 03.12.2015 Kapitel 8: Zufallsvektoren Statt einem Merkmal werden häufig mehrere Merkmale gleichzeitig betrachtet, z.b. Körpergröße und

Mehr

Grundbegrie der Wahrscheinlichkeitsrechnung

Grundbegrie der Wahrscheinlichkeitsrechnung Die Benutzung dieser Materialien ist auf Herbst 2017 beschränkt. Diese Hilfsmaterialien sind nur für unseren Studenten gemeint, dürfen also nicht weiterverteilt werden. Grundbegrie der Wahrscheinlichkeitsrechnung

Mehr

Wiederholungsklausur DWT

Wiederholungsklausur DWT LÖSUNG Wiederholungsklausur DWT Sommersemester 2008 Hinweis: Alle Antworten sind zu begründen. Insbesondere sollte bei nicht-trivialen Umformungen kurz angegeben werden, weshalb diese Umformungen erlaubt

Mehr

Wahrscheinlichkeitsrechnung und Quantentheorie

Wahrscheinlichkeitsrechnung und Quantentheorie Physikalische Chemie II: Atombau und chemische Bindung Winter 2013/14 Wahrscheinlichkeitsrechnung und Quantentheorie Messergebnisse können in der Quantenmechanik ganz prinzipiell nur noch mit einer bestimmten

Mehr

Leseprobe. Robert Galata, Sandro Scheid. Deskriptive und Induktive Statistik für Studierende der BWL. Methoden - Beispiele - Anwendungen

Leseprobe. Robert Galata, Sandro Scheid. Deskriptive und Induktive Statistik für Studierende der BWL. Methoden - Beispiele - Anwendungen Leseprobe Robert Galata, Sandro Scheid Deskriptive und Induktive Statistik für Studierende der BWL Methoden - Beispiele - nwendungen Herausgegeben von Robert Galata, Markus Wessler ISBN (Buch): 978-3-446-43255-0

Mehr

Basiswissen Daten und Zufall Seite 1 von 8 1 Zufallsexperiment Ein Zufallsexperiment ist ein Versuchsaufbau mit zufälligem Ausgang, d. h. das Ergebnis kann nicht vorhergesagt werden. 2 Ergebnis (auch Ausgang)

Mehr

K3 (Diskrete) Zufallsvariablen 3.1 Basis

K3 (Diskrete) Zufallsvariablen 3.1 Basis K3 (Diskrete) Zufallsvariablen 3.1 Basis Ω = {ω}, X(ω) ist eine Größe die durch ω bestimmt ist. Bei der zufälligen Auswahl von ω bekommen wir den Wert, X(ω). Definition: Ist (Ω, F, P) ein Wahrscheinlichkeitsraum

Mehr

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit 3 Bedingte Wahrscheinlichkeit, Unabhängigkeit Bisher : (Ω, A, P) zur Beschreibung eines Zufallsexperiments Jetzt : Zusatzinformation über den Ausgang des Experiments, etwa (das Ereignis) B ist eingetreten.

Mehr

Satz 61 (Chebyshev-Ungleichung)

Satz 61 (Chebyshev-Ungleichung) Die folgende Abschätzung ist nach Pavnuty Lvovich Chebyshev (1821 1894) benannt, der ebenfalls an der Staatl. Universität in St. Petersburg wirkte. Satz 61 (Chebyshev-Ungleichung) Sei X eine Zufallsvariable,

Mehr

Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm.

Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm. Veranstaltung: Statistik für das Lehramt 16.12.2016 Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm Erwartungswert Varianz Standardabweichung Die Wahrscheinlichkeitsverteilung

Mehr

4. Gemeinsame Verteilung und Grenzwertsätze

4. Gemeinsame Verteilung und Grenzwertsätze 4. Gemeinsame Verteilung und Grenzwertsätze Häufig in der Praxis: Man muss mehrere (n) ZV en gleichzeitig betrachten (vgl. Statistik I, Kapitel 6) Zunächst Vereinfachung: Betrachte n = 2 Zufallsvariablen

Mehr

4. Gemeinsame Verteilung und Grenzwertsätze

4. Gemeinsame Verteilung und Grenzwertsätze 4. Gemeinsame Verteilung und Grenzwertsätze Häufig in der Praxis: Man muss mehrere (n) ZV en gleichzeitig betrachten (vgl. Statistik I, Kapitel 6) Zunächst Vereinfachung: Betrachte n = 2 Zufallsvariablen

