Varianz und Kovarianz

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Varianz und Kovarianz"

Transkript

1 KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ] <. () X L, falls E[X ] <. Lemma Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X, Y : Ω zwei Zufallsvariablen. Dann gilt: (1) X, Y L X + Y L. () X L, a ax L. (3) X L X L 1. Beweis von (1). Seien X, Y L, also E[X ] <, E[Y ] <. Aus der Ungleichung (X + Y ) X + Y folgt, dass Somit gilt X + Y L. E[(X + Y ) ] E[X ] + E[Y ] <. Beweis von (). Sei X L, also E[X ] <. Es folgt, dass E[(aX) ] = a E[X ] <, somit ax L. Beweis von (3). Sei X L, also E[X ] <. Es gilt die Ungleichung X X +1, also [ ] [ ] X + 1 X E[ X ] E = E + 1 <. Somit ist X L 1. Definition Sei X L. Die Varianz von X ist: Die Standardabweichung von X ist: Var X = E[(X E[X]) ] <. σ(x) = Var X. Bemerkung Die Varianz beschreibt die erwartete quadratische Abweichung einer Zufallsvariable von ihrem Erwartungswert. Wird X in irgendwelchen physikalischen Einheiten, etwa in Metern, gemessen, so wird Var X in Quadratmetern gemessen. Deshalb führt man die Standardabweichung von X ein. Diese wird dann wieder in Metern gemessen, hat 1

2 also die gleichen Einheiten wie X. Die Standardabweichung und die Varianz beschreiben, wie stark die Zufallsvariable um ihrem Erwartungswert streut. Für eine konstante Zufallsvariable X = c gilt zum Beispiel, dass Var X = σ(x) = 0, da es in diesem Fall gar keine Streuung gibt. Satz Für jede Zufallsvariable X L gilt die Formel: Var X = E[X ] (E[X]). Bemerkung Es gilt Var X 0. Als Korollar erhalten wir, dass (E[X]) E[X ]. Beweis. Wir benutzen die Linearität des Erwartungswerts: Var X = E[(X EX) ] = E[X X EX + (EX) ] = E[X ] E[EX X] + E[(EX) ] = E[X ] EX EX + (EX) = E[X ] (EX). Dabei haben wir benutzt, dass EX eine Konstante ist. Beispiel Sei X U[0, 1] gleichverteilt auf dem Intervall [0, 1]. Wir berechnen Var X. Lösung. Die Dichte von X ist Wir berechnen EX: EX = f X (y) = { 1, y [0, 1], 0, y [0, 1]. yf X (y)dy = 1 0 ydy = 1. Wir berechnen E[X ] mit der Transformationsformel für den Erwartungswert: Somit erhalten wir E[X ] = y f X (y)dy = Var X = 1 3 ( 1 Für die Standardabweichung ergibt sich σ(x) = ) = 1 1. y dy = 1 3. Satz Sei X L eine Zufallsvariable und a, b Konstanten. Dann gilt: (1) Var(aX + b) = a Var X. () σ(ax + b) = a σ(x).

3 Beweis von (1). Wir benutzen die Linearität des Erwartungswerts: Var(aX+b) = E[(aX+b E(aX+b)) ] = E[(aX+b aex b) ] = E[a (X EX) ] = a Var X. Beweis von (). σ(ax + b) = Var(aX + b) = a Var X = a σ(x). Beispiel Sei X U[a, b] gleichverteilt auf einem Intervall [a, b]. Es gilt EX = a+b. Wir berechnen Var X. Lösung. Wir haben die Darstellung X = (b a)y + a, wobei Y U[0, 1]. Var X = Var((b a)y + a) = (b a) Var Y = Für die Standardabweichung ergibt sich σ(x) = b a 1. (b a). 1 Bemerkung Die Varianz einer Zufallsvariable ist immer 0. Für eine konstante Zufallsvariable X = c gilt Var X = 0. Können wir die Umkehrung dieser Aussage beweisen? Sei X eine Zufallsvariable mit Var X = 0. Dann kann man behaupten, dass P[X = EX] = 1. Das heißt: die Zufallsvariable X ist fast sicher konstant. Wir werden das später mit Hilfe der Tschebyscheff-Ungleichung beweisen. Satz Sei X N(µ, σ ) normalverteilt mit Parametern (µ, σ ). Dann gilt EX = µ und Var X = σ. Beweis. Zuerst betrachten woir den Fall µ = 0, σ = 1. Die Dichte von X ist dann f X (y) = 1 π e y /, y. Für den Erwartungswert erhalten wir EX = yf X (y)dy = 1 π ye y / dy = 0, da die Funktion ye y / ungerade ist. Für die Varianz erhalten wir Var X = E[X ] (EX) = y f X (y)dy = 1 y e y / dy. π Um dieses Integral zu berechnen, benutzen wir partielle Integration: Var X = 1 y( e y / ) dy = 1 ye y / + e y / dy = 1. π π Sei nun X N(µ, σ ) normalverteilt mit beliebigen Parametern (µ, σ ). Dann haben wir die Darstellung X = σy + µ, wobei Y (0, 1). Es gilt dann EX = E[σY + µ] = µ 3

