Mehrdimensionale Zufallsvariablen

Größe: px
Ab Seite anzeigen:

Download "Mehrdimensionale Zufallsvariablen"

Transkript

1 Mehrdimensionale Zufallsvariablen Im Folgenden Beschränkung auf den diskreten Fall und zweidimensionale Zufallsvariablen. Vorstellung: Auswerten eines mehrdimensionalen Merkmals ( ) X Ỹ also z.b. ω Ω, zufällig gezogene Person und damit X (ω) und Ỹ (ω) Auswertung der Merkmale jeweils an derselben Person. zweidimensionale Zufallsvariable ( XỸ) (wie bei Zusammenhangsanalyse in Statistik I) Das Hauptinteresse gilt (entsprechend der Kontingenztafel in Statistik I) der gemeinsamen Verteilung P({X = x i } {Y = y j }) Statistik II SoSe 2012 Helmut Küchenhoff (Institut für Statistik, LMU) 259 / 286

2 Zweidimensionale Verteilungen Betrachtet werden zwei eindimensionale diskrete Zufallselemente X und Y (zu demselben Zufallsexperiment). Die Wahrscheinlichkeit P(X = x i, Y = y j ) := P({X = x i } {Y = y j }) in Abhängigkeit von x i und y j heißt gemeinsame Verteilung der mehrdimensionalen Zufallsvariable ( X Y) bzw. der Variablen X und Y. Randwahrscheinlichkeiten: p i = P(X = x i ) = p j = P(Y = y j ) = m P(X = x i, Y = y j ) j=1 k P(X = x i, Y = y j ) i=1 Statistik II SoSe 2012 Helmut Küchenhoff (Institut für Statistik, LMU) 260 / 286

3 Bedingte Verteilungen P(X = x i Y = y j ) = P(X = x i, Y = y j ) P(Y = y j ) P(Y = y j X = x i ) = P(X = x i, Y = y j ) P(X = x i ) Stetiger Fall: Zufallsvariable mit zweidimensionaler Dichtefunktion f (x, y): ( b ) d P(a X b, c Y d) = f (x, y)dy dx a c Statistik II SoSe 2012 Helmut Küchenhoff (Institut für Statistik, LMU) 261 / 286

4 Kovarianz Seien X und Y zwei Zufallsvariablen. Dann heißt σ X,Y := Cov(X, Y ) = E((X E(X ))(Y E(Y ))) Kovarianz von X und Y. Statistik II SoSe 2012 Helmut Küchenhoff (Institut für Statistik, LMU) 262 / 286

5 Rechenregeln Cov(X, X ) = Var(X ) Cov(X, Y ) = E(XY ) E(X ) E(Y ) Cov(X, Y ) = Cov(Y, X ) Mit X = a X X + b X und Ỹ = a Y Y + b Y ist Cov( X, Ỹ ) = a X a Y Cov(X, Y ) Var(X + Y ) = Var(X ) + Var(Y ) + 2 Cov(X, Y ) Statistik II SoSe 2012 Helmut Küchenhoff (Institut für Statistik, LMU) 263 / 286

6 Korrelation Definition Zwei Zufallsvariablen X und Y mit Cov(X, Y ) = 0 heißen unkorreliert. Satz Stochastisch unabhängige Zufallsvariablen sind unkorreliert. Die Umkehrung gilt jedoch im allgemeinen nicht. Vergleiche Statistik I: Kovarianz misst nur lineare Zusammenhänge. Statistik II SoSe 2012 Helmut Küchenhoff (Institut für Statistik, LMU) 264 / 286

7 der Korrelationskoeffizient Definition Gegeben seien zwei Zufallsvariablen X und Y. Dann heißt ρ(x, Y ) = Cov(X, Y ) Var(X ) Var(Y ) Korrelationskoeffizient von X und Y. Statistik II SoSe 2012 Helmut Küchenhoff (Institut für Statistik, LMU) 265 / 286

8 Eigenschaften des Korrelationskoeffizienten Mit X = a X X + b X und Ỹ = a Y Y + b Y ist 1 ρ(x, Y ) 1. ρ(x, Y ) = 1 Y = ax + b ρ( X, Ỹ ) = ρ(x, Y ). Sind Var(X ) > 0 und Var(Y ) > 0, so gilt ρ(x, Y ) = 0 genau dann, wenn Cov(X, Y ) = 0. Statistik II SoSe 2012 Helmut Küchenhoff (Institut für Statistik, LMU) 266 / 286

9 Beispiel: Chuck a Luck X 1 X 6 Gewinn, wenn beim ersten Wurf ein Einsatz auf 1 gesetzt wird. Gewinn, wenn beim ersten Wurf ein Einsatz auf 6 gesetzt wird. Kovarianz zwischen X 1 und X 6 (x 1, x 6 ) P(X 1 = x 1, X 6 = x 6 ) (x 1, x 6 ) P(X 1 = x 1, X 6 = x 6 ) ( 1, 1) ( 1, 3) ( 1, 1) (3, 1) (1, 1) (1, 1) ( 1, 2) (1, 2) (2, 1) (1, 2) Statistik II SoSe 2012 Helmut Küchenhoff (Institut für Statistik, LMU) 267 / 286