Mehr

Kapitel ML:IV. IV. Statistische Lernverfahren. Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen

Kapitel ML:IV. IV. Statistische Lernverfahren. Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen Kapitel ML:IV IV. Statistische Lernverfahren Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen ML:IV-1 Statistical Learning c STEIN 2005-2011 Definition 1 (Zufallsexperiment,

Mehr

Mathematik für Informatiker III im WS 05/06 Musterlösung zur 4. Übung

Mathematik für Informatiker III im WS 05/06 Musterlösung zur 4. Übung Mathematik für Informatiker III im WS 5/6 Musterlösung zur. Übung erstellt von K. Kriegel Aufgabe : Wir betrachten den Wahrscheinlichkeitsraum der Punkte P =(a, b) aus dem Einheitsquadrat [, ] [, ] mit

Mehr

Grundbegriffe der Wahrscheinlichkeitstheorie

Grundbegriffe der Wahrscheinlichkeitstheorie KAPITEL 1 Grundbegriffe der Wahrscheinlichkeitstheorie 1. Zufallsexperimente, Ausgänge, Grundmenge In der Stochastik betrachten wir Zufallsexperimente. Die Ausgänge eines Zufallsexperiments fassen wir

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik Kapitel 11 Diskrete Zufallsvariablen 11.1. Wahrscheinlichkeits- und diskret Wahrscheinlichkeitsverteilungen Wahrscheinlichkeitsfunktion von X Nimmt abzählbare Anzahl von Ausprägungen an (z.b. Zählvariablen)

Mehr

1.3 Zufallsgrößen und Verteilungsfunktionen

1.3 Zufallsgrößen und Verteilungsfunktionen .3 Zufallsgrößen und Verteilungsfunktionen.3. Einführung Vielfach sind die Ergebnisse von Zufallsversuchen Zahlenwerte. Häufig möchte man aber auch in den Fällen, wo dies nicht so ist, Zahlenwerte zur

Mehr

Appendix I: Eine etwas komprimierte Einführung in die Wahrscheinlichkeitstheorie

Appendix I: Eine etwas komprimierte Einführung in die Wahrscheinlichkeitstheorie Appendix I: Eine etwas komprimierte Einführung in die Wahrscheinlichkeitstheorie Vorbemerkung: Die folgenden Seiten sind nicht zur Abschreckung gedacht, sondern als Ergänzung zu den Darstellungen, die

Mehr

P (A B) P (B) = P ({3}) P ({1, 3, 5}) = 1 3.

P (A B) P (B) = P ({3}) P ({1, 3, 5}) = 1 3. 2 Wahrscheinlichkeitstheorie Beispiel. Wie wahrscheinlich ist es, eine Zwei oder eine Drei gewürfelt zu haben, wenn wir schon wissen, dass wir eine ungerade Zahl gewürfelt haben? Dann ist Ereignis A das

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 1

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 1 TUM, Zentrum Mathematik Lehrstuhl für Mathematische Physik WS 2013/ Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weidner Tutoraufgaben: Einführung in die Wahrscheinlichkeitstheorie svorschläge zu

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 12.02.2010 Fakultät für Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Sabrina Kallus, Eva Lotte Reinartz, André Salé

Sabrina Kallus, Eva Lotte Reinartz, André Salé Sabrina Kallus, Eva Lotte Reinartz, André Salé } Wiederholung (Zufallsvariable) } Erwartungswert Was ist das? } Erwartungswert: diskrete endliche Räume } Erwartungswert: Räume mit Dichten } Eigenschaften

Mehr

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5 4 Verteilungen und ihre Kennzahlen 1 Kapitel 4: Verteilungen und ihre Kennzahlen A: Beispiele Beispiel 1: Eine diskrete Zufallsvariable X, die nur die Werte 1,, 3, 4, 5 mit positiver Wahrscheinlichkeit

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können.

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. 2 Zufallsvariable 2.1 Einführung Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. Eine Zufallsvariable X ordnet jedem elementaren Versuchsausgang

Mehr

Wahrscheinlichkeitstheorie. Zapper und

Wahrscheinlichkeitstheorie. Zapper und Diskrete Wahrscheinlichkeitsräume Slide 1 Wahrscheinlichkeitstheorie die Wissenschaft der Zapper und Zocker Diskrete Wahrscheinlichkeitsräume Slide 2 Münzwürfe, Zufallsbits Elementarereignisse mit Wahrscheinlichkeiten

Mehr