6. Schätzverfahren für Parameter

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "6. Schätzverfahren für Parameter"

Transkript

1 6. Schätzverfahren für Parameter Ausgangssituation: Ein interessierender Zufallsvorgang werde durch die ZV X repräsentiert X habe eine unbekannte Verteilungsfunktion F X (x) Wir interessieren uns für einen (oder mehrere) Parameter der Verteilung von X 313

2 Wichtige Parameter sind: Der Erwartungswert von X Die Varianz von X Werte der VF F X (x) Quantile der VF F X (x) (vgl. Definition 3.3, Folie 122) 314

3 Ansatz zur Informationsbeschaffung: Betrachte eine einfache Zufallsstichprobe X 1,..., X n aus X Schätze den unbekannten Parameter von X anhand einer geeigneten Statistik T = g(x 1,..., X n ) der Zufallsstichprobe (vgl. Definition 5.2, Folie 300) 315

4 6.1 Punktschätzung Bezeichnungen: Der unbekannte Parameter von X sei θ (z.b. θ = E(X)) Die Statistik der einfachen Zufallsstichprobe X 1,..., X n aus X zur Schätzung des unbekannten Parameters θ wird häufig mit ˆθ(X 1,..., X n ) bezeichnet (memotechnisch sinnvoll) 316

5 Definition 6.1: (Schätzer, Schätzwert) Die Statistik ˆθ(X 1,..., X n ) heißt Schätzer (auch Schätzfunktion) für den Parameter θ. Hat sich die Zufallsstichprobe X 1,..., X n in den Werten x 1,..., x n realisiert, so bezeichnet man die damit verbundene Realisierung des Schätzers ˆθ(x 1,..., x n ) als Schätzwert. Bemerkungen: Der Schätzer ˆθ(X 1,..., X n ) ist eine Zufallsvariable Schätzer hat Vtlg., E-Wert und Varianz Der Schätzwert ˆθ(x 1,..., x n ) ist dagegen eine Zahl (vgl. Abbildungen auf den Folien ) 317

6 Frage: Wozu braucht man das scheinbar komplizierte theoretische Konzept des Schätzers als Zufallsvariable? Antwort: Um alternative Schätzer für ein und denselben Parameter θ im Hinblick auf ihre jeweilige Genauigkeit miteinander vergleichen zu können 318

7 Beispiel: Es sei θ = V (X) die Varianz von X Zwei alternative Schätzer für θ sind ˆθ 1 (X 1,..., X n ) = S 2 = 1 n n i=1 ˆθ 2 (X 1,..., X n ) = S 2 = 1 n 1 ( Xi X ) 2 n i=1 ( Xi X ) 2 Frage: Welcher Schätzer ist besser und warum? Eigenschaften von Punktschätzern 319

8 6.2 Eigenschaften von Punktschätzern Ziel: Formulierung von Qualitätskriterien zur Beurteilung der Eigenschaften eines Schätzers ˆθ(X 1,..., X n ) für θ Hier 3 Kriterien: Erwartungstreue Mittlerer quadratischer Fehler (schwache) Konsistenz 320

9 Definition 6.2: (Erwartungstreue) Der Schätzer ˆθ(X 1,..., X n ) für den unbekannten Parameter θ heißt erwartungstreu, falls sein Erwartungswert mit dem zu schätzenden Parameter θ übereinstimmt, d.h. falls E [ˆθ(X 1,..., X n ) ] = θ. Bemerkung: Anschaulich bedeutet Erwartungstreue, dass der Schätzer ˆθ(X 1,..., X n ) nicht systematisch daneben schätzt, wenn man den Schätzer nicht nur für eine, sondern für viele Stichproben auswertet (Gedankenexperiment: Wiederholte Stichprobe) 321

10 Beispiel 1: [I] Es sei θ = E(X) Betrachte den Schätzer ˆθ(X 1,..., X n ) = X = 1 n (arithmetisches Stichprobenmittel) n X i i=1 322

11 Beispiel 1: [II] Es gilt: E [ˆθ(X 1,..., X n ) ] = E 1 n n X i i=1 = 1 n n i=1 E(X i ) = 1 n n i=1 E(X) = 1 n n i=1 θ = 1 n n θ = θ ˆθ(X 1,..., X n ) = X ist erwartungstreu für θ = E(X) (vgl. Satz 4.13, Folie 281) 323

12 Beispiel 2: [I] Es sei θ = V (X) die Varianz von X Betrachte den Schätzer (Stichprobenvarianz) ˆθ 1 (X 1,..., X n ) = S 2 = 1 n n i=1 ( Xi X ) 2 Hier gilt E [ˆθ 1 (X 1,..., X n ) ] = E(S 2 ) = n 1 n S 2 ist nicht erwartungstreu für θ = V (X) θ 324

13 Beispiel 2: [II] Betrachte korrigierte Stichprobenvarianz ˆθ 2 (X 1,..., X n ) = S 2 = 1 n 1 n i=1 ( Xi X ) 2 = n n 1 S2 Hier gilt: E [ˆθ 2 (X 1,..., X n ) ] = E(S 2 ) = E ( n n 1 S2 = n n 1 E(S2 ) = = θ = V (X) S 2 ist erwartungstreu für θ = V (X) ) n n 1 n 1 n θ 325

14 Satz 6.3: (E-treue Schätzer für E(X) und V (X)) Es sei X 1,..., X n eine Stichprobe aus X und X sei beliebig verteilt mit unbekanntem Erwartungswert µ = E(X) sowie unbekannter Varianz σ 2 = V (X). Dann sind die beiden Schätzer bzw. ˆµ(X 1,..., X n ) = X = 1 n ˆσ 2 (X 1,..., X n ) = S 2 = 1 n 1 n X i i=1 n i=1 ( Xi X ) 2 stets erwartungstreu für die Parameter µ = E(X) und σ 2 = V (X). 326

15 Vorsicht: Erwartungstreue pflanzt sich bei Parametertransformationen nicht beliebig fort Beispiel: Zwar ist S 2 erwartungstreu für σ 2 = V (X) Jedoch ist S nicht erwartungstreu für σ = V (X) Bemerkung: Im übrigen ist auch S nicht E-treu für σ = V (X) 327

16 Übersicht: Weitere Parameter von X und zugehörige potenzielle Schätzer, wie sie aus der deskriptiven Statistik (Statistik I) bekannt sind Parameter Wahrscheinlichkeit Verteilungsfunktion Quantil Standardabweichung Gemeinsame Wskt. Kovarianz Korrelationskoeffizient Vorsicht: Potenzieller Schätzer relative Häufigkeit emp. Verteilungsfunktion Quantil emp. Standardabweichung gem. relative Häufigkeit emp. Kovarianz emp. Korrelationskoeffizient Die potenziellen Schätzer sind oft, aber nicht immer erwartungstreu für die zu schätzenden Parameter 328

17 Jetzt: Strengeres Qualitätskriterium für Schätzer Dichtefunktionen zweier erwartungstreuer Schätzer für den Parameter θ 1 n Dichte von θ ( X1, K, X ) 2 n Dichte von θ ( X1, K, X ) θ 329

18 Intuition: Ist ein Schätzer erwartungstreu, so ist es günstig, wenn er eine kleine Varianz aufweist Optimal: Erwartungstreuer Schätzer mit minimaler Varianz Problem: Solche Schätzer sind oft schwer oder gar nicht auffindbar Ausweg: Kennzahlen zum Vergleich zweier alternativer Schätzer Bekannteste Kennzahl: Mittlerer quadratischer Fehler 330

19 Definition 6.4: (Mittlerer quadratischer Fehler) Es sei ˆθ(X 1,..., X n ) einer Schätzer für den unbekannten Parameter θ. Dann heißt die Kennzahl MSE(ˆθ) = E[(ˆθ θ) 2 ] der mittlere quadratische Fehler (englisch: mean squared error) des Schätzers ˆθ. Bemerkung: Der mittlere quadratische Fehler lässt sich auch schreiben als MSE(ˆθ) = V (ˆθ) + [ E(ˆθ) θ ] 2 }{{} Verzerrung Bei erwartungstreuen Schätzern ist der MSE gleich der Varianz des Schätzers 331

20 Weiteres Gütekriterium für einen Schätzer: Konsistenz eines Schätzers Intuition: Ein Schätzer ˆθ(X 1,..., X n ) für den unbekannten Parameter θ heißt konsistent, falls die Schätzung bei zunehmenden Stichprobenumfang immer genauer wird (Konzept wird hier nicht genauer behandelt) 332

21 Weitere zentrale Fragestellung: Wie findet man geeignete Schätzer Es gibt allgemeine Konstruktionsprinzipien, z.b. die: Methode der Kleinsten-Quadrate Momenten-Methode Maximum-Likelihood-Methode (Gegenstand der Ökonometrie-VL im Hauptstudium) 333

22 6.3 Intervallschätzung Bisher: Schätzung des Parameters θ auf der Basis einer Stichprobe durch Punktschätzung ˆθ(X 1,..., X n ) Problem: Punktschätzung trifft in der Regel den exakten Wert des unbekannten Parameters θ nicht Bei Stichproben aus stetigen Verteilungen gilt sogar P (ˆθ(X 1,..., X n ) = θ ) = 0 bzw. P (ˆθ(X 1,..., X n ) θ ) = 1 334

23 Alternativer Ansatz: Konstruktion eines zufälligen Intervalls anhand einer Stichprobe X 1,..., X n, das den Parameter θ mit einer vorgebenen Wskt. überdeckt Vorteil: Genauigkeit der Schätzung wird quantifiziert Ansatz: Wähle 2 Statistiken ˆθu(X 1,..., X n ) und ˆθo(X 1,..., X n ), derart dass das zufällige Intervall I = [ˆθu(X 1,..., X n ), ˆθo(X 1,..., X n ) ] θ mit einer vorgegebenen Wahrscheinlichkeit überdeckt 335

24 Definition 6.5: (Konfidenzintervall) Es sei X 1,..., X n eine Zufallsstichprobe aus X, θ ein unbekannter Parameter und α [0, 1] eine reelle Zahl. Dann bezeichnet man das zufällige Intervall [ˆθu(X 1,..., X n ), ˆθo(X 1,..., X n ) ] mit der Eigenschaft P (ˆθu(X 1,..., X n ) θ ˆθo(X 1,..., X n ) ) = 1 α als Konfidenzintervall für θ zum Konfidenzniveau 1 α. Die Zahl α [0, 1] heißt Irrtumswahrscheinlichkeit. 336

25 Bemerkungen: Die Grenzen des Intervalls sind ZV en Nach Realisation der Stichprobe heißt das Intervall [ˆθu(x 1,..., x n ), ˆθo(x 1,..., x n ) ] konkretes Konfidenzintervall 337

26 Konfidenzintervall 1: [I] Der interessierende Zufallsvorgang repräsentiert durch die ZV X sei normalverteilt, d.h. X N(µ, σ 2 ), wobei µ unbekannt und σ 2 bekannt sein sollen Gesucht wird (1 α)-konfidenzintervall für µ Betrachte Stichprobe X 1,..., X n aus X Wissen aufgrund von Satz 5.5(b), Folie 310: n X µ σ N(0, 1) 338

27 N(0, 1)-Dichtefunktion der Statistik n X µ σ X µ Dichte von n ~ N(0,1) σ α / 2 α / 2 c 0 c Konfidenzintervall 1: [II] c ist das (1 α/2)-quantil der N(0, 1)-Verteilung 339

28 Konfidenzintervall 1: [III] Das p-quantil der Standardnormalverteilung wird im Lehrbuch Mosler/Schmid mit u p bezeichnet, d.h. c = u 1 α/2 Es gilt also: P P ( X u 1 α/2 P ( c n X µ σ ) c ( u 1 α/2 n X µ σ u 1 α/2 ) σ n µ X + u 1 α/2 ) σ n = 1 α = 1 α = 1 α 340

29 Konfidenzintervall 1: [IV] Ein Konfidenzintervall für µ zum Niveau 1 α ist also [ ] σ σ X u 1 α/2, X + u n 1 α/2 n Z.B. gilt für 1 α = 0.95: 1 α = 0.95 = α = 0.05 = u 1 α/2 = u = 1.96 (vgl.formelsammlung Bomsdorf/Gröhn/Mosler/Schmid) 341

30 Konkretes Beispiel: [I] Es sei X das tatsächliche Gewicht (in Gramm) einer 200g- Tafel Schokolade Angenommen, X N(µ, 4) mit unbek. Erwartungswert µ Eine einfache Stichprobe vom Umfang n = 8 liefert x 1 x 2 x 3 x 4 x 5 x 6 x 7 x

31 Konkretes Beispiel: [II] Ein Punktschätzwert für µ ist x = Ein konkretes 0.95-Konfidenzintervall für µ ist [ ] 2 2 x 1.96, x = [ , ] 343

32 Konfidenzintervall 2: [I] Der interessierende Zufallsvorgang repräsentiert durch die ZV X sei normalverteilt, d.h. X N(µ, σ 2 ), wobei sowohl µ als auch σ 2 unbekannt sein sollen Gesucht wird (1 α)-konfidenzintervall für µ Betrachte Stichprobe X 1,..., X n aus X Wissen aufgrund von Satz 5.5(c), Folie 311: n 1 X µ S t(n 1) 344

33 Dichtefunktion der t(n)-verteilung 0.4 n = Dichtefunktion n = x Konfidenzintervall 2: [II] c ist das (1 α/2)-quantil der t(n)-verteilung 345

34 Konfidenzintervall 2: [III] Das p-quantil der t(ν)-verteilung wird in Mosler/Schmid mit t ν,p bezeichnet, d.h. c = t n 1,1 α/2 Es gilt also: P ( X c P ( c n 1 X µ S S n 1 µ X + c ) c ) S n 1 = 1 α = 1 α 346

35 Konfidenzintervall 2: [IV] Ein Konfidenzintervall für µ zum Niveau 1 α ist somit [ ] S S X t n 1,1 α/2, X + t n 1,1 α/2 n 1 n 1 Z.B. gilt für 1 α = 0.95: 1 α = 0.95 = α = 0.05 = t n 1,1 α/2 = t 7,0.975 = (vgl. Formelsammlung Bomsdorf/Gröhn/Mosler/Schmid) 347

36 Konkretes Beispiel: [I] Es sei X das tatsächliche Gewicht (in Gramm) einer 200g- Tafel Schokolade Angenommen, X N(µ, σ 2 ) mit unbekanntem Erwartungswert µ und unbekannter Varianz σ 2 Eine einfache Stichprobe vom Umfang n = 8 war x 1 x 2 x 3 x 4 x 5 x 6 x 7 x

37 Konkretes Beispiel: [II] Ein Punktschätzwert für µ ist x = Ein Punktschätzwert für σ ist s = Ein konkretes 0.95-Konfidenzintervall für µ ist [ x , x ] 7 7 = [ , ] KI ist breiter als das KI auf Folie 343, weil Schätzung der unbekannten Varianz σ 2 durch S 2 zusätzliche Unsicherheit birgt 349

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 9. Dezember 2010 1 Konfidenzintervalle Idee Schätzung eines Konfidenzintervalls mit der 3-sigma-Regel Grundlagen

Mehr

5. Statistische Schätztheorie

5. Statistische Schätztheorie 5. Statistische Schätztheorie Problem: Sei X eine Zufallsvariable (oder X ein Zufallsvektor), die einen interessierenden Zufallsvorgang repräsentiere Man möchte die tatsächliche Verteilung von X (oder

Mehr

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung 0 Einführung 1 Wahrscheinlichkeitsrechnung Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Intervallschätzung Motivation und Hinführung Der wahre Anteil der rot-grün Wähler 009 war genau

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Klausur zu Statistik II

Klausur zu Statistik II GOETHE-UNIVERSITÄT FRANKFURT FB Wirtschaftswissenschaften Statistik und Methoden der Ökonometrie Prof. Dr. Uwe Hassler Wintersemester 03/04 Klausur zu Statistik II Matrikelnummer: Hinweise Hilfsmittel

Mehr

Die Momentenmethode. Vorteil: Oft einfach anwendbar. Nachteil: Güte kann nur schwer allgemein beurteilt werden; liefert zum Teil unbrauchbare

Die Momentenmethode. Vorteil: Oft einfach anwendbar. Nachteil: Güte kann nur schwer allgemein beurteilt werden; liefert zum Teil unbrauchbare 17.1.3 Die Momentenmethode Vorteil: Oft einfach anwendbar. Nachteil: Güte kann nur schwer allgemein beurteilt werden; liefert zum Teil unbrauchbare Lösungen. Sei ϑ = (ϑ 1,...,ϑ s ) der unbekannte, s-dimensionale

Mehr

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente...

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente... Inhaltsverzeichnis 0 Einführung 1 1 Zufallsvorgänge und Wahrscheinlichkeiten 5 1.1 Zufallsvorgänge.......................... 5 1.1.1 Ergebnismengen..................... 6 1.1.2 Ereignisse und ihre Verknüpfung............

Mehr

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Punkt- und Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr.

Mehr

Kapitel 3 Schließende Statistik

Kapitel 3 Schließende Statistik Beispiel 3.4: (Fortsetzung Bsp. 3.) bekannt: 65 i=1 X i = 6, also ˆp = X = 6 65 = 0, 4 Überprüfen der Voraussetzungen: (1) n = 65 30 () n ˆp = 6 10 (3) n (1 ˆp) = 39 10 Dr. Karsten Webel 194 Beispiel 3.4:

Mehr

Einführung in die (induktive) Statistik

Einführung in die (induktive) Statistik Einführung in die (induktive) Statistik Typische Fragestellung der Statistik: Auf Grund einer Problemmodellierung sind wir interessiert an: Zufallsexperiment beschrieben durch ZV X. Problem: Verteilung

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

3 Grundlagen statistischer Tests (Kap. 8 IS)

3 Grundlagen statistischer Tests (Kap. 8 IS) 3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung

Mehr

die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen

die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen Kapitel 8 Schätzung von Parametern 8.1 Schätzmethoden Gegeben seien Beobachtungen Ü Ü ¾ Ü Ò die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen ¾ Ò auffassen. Die Verteilung

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR STOCHASTIK SS 2007 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Dipl.-Math. oec. W. Lao Klausur (Maschineningenieure) Wahrscheinlichkeitstheorie und Statistik vom 2.9.2007 Musterlösungen

Mehr

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK)

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) für Studierende des Maschinenbaus vom 7. Juli (Dauer: 8 Minuten) Übersicht über die

Mehr

Schätzer und Konfidenzintervalle

Schätzer und Konfidenzintervalle Kapitel 2 Schätzer und Konfidenzintervalle Bisher haben wir eine mathematische Theorie entwickelt, die es uns erlaubt, gewisse zufällige Phänomene zu modellieren. Zum Beispiel modellieren wir die Anzahl

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 8. Dezember 2010 Teil V Schließende Statistik 1 Parameterschätzung Erwartungstreue und Konsistenz Maximum-Likelihood

Mehr

Kapitel V - Erwartungstreue Schätzfunktionen

Kapitel V - Erwartungstreue Schätzfunktionen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel V - Erwartungstreue Schätzfunktionen Induktive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh

Mehr

6. Statistische Hypothesentests

6. Statistische Hypothesentests 6. Statistische Hypothesentests Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang X habe die unbekannte VF F X (x) Interessieren uns für einen unbekannten Parameter θ der Verteilung von

Mehr

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5 Inhaltsverzeichnis Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite 1.0 Erste Begriffsbildungen 1 1.1 Merkmale und Skalen 5 1.2 Von der Urliste zu Häufigkeitsverteilungen 9 1.2.0 Erste Ordnung

Mehr

Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung

Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung Induktive Statistik Prof. Dr. W.-D.

Mehr

Wahrscheinlichkeitsrechnung und schließende Statistik

Wahrscheinlichkeitsrechnung und schließende Statistik Günther Bourier Wahrscheinlichkeitsrechnung und schließende Statistik Praxisorientierte Einführung Mit Aufgaben und Lösungen 3. F überarbeitete Auflage GABLER Inhaltsverzeichnis Vorwort Inhaltsverzeichnis

Mehr

2 Aufgaben aus [Teschl, Band 2]

2 Aufgaben aus [Teschl, Band 2] 20 2 Aufgaben aus [Teschl, Band 2] 2.1 Kap. 25: Beschreibende Statistik 25.3 Übungsaufgabe 25.3 a i. Arithmetisches Mittel: 10.5 ii. Median: 10.4 iii. Quartile: x 0.25 Y 4 10.1, x 0.75 Y 12 11.1 iv. Varianz:

Mehr

Statistische Tests für unbekannte Parameter

Statistische Tests für unbekannte Parameter Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne

Mehr

Inhaltsverzeichnis. 2 Kurzbeschreibung von SPSS Der SPSS-Dateneditor Statistische Analysen mit SPSS DieDaten...

Inhaltsverzeichnis. 2 Kurzbeschreibung von SPSS Der SPSS-Dateneditor Statistische Analysen mit SPSS DieDaten... Inhaltsverzeichnis Teil I Einführung 1 Kleine Einführung in R... 3 1.1 Installieren und Starten von R... 3 1.2 R-Befehleausführen... 3 1.3 R-Workspace speichern... 4 1.4 R-History sichern........ 4 1.5

Mehr

3.4 Asymptotische Evaluierung von Sch atzer Konsistenz Konsistenz Definition 3.4.1: konsistente Folge von Sch atzer

3.4 Asymptotische Evaluierung von Sch atzer Konsistenz Konsistenz Definition 3.4.1: konsistente Folge von Sch atzer 3.4 Asymptotische Evaluierung von Schätzer 3.4.1 Konsistenz Bis jetzt haben wir Kriterien basierend auf endlichen Stichproben betrachtet. Konsistenz ist ein asymptotisches Kriterium (n ) und bezieht sich

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Zentraler Grenzwertsatz/Konfidenzintervalle

Zentraler Grenzwertsatz/Konfidenzintervalle / Statistik I Sommersemester 2009 Statistik I ZGWS/ (1/37) Kann Ahmadinejad die Wahl gewonnen haben? Im wesentlichen Dreiteilung der polit. Elite 2005: 17.3 Millionen Stimmen (Stichwahl), Wahlbeteiligung

Mehr

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell 1 Lineare Regression Parameterschätzung 13 Im einfachen linearen Regressionsmodell sind also neben σ ) insbesondere β 1 und β Parameter, deren Schätzung für die Quantifizierung des linearen Zusammenhangs

Mehr

Auswahl von Schätzfunktionen

Auswahl von Schätzfunktionen Auswahl von Schätzfunktionen Worum geht es in diesem Modul? Überblick zur Punktschätzung Vorüberlegung zur Effizienz Vergleich unserer Schätzer für My unter Normalverteilung Relative Effizienz Einführung

Mehr

3.1 Punktschätzer für Mittelwert µ und Varianz σ 2. Messungen x 1,..., x N, die unabhängig voneinander auf gleiche Weise gewonnen worden sind

3.1 Punktschätzer für Mittelwert µ und Varianz σ 2. Messungen x 1,..., x N, die unabhängig voneinander auf gleiche Weise gewonnen worden sind Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 3.1 3.1 Punktschätzer für Mittelwert µ und Varianz σ 2 Messungen x 1,..., x N, die unabhängig voneinander auf gleiche Weise gewonnen worden

Mehr

3.3 Methoden zur Evaluierung von Schätzern

3.3 Methoden zur Evaluierung von Schätzern 3.3 Methoden zur Evaluierung von Schätzern Bis jetzt haben wir nur glaubwürdige Techniken zur Konstruktion von Punktschätzern besprochen. Falls unterschiedliche Schätzer für einen Parameter resultieren,

Mehr

Theorie - Statistik und Wahrscheinlichkeitstheorie. 27. Mai 2008

Theorie - Statistik und Wahrscheinlichkeitstheorie. 27. Mai 2008 Theorie - Statistik und Wahrscheinlichkeitstheorie 27. Mai 2008 Inhaltsverzeichnis 1. Was ist eine Zufallsvariable?......................... 4 2. Wie ist Freiheitsgrad definiert?.......................

Mehr

Statistik Workshop. 12. und 14. Januar Prof. Dr. Stefan Etschberger HSA

Statistik Workshop. 12. und 14. Januar Prof. Dr. Stefan Etschberger HSA Workshop Mini-Einführung und Auffrischung zu einigen Teilen der angewandten 12. und 14. Prof. Dr. Stefan Etschberger HSA Outline 1 : Einführung Fehler durch Gute und schlechte Grafiken Begriff Grundbegriffe

Mehr

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007 Mathematik IV für Maschinenbau und Informatik Stochastik Universität Rostock, Institut für Mathematik Sommersemester 007 Prof. Dr. F. Liese Dipl.-Math. M. Helwich Serie Termin: 9. Juni 007 Aufgabe 3 Punkte

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion Kapitel 12 Stetige Zufallsvariablen 12.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig

Mehr

Einführung in die Induktive Statistik: Testen von Hypothesen

Einführung in die Induktive Statistik: Testen von Hypothesen Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte

Mehr

Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK. für Studierende der INFORMATIK

Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK. für Studierende der INFORMATIK Institut für Stochastik Prof. Dr. Daniel Hug Name: Vorname: Matr.-Nr.: Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK Datum: 08. Februar 0 Dauer:

Mehr

8. Keine Normalverteilung der Störgrößen (Verletzung der B4-Annahme)

8. Keine Normalverteilung der Störgrößen (Verletzung der B4-Annahme) 8. Keine Normalverteilung der Störgrößen (Verletzung der B4-Annahme) Annahme B4: Die Störgrößen u i sind normalverteilt, d.h. u i N(0, σ 2 ) Beispiel: [I] Neoklassisches Solow-Wachstumsmodell Annahme einer

Mehr

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Aufgabe 1 (10 Punkte). 10 Schüler der zehnten Klasse unterziehen sich zur Vorbereitung auf die Abschlussprüfung einem Mathematiktrainingsprogramm.

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am 5..201 von 10:00 bis 11:00 Uhr Bearbeiten Sie zwei der drei folgenden Aufgaben! Sätze aus der Vorlesung und den Übungen dürfen Sie ohne

Mehr

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Prüfgröße: Ist die durch eine Schätzfunktion zugeordnete reelle Zahl (etwa Mittelwert 7 C).

Prüfgröße: Ist die durch eine Schätzfunktion zugeordnete reelle Zahl (etwa Mittelwert 7 C). Statistik Grundlagen Charakterisierung von Verteilungen Einführung Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsverteilungen Schätzen und Testen Korrelation Regression Einführung Aus praktischen Gründen

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Statistik. R. Frühwirth Teil 1: Deskriptive Statistik. Statistik. Einleitung Grundbegriffe Merkmal- und Skalentypen Aussagen und

Statistik. R. Frühwirth Teil 1: Deskriptive Statistik. Statistik. Einleitung Grundbegriffe Merkmal- und Skalentypen Aussagen und Übersicht über die Vorlesung Teil : Deskriptive fru@hephy.oeaw.ac.at VO 42.090 http://tinyurl.com/tu42090 Teil 2: Wahrscheinlichkeitsrechnung Teil 3: Zufallsvariable und Verteilungen Februar 200 Teil 4:

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Analyse und Modellierung von Daten Von Prof. Dr. Rainer Schlittgen 4., überarbeitete und erweiterte Auflage Fachbereich Materialwissenschaft! der Techn. Hochschule Darmstadt

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und

Mehr

Übungsscheinklausur,

Übungsscheinklausur, Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...

Mehr

Demokurs. Modul Grundlagen der Wirtschaftsmathematik Grundlagen der Statistik

Demokurs. Modul Grundlagen der Wirtschaftsmathematik Grundlagen der Statistik Demokurs Modul 31101 Grundlagen der Wirtschaftsmathematik und Statistik Kurs 40601 Grundlagen der Statistik 13. Juli 2010 KE 1 2.4 Schiefe und Wölbung einer Verteilung Seite: 53 2.4 Schiefe und Wölbung

Mehr

Statistik für Ökonomen

Statistik für Ökonomen Wolfgang Kohn Riza Öztürk Statistik für Ökonomen Datenanalyse mit R und SPSS 2., überarbeitete Auflage 4ü Springer Gabler Inhaltsverzeichnis Teil I Einführung 1 Kleine Einführung in R '! 3 1.1 Installieren

Mehr

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)

Mehr

b) Bestimmen Sie die Varianz der beiden Schätzer. c) Ist ein oder sind beide Schätzer konsistent? Begründen Sie!

b) Bestimmen Sie die Varianz der beiden Schätzer. c) Ist ein oder sind beide Schätzer konsistent? Begründen Sie! Aufgabe 1 (3 + 3 + 2 Punkte) Ein Landwirt möchte das durchschnittliche Gewicht von einjährigen Ferkeln bestimmen lassen. Dies möchte er aus seinem diesjährigen Bestand an n Tieren schätzen. Er kann dies

Mehr

Übungsaufgaben zu Statistik II

Übungsaufgaben zu Statistik II Übungsaufgaben zu Statistik II Prof. Dr. Irene Prof. Dr. Albrecht Ungerer Die Kapitel beziehen sich auf das Buch: /Ungerer (2016): Statistik für Wirtschaftswissenschaftler Springer Gabler 4 Übungsaufgaben

Mehr

Statistik III. Walter Zucchini Fred Böker Andreas Stadie

Statistik III. Walter Zucchini Fred Böker Andreas Stadie Statistik III Walter Zucchini Fred Böker Andreas Stadie Inhaltsverzeichnis 1 Zufallsvariablen und ihre Verteilung 1 1.1 Diskrete Zufallsvariablen........................... 1 1.2 Stetige Zufallsvariablen............................

Mehr

Statistik. Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz. Der Weg zur Datenanalyse. Springer. Zweite, verbesserte Auflage

Statistik. Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz. Der Weg zur Datenanalyse. Springer. Zweite, verbesserte Auflage Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz Statistik