10 Berechnungen E(X 1 X 6 ) = 50/216 = Cov(X 1, X 6 ) = ( ) ( ) = X 1 und X 6 sind negativ korreliert. Statistik II SoSe 2012 Helmut Küchenhoff (Institut für Statistik, LMU) 268 / 286

11 0 Einführung 1 Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz Punktschätzung

12 Grundprinzipien der induktiven Statistik Ziel: Inferenzschluss, Repräsentationsschluss: Schluss von einer Stichprobe auf Eigenschaften der Grundgesamtheit, aus der sie stammt. Von Interesse sei ein Merkmal X in der Grundgesamtheit Ω. Ziehe eine Stichprobe (ω 1,..., ω n ) von Elementen aus Ω und werte X jeweils aus. Man erhält Werte x 1,..., x n. Diese sind Realisationen der i.i.d Zufallsvariablen oder Zufallselemente X 1,..., X n, wobei die Wahrscheinlichkeitsverteilung der X 1,..., X n genau die Häufigkeitsverhältnisse in der Grundgesamtheit widerspiegelt. Statistik II SoSe 2012 Helmut Küchenhoff (Institut für Statistik, LMU) 270 / 286

13 Statistische Inferenz Ziel: Schlüsse von Stichprobe auf Grundgesamtheit Schlüsse von Experiment auf allgemeines Phänomen Zentrale Fragen: Wie kann die Zufälligkeit in korrekter Weise berücksichtigt werden? Wann sind Ergebnisse in der Stichprobe zufallsbedingt? Wie sind korrekte Schlüsse möglich? Statistik II SoSe 2012 Helmut Küchenhoff (Institut für Statistik, LMU) 271 / 286

14 Inferenzprinzipien 1 Schätzen: Von Interesse ist der Wert eines Parameters in der Grundgesamtheit, z.b. Mittelwert oder Anteil Punktschätzung: Angabe eines Wertes Intervallschätzung (Konfidenzintervall): Angabe eines Bereiches, in dem der Wert mit hoher Sicherheit liegt 2 Testen (Signifikanztest): Untersuchung, ob eine bestimmte Hypothese mit Hilfe der Daten widerlegt werden kann z.b. Gewisse Satzkonstruktionen führen zu schnellerer Reaktion Beispiele: Punktschätzung: z.b. wahrer Anteil Intervallschätzung: z.b. wahrer Anteil liegt zwischen 0.46 und 0.48 Hpothesentest: Die Annahme, der Anteil liegt höchstens bei 50% kann nicht aufrecht erhalten werden Statistik II SoSe 2012 Helmut Küchenhoff (Institut für Statistik, LMU) 272 / 286

15 Voraussetzungen für das Anwenden statistischer Inferenz Stichprobe sollte zufällig sein Experimentelle Situation Nicht nötig (geeignet) bei Vollerhebungen Nicht geeignet bei Vollerhebungen mit geringem Rücklauf Statistik II SoSe 2012 Helmut Küchenhoff (Institut für Statistik, LMU) 273 / 286

16 Zentrale Fragestellung Wie kommt man von Realisationen x 1,..., x n von i.i.d. Zufallsvariablen X 1,..., X n auf die Verteilung der X i? Dazu nimmt man häufig an, man kenne den Grundtyp der Verteilung der X 1,..., X n. Unbekannt seien nur einzelne Parameter davon. Beispiel: X i sei normalverteilt, unbekannt seien nur µ, σ 2. = parametrische Verteilungsannahme (meist im Folgenden) Alternativ: Verteilungstyp nicht oder nur schwach festgelegt (z.b. symmetrische Verteilung) = nichtparametrische Modelle Klarerweise gilt im Allgemeinen (generelles Problem bei der Modellierung): Parametrische Modelle liefern schärfere Aussagen wenn ihre Annahmen zutreffen. Wenn ihre Annahmen nicht zutreffen, dann existiert die große Gefahr von Fehlschlüssen. Statistik II SoSe 2012 Helmut Küchenhoff (Institut für Statistik, LMU) 274 / 286

17 Punktschätzung Beispiel: Parameter: Schätzung: Mittelwert der täglichen Fernsehdauer von Jugendlichen in Deutschland Mittelwert der Fernsehdauer in der Stichprobe oder: Median aus der Stichprobe? oder: Mittelwert ohne größten und kleinsten Wert? Statistik II SoSe 2012 Helmut Küchenhoff (Institut für Statistik, LMU) 275 / 286

18 Beispiel 1: Schätzer X Grundgesamtheit Wahrer Wert: 1.35 Ziehe Stichprobe vom Umfang n=2 und berechne X S 1 S 2 X P Pech Statistik II SoSe 2012 Helmut Küchenhoff (Institut für Statistik, LMU) 276 / 286

