Vorlesung 7b. Der Zentrale Grenzwertsatz

Größe: px
Ab Seite anzeigen:

Download "Vorlesung 7b. Der Zentrale Grenzwertsatz"

Transkript

1 Vorlesung 7b Der Zentrale Grenzwertsatz 1

2 Zentraler Grenzwertsatz (Tschebyscheff) Die standardisierte Summe von unabhängigen, identisch verteilten R-wertigen Zufallsvariablen konvergiert in Verteilung gegen eine standard-normalverteilte Zufallsvariable. 2

3 Formal: Seien X 1, X 2,... unabhängige und identisch verteilte Zufallsvariable mit endlichem Erwartungswert µ und endlicher Varianz σ 2 > 0. Dann gilt für alle a < b R { X P X n nµ nσ 2 } [a, b] P{Z [a, b]}. n Dabei ist Z standard-normalverteilt. Noch zu klären ist: Was heißt: X 1, X 2,... unabhängig? 3

4 Die Zufallsvariablen X 1,..., X n heißen (stochastisch) unabhängig, wenn ihre gemeinsame Verteilung die folgende Produktgestalt hat: P{X 1 A 1,..., X n A n } = P{X 1 A 1 } P{X n A n }. 4

5 Sind die Zufallsvariablen X i diskret, dann ist notwendig und hinreichend für ihre Unabhängigkeit, dass P{X 1 = a 1,..., X n = a n } = P{X 1 = a 1 } P{X n = a n }. M.a. W.: Die gemeinsamen Verteilungsgewichte sind die Produkte der Randverteilungsgewichte: ν(a 1,..., a n ) = ν 1 (a 1 ) ν n (a n ). 5

6 Wenn die Zufallsvariablen X 1,..., X n eine gemeinsame Dichte besitzen, dann ist die Unabhängigkeit gleichbedeutend damit, dass diese Dichte das Produkt über die Dichten der Randverteilungen ist: f(x 1,..., x n ) d(x 1,..., x n ) = f 1 (x 1 ) f n (x n ) dx 1 dx n 6

7 Beispiel: Unabhängige standard-normalverteilte Z 1,..., Z n haben die gemeinsame Dichte 1 (2π) n/2e (z z2 n)/2 dz = 1 /2 dz. (2π) n/2e z 2 7

8 Sind Z 1,..., Z n unabhängig und standard-normalverteilt, dann ist auch Y := 1 n (Z Z n ) standard-normalverteilt. Am elegantesten sieht man das geometrisch (vgl. Vorlesung 6a für den Fall n = 2): 8

9 Wir betrachten im R n den Einheitsvektor a := 1 n (1,...,1). Y := 1 n (Z Z n ) lässt sich auffassen als a-koordinate des zufälligen Vektors Z := (Z 1,..., Z n ). Wegen der Rotationsinvarianz der Verteilung von Z ist Y so verteilt wie die erste Standardkoordinate Z 1. 9

10 Die folgende einfache Bemerkung wird uns auch hilfreich sein beim Beweis des Zentralen Grenzwertsatzes: Sind Y 1,..., Y n unabhängig, dann sind für m < n auch die beiden Tupel (Y 1,..., Y m ) und (Y m+1,..., Y n ) voneinander unabhängig. 10

11 Inbesondere folgt aus der Unabhängigkeit der Y 1,..., Y n, für reellwertige g und h die folgende Produktformel: E[g(Y 1,..., Y m ) h(y m+1,..., Y n )] = E[g(Y 1,..., Y m )]E[h(Y m+1,..., Y n )], vorausgesetzt die Erwartungswerte sind endlich. (Vgl. dazu auch Vorlesung 5a.) 11

12 Definition: Eine Folge von Zufallsvariablen Y 1, Y 2,... heißt unabhängig, wenn je endlich viele Y 1,..., Y n unabhängig sind. 12

13 Wir sind jetzt vorbereitet auf eine Beweisskizze des Zentralen Grenzwertsatzes. Dieser besagt: Seien X 1, X 2,... unabhängige und identisch verteilte Zufallsvariable mit endlichem Erwartungswert µ und endlicher Varianz σ 2 > 0. Dann gilt für alle a < b R { X P X n nµ nσ 2 } [a, b] P{Z [a, b]}. n Dabei ist Z standard-normalverteilt. 13

14 X 1, X 2,... seien identisch verteilte rellwertige Zufallsvariable mit endlicher Varianz. Ohne Einschränkung können wir annehmen: E[X i ] = 0, VarX i = 1. (Denn sonst gehen wir einfach zu den standardisierten Zufallsvariablen X i µ σ über.) 14

15 Die Behauptung ist dann: [ (X E X n ) ] [a,b] n n E[1 [a,b] (Z)] mit standard-normalverteiltem Z. 15

16 Weil man Indikatorfunktionen 1 [a,b] durch glatte Funktionen h approximieren kann, reicht es (wie man zeigen kann, mehr dazu später), diese Konvergenz nur für solche h zu beweisen. 1 a b 16

17 Satz. Sei h : R R dreimal stetig differenzierbar und seien h, h, h und h beschränkt. Dann gilt [ E h ( X X n ) ] n n E[h(Z)] 17

18 Beweisskizze: Die Hauptidee besteht darin, eine Folge von unabhängigen standard-normalverteilten Zufallsvariablen (Z 1, Z 2,...) ins Spiel zu bringen, die zusammen mit (X 1, X 2,...) ein zufälliges Paar von Folgen bilden. Dabei seien alle Z 1, Z 2,..., X 1, X 2,... unabhängig. Wir wissen schon, dass gilt: [ E[h(Z)] = E h ( Z Z n ) ]. n Wir folgen einem im Klassiker Probability von Leo Breiman (SIAM 1992) angegebenen Beweis. 18

19 Außerdem ergibt sich mit der Linearität des Erwartungswertes: [ E h ( X X n n ) ] [ E h ( Z Z n ) ] n [ = E h ( X X n n ) (Z h Z n ) ] n 19

20 Außerdem ergibt sich mit der Linearität des Erwartungswertes: [ E h ( X X n n ) ] [ E h ( Z Z n ) ] n [ = E h ( X X n n ) h (Z Z n n ) ] ). Es reicht also zu zeigen, dass letzteres für n gegen Null konvergiert. 20

21 Eine clevere Idee ist es jetzt, die Differenz als Teleskopsumme darzustellen: h ( X X n ) (Z h Z n ) n n = n i=1 ( h ( X X i 1 + X i + Z i Z n ) n h ( X X i 1 + Z i + Z i Z n ) ) n 21

22 Taylorentwicklung ergibt: = n i=1 X i Z i h ( X X i 1 + Z i Z n ) n n + n i=1 X 2 i Z2 i 2n h ( X X i 1 + Z i Z n ) n + n i=1 ( X 3 i 6n 3/2h (Y i ) Z3 ) i 6n 3/2h (Ỹ i ) mit passenden Zwischenstellen Y i, Ỹ i. 22

23 Wir nehmen der Einfachheit halber an: E[ X 1 3 ] <. Ist C eine obere Schranke von h, so folgt E [ h ( X X n ) (Z h Z n ) ] n n n 1 6n 3/2(E[ X 1 3 ] + E[ Z 1 3 ])C 0, denn die Erw. werte der ersten beiden Summen sind Null wegen E[X 1 ] = E[Z 1 ] = 0 und E[X 2 1 ] = E[Z2 1 ] = 1, zusammen mit der Unabhängigkeit der X i, Z i und der oben festgestellten Produktformel. 23

24 Hier ist die (oben präzisierte) Botschaft der Stunde: Summen (und Mittelwerte) von vielen unabhängigen, identisch verteilten ZV mit endlicher Varianz sind annähernd normalverteilt. Diese Aussage bleibt übrigens auch unter schwächeren Bedingungen bestehen, sowohl was die Unabhängigkeit, als auch was die identische Verteiltheit betrifft. Zu letzterem vgl Skript Kersting, Abschnitt

25 Eine gängige und nützliche Variante unseres Zentralen Grenzwertsatzes ist: Seien X 1, X 2,... unabhängig und identisch verteilt mit endlichem Erwartungswert µ und endlicher Varianz σ 2. Dann gilt für die standardisierten Summen V n := X X n nµ : nσ 2 E[g(V n )] n E[g(Z)] für jede stetige und beschränkte Abbildung g : R R. Dabei ist Z standard-normalverteilt. 25

26 (Auch beim Beweis dieser Variante kann man verwenden, dass sich eine stetige und beschränkte Abbildung g geeignet durch glatte Abbildungen h approximieren lässt; mehr dazu später.) 26

27 Das folgende (auch für sich interessante) Beispiel wird uns einen hübschen Beweis der Stirling-Formel liefern. Beispiel: Y n sei Poisson-verteilt mit Parameter n. Dann konvergiert für n V n := Y n n n in Verteilung gegen ein standardnormalverteiltes Z. 27

28 Denn: Die Summe von n unabhängigen Poisson(1)-verteilten Zufallsvariablen ist Poisson(n)-verteilt (vgl. Übungsaufgabe). Damit folgt die behauptete Verteilungskonvergenz aus dem Zentralen Grenzwertsatz. (Zur Erinnerung: Die Varianz einer Poisson(λ)-verteilten Zufallsvariable ist λ.) 28

29 Für l N sei g l (x) := x + l, x R. Dabei verwenden wir die Notation a b := min(a, b), a b := max(a, b), x + := x 0. x + = x 0 l x + l l AAAAAAAAAAAAAAA 29

30 Weil x g l (x) eine beschränkte, stetige Funktion ist, liefert der Zentrale Grenzwertsatz: E[g l (V n )] n E[g l (Z)] Mit anderen Worten: E[V n + l] n E[Z+ l] Behauptung: Es gilt auch E[V + n ] n E[Z+ ] Dazu schätzen wir die Differenzen ab: 30

31 E[Z + ] E[Z + l] = E[Z + Z + l] E[Z 1 [l, ) (Z)] = 1 2π l xe x2 /2 dx 0. l 31

32 E[V + n ] E[V + n l] = E[V + n V + n l] E[V n 1 [l, ) (V n )] Mit der Cauchy-Schwarz-Ungleichung E[XY ] E[X 2 ] E[Y 2 ] (siehe unten) können wir weiter abschätzen: E[V 2 n ] E[1 [l, ) (V n )] = 1 P{V n l}. 32

33 Mit der Tschebyscheff-Ungleichung ergibt sich (man beachte E[V n ] = 0, Var V n = 1): P{V n l} 1 l 2. Insgesamt also: E[V + n ] E[V + n l] 1 l. 33

34 Aus dem eben Bewiesenen, E[V + n l] n E[Z+ l], E[Z + ] E[Z + l] l 0, E[V + n ] E[V + n l] 1 l, folgt E[V + n ] n E[Z + ] 34

35 Für das standard-normalverteilte Z gilt: E[Z + ] = 1 2π 0 xe x2 /2 dx = 1 2π Andererseits gilt für das Poisson(n)-verteilte Y n (Übungsaufgabe!) E[(Y n n) + n nn+1 ] = e n! Also: E[V n + ] = 1 E[(Y n n) + ( n ] = n e ) n n 1/2 n! 35

36 Unser Grenzwertsatz E[V + n ] n E[Z + ] besagt also: ( n e ) n n 1/2 n! n 1 2π. Das ist aber nichts anderes als eine Umstellung der Stirling-Formel, die wir damit aus dem Zentralen Grenzwertsatz hergeleitet haben. 36

37 Wir tragen nach: Cauchy-Schwarz-Ungleichung: Für zwei reellwertige Zufallsvariable U, V gilt: E[ UV ] E[U 2 ] E[V 2 ] Beweis: Ist E[U 2 ] = 0, so folgt P{U = 0} = 1, E[ UV ] = 0. (Im diskreten Fall ist das klar, für den allgemeinen Fall kommen wir hierauf zurück.) Wir können also annehmen: 0 < E[U 2 ], 0 < E[V 2 ]. 37

38 Für E[U 2 ] = oder E[V 2 ] = gilt dann die CS-Ungleichung klarerweise. Bleibt der Fall 0 < E[U 2 ] <, 0 < E[V 2 ] <. Setzen wir X := U/ E[U 2 ], Y := V/ E[V 2 ]. Dann gilt E[X 2 ] = E[Y 2 ] = 1, und zu zeigen bleibt E[ XY ] 1. Dies folgt durch Bilden des Erwartungswertes über XY 1 2 (X2 + Y 2 ). 38

Vorlesung 5a. Varianz und Kovarianz

Vorlesung 5a. Varianz und Kovarianz Vorlesung 5a Varianz und Kovarianz 1 1. Varianz und Standardabweichung: Elementare Eigenschaften (Buch S. 24) 2 X sei reellwertige Zufallsvariable mit endlichem Erwartungswert µ. Die Varianz von X ist

Mehr

Vorlesung 7a. Der Zentrale Grenzwertsatz

Vorlesung 7a. Der Zentrale Grenzwertsatz Vorlesung 7a Der Zentrale Grenzwertsatz als Erlebnis und Das Schwache Gesetz der Großen Zahlen Wiederholung: Die Normalverteilung Dichtefunktion ϕ der Standardnormalverteilung ϕ(x) 0.0 0.1 0.2 0.3 0.4

Mehr

Vorlesung 5a. Zufallsvariable mit Dichten

Vorlesung 5a. Zufallsvariable mit Dichten Vorlesung 5a 1 Vorlesung 5a Zufallsvariable mit Dichten Vorlesung 5a Zufallsvariable mit Dichten Teil 1 Uniforme Verteilung, Exponentialverteilung. Kontinuierlich uniform verteilte Zufallsvariable: 2 Kontinuierlich

Mehr

Vorlesung 5a. Die Varianz

Vorlesung 5a. Die Varianz Vorlesung 5a Die Varianz 1 1. Varianz und Standardabweichung: Elementare Eigenschaften (Buch S. 24) 2 X sei reellwertige Zufallsvariable mit endlichem Erwartungswert µ. Die Varianz von X ist definiert

Mehr

Vorlesung 7a. Unabhängigkeit

Vorlesung 7a. Unabhängigkeit Vorlesung 7a Unabhängigkeit 1 Wir erinnern an die Definition der Unabhängigkeit von zwei Zufallsvariablen (Buch S. 61): Zufallsvariable X 1,X 2 heißen (stochastisch) unabhängig, falls für alle Ereignisse

Mehr

Vorlesung 5b. Zufallsvariable mit Dichten

Vorlesung 5b. Zufallsvariable mit Dichten Vorlesung 5b 1 Vorlesung 5b Zufallsvariable mit Dichten Vorlesung 5b Zufallsvariable mit Dichten Wiederholung aus Vorlesung 2b+: Kontinuierlich uniform verteilte Zufallsvariable: Sei S eine Teilmenge des

Mehr

Vorlesung 4b. Die Varianz

Vorlesung 4b. Die Varianz Vorlesung 4b Die Varianz 1 X sei reellwertige Zufallsvariable mit endlichem Erwartungswert µ. Die Varianz von X ist definiert als Var X := E[(X µ) 2 ], die erwartete quadratische Abweichung der Zufallsvariablen

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

Vorlesung 4b. Die Varianz

Vorlesung 4b. Die Varianz Vorlesung 4b Die Varianz 1 X sei reellwertige Zufallsvariable mit endlichem Erwartungswert µ Die Varianz von X ist definiert als Var[X] := E[(X µ) 2 ], die erwartete quadratische Abweichung der Zufallsvariablen

Mehr

4. Verteilungen von Funktionen von Zufallsvariablen

4. Verteilungen von Funktionen von Zufallsvariablen 4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten

Mehr

Vorlesung 7b. Unabhängigkeit bei Dichten. und die mehrdimensionale Standardnormalverteilung

Vorlesung 7b. Unabhängigkeit bei Dichten. und die mehrdimensionale Standardnormalverteilung Vorlesung 7b Unabhängigkeit bei Dichten und die mehrdimensionale Standardnormalverteilung 0. Wiederholung: Die Normalverteilung Dichtefunktion ϕ der Standardnormalverteilung ϕ(x) 0.0 0.1 0.2 0.3 0.4 4

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Zweitklausur. b p b. q a. c 1. p a

Zweitklausur. b p b. q a. c 1. p a Elementare Stochastik SoSe 27 Zweitklausur Lösungen. Berechnen Sie für die angegebenen Übergangswahrscheinlichkeiten (mit p a,p b >, q a := p a, q b := p b ) die erwartete Anzahl von Schritten bis zum

Mehr

DWT 3.3 Warteprobleme mit der Exponentialverteilung 275/467 Ernst W. Mayr

DWT 3.3 Warteprobleme mit der Exponentialverteilung 275/467 Ernst W. Mayr Poisson-Prozess Wir hatten bei der Diskussion der geometrischen und der Poisson-Verteilung festgestellt: Wenn der zeitliche Abstand der Treffer geometrisch verteilt ist, so ist ihre Anzahl in einer festen

Mehr

Vorlesung 8a. Kovarianz und Korrelation

Vorlesung 8a. Kovarianz und Korrelation Vorlesung 8a Kovarianz und Korrelation 1 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und E[Y 2 ] < ist Cov[X, Y ] := E [ (X EX)(Y EY ) ] Insbesondere

Mehr

Fakultät Verkehrswissenschaften Friedrich List Professur für Ökonometrie und Statistik, insb. im Verkehrswesen. Statistik II

Fakultät Verkehrswissenschaften Friedrich List Professur für Ökonometrie und Statistik, insb. im Verkehrswesen. Statistik II Statistik II 1. Ergänzungen zur Wahrscheinlichkeitstheorie Fakultät Verkehrswissenschaften Friedrich List Professur für Ökonometrie und Statistik, insb. im Verkehrswesen Statistik II 1. Ergänzungen zur

Mehr

Zulassungsprüfung Stochastik,

Zulassungsprüfung Stochastik, Zulassungsprüfung Stochastik, 5.5. Wir gehen stets von einem Maßraum (Ω, A, µ) bzw. einem Wahrscheinlichkeitsraum (Ω,A,P) aus. Die Borel σ-algebra auf R n wird mit B n bezeichnet, das Lebesgue Maß auf

Mehr

13 Grenzwertsätze Das Gesetz der großen Zahlen

13 Grenzwertsätze Das Gesetz der großen Zahlen 13 Grenzwertsätze 13.1 Das Gesetz der großen Zahlen Der Erwartungswert einer zufälligen Variablen X ist in der Praxis meist nicht bekannt. Um ihn zu bestimmen, sammelt man Beobachtungen X 1,X 2,...,X n

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Lageparameter: Erwartungswert d) Erwartungswert

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management für Betriebswirtschaft und internationales Management Sommersemester 2015 Prof. Dr. Stefan Etschberger Hochschule Augsburg Normalverteilung Eine Zufallsvariable X mit einer Dichtefunktion und σ > 0 heißt

Mehr

Vorlesung 8b. Kovarianz, Korrelation und Regressionsgerade

Vorlesung 8b. Kovarianz, Korrelation und Regressionsgerade Vorlesung 8b Kovarianz, Korrelation und Regressionsgerade 1 1. Die Kovarianz und ihre Eigenschaften 2 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und

Mehr

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Wahrscheinlichkeitstheorie und Statistik Definitionen und Sätze Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2018 2.5.2018 Diskrete Wahrscheinlichkeitsräume Diskreter

Mehr

Vorlesung 9b. Kovarianz und Korrelation

Vorlesung 9b. Kovarianz und Korrelation Vorlesung 9b Kovarianz und Korrelation 1 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und E[Y 2 ] < ist Cov[X,Y]:= E [ (X EX)(Y EY) ] Insbesondere ist

Mehr

Vorlesung 7b. Kovarianz und Korrelation

Vorlesung 7b. Kovarianz und Korrelation Vorlesung 7b Kovarianz und Korrelation 1 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und E[Y 2 ] < ist Cov[X,Y]:= E [ (X EX)(Y EY) ] Insbesondere ist

Mehr

Vertiefung NWI: 8. Vorlesung zur Wahrscheinlichkeitstheorie

Vertiefung NWI: 8. Vorlesung zur Wahrscheinlichkeitstheorie Fakultät für Mathematik Prof. Dr. Barbara Gentz SS 2013 Vertiefung NWI: 8. Vorlesung zur Wahrscheinlichkeitstheorie Mittwoch, 5.6.2013 8. Unabhängigkeit von Zufallsgrößen, Erwartungswert und Varianz 8.1

Mehr

Satz 105 (Gedächtnislosigkeit) Beweis: Sei X exponentialverteilt mit Parameter λ. Dann gilt Pr[X > x + y X > y] = Pr[X > y] Pr[X > x + y] = Pr[X > y]

Satz 105 (Gedächtnislosigkeit) Beweis: Sei X exponentialverteilt mit Parameter λ. Dann gilt Pr[X > x + y X > y] = Pr[X > y] Pr[X > x + y] = Pr[X > y] Gedächtnislosigkeit Satz 105 (Gedächtnislosigkeit) Eine (positive) kontinuierliche Zufallsvariable X mit Wertebereich R + ist genau dann exponentialverteilt, wenn für alle x, y > 0 gilt, dass Pr[X > x

Mehr

Vorlesung 3b. Der Erwartungswert

Vorlesung 3b. Der Erwartungswert Vorlesung 3b Der Erwartungswert von diskreten reellwertigen Zufallsvariablen Teil 2 0. Wiederholung X sei eine diskrete reellwertige Zufallsvariable X S R E[X] := a S a P(X = a). heißt Erwartungswert von

Mehr

2 Zufallsvariable und Verteilungsfunktionen

2 Zufallsvariable und Verteilungsfunktionen 8 2 Zufallsvariable und Verteilungsfunktionen Häufig ist es so, dass den Ausgängen eines Zufallexperiments, d.h. den Elementen der Ereignisalgebra, eine Zahl zugeordnet wird. Das wollen wir etwas mathematischer

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 12. Übung SS 18: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 12. Übung SS 18: Woche vom Übungsaufgaben 12. Übung SS 18: Woche vom 2. 7. 6. 7. 2018 Stochastik VI: Zufallsvektoren; Funktionen von ZG Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 206 Prof. Dr. Stefan Etschberger HSA Unabhängigkeit von Ereignissen A, B unabhängig: Eintreten von A liefert keine Information über P(B). Formal: P(A

Mehr

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit 3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate

Mehr

Statistik für Ingenieure Vorlesung 5

Statistik für Ingenieure Vorlesung 5 Statistik für Ingenieure Vorlesung 5 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 28. November 2017 3.4 Wichtige stetige Verteilungen 3.4.1 Exponentialverteilung Parameter:

Mehr

Vorlesung 8b. Bedingte Erwartung und bedingte Varianz

Vorlesung 8b. Bedingte Erwartung und bedingte Varianz Vorlesung 8b Bedingte Erwartung und bedingte Varianz 1 1. Zerlegung eines Erwartungswertes nach der ersten Stufe (Buch S. 91) 2 Wie in der vorigen Vorlesung betrachten wir die gemeinsame Verteilung von

Mehr

Statistik I für Betriebswirte Vorlesung 4

Statistik I für Betriebswirte Vorlesung 4 Statistik I für Betriebswirte Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 25. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

5 Erwartungswerte, Varianzen und Kovarianzen

5 Erwartungswerte, Varianzen und Kovarianzen 47 5 Erwartungswerte, Varianzen und Kovarianzen Zur Charakterisierung von Verteilungen unterscheidet man Lageparameter, wie z. B. Erwartungswert ( mittlerer Wert ) Modus (Maximum der Wahrscheinlichkeitsfunktion,

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

4.2 Moment und Varianz

4.2 Moment und Varianz 4.2 Moment und Varianz Def. 2.10 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: EX p

Mehr

Vorlesung 12a. Zerlegung der Varianz

Vorlesung 12a. Zerlegung der Varianz Vorlesung 12a Zerlegung der Varianz 1 Im zufälligen Paar (X, Y ) 2 Im zufälligen Paar (X, Y ) sei Y reellwertig mit endlicher Varianz. Im zufälligen Paar (X, Y ) sei Y reellwertig mit endlicher Varianz.

Mehr

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Stefan Etschberger für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2017 Rechenregeln für den Erwartungswert Ist f symmetrisch bzgl. a, so gilt E(X)

Mehr

Seminar: Gegenbeispiele in der Wahrscheinlichkeitstheorie. Ausarbeitung zum Seminarthema: Zentraler Grenzwertsatz und diverse Grenzwertsätze

Seminar: Gegenbeispiele in der Wahrscheinlichkeitstheorie. Ausarbeitung zum Seminarthema: Zentraler Grenzwertsatz und diverse Grenzwertsätze Seminar: Gegenbeispiele in der Wahrscheinlichkeitstheorie - Ausarbeitung zum Seminarthema: Zentraler Grenzwertsatz und diverse Grenzwertsätze Klaus Kuchler 0. Januar 03 Zentraler Grenzwertsatz. Grundlagen,

Mehr

Vorlesung 8b. Zweistufige Zufallsexperimente. Teil 2

Vorlesung 8b. Zweistufige Zufallsexperimente. Teil 2 Vorlesung 8b Zweistufige Zufallsexperimente Teil 2 1 Wie gehabt, denken wir uns ein zufälliges Paar X = (X 1,X 2 ) auf zweistufige Weise zustande gekommen: P(X 1 = a 1,X 2 = a 2 ) = P(X 1 = a 1 )P a1 (X

Mehr

22 Charakteristische Funktionen und Verteilungskonvergenz

22 Charakteristische Funktionen und Verteilungskonvergenz 22 Charakteristische Funktionen und Verteilungskonvergenz Charakteristische Funktionen (Fourier-Transformierte liefern ein starkes analytisches Hilfsmittel zur Untersuchung von W-Verteilungen und deren

Mehr

Stochastik Wiederholung von Teil 1

Stochastik Wiederholung von Teil 1 Stochastik Wiederholung von Teil 1 Andrej Depperschmidt Sommersemester 2016 Wahrscheinlichkeitsraum Definition Das Tripple (Ω, A, P) heißt Wahrscheinlichkeitsraum, falls gilt: (i) A ist eine σ-algebra,

Mehr

Diskrete Strukturen II

Diskrete Strukturen II SS 2004 Diskrete Strukturen II Ernst W. Mayr Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2004ss/ds/index.html.de 18. Juni 2004 Exponentialverteilung als Grenzwert der geometrischen

Mehr

Stetige Verteilungen, Unabhängigkeit & ZGS

Stetige Verteilungen, Unabhängigkeit & ZGS Mathematik II für Biologen Stetige Verteilungen, & ZGS 26. Juni 2009 Stetige Verteilungen, & ZGS Wiederholung Stetige Zufallsvariable Definition Eigenschaften, Standardisierung Zusammenhang von Poisson-

Mehr

Klausur zur Vorlesung Stochastik II

Klausur zur Vorlesung Stochastik II Institut für Mathematische Stochastik WS 003/004 Universität Karlsruhe 05. 04. 004 Prof. Dr. G. Last Klausur zur Vorlesung Stochastik II Dauer: 90 Minuten Name: Vorname: Matrikelnummer: Diese Klausur hat

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Karin Waldherr & Pantelis Christodoulides 11. Mai 2011 Waldherr / Christodoulides Einführung in Quantitative Methoden- 8.VO 1/40 Poisson-Verteilung Diese Verteilung

Mehr

Vorlesung 6b. Von der Binomial-zur Normalverteilung

Vorlesung 6b. Von der Binomial-zur Normalverteilung Vorlesung 6b 1 Vorlesung 6b Von der Binomial-zur Normalverteilung Binomialverteilungen mit großem n und großer Varianz npq sehen glockenförmig aus, wenn man sie geeignet ins Bild holt. 2 Binomialverteilungen

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

Mathematische Ökonometrie

Mathematische Ökonometrie Mathematische Ökonometrie Ansgar Steland Fakultät für Mathematik Ruhr-Universität Bochum, Germany ansgar.steland@ruhr-uni-bochum.de Skriptum zur LV im SoSe 2005. Diese erste Rohversion erhebt keinen Anspruch

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:

Mehr

Scheinklausur zur Vorlesung Stochastik II

Scheinklausur zur Vorlesung Stochastik II Institut für Mathematische Stochastik WS 2007/2008 Universität Karlsruhe 25. 02. 2008 Dr. B. Klar Scheinklausur zur Vorlesung Stochastik II Muster-Lösung Dauer: 90 Minuten Name: Vorname: Matrikelnummer:

Mehr

Grundbegriffe der Stochastik II

Grundbegriffe der Stochastik II Grundbegriffe der Stochastik II Henrik Gebauer 6. Oktober 9 Zusammenfassung Dieser Vortrag dient der Wiederholung zentraler Begriffe der kontinuierlichen Stochastik. Wahrscheinlichkeitsverteilungen Sei

Mehr

Vorlesung 13b. Relative Entropie

Vorlesung 13b. Relative Entropie Vorlesung 13b Relative Entropie 1 S sei eine abzählbare Menge (ein Alphabet ). 2 S sei eine abzählbare Menge (ein Alphabet ). Die Elemente von S nennen wir Buchstaben. S sei eine abzählbare Menge (ein

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung 2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von

Mehr

Binomialverteilung. Häufigkeit, mit der Ereignis A bei n unabhängigen Versuchen eintritt. Träger von X : X = {0, 1, 2,..., n}.

Binomialverteilung. Häufigkeit, mit der Ereignis A bei n unabhängigen Versuchen eintritt. Träger von X : X = {0, 1, 2,..., n}. Binomialverteilung Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder nicht. X = Häufigkeit, mit

Mehr

1 Erwartungswert und Kovarianzmatrix von Zufallsvektoren

1 Erwartungswert und Kovarianzmatrix von Zufallsvektoren Erwartungswert und Kovarianzmatrix von Zufallsvektoren Erwartungswert und Kovarianzmatrix von Zufallsvektoren. Definition Ist X X,...,X p ein p-dimensionaler Zufallsvektor mit E X j < für alle j, so heißt

Mehr

Kapitel 8. Parameter multivariater Verteilungen. 8.1 Erwartungswerte

Kapitel 8. Parameter multivariater Verteilungen. 8.1 Erwartungswerte Kapitel 8 Parameter multivariater Verteilungen 8.1 Erwartungswerte Wir können auch bei mehrdimensionalen Zufallsvariablen den Erwartungswert betrachten. Dieser ist nichts anderes als der vektor der Erwartungswerte

Mehr

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle Patric Müller ETHZ Teil VIII Zentraler Grenzwertsatz und Vertrauensintervalle WBL 17/19, 29.05.2017 Wahrscheinlichkeit

Mehr

Erwartungswert und Varianz von Zufallsvariablen

Erwartungswert und Varianz von Zufallsvariablen Kapitel 7 Erwartungswert und Varianz von Zufallsvariablen Im Folgenden sei (Ω, A, P ) ein Wahrscheinlichkeitsraum. Der Erwartungswert von X ist ein Lebesgue-Integral (allerdings allgemeiner als in Analysis

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 15. April 2019 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 1. April

Mehr

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38 Dynamische Systeme und Zeitreihenanalyse Multivariate Normalverteilung und ML Schätzung Kapitel 11 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Multivariate

Mehr

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Stefan Etschberger für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2017 Normalverteilung Eine Zufallsvariable X mit einer Dichtefunktion f(x) =

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 7. Mai 2018 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 5 Version: 30. April

Mehr

Unabhängige Zufallsvariablen

Unabhängige Zufallsvariablen Kapitel 9 Unabhängige Zufallsvariablen Die Unabhängigkeit von Zufallsvariablen wird auf die Unabhängigkeit von Ereignissen zurückgeführt. Im Folgenden sei Ω, A, P ) ein Wahrscheinlichkeitsraum. Definition

Mehr

Vorlesung 8b. Bedingte Erwartung, bedingte Varianz, bedingte Verteilung, bedingte Wahrscheinlichkeiten

Vorlesung 8b. Bedingte Erwartung, bedingte Varianz, bedingte Verteilung, bedingte Wahrscheinlichkeiten Vorlesung 8b Bedingte Erwartung, bedingte Varianz, bedingte Verteilung, bedingte Wahrscheinlichkeiten 1 Wie gehabt, denken wir uns ein zufälliges Paar X = (X 1,X 2 ) auf zweistufige Weise zustande gekommen:

Mehr

f(x) = P (X = x) = 0, sonst heißt Poisson-verteilt mit Parameter (oder Rate) λ > 0, kurz X P o(λ). Es gilt x x! 1 Wahrscheinlichkeitsrechnung 212

f(x) = P (X = x) = 0, sonst heißt Poisson-verteilt mit Parameter (oder Rate) λ > 0, kurz X P o(λ). Es gilt x x! 1 Wahrscheinlichkeitsrechnung 212 1.6.2 Poisson Verteilung Eine weitere wichtige diskrete Verteilung ist die Poisson-Verteilung. Sie modelliert die Anzahl (eher seltener) Ereignisse in einem Zeitintervall (Unfälle, Todesfälle; Sozialkontakte,

Mehr

Kapitel 2.9 Der zentrale Grenzwertsatz. Stochastik SS

Kapitel 2.9 Der zentrale Grenzwertsatz. Stochastik SS Kapitel.9 Der zentrale Grenzwertsatz Stochastik SS 07 Vom SGGZ zum ZGWS Satz.4 (Schwaches Gesetz großer Zahlen) Sei (X i ) i eine Folge unabhängiger, identisch verteilter Zufallsvariablen mit E[X ]

Mehr

Stetige Verteilungen, Unabhängigkeit & ZGS

Stetige Verteilungen, Unabhängigkeit & ZGS Mathematik II für Biologen Stetige Verteilungen, & ZGS 19. Juni 2015 Stetige Verteilungen, & ZGS Stetige Zufallsvariable Dichte & Verteilungsfunktion Eigenschaften & Kennzahlen Definition Eigenschaften,

Mehr

Vorlesung 4b. Versuche, Erfolge, Wartezeiten: von Bernoulli zu Poisson

Vorlesung 4b. Versuche, Erfolge, Wartezeiten: von Bernoulli zu Poisson Vorlesung 4b Versuche, Erfolge, Wartezeiten: Die Welt des p-münzwurfs - von Bernoulli zu Poisson 1 0. Fortgesetzter p-münzwurf 2 Definition: Sei p (0,1), q := 1 p. Eine Bernoulli-Folge zum Parameter p

Mehr

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen Vorlesung 3a Der Erwartungswert von diskreten reellwertigen Zufallsvariablen X sei eine diskrete reellwertige Zufallsvariable, d.h. eine ZV e mit Wertebereich R (oder einer Teilmenge davon), sodass eine

Mehr

1.5 Mehrdimensionale Verteilungen

1.5 Mehrdimensionale Verteilungen Poisson eine gute Näherung, da np = 0 und 500p = 5 00 = n. Wir erhalten somit als Näherung Exakte Rechnung ergibt P(2 X 0) = k=2 0 k=2 π (k) = 0,26424. 0 ( ) 00 P(2 X 0) = 0,0 k 0,99 00 k = 0,264238. k.4.2.4

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik. PD Dr. U. Ludwig. Vorlesung 7 1 / 19

Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik. PD Dr. U. Ludwig. Vorlesung 7 1 / 19 Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik PD Dr. U. Ludwig Vorlesung 7 1 / 19 2.2 Erwartungswert, Varianz und Standardabweichung (Fortsetzung) 2 / 19 Bedingter Erwartungswert

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR STOCHASTIK SS 2010 Karlsruher Institut für Technologie Priv.-Doz. Dr. D. Kadelka Klausur Wahrscheinlichkeitstheorie und Statistik vom 14.9.2010 Musterlösungen Aufgabe 1: Gegeben sei eine Urliste

Mehr

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen David Geier und Sven Middelberg RWTH Aachen, Sommersemester 27 Inhaltsverzeichnis Information 2 Aufgabe 4 Aufgabe 2 6 4 Aufgabe

Mehr

Y = g 2 (U 1,U 2 ) = 2 ln U 1 sin 2πU 2

Y = g 2 (U 1,U 2 ) = 2 ln U 1 sin 2πU 2 Bsp. 72 (BOX MÜLLER Transformation) Es seien U 1 und U 2 zwei unabhängige, über dem Intervall [0, 1[ gleichverteilte Zufallsgrößen (U i R(0, 1), i = 1, 2), U = (U 1,U 2 ) T ein zufälliger Vektor. Wir betrachten

Mehr

Übungen zu bedingten Erwartungswerten. Tutorium Stochastische Prozesse 13. Dezember 2016

Übungen zu bedingten Erwartungswerten. Tutorium Stochastische Prozesse 13. Dezember 2016 Übungen zu bedingten Erwartungswerten Tutorium Stochastische Prozesse 13. Dezember 2016 Bedingter Erwartungswert Definition Sei X eine reellwertige Zufallsvariable auf (Ω, A, P), so dass E[ X ]

Mehr

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1 Aufgabe 1 (2 + 2 + 2 + 1 Punkte) Gegeben sei folgende gemeinsame Wahrscheinlichkeitsfunktion f(x, y) = P (X = x, Y = y) der Zufallsvariablen X und Y : 0.2 x = 1, y = 1 0.3 x = 2, y = 1 f(x, y) = 0.45 x

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/51 Biostatistik, Sommer 2017 Wahrscheinlichkeitstheorie: Verteilungen, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 8. Vorlesung: 09.06.2017 2/51 Inhalt 1 Verteilungen Normalverteilung Normalapproximation

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)

Mehr

Vorlesung 3b. Versuche, Erfolge, Wartezeiten: von Bernoulli zu Poisson

Vorlesung 3b. Versuche, Erfolge, Wartezeiten: von Bernoulli zu Poisson Vorlesung 3b Versuche, Erfolge, Wartezeiten: Die Welt des p-münzwurfs - von Bernoulli zu Poisson 1 Unser heutiger Rahmen: p- Münzurf alias Bernoulli-Folge 2 Jacob Bernoulli (1654-1705) 3 Sei p (0,1), q

Mehr

Mathematica: u=5;s=1;plot[exp[-0.5((x-u)/s)^2],{x,0,10}] 76

Mathematica: u=5;s=1;plot[exp[-0.5((x-u)/s)^2],{x,0,10}] 76 4. Normalverteilung Gauß'sche Glockenkurve: P(a X b) = b 1 x 1 a e dx 1 0.8 0.6 0.4 0. 4 6 8 10 Mathematica: u=5;s=1;plot[exp[-0.5((x-u)/s)^],{x,0,10}] 76 Zentraler Grenzwertsatz: Es sei X 1, X,... eine

Mehr

Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse

Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse Die Gamma-Verteilung 13.12.212 Diese Verteilung dient häufig zur Modellierung der Lebensdauer von langlebigen Industriegüstern. Die Dichte

Mehr

Wahrscheinlichkeitsräume und Zufallsvariablen

Wahrscheinlichkeitsräume und Zufallsvariablen Kapitel Wahrscheinlichkeitsräume und Zufallsvariablen. W-Raum Unter einem Zufallsexperiment verstehen wir einen vom Zufall beeinflussten Vorgang, der ein entsprechend zufälliges Ergebnis hervorbringt.

Mehr

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen Vorlesung 3a Der Erwartungswert von diskreten reellwertigen Zufallsvariablen X sei eine Zufallsvariable, deren Zielbereich R (die Menge der reellen Zahlen) (oder eine Teilmenge davon) ist. Es existiere

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 29 UNIVERSITÄT KARLSRUHE Blatt 6 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Übungen zur Vorlesung Stochastische Prozesse Musterlösungen Aufgabe 27: Sei X eine R + -wertige

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 11. November 2010 1 Erwartungswert und Varianz Erwartungswert Varianz und Streuung Rechenregeln Binomialverteilung

Mehr

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s X. Zufallsgrößen ================================================================= 10.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

Statistische Methoden

Statistische Methoden Statistische Methoden Dr. C.J. Luchsinger 2 Beweis CLT Literatur Kapitel 2: Krengel: 12 2.1 Einführung Wir repetieren aus WTS, Kapitel 5: Fragestellung: Was geschieht mit dem Ausdruck n k=1 X k nµ, (2.1)

Mehr

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass f Z (z) = Pr[Z = z] = x W X Pr[X + Y = z X = x] Pr[X = x] = x W X Pr[Y = z x] Pr[X = x] = x W X f X (x) f Y (z x). Den Ausdruck

Mehr

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme Binomialverteilung Wahrscheinlichkeitsfunktion Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder

Mehr

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung 4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung Häufig werden mehrere Zufallsvariablen gleichzeitig betrachtet, z.b. Beispiel 4.1. Ein Computersystem bestehe aus n Teilsystemen. X i sei der Ausfallzeitpunkt

Mehr