4 und Var X = Var(σY + µ) = σ Var Y = σ. Für die Standardabweichung ergibt sich übrigens σ(x) = σ (wobei wir immer annehmen, dass σ > 0). Satz Sei X Poi(λ) Poisson-verteilt mit Parameter λ > 0. Dann gilt EX = Var X = λ. Beweis. Wir haben bereits gezeigt, dass EX = λ. Wir berechnen Var X. Betrachte zunächst E[X(X 1)] = k(k 1) P[X = k] = k=0 k= = e λ λ = e λ λ e λ = λ. λ λk k(k 1)e k! k= λ k (k )! Für E[X ] gilt dann E[X ] = E[X(X 1)] + EX = λ + λ. Für die Varianz erhalten wir Var X = E[X ] (E[X ]) = λ + λ λ = λ. 9.. Kovarianz und Korrelationskoeffizient Definition Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X, Y : Ω zwei Zufallsvariablen mit X, Y L. Dann ist die Kovarianz von X und Y wie folgt definiert: Bemerkung 9... Cov(X, X) = Var X. Cov(X, Y ) = E[(X EX)(Y EY )]. Bemerkung Wir zeigen, dass die Kovarianz wohldefiniert ist. Seien X, Y L. Nach Lemma 9.1. existieren EX und EY. Außerdem gilt dann X := X EX L und Ỹ := Y EY L. Wir zeigen, dass E[ XỸ ] existiert. Es gilt Daraus folgt, dass E[ XỸ ] 1 XỸ X + Ỹ. ( E[ X ) ] + E[Ỹ ] <. 4

5 Somit ist die Zufallsvariable existiert. XỸ = (X EX)(Y EY ) integrierbar und die Kovarianz Satz Seien X, Y L. Dann gilt: Cov(X, Y ) = E[XY ] E[X] E[Y ]. Beweis. Wir benutzen die Linearität des Erwartungswerts: Cov(X, Y ) = E[(X EX)(Y EY )] = E[XY X EY Y EX + (EX)(EY )] = E[XY ] E[EY X] E[EX Y ] + E[(EX)(EY )] = E[XY ] EY EX EX EY + (EX)(EY ) = E[XY ] E[X] E[Y ]. Dabei haben wir EX und EY wie Konstanten behandelt. Bemerkung Für die Berechnung der Kovarianz kann man folgende Formeln benutzen: (1) Für X, Y diskret: E[XY ] = st P[X = s, Y = t]. s Im X t Im Y () Für X, Y absolut stetig mit gemeinsamer Dichte f X,Y : E[XY ] = st f X,Y (s, t)dsdt. Satz Seien X, Y L Zufallsvariablen und a, b, c, d Konstanten. Dann gilt: Cov(aX + b, cy + d) = ac Cov(X, Y ). Beweis. Übungsaufgabe. Für die Kovarianz gelten ähnliche echenregeln wie für das Skalarprodukt. Satz Seien X 1,..., X n, Y 1,..., Y m L Zufallsvariablen und a 1,..., a n, b 1,..., b m Konstanten. Dann gilt: n m Cov(a 1 X a n X n, b 1 Y b m Y m ) = a i b j Cov(X i, Y j ). i=1 j=1 Beweis. Übungsaufgabe. Satz 9..8 (Cauchy-Schwarz-Ungleichung). Seien X, Y L Zufallsvariablen. Dann gilt E[XY ] E[X ] E[Y ]. 5

6 Bemerkung Zum Vergleich: Für zwei Vektoren x, y d gilt die Ungleichung x, y = x y cos(φ) x y = x, x y, y. Beweis von Satz Für beliebige Konstante a gilt 0 E[(aX + Y ) ] = E[a X + axy + Y ] = a E[X ] + ae[xy ] + E[Y ]. Die rechte Seite ist eine quadratische Funktion von a. Diese Funktion ist für alle a nichtnegativ. Die Diskriminante D muss somit 0 sein: Das beweist die Behauptung. D = 4(E[XY ]) 4E[X ] E[Y ] 0. Korollar Für beliebige Zufallsvariablen X, Y L gilt Cov(X, Y ) Var X Var Y. Beweis. Betrachte die zentrierten Zufallsvariablen X := X EX L und Ỹ := Y EY L. Nun wenden wir die Cauchy-Schwarz-Ungleichung auf die Zufallsvariablen X und Ỹ an: Cov(X, Y ) = E[ E[ XỸ ] X ] E[Ỹ ] = Var X Var Y. Definition Seien X, Y L zwei Zufallsvariablen. Der Korrelationskoeffizient von X und Y ist ρ(x, Y ) = Cov(X, Y ). Var X Var Y Dabei nehmen wir an, dass X und Y nicht fast sicher konstant sind, so dass Var X 0 und Var Y 0. Bemerkung Aus Korollar folgt, dass ρ(x, Y ) 1. Der Korrelationskoeffizient ist ein Maß für den linearen Zusammenhang zwischen X und Y. Später werden wir zeigen, dass der Korrelationskoeffizient genau dann ±1 ist, wenn zwischen X und Y ein linearer Zusammenhang besteht, d.h., wenn Y = ax + b. Bemerkung Seien a, b, c, d und a, c > 0. Dann gilt: ρ(ax + b, cy + d) = ρ(x, Y ). Bemerkung ρ(x, X) = 1, ρ(x, X) = 1. Definition Zwei Zufallsvariablen X, Y L heißen unkorreliert, wenn Cov(X, Y ) = 0 (und somit auch ρ(x, Y ) = 0). Satz Seien X, Y L unabhängig. Dann sind X und Y unkorreliert, d.h. Cov(X, Y ) = 0. Beweis. Für unabhängige Zufallsvariablen gilt E[XY ] = E[X] E[Y ]. Wir erhalten Somit sind X und Y unkorreliert. Cov(X, Y ) = E[XY ] E[X] E[Y ] = 0. 6

7 Beispiel Unabhängige Zufallsvariablen sind unkorreliert. Die Umkehrung dieser Aussage gilt jedoch nicht. Sei (X, Y ) ein Vektor, der gleichverteilt auf dem Einheitskreis A = {(t, s) : t + s < 1} ist. Wir behaupten, dass Cov(X, Y ) = 0 und dass dennoch X und Y abhängig sind. Lösung. Die gemeinsame Dichte von (X, Y ) ist f X,Y (t, s) = 1 π 1 A(t, s). Die anddichten (d.h. die Dichten von X und Y ) sind f X (t) = f Y (t) = π 1 t 1 t <1. Wegen Symmetrie sind die Erwartungswerte von X und Y gleich 0: Nun berechnen wir E[XY ]: E[XY ] = A EX = EY = π 1 1 tsf X,Y (t, s)dtds = 1 π t 1 t dt = 0. ts1 A (t, s)dtds = 0. Dabei ist das Integral gleich 0, da sich die Funktion ts1 A (t, s) bei der Transformation (t, s) ( t, s) in ts1 A (t, s) verwandelt. Somit sind X und Y unkorreliert: Cov(X, Y ) = 0. Und doch sind X, Y abhängig, denn wären X und Y abhängig, dann müsste die gemeinsame Dichte f X,Y (t, s) mit dem Produkt der anddichten f X (t)f X (s) für alle (t, s) außerhalb einer Menge vom Lebesgue-Maß 0 übereinstimmen. Dies ist jedoch nicht der Fall, denn f X,Y (t, s) = 1 ( ) π 1 A(t, s) 1 t 1 s π 1 t <1, s <1 = f X (t) f Y (s) zum Beispiel für alle (t, s) mit t < 1, s < 1 und t + s unkorreliert, aber abhängig. > 1. Somit sind X und Y Satz Für beliebige Zufallsvariablen X, Y L gilt Var(X + Y ) = Var(X) + Var(Y ) + Cov(X, Y ). Beweis. Mit X := X EX und Ỹ = Y EY gilt Var(X + Y ) = E[((X EX) + (Y EY )) ] = E[( X + Ỹ ) ] = E[ X ] + E[ XỸ ] + E[Ỹ ] = Var(X) + Cov(X, Y ) + Var(Y ). 7

8 Korollar Für unabhängige Zufallsvariablen X, Y L gilt Var(X + Y ) = Var(X) + Var(Y ). Bemerkung Zum Vergleich: Für beliebige Zufallsvariablen X, Y L 1 gilt E[X + Y ] = E[X] + E[Y ]. Bemerkung Für beliebige X 1,..., X n L gilt n Var(X X n ) = Var(X i ) + i=1 Für unabhängige X 1,..., X n L gilt sogar Var(X X n ) = 1 i<j n n Var(X i ). i=1 Cov(X i, X j ) Beispiel 9... Sei X Bin(n, p) binomialverteilt mit Parametern n, p. Berechne Var X. Lösung. Wir können X als die Anzahl der Erfolge in einem n-fachen Bernoulli-Experiment auffassen. Wir haben also die Darstellung X = X X n, wobei { 1, Erfolg beim i-ten Experiment, X i = i = 1,..., n. 0, sonst, Dabei sind X 1,..., X n unabhängig mit P[X i = 1] = p und P[X i = 0] = 1 p. Für jedes X i gilt E[X i ] = 1 p + 0 (1 p) = p und Var X i = E[X i ] (E[X i ]) = E[X i ] (E[X i ]) = p(1 p). Für die Varianz von X erhalten wir (wegen der Unabhängigkeit von X 1,..., X n ) Var X = Var(X X n ) = Var(X 1 ) Var(X n ) = np(1 p). Bemerkung Die maximale Varianz wird angenommen, wenn p = 1. Die minimale Varianz tritt ein, wenn p = 0 oder p = 1. (In diesem Fall ist X konstant und Var X = 0). Im nächsten Satz zeigen wir, dass der Korrelationskoeffizient genau dann gleich ±1 ist, wenn es einen linearen Zusammenhang zwischen X und Y gibt. Dabei entspricht der Wert +1 einem positiven Zusammenhang und 1 einem negativen Zusammenhang. Satz Seien X, Y : Ω zwei Zufallsvariablen mit X, Y L und Var X 0, Var Y 0. Es gilt: (1) ρ(x, Y ) = 1 es existieren a > 0 und b mit P[Y = ax + b] = 1. () ρ(x, Y ) = 1 es existieren a < 0 und b mit P[Y = ax + b] = 1. Beweis von (1). Sei ρ(x, Y ) = 1. Definiere Var Y a = > 0 und b = EY aex. Var X 8

9 Definiere die Zufallsvariable = Y (ax + b). Wir zeigen, dass P[ = 0] = 1. Es gilt = (Y EY ) a(x EX) = Ỹ a X. Somit ist E[ ] = EỸ ae X = 0. Weiterhin gilt Var = E[ ] = E[Ỹ a XỸ + a X ] = Var Y a Cov(X, Y ) + a Var X Var Y = Var Y Var X Var Y + Var Y Var X Var X Var X = 0. Somit gilt P[ = E ] = 1, also P[ = 0] = 1. 9

5 Erwartungswerte, Varianzen und Kovarianzen

5 Erwartungswerte, Varianzen und Kovarianzen 47 5 Erwartungswerte, Varianzen und Kovarianzen Zur Charakterisierung von Verteilungen unterscheidet man Lageparameter, wie z. B. Erwartungswert ( mittlerer Wert ) Modus (Maximum der Wahrscheinlichkeitsfunktion,

Mehr

Erwartungswert und Varianz von Zufallsvariablen

Erwartungswert und Varianz von Zufallsvariablen Kapitel 7 Erwartungswert und Varianz von Zufallsvariablen Im Folgenden sei (Ω, A, P ) ein Wahrscheinlichkeitsraum. Der Erwartungswert von X ist ein Lebesgue-Integral (allerdings allgemeiner als in Analysis

Mehr

Unabhängige Zufallsvariablen

Unabhängige Zufallsvariablen Kapitel 9 Unabhängige Zufallsvariablen Die Unabhängigkeit von Zufallsvariablen wird auf die Unabhängigkeit von Ereignissen zurückgeführt. Im Folgenden sei Ω, A, P ) ein Wahrscheinlichkeitsraum. Definition

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik. PD Dr. U. Ludwig. Vorlesung 7 1 / 19

Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik. PD Dr. U. Ludwig. Vorlesung 7 1 / 19 Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik PD Dr. U. Ludwig Vorlesung 7 1 / 19 2.2 Erwartungswert, Varianz und Standardabweichung (Fortsetzung) 2 / 19 Bedingter Erwartungswert

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Kapitel 8. Parameter multivariater Verteilungen. 8.1 Erwartungswerte

Kapitel 8. Parameter multivariater Verteilungen. 8.1 Erwartungswerte Kapitel 8 Parameter multivariater Verteilungen 8.1 Erwartungswerte Wir können auch bei mehrdimensionalen Zufallsvariablen den Erwartungswert betrachten. Dieser ist nichts anderes als der vektor der Erwartungswerte

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

2 Zufallsvariable und Verteilungsfunktionen

2 Zufallsvariable und Verteilungsfunktionen 8 2 Zufallsvariable und Verteilungsfunktionen Häufig ist es so, dass den Ausgängen eines Zufallexperiments, d.h. den Elementen der Ereignisalgebra, eine Zahl zugeordnet wird. Das wollen wir etwas mathematischer

Mehr

Reelle Zufallsvariablen

Reelle Zufallsvariablen Kapitel 3 eelle Zufallsvariablen 3. Verteilungsfunktionen esultat aus der Maßtheorie: Zwischen der Menge aller W-Maße auf B, nennen wir sie W B ), und der Menge aller Verteilungsfunktionen auf, nennen

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit 3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr 1.4.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen Sei X eine kontinuierliche Zufallsvariable. Wir können aus X leicht eine diskrete Zufallsvariable konstruieren, indem wir

Mehr

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig Senska

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Lageparameter: Erwartungswert d) Erwartungswert

Mehr

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung 4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung Häufig werden mehrere Zufallsvariablen gleichzeitig betrachtet, z.b. Beispiel 4.1. Ein Computersystem bestehe aus n Teilsystemen. X i sei der Ausfallzeitpunkt

Mehr

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung 2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Vorlesung 4b. Die Varianz

Vorlesung 4b. Die Varianz Vorlesung 4b Die Varianz 1 X sei reellwertige Zufallsvariable mit endlichem Erwartungswert µ. Die Varianz von X ist definiert als Var X := E[(X µ) 2 ], die erwartete quadratische Abweichung der Zufallsvariablen

Mehr

4. Verteilungen von Funktionen von Zufallsvariablen

4. Verteilungen von Funktionen von Zufallsvariablen 4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten

Mehr

11.4 Korrelation. Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient

11.4 Korrelation. Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient 11.4 Korrelation Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient (X 1,X 2 ) = cov (X 1,X 2 ) σ X1 σ X2 Korrelationskoeffizient der Zufallsgrößen

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Kapitel 5. Stochastik

Kapitel 5. Stochastik 76 Kapitel 5 Stochastik In diesem Kapitel wollen wir die Grundzüge der Wahrscheinlichkeitstheorie behandeln. Wir beschränken uns dabei auf diskrete Wahrscheinlichkeitsräume Ω. Definition 5.1. Ein diskreter

Mehr

Vorlesung 4b. Die Varianz

Vorlesung 4b. Die Varianz Vorlesung 4b Die Varianz 1 X sei reellwertige Zufallsvariable mit endlichem Erwartungswert µ Die Varianz von X ist definiert als Var[X] := E[(X µ) 2 ], die erwartete quadratische Abweichung der Zufallsvariablen

Mehr

Kapitel 6. Verteilungsparameter. 6.1 Der Erwartungswert Diskrete Zufallsvariablen

Kapitel 6. Verteilungsparameter. 6.1 Der Erwartungswert Diskrete Zufallsvariablen Kapitel 6 Verteilungsparameter Wie bei einem Merkmal wollen wir nun die Lage und die Streuung der Verteilung einer diskreten Zufallsvariablen durch geeignete Maßzahlen beschreiben. Beginnen wir mit Maßzahlen

Mehr

Zufallsvariable: Verteilungen & Kennzahlen

Zufallsvariable: Verteilungen & Kennzahlen Mathematik II für Biologen 12. Juni 2015 Zufallsvariable Kennzahlen: Erwartungswert Kennzahlen: Varianz Kennzahlen: Erwartungstreue Verteilungsfunktion Beispiel: Exponentialverteilung Kennzahlen: Erwartungswert

Mehr

Vorlesung 8a. Kovarianz und Korrelation

Vorlesung 8a. Kovarianz und Korrelation Vorlesung 8a Kovarianz und Korrelation 1 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und E[Y 2 ] < ist Cov[X, Y ] := E [ (X EX)(Y EY ) ] Insbesondere

Mehr

Y = g 2 (U 1,U 2 ) = 2 ln U 1 sin 2πU 2

Y = g 2 (U 1,U 2 ) = 2 ln U 1 sin 2πU 2 Bsp. 72 (BOX MÜLLER Transformation) Es seien U 1 und U 2 zwei unabhängige, über dem Intervall [0, 1[ gleichverteilte Zufallsgrößen (U i R(0, 1), i = 1, 2), U = (U 1,U 2 ) T ein zufälliger Vektor. Wir betrachten

Mehr

Finanzmathematische Modelle und Simulation

Finanzmathematische Modelle und Simulation Finanzmathematische Modelle und Simulation WS 9/1 Rebecca Henkelmann In meiner Ausarbeitung Grundbegriffe der Stochastik I, geht es darum die folgenden Begriffe für die nächsten Kapitel einzuführen. Auf

Mehr

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s X. Zufallsgrößen ================================================================= 10.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5 4 Verteilungen und ihre Kennzahlen 1 Kapitel 4: Verteilungen und ihre Kennzahlen A: Beispiele Beispiel 1: Eine diskrete Zufallsvariable X, die nur die Werte 1,, 3, 4, 5 mit positiver Wahrscheinlichkeit

Mehr

Kapitel 8: Zufallsvektoren

Kapitel 8: Zufallsvektoren Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse 03.12.2015 Kapitel 8: Zufallsvektoren Statt einem Merkmal werden häufig mehrere Merkmale gleichzeitig betrachtet, z.b. Körpergröße und

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

1 Multivariate Zufallsvariablen

1 Multivariate Zufallsvariablen 1 Multivariate Zufallsvariablen 1.1 Multivariate Verteilungen Definition 1.1. Zufallsvariable, Zufallsvektor (ZV) Sei Ω die Ergebnismenge eines Zufallsexperiments. Eine (univariate oder eindimensionale)

Mehr

67 Zufallsvariable, Erwartungswert, Varianz

67 Zufallsvariable, Erwartungswert, Varianz 67 Zufallsvariable, Erwartungswert, Varianz 67.1 Motivation Oft möchte man dem Resultat eines Zufallsexperiments eine reelle Zahl zuordnen. Der Gewinn bei einem Glücksspiel ist ein Beispiel hierfür. In

Mehr

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen David Geier und Sven Middelberg RWTH Aachen, Sommersemester 27 Inhaltsverzeichnis Information 2 Aufgabe 4 Aufgabe 2 6 4 Aufgabe

Mehr

1.5 Erwartungswert und Varianz

1.5 Erwartungswert und Varianz Ziel: Charakterisiere Verteilungen von Zufallsvariablen (Bildbereich also reelle Zahlen, metrische Skala) durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere:

Mehr

1.5 Erwartungswert und Varianz

1.5 Erwartungswert und Varianz Ziel: Charakterisiere Verteilungen von Zufallsvariablen durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere: a) durchschnittlicher Wert Erwartungswert, z.b.

Mehr

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal Beispiel 37 Wir werfen eine Münze so lange, bis zum ersten Mal Kopf erscheint. Dies geschehe in jedem Wurf unabhängig mit Wahrscheinlichkeit p. Wir definieren dazu die Zufallsvariable X := Anzahl der Würfe.

Mehr

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen Zusammenfassung: e und e Verteilungen Woche 4: Gemeinsame Verteilungen Wahrscheinlichkeitsverteilung p() Wahrscheinlichkeitsdichte f () WBL 15/17, 11.05.2015 Alain Hauser P(X = k

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Ü b u n g s b l a t t 13

Ü b u n g s b l a t t 13 Einführung in die Stochastik Sommersemester 06 Dr. Walter Oevel 5. 6. 006 Ü b u n g s b l a t t 3 Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden. Lösungen von -Aufgaben

Mehr

Kapitel VII - Funktion und Transformation von Zufallsvariablen

Kapitel VII - Funktion und Transformation von Zufallsvariablen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VII - Funktion und Transformation von Zufallsvariablen Markus Höchstötter Lehrstuhl

Mehr

Diskrete Zufallsvariable

Diskrete Zufallsvariable Diskrete Zufallsvariablen Slide 1 Diskrete Zufallsvariable Wir gehen von einem diskreten W.-raum Ω aus. Eine Abbildung X : Ω Ê heißt diskrete (numerische) Zufallsvariable oder kurz ZV. Der Wertebereich

Mehr

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass f Z (z) = Pr[Z = z] = x W X Pr[X + Y = z X = x] Pr[X = x] = x W X Pr[Y = z x] Pr[X = x] = x W X f X (x) f Y (z x). Den Ausdruck

Mehr

Erwartungswerte, Varianzen

Erwartungswerte, Varianzen Kapitel 3 Erwartungswerte, Varianzen Wir wollen nun Zufallsvariablen eine Maßzahl zuordnen, die ihr typisches Verhalten in vager Weise angibt. Haben wir n Punkte x 1,...,x n R d, so ist der Schwerpunkt

Mehr

KAPITEL 5. Erwartungswert

KAPITEL 5. Erwartungswert KAPITEL 5 Erwartungswert Wir betrachten einen diskreten Wahrscheinlichkeitsraum (Ω, P) und eine Zufallsvariable X : Ω R auf diesem Wahrscheinlichkeitsraum. Die Grundmenge Ω hat also nur endlich oder abzählbar

Mehr

Probeklausur Statistik II

Probeklausur Statistik II Prof. Dr. Chr. Müller PROBE-KLAUSUR 1 1 2 3 4 5 6 7 8 Gesamt: 15 8 16 16 7 8 15 15 100 Probeklausur Statistik II Name: Vorname: Fachrichtung: Matrikel-Nummer: Bitte beachten Sie folgendes: 1) Die Klausur

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 11. November 2010 1 Erwartungswert und Varianz Erwartungswert Varianz und Streuung Rechenregeln Binomialverteilung

Mehr

Teil VI. Gemeinsame Verteilungen. Lernziele. Beispiel: Zwei Würfel. Gemeinsame Verteilung

Teil VI. Gemeinsame Verteilungen. Lernziele. Beispiel: Zwei Würfel. Gemeinsame Verteilung Zusammenfassung: diskrete und stetige Verteilungen Woche 4: Verteilungen Patric Müller diskret Wahrscheinlichkeitsverteilung p() stetig Wahrscheinlichkeitsdichte f ()

Mehr

Zusatzmaterial zur Vorlesung Statistik II

Zusatzmaterial zur Vorlesung Statistik II Zusatzmaterial zur Vorlesung Statistik II Dr. Steffi Höse Professurvertretung für Ökonometrie und Statistik, KIT Wintersemester 2011/2012 (Fassung vom 15.11.2011, DVI- und PDF-Datei erzeugt am 15. November

Mehr

Stochastik. 1. Wahrscheinlichkeitsräume

Stochastik. 1. Wahrscheinlichkeitsräume Stochastik 1. Wahrscheinlichkeitsräume Ein Zufallsexperiment ist ein beliebig oft und gleichartig wiederholbarer Vorgang mit mindestens zwei verschiedenen Ergebnissen, bei dem der Ausgang ungewiß ist.

Mehr

1 Erwartungswert und Kovarianzmatrix von Zufallsvektoren

1 Erwartungswert und Kovarianzmatrix von Zufallsvektoren Erwartungswert und Kovarianzmatrix von Zufallsvektoren Erwartungswert und Kovarianzmatrix von Zufallsvektoren. Definition Ist X X,...,X p ein p-dimensionaler Zufallsvektor mit E X j < für alle j, so heißt

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 2. Stock, Nordflügel R. 02-429 (Persike) R. 02-431 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psmet03.sowi.uni-mainz.de/

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 15.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Suffizienz und Vollständigkeit

Suffizienz und Vollständigkeit KAPITEL 7 Suffizienz und Vollständigkeit 7.1. Definition der Suffizienz im diskreten Fall Beispiel 7.1.1. Betrachten wir eine unfaire Münze, wobei die Wahrscheinlichkeit θ, dass die Münze Kopf zeigt, geschätzt

Mehr

Stochastik für die Naturwissenschaften

Stochastik für die Naturwissenschaften Stochastik für die Naturwissenschaften Dr. C.J. Luchsinger 5. Erwartungswert E und Varianz V Literatur Kapitel 5 * Storrer: (37.9)-(37.12), (38.4), (40.6)-(40.9), (41.2) * Stahel: Kapitel 5 und 6 (nur

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

Übung 1: Wiederholung Wahrscheinlichkeitstheorie

Übung 1: Wiederholung Wahrscheinlichkeitstheorie Übung 1: Wiederholung Wahrscheinlichkeitstheorie Ü1.1 Zufallsvariablen Eine Zufallsvariable ist eine Variable, deren numerischer Wert solange unbekannt ist, bis er beobachtet wird. Der Wert einer Zufallsvariable

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Übung zur Vorlesung Statistik I WS Übungsblatt 12

Übung zur Vorlesung Statistik I WS Übungsblatt 12 Übung zur Vorlesung Statistik I WS 2013-2014 Übungsblatt 12 20. Januar 2014 Die folgenden ufgaben sind aus ehemaligen Klausuren! ufgabe 38.1 (1 Punkt: In einer Studie werden 10 Patienten therapiert. Die

Mehr

Grundlagen der Wahrscheinlichkeitstheorie

Grundlagen der Wahrscheinlichkeitstheorie Priv.-Doz. Dr. H. Steinacker Wintersemester 2013/2014 Grundlagen der Wahrscheinlichkeitstheorie betrachte Wiederholungen eines Experimentes, gleicher Vorbereitung (z.b. Würfeln, Dart werfen, Doppelspaltexperiment,...)

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 20/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt 4 Lösungshinweise (ohne Ganantie auf Fehlerfreiheit. Wenn man beim Roulette auf Rot oder Schwarz setzt, erhält

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Karin Waldherr & Pantelis Christodoulides 11. Mai 2011 Waldherr / Christodoulides Einführung in Quantitative Methoden- 8.VO 1/40 Poisson-Verteilung Diese Verteilung

Mehr

8. Formelsammlung. Pr[ ] = 0. 0 Pr[A] 1. Pr[Ā] = 1 Pr[A] A B = Pr[A] Pr[B] DWT 8.1 Gesetze zum Rechnen mit Ereignissen 203/467 Ernst W.

8. Formelsammlung. Pr[ ] = 0. 0 Pr[A] 1. Pr[Ā] = 1 Pr[A] A B = Pr[A] Pr[B] DWT 8.1 Gesetze zum Rechnen mit Ereignissen 203/467 Ernst W. 8. Formelsammlung 8.1 Gesetze zum Rechnen mit Ereignissen Im Folgenden seien A und B, sowie A 1,..., A n Ereignisse. Die Notation A B steht für A B und zugleich A B = (disjunkte Vereinigung). A 1... A

Mehr

Normalverteilung. 1 2πσ. Gauß. 2 e 1 2 ((x µ)2 σ 2 ) Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt.

Normalverteilung. 1 2πσ. Gauß. 2 e 1 2 ((x µ)2 σ 2 ) Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt. Normalverteilung Diskrete Stetige f(x) = 1 2πσ 2 e 1 2 ((x µ)2 σ 2 ) Gauß 91 / 169 Normalverteilung Diskrete Stetige Satz: f aus (1) ist Dichte. Beweis: 1. f(x) 0 x R und σ > 0. 2. bleibt z.z. lim F(x)

Mehr

Kapitel 10 VERTEILUNGEN

Kapitel 10 VERTEILUNGEN Kapitel 10 VERTEILUNGEN Fassung vom 18. Januar 2001 130 VERTEILUNGEN Zufallsvariable. 10.1 10.1 Zufallsvariable. HäuÞg wird statt des Ergebnisses ω Ω eines Zufalls-Experiments eine zugeordnete Zahl X(ω)

Mehr

Woche 2: Zufallsvariablen

Woche 2: Zufallsvariablen Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 17/19, 24.04.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Teil III Zufallsvariablen Wahrscheinlichkeit

Mehr

2 Zufallsvariablen. 2.1 Induzierter Raum und Verteilung

2 Zufallsvariablen. 2.1 Induzierter Raum und Verteilung 2 Zufallsvariablen 2.1 Induzierter Raum und Verteilung Wir kommen zum wichtigsten Begriff der W-Theorie. In den meisten Situationen sind wir nicht an der gesamten Verteilung interessiert, sondern nur an

Mehr

Stetige Verteilungen, Unabhängigkeit & ZGS

Stetige Verteilungen, Unabhängigkeit & ZGS Mathematik II für Biologen Stetige Verteilungen, & ZGS 19. Juni 2015 Stetige Verteilungen, & ZGS Stetige Zufallsvariable Dichte & Verteilungsfunktion Eigenschaften & Kennzahlen Definition Eigenschaften,

Mehr

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38 Dynamische Systeme und Zeitreihenanalyse Multivariate Normalverteilung und ML Schätzung Kapitel 11 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Multivariate

Mehr

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme Binomialverteilung Wahrscheinlichkeitsfunktion Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder

Mehr

Übungen zu bedingten Erwartungswerten. Tutorium Stochastische Prozesse 13. Dezember 2016

Übungen zu bedingten Erwartungswerten. Tutorium Stochastische Prozesse 13. Dezember 2016 Übungen zu bedingten Erwartungswerten Tutorium Stochastische Prozesse 13. Dezember 2016 Bedingter Erwartungswert Definition Sei X eine reellwertige Zufallsvariable auf (Ω, A, P), so dass E[ X ]

Mehr

eine Zufallsvariable. Eine der Definitionen des Erwartungswerts war:

eine Zufallsvariable. Eine der Definitionen des Erwartungswerts war: 8.4. Definition und Eigenschaften des Erwartungswerts Wir haben den Erwartungswert nur für Zufallsvariablen auf einem diskreten Wahrscheinlichkeitsraum definiert. Sei (Ω, F, P) ein diskreter Wahrscheinlichkeitsraum

Mehr

Zufallsvariablen: Die allgemeine Definition

Zufallsvariablen: Die allgemeine Definition KAPITEL 8 Zufallsvariablen: Die allgemeine Definition 8.. Zufallsvariablen Bis zu diesem Zeitpunkt haben wir ausschließlich Zufallsvariablen mit endlich oder abzählbar vielen Werten (also diskrete Zufallsvariablen)

Mehr

K8 Stetige Zufallsvariablen Theorie und Praxis

K8 Stetige Zufallsvariablen Theorie und Praxis K8 Stetige Zufallsvariablen Theorie und Praxis 8.1 Theoretischer Hintergrund Wir haben (nicht abzählbare) Wahrscheinlichkeitsräume Meßbare Funktionen Zufallsvariablen Verteilungsfunktionen Dichten in R

Mehr

4. Gemeinsame Verteilung und Grenzwertsätze

4. Gemeinsame Verteilung und Grenzwertsätze 4. Gemeinsame Verteilung und Grenzwertsätze Häufig in der Praxis: Man muss mehrere (n) ZV en gleichzeitig betrachten (vgl. Statistik I, Kapitel 6) Zunächst Vereinfachung: Betrachte n = 2 Zufallsvariablen

Mehr

4. Gemeinsame Verteilung und Grenzwertsätze

4. Gemeinsame Verteilung und Grenzwertsätze 4. Gemeinsame Verteilung und Grenzwertsätze Häufig in der Praxis: Man muss mehrere (n) ZV en gleichzeitig betrachten (vgl. Statistik I, Kapitel 6) Zunächst Vereinfachung: Betrachte n = 2 Zufallsvariablen

Mehr

2 Aufgaben aus [Teschl, Band 2]

2 Aufgaben aus [Teschl, Band 2] 20 2 Aufgaben aus [Teschl, Band 2] 2.1 Kap. 25: Beschreibende Statistik 25.3 Übungsaufgabe 25.3 a i. Arithmetisches Mittel: 10.5 ii. Median: 10.4 iii. Quartile: x 0.25 Y 4 10.1, x 0.75 Y 12 11.1 iv. Varianz:

Mehr

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1 Aufgabe 1 (2 + 2 + 2 + 1 Punkte) Gegeben sei folgende gemeinsame Wahrscheinlichkeitsfunktion f(x, y) = P (X = x, Y = y) der Zufallsvariablen X und Y : 0.2 x = 1, y = 1 0.3 x = 2, y = 1 f(x, y) = 0.45 x

Mehr

Stochastik für die Naturwissenschaften

Stochastik für die Naturwissenschaften Stochastik für die Naturwissenschaften Dr. C.J. Luchsinger 5. Erwartungswert E und Varianz V Literatur Kapitel 5 * Storrer: (37.9)-(37.12), (38.4), (40.6)-(40.9), (41.2) * Stahel: Kapitel 5 und 6 (nur

Mehr

8. Stetige Zufallsvariablen

8. Stetige Zufallsvariablen 8. Stetige Zufallsvariablen Idee: Eine Zufallsvariable X ist stetig, falls ihr Träger eine überabzählbare Teilmenge der reellen Zahlen R ist. Beispiel: Glücksrad mit stetigem Wertebereich [0, 2π] Von Interesse

Mehr

Satz 61 (Chebyshev-Ungleichung)

Satz 61 (Chebyshev-Ungleichung) Die folgende Abschätzung ist nach Pavnuty Lvovich Chebyshev (1821 1894) benannt, der ebenfalls an der Staatl. Universität in St. Petersburg wirkte. Satz 61 (Chebyshev-Ungleichung) Sei X eine Zufallsvariable,

Mehr

1.3 Zufallsgrößen und Verteilungsfunktionen

1.3 Zufallsgrößen und Verteilungsfunktionen .3 Zufallsgrößen und Verteilungsfunktionen.3. Einführung Vielfach sind die Ergebnisse von Zufallsversuchen Zahlenwerte. Häufig möchte man aber auch in den Fällen, wo dies nicht so ist, Zahlenwerte zur

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 12.02.2010 Fakultät für Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Analytische Methoden

Analytische Methoden KAPITEL 12 Analytische Methoden Es seien unabhängige Zufallsvariablen X 1,..., X n gegeben. Die Verteilungen dieser Zufallsvariablen seien bekannt. Wie bestimmt man dann die Verteilung der Summe X 1 +...

Mehr

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)

Mehr

Vorlesung 8b. Bedingte Erwartung, bedingte Varianz, bedingte Verteilung, bedingte Wahrscheinlichkeiten

Vorlesung 8b. Bedingte Erwartung, bedingte Varianz, bedingte Verteilung, bedingte Wahrscheinlichkeiten Vorlesung 8b Bedingte Erwartung, bedingte Varianz, bedingte Verteilung, bedingte Wahrscheinlichkeiten 1 Wie gehabt, denken wir uns ein zufälliges Paar X = (X 1,X 2 ) auf zweistufige Weise zustande gekommen:

Mehr

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w =

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w = 1 v Die Länge Def. Sei (V,, ) ein Euklidscher Vektorraum. Für jeden Vektor v V heißt die Zahl v,v die Länge von v und wird v bezeichnet. Bemerkung. Die Länge des Vektors ist wohldefiniert, da nach Definition

Mehr

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ),

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ), 2.5 Parameter einer Verteilung 2.5. Erwartungswert X eine Zufallsvariable, g : R R stetig. Der Erwartungswert E[g(X)] von g(x) ist definiert durch: E[g(X)] := k g(x k )w(x = x k ), falls X diskret ist

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis Vorbemerkungen 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 6 5 Hilfsmittel aus der Kombinatorik 7 6 Bedingte

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 1. Dezember 21 1 Integralrechnung Flächeninhalt Stammfunktion Rechenregeln 2 Dichten von Erwartungswert und Varianz

Mehr

Zweitklausur. b p b. q a. c 1. p a

Zweitklausur. b p b. q a. c 1. p a Elementare Stochastik SoSe 27 Zweitklausur Lösungen. Berechnen Sie für die angegebenen Übergangswahrscheinlichkeiten (mit p a,p b >, q a := p a, q b := p b ) die erwartete Anzahl von Schritten bis zum

Mehr

Erwartungswert als Integral

Erwartungswert als Integral Erwartungswert als Integral Anton Klimovsky Gemischte ZVen, allgemeine ZVen, Erwartungswert für allgemeine ZVen, Lebesgue-Integral bzgl. WMaß, Eigenschaften des Integrals, Lebesgue-Maß, Lebesgue-Integral

Mehr

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK)

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) für Studierende des Maschinenbaus vom 7. Juli (Dauer: 8 Minuten) Übersicht über die

Mehr