19 Beispiel 2: Würfeln mit potentiell gefälschtem Würfel Wie groß ist der Erwartungswert beim Würfeln mit potentiell gefälschtem Würfel? Ziehe Stichprobe und berechne Mittelwert X X liefert plausible Schätzung für den wahren (theoretischen) Mittelwert. Simulation mit R Statistik II SoSe 2012 Helmut Küchenhoff (Institut für Statistik, LMU) 277 / 286

20 Punktschätzung Beachte: Auswahl zufällig Schätzung zufällig Die Merkmale der gezogenen n Einheiten sind also Zufallsgrößen. Wir bezeichnen sie mit X 1,..., X n. Wird der Parameter einer Merkmalsverteilung durch eine Funktion der Zufallsgrößen X 1,..., X n der Stichprobe geschätzt, so spricht man bei diesem Vorgang von Punktschätzung. Die dabei benutzte Funktion wird auch Schätzfunktion, Schätzstatistik oder kurz Schätzer genannt. Statistik II SoSe 2012 Helmut Küchenhoff (Institut für Statistik, LMU) 278 / 286

21 Schätzfunktionen Definition Sei X 1,..., X n i.i.d. Stichprobe. Eine Funktion T = g(x 1,..., X n ) heißt Schätzer oder Schätzfunktion. Inhaltlich ist g( ) eine Auswertungsregel der Stichprobe: Welche Werte sich auch in der Stichprobe ergeben, ich wene das durch g( ) beschriebene Verfahren auf sie an.(z.b. Mittelwert) Statistik II SoSe 2012 Helmut Küchenhoff (Institut für Statistik, LMU) 279 / 286

22 Beispiele für Schätzfunktionen Arithmetisches Mittel der Stichprobe: X = g(x 1,..., X n ) = 1 n n i=1 X i Für binäre, dummy-kodierte X i ist X auch die relative Häufigkeit des Auftretens von X i = 1 in der Stichprobe Stichprobenvarianz: S 2 = g(x 1,..., X n ) = 1 n n (X i X ) 2 = 1 n i=1 n i=1 X 2 i ( X ) 2 Korrigierte Stichprobenvarianz: ( S 2 = g(x 1,..., X n ) = 1 n n ) (X i X ) 2 = 1 Xi 2 n X 2 n 1 n 1 i=1 i=1 Statistik II SoSe 2012 Helmut Küchenhoff (Institut für Statistik, LMU) 280 / 286

23 Beispiele für Schätzfunktionen (2) Größter Stichprobenwert: Kleinster Stichprobenwert: X (n) = g(x 1,..., X n ) = X (1) = g(x 1,..., X n )) = max i=1,...,n X i min i=1,...,n X i Statistik II SoSe 2012 Helmut Küchenhoff (Institut für Statistik, LMU) 281 / 286

24 Qualitätsmerkmal eines Schätzers: Erwartungstreue Erwartungstreue, Bias: Gegeben sei eine Stichprobe X 1,..., X n und eine Schätzfunktion T = g(x 1,..., X n ) (mit existierendem Erwartungswert). T heißt erwartungstreu für den Parameter ϑ, falls gilt für alle ϑ. Die Größe E ϑ (T ) = ϑ Bias ϑ (T ) = E ϑ (T ) ϑ heißt Bias (oder Verzerrung) der Schätzfunktion. Erwartungstreue Schätzfunktionen haben per Definition einen Bias von 0. Man schreibt E ϑ (T ) und Bias ϑ (T ), um deutlich zu machen, dass die Größen von dem wahren ϑ abhängen. Statistik II SoSe 2012 Helmut Küchenhoff (Institut für Statistik, LMU) 282 / 286

25 Bias und Erwartungstreue für X Das arithmetische Mittel X = 1 n n i=1 X i ist erwartungstreu für den Mittelwert µ einer Grundgesamtheit: Aus X 1,..., X n i.i.d. und E µ (X 1 ) = E µ (X 2 ) =... = µ folgt: ( ) ( E( X 1 n n ) ) = E µ X i = 1 n n E µ X i i=1 i=1 = 1 n E(X i ) n = 1 n i=1 n µ = 1 n n µ = µ i=1 Statistik II SoSe 2012 Helmut Küchenhoff (Institut für Statistik, LMU) 283 / 286

26 Bias und Erwartungstreue bei einigen typischen Schätzfunktionen Sei σ 2 die Varianz in der Grundgesamtheit. Es gilt E σ 2( S 2 ) = n 1 n σ2, also ist S 2 nicht erwartungstreu für σ 2. Bias σ 2( S 2 ) = n 1 n σ2 σ 2 = 1 n σ2 (Für n geht Bias σ 2( S 2 ) gegen 0, S 2 ist asymptotisch erwartungstreu.) Statistik II SoSe 2012 Helmut Küchenhoff (Institut für Statistik, LMU) 284 / 286

27 Für die korrigierte Stichprobenvarianz gilt dagegen: ( ) E σ 2(S 2 1 n ) = E σ 2 (X i n 1 X ) 2 i=1 ( ) 1 = E σ 2 n 1 n n (X i n X ) 2 i=1 ( ) n = E σ 2 n 1 S 2 = n n 1 n 1 n σ2 = σ 2 Also ist S 2 erwartungstreu für σ 2. Diese Eigenschaft ist auch die Motivation für die Korrektur der Stichprobenvarianz. Statistik II SoSe 2012 Helmut Küchenhoff (Institut für Statistik, LMU) 285 / 286

28 Nichtlineare Funktionen Vorsicht: Im Allgemeinen gilt für beliebige, nichtlineare Funktionen g E g(x ) g(e(x )). Man kann also nicht einfach z.b. und E vertauschen. In der Tat gilt: S 2 ist zwar erwartungstreu für σ 2, aber S 2 ist nicht erwartungstreu für σ2 = σ. Statistik II SoSe 2012 Helmut Küchenhoff (Institut für Statistik, LMU) 286 / 286

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenho Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2 Elementare

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Lageparameter: Erwartungswert d) Erwartungswert

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit 3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate

Mehr

1.5 Erwartungswert und Varianz

1.5 Erwartungswert und Varianz Ziel: Charakterisiere Verteilungen von Zufallsvariablen (Bildbereich also reelle Zahlen, metrische Skala) durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere:

Mehr

2 Zufallsvariable und Verteilungsfunktionen

2 Zufallsvariable und Verteilungsfunktionen 8 2 Zufallsvariable und Verteilungsfunktionen Häufig ist es so, dass den Ausgängen eines Zufallexperiments, d.h. den Elementen der Ereignisalgebra, eine Zahl zugeordnet wird. Das wollen wir etwas mathematischer

Mehr

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig Senska

Mehr

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung 0 Einführung 1 Wahrscheinlichkeitsrechnung Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Intervallschätzung Motivation und Hinführung Der wahre Anteil der rot-grün Wähler 009 war genau

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 017 4 Spezielle Zufallsgrößen Einführung 1 Wahrscheinlichkeit: Definition

Mehr

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.)

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) 1 Zusammenfassung Bedingte Verteilung: P (y x) = P (x, y) P (x) mit P (x) > 0 Produktsatz P (x, y) = P (x y)p (y) = P (y x)p (x) Kettenregel

Mehr

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Review)

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Review) Einige Konzepte aus der Wahrscheinlichkeitstheorie (Review) 1 Diskrete Zufallsvariablen (Random variables) Eine Zufallsvariable X(c) ist eine Variable (genauer eine Funktion), deren Wert vom Ergebnis c

Mehr

1.5 Erwartungswert und Varianz

1.5 Erwartungswert und Varianz Ziel: Charakterisiere Verteilungen von Zufallsvariablen durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere: a) durchschnittlicher Wert Erwartungswert, z.b.

Mehr

6. Schätzverfahren für Parameter

6. Schätzverfahren für Parameter 6. Schätzverfahren für Parameter Ausgangssituation: Ein interessierender Zufallsvorgang werde durch die ZV X repräsentiert X habe eine unbekannte Verteilungsfunktion F X (x) Wir interessieren uns für einen

Mehr

Unabhängigkeit von Zufallsvariablen

Unabhängigkeit von Zufallsvariablen Unabhängigkeit von Zufallsvariablen Seminar Gegenbeispiele in der Wahrscheinlichkeitstheorie Pascal Beckedorf 12. November 2012 Pascal Beckedorf Unabhängigkeit von Zufallsvariablen 12. November 2012 1

Mehr

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38 Dynamische Systeme und Zeitreihenanalyse Multivariate Normalverteilung und ML Schätzung Kapitel 11 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Multivariate

Mehr

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler Philipp Sibbertsen Hartmut Lehne Statistik Einführung für Wirtschafts- und Sozialwissenschaftler 2., überarbeitete Auflage 4^ Springer Gabler Inhaltsverzeichnis Teil I Deskriptive Statistik 1 Einführung

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik. PD Dr. U. Ludwig. Vorlesung 7 1 / 19

Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik. PD Dr. U. Ludwig. Vorlesung 7 1 / 19 Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik PD Dr. U. Ludwig Vorlesung 7 1 / 19 2.2 Erwartungswert, Varianz und Standardabweichung (Fortsetzung) 2 / 19 Bedingter Erwartungswert

Mehr

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

2.3 Intervallschätzung

2.3 Intervallschätzung 2.3.1 Motivation und Hinführung Bsp. 2.11. [Wahlumfrage] Der wahre Anteil der rot-grün Wähler 2009 war genau 33.7%. Wie groß ist die Wahrscheinlichkeit, in einer Zufallsstichprobe von 1000 Personen genau

Mehr

1. Einführung in die induktive Statistik

1. Einführung in die induktive Statistik Wichtige Begriffe 1. Einführung in die induktive Statistik Grundgesamtheit: Statistische Masse, die zu untersuchen ist, bzw. über die Aussagen getroffen werden soll Stichprobe: Teil einer statistischen

Mehr

WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X.

WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X. Fragenkatalog zur Übung Methoden der empirischen Sozialforschung WS 2014/15 Hier finden Sie die denkbaren Fragen zum ersten Teil der Übung. Das bedeutet, dass Sie zu diesem Teil keine anderen Fragen im

Mehr

Unabhängige Zufallsvariablen

Unabhängige Zufallsvariablen Kapitel 9 Unabhängige Zufallsvariablen Die Unabhängigkeit von Zufallsvariablen wird auf die Unabhängigkeit von Ereignissen zurückgeführt. Im Folgenden sei Ω, A, P ) ein Wahrscheinlichkeitsraum. Definition

Mehr

2 Induktive Statistik

2 Induktive Statistik Induktive Statistik .1 Grundprinzipien der induktiven Statistik.1 Grundprinzipien der induktiven Statistik Ziel: Inferenzschluss, Repräsentationsschluss: Schluss von einer Stichprobe auf Eigenschaften

Mehr

Kapitel 8. Parameter multivariater Verteilungen. 8.1 Erwartungswerte

Kapitel 8. Parameter multivariater Verteilungen. 8.1 Erwartungswerte Kapitel 8 Parameter multivariater Verteilungen 8.1 Erwartungswerte Wir können auch bei mehrdimensionalen Zufallsvariablen den Erwartungswert betrachten. Dieser ist nichts anderes als der vektor der Erwartungswerte

Mehr

Kapitel 3 Schließende Statistik

Kapitel 3 Schließende Statistik Motivation Grundgesamtheit mit unbekannter Verteilung F Stichprobe X 1,...,X n mit Verteilung F Realisation x 1,...,x n der Stichprobe Rückschluss auf F Dr. Karsten Webel 160 Motivation (Fortsetzung) Kapitel

Mehr

Grundgesamtheit, Merkmale, Stichprobe. Eigenschaften der Stichprobe. Klasseneinteilung, Histogramm. Arithmetisches Mittel, empirische Varianz

Grundgesamtheit, Merkmale, Stichprobe. Eigenschaften der Stichprobe. Klasseneinteilung, Histogramm. Arithmetisches Mittel, empirische Varianz - 1 - Grundgesamtheit, Merkmale, Stichprobe Dimension, Umfang Skalierung Eigenschaften der Stichprobe kennzeichnende Größen Eigenschaften der Stichprobe kennzeichnende Größen Punktediagramm, Regressionsgerade,

Mehr

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar "Statistische Methoden in der Physik"

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar Statistische Methoden in der Physik Studentenseminar "Statistische Methoden in der Physik" Gliederung 1 2 3 Worum geht es hier? Gliederung 1 2 3 Stichproben Gegeben eine Beobachtungsreihe x = (x 1, x 2,..., x n ): Realisierung der n-dimensionalen

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen Zusammenfassung: e und e Verteilungen Woche 4: Gemeinsame Verteilungen Wahrscheinlichkeitsverteilung p() Wahrscheinlichkeitsdichte f () WBL 15/17, 11.05.2015 Alain Hauser P(X = k

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

2.3 Intervallschätzung

2.3 Intervallschätzung 2.3.1 Motivation und Hinführung Bsp. 2.15. [Wahlumfrage] Der wahre Anteil der rot-grün Wähler unter allen Wählern war 2009 auf eine Nachkommastelle gerundet genau 33.7%. Wie groß ist die Wahrscheinlichkeit,

Mehr

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme Binomialverteilung Wahrscheinlichkeitsfunktion Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder

Mehr

4. Gemeinsame Verteilung und Grenzwertsätze

4. Gemeinsame Verteilung und Grenzwertsätze 4. Gemeinsame Verteilung und Grenzwertsätze Häufig in der Praxis: Man muss mehrere (n) ZV en gleichzeitig betrachten (vgl. Statistik I, Kapitel 6) Zunächst Vereinfachung: Betrachte n = 2 Zufallsvariablen

Mehr

4. Gemeinsame Verteilung und Grenzwertsätze

4. Gemeinsame Verteilung und Grenzwertsätze 4. Gemeinsame Verteilung und Grenzwertsätze Häufig in der Praxis: Man muss mehrere (n) ZV en gleichzeitig betrachten (vgl. Statistik I, Kapitel 6) Zunächst Vereinfachung: Betrachte n = 2 Zufallsvariablen

Mehr

Kapitel 8: Zufallsvektoren

Kapitel 8: Zufallsvektoren Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse 03.12.2015 Kapitel 8: Zufallsvektoren Statt einem Merkmal werden häufig mehrere Merkmale gleichzeitig betrachtet, z.b. Körpergröße und

Mehr

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s X. Zufallsgrößen ================================================================= 10.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

Übungsblatt 9 (25. bis 29. Juni)

Übungsblatt 9 (25. bis 29. Juni) Statistik 2 Dr. Andrea Beccarini Dipl.-Vw. Dipl.-Kffr. Heike Bornewasser-Hermes Sommersemester 2012 Übungsblatt 9 (25. bis 29. Juni) Stetiges Verteilungsmodell und Gemeinsame Verteilung Stetiges Verteilungsmodell

Mehr

Zusatzmaterial zur Vorlesung Statistik II

Zusatzmaterial zur Vorlesung Statistik II Zusatzmaterial zur Vorlesung Statistik II Dr. Steffi Höse Professurvertretung für Ökonometrie und Statistik, KIT Wintersemester 2011/2012 (Fassung vom 15.11.2011, DVI- und PDF-Datei erzeugt am 15. November

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Grundlagen der Statistik

Grundlagen der Statistik www.nwb.de NWB Studium Betriebswirtschaft Grundlagen der Statistik Band 2: Wahrscheinlichkeitsrechnung und induktive Statistik Von Professor Dr. Jochen Schwarze 9., vollständig überarbeitete Auflage STUDIUM

Mehr

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1 Aufgabe 1 (2 + 2 + 2 + 1 Punkte) Gegeben sei folgende gemeinsame Wahrscheinlichkeitsfunktion f(x, y) = P (X = x, Y = y) der Zufallsvariablen X und Y : 0.2 x = 1, y = 1 0.3 x = 2, y = 1 f(x, y) = 0.45 x

Mehr

Statistik I für Betriebswirte Vorlesung 14

Statistik I für Betriebswirte Vorlesung 14 Statistik I für Betriebswirte Vorlesung 14 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 13. Juli 017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 14 Version: 8. Juli

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Teil VI. Gemeinsame Verteilungen. Lernziele. Beispiel: Zwei Würfel. Gemeinsame Verteilung

Teil VI. Gemeinsame Verteilungen. Lernziele. Beispiel: Zwei Würfel. Gemeinsame Verteilung Zusammenfassung: diskrete und stetige Verteilungen Woche 4: Verteilungen Patric Müller diskret Wahrscheinlichkeitsverteilung p() stetig Wahrscheinlichkeitsdichte f ()

Mehr

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen David Geier und Sven Middelberg RWTH Aachen, Sommersemester 27 Inhaltsverzeichnis Information 2 Aufgabe 4 Aufgabe 2 6 4 Aufgabe

Mehr

2.Tutorium Multivariate Verfahren

2.Tutorium Multivariate Verfahren 2.Tutorium Multivariate Verfahren - Multivariate Verteilungen - Hannah Busen: 27.04.2015 und 04.05.2015 Nicole Schüller: 28.04.2015 und 05.05.2015 Institut für Statistik, LMU München 1 / 21 Gliederung

Mehr

Statistik I für Betriebswirte Vorlesung 13

Statistik I für Betriebswirte Vorlesung 13 Statistik I für Betriebswirte Vorlesung 13 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 6. Juli 2017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 13 Version: 7. Juli

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr

Modellanpassung und Parameterschätzung. A: Übungsaufgaben

Modellanpassung und Parameterschätzung. A: Übungsaufgaben 7 Modellanpassung und Parameterschätzung 1 Kapitel 7: Modellanpassung und Parameterschätzung A: Übungsaufgaben [ 1 ] Bei n unabhängigen Wiederholungen eines Bernoulli-Experiments sei π die Wahrscheinlichkeit

Mehr

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten Zufallsgrößen Ergebnisse von Zufallsexperimenten werden als Zahlen dargestellt 0 Einführung Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Hypothesentests

Mehr

Institut für Biometrie und klinische Forschung. WiSe 2012/2013

Institut für Biometrie und klinische Forschung. WiSe 2012/2013 Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie (3) Überblick. Deskriptive Statistik I 2. Deskriptive

Mehr

Einführung in die Induktive Statistik: Testen von Hypothesen

Einführung in die Induktive Statistik: Testen von Hypothesen Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Wahrscheinlichkeitsfunktionen

Mehr

Vorlesung 8a. Kovarianz und Korrelation

Vorlesung 8a. Kovarianz und Korrelation Vorlesung 8a Kovarianz und Korrelation 1 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und E[Y 2 ] < ist Cov[X, Y ] := E [ (X EX)(Y EY ) ] Insbesondere

Mehr

Zufallsvariable: Verteilungen & Kennzahlen

Zufallsvariable: Verteilungen & Kennzahlen Mathematik II für Biologen 12. Juni 2015 Zufallsvariable Kennzahlen: Erwartungswert Kennzahlen: Varianz Kennzahlen: Erwartungstreue Verteilungsfunktion Beispiel: Exponentialverteilung Kennzahlen: Erwartungswert

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

Diskrete Zufallsvariablen (Forts.) I

Diskrete Zufallsvariablen (Forts.) I 9 Eindimensionale Zufallsvariablen Diskrete Zufallsvariablen 9.4 Diskrete Zufallsvariablen (Forts.) I T (X ) ist endlich oder abzählbar unendlich, die Elemente von T (X ) werden daher im Folgenden häufig

Mehr

5 Erwartungswerte, Varianzen und Kovarianzen

5 Erwartungswerte, Varianzen und Kovarianzen 47 5 Erwartungswerte, Varianzen und Kovarianzen Zur Charakterisierung von Verteilungen unterscheidet man Lageparameter, wie z. B. Erwartungswert ( mittlerer Wert ) Modus (Maximum der Wahrscheinlichkeitsfunktion,

Mehr

Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure

Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure Von Prof. Hubert Weber Fachhochschule Regensburg 3., überarbeitete und erweiterte Auflage Mit zahlreichen Bildern, Tabellen sowie

Mehr

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle Patric Müller ETHZ Teil VIII Zentraler Grenzwertsatz und Vertrauensintervalle WBL 17/19, 29.05.2017 Wahrscheinlichkeit

Mehr

Inhaltsverzeichnis. Robert Galata, Sandro Scheid. Deskriptive und Induktive Statistik für Studierende der BWL. Methoden - Beispiele - Anwendungen

Inhaltsverzeichnis. Robert Galata, Sandro Scheid. Deskriptive und Induktive Statistik für Studierende der BWL. Methoden - Beispiele - Anwendungen Inhaltsverzeichnis Robert Galata, Sandro Scheid Deskriptive und Induktive Statistik für Studierende der BWL Methoden - Beispiele - Anwendungen Herausgegeben von Robert Galata, Markus Wessler ISBN (Buch):

Mehr

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell 1 Lineare Regression Parameterschätzung 13 Im einfachen linearen Regressionsmodell sind also neben σ ) insbesondere β 1 und β Parameter, deren Schätzung für die Quantifizierung des linearen Zusammenhangs

Mehr

Bootstrap: Punktschätzung

Bootstrap: Punktschätzung Resampling Methoden Dortmund, 2005 (Jenő Reiczigel) 1 Bootstrap: Punktschätzung 1. Die Grundidee 2. Plug-in Schätzer 3. Schätzung des Standardfehlers 4. Schätzung und Korrektur der Verzerrung 5. Konsistenz

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Woche 2: Zufallsvariablen

Woche 2: Zufallsvariablen Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 17/19, 24.04.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Teil III Zufallsvariablen Wahrscheinlichkeit

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 2. Stock, Nordflügel R. 02-429 (Persike) R. 02-431 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psmet03.sowi.uni-mainz.de/

Mehr

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr

2.2 Punktschätzung. Gegeben sei die in Kapitel 2.1 beschriebene Situation, also eine i.i.d. Stichprobe X 1,...,X n eines Merkmales X.

2.2 Punktschätzung. Gegeben sei die in Kapitel 2.1 beschriebene Situation, also eine i.i.d. Stichprobe X 1,...,X n eines Merkmales X. Ziel: Finde ein möglichst gutes Schätzverfahren und damit einen möglichst guten Schätzwert für eine bestimmte Kenngröße ϑ (Parameter) der Grundgesamtheit, z.b. den wahren Anteil der rot/grün-wähler, den

Mehr

Chi-Quadrat-Verteilung

Chi-Quadrat-Verteilung Chi-Quadrat-Verteilung Wikipedia http://de.wikipedia.org/wiki/chi-quadrat-verteilung 1 von 7 6/18/2009 6:13 PM Chi-Quadrat-Verteilung aus Wikipedia, der freien Enzyklopädie Die Chi-Quadrat-Verteilung ist

Mehr

1 Multivariate Zufallsvariablen

1 Multivariate Zufallsvariablen 1 Multivariate Zufallsvariablen 1.1 Multivariate Verteilungen Definition 1.1. Zufallsvariable, Zufallsvektor (ZV) Sei Ω die Ergebnismenge eines Zufallsexperiments. Eine (univariate oder eindimensionale)

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Analyse und Modellierung von Daten Von Prof. Dr. Rainer Schlittgen 4., überarbeitete und erweiterte Auflage Fachbereich Materialwissenschaft! der Techn. Hochschule Darmstadt

Mehr

11.4 Korrelation. Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient

11.4 Korrelation. Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient 11.4 Korrelation Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient (X 1,X 2 ) = cov (X 1,X 2 ) σ X1 σ X2 Korrelationskoeffizient der Zufallsgrößen

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Analyse und Modellierung von Daten von Prof. Dr. Rainer Schlittgen Universität Hamburg 12., korrigierte Auflage Oldenbourg Verlag München Inhaltsverzeichnis 1 Statistische Daten

Mehr

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5 Inhaltsverzeichnis Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite 1.0 Erste Begriffsbildungen 1 1.1 Merkmale und Skalen 5 1.2 Von der Urliste zu Häufigkeitsverteilungen 9 1.2.0 Erste Ordnung

Mehr

OLS-Schätzung: asymptotische Eigenschaften

OLS-Schätzung: asymptotische Eigenschaften OLS-Schätzung: asymptotische Eigenschaften Stichwörter: Konvergenz in Wahrscheinlichkeit Konvergenz in Verteilung Konsistenz asymptotische Verteilungen nicht-normalverteilte Störgrößen zufällige Regressoren

Mehr

Thema der Stunde. I. Die Form der Stichprobenkennwerteverteilung. II. Schlüsse von der Stichprobe auf die Population

Thema der Stunde. I. Die Form der Stichprobenkennwerteverteilung. II. Schlüsse von der Stichprobe auf die Population Thema der Stunde I. Die Form der Stichprobenkennwerteverteilung II. Schlüsse von der Stichprobe auf die Population III. t-test für unabhängige und abhängige Stichproben Stichprobenkennwerte Population

Mehr

Statistik II für Wirtschaftswissenschaftler

Statistik II für Wirtschaftswissenschaftler Fachbereich Mathematik 20.04.2017 Dr. Hefter & Dr. Herzwurm Übungsblatt 0 Keine Abgabe. Gegeben seien die Mengen A 1 =, A 2 = {1}, A 3 = {1, 1}, A 4 = {1, 3}, A 5 = {1, 2, 4}, A 6 = {1, 2, 3, 4}. a) Bestimmen

Mehr

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandelt die Verteilung einer Variablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem

Mehr

Bereiche der Statistik

Bereiche der Statistik Bereiche der Statistik Deskriptive / Exploratorische Statistik Schließende Statistik Schließende Statistik Inferenz-Statistik (analytische, schließende oder konfirmatorische Statistik) baut auf der beschreibenden

Mehr

Die mit * gekennzeichneten Abschnitte beinhalten Themen, die über die Anforderungen des Gegenstandskatalogs hinausgehen.

Die mit * gekennzeichneten Abschnitte beinhalten Themen, die über die Anforderungen des Gegenstandskatalogs hinausgehen. Die mit * gekennzeichneten Abschnitte beinhalten Themen, die über die Anforderungen des Gegenstandskatalogs hinausgehen. 1 Einleitung...1 1.1 Die Bedeutung der Statistik für die Medizin...1 1.2 Die medizinische

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:

Mehr

Inhalt. I. Deskriptive Statistik Einführung Die Grundgesamtheit Merkmale und Verteilungen Tabellen und Grafiken...

Inhalt. I. Deskriptive Statistik Einführung Die Grundgesamtheit Merkmale und Verteilungen Tabellen und Grafiken... I. Deskriptive Statistik 1 1. Einführung 3 1.1. Die Grundgesamtheit......................... 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................ 10

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 10. Vorlesung - 017 Quantil der Ordnung α für die Verteilung des beobachteten Merkmals X ist der Wert z α R für welchen gilt z 1 heißt Median. P(X < z α ) α P(X z α ). Falls X stetige zufällige Variable

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 11. November 2010 1 Erwartungswert und Varianz Erwartungswert Varianz und Streuung Rechenregeln Binomialverteilung

Mehr

4. Verteilungen von Funktionen von Zufallsvariablen

4. Verteilungen von Funktionen von Zufallsvariablen 4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13 Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13 Aufgabenstellung und Ergebnisse Dr. Martin Becker Hinweise für die

Mehr

Einführung in die Maximum Likelihood Methodik

Einführung in die Maximum Likelihood Methodik in die Maximum Likelihood Methodik Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood

Mehr

Institut für Stochastik, SoSe K L A U S U R , 13:

Institut für Stochastik, SoSe K L A U S U R , 13: Institut für Stochastik, SoSe 2014 Mathematische Statistik Paravicini/Heusel 1. K L A U S U R 12.7.2014, 13:00-16.00 Name: Geburtsdatum: Vorname: Matrikelnummer: Übungsgruppe bei: Studiengang & angestrebter

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11.

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11. Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11 Namensschild Dr. Martin Becker Hinweise für die Klausurteilnehmer

Mehr

Inhaltsverzeichnis. 2 Kurzbeschreibung von SPSS Der SPSS-Dateneditor Statistische Analysen mit SPSS DieDaten...

Inhaltsverzeichnis. 2 Kurzbeschreibung von SPSS Der SPSS-Dateneditor Statistische Analysen mit SPSS DieDaten... Inhaltsverzeichnis Teil I Einführung 1 Kleine Einführung in R... 3 1.1 Installieren und Starten von R... 3 1.2 R-Befehleausführen... 3 1.3 R-Workspace speichern... 4 1.4 R-History sichern........ 4 1.5

Mehr

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente...

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente... Inhaltsverzeichnis 0 Einführung 1 1 Zufallsvorgänge und Wahrscheinlichkeiten 5 1.1 Zufallsvorgänge.......................... 5 1.1.1 Ergebnismengen..................... 6 1.1.2 Ereignisse und ihre Verknüpfung............

Mehr

Schließende Statistik

Schließende Statistik Schließende Statistik [statistical inference] Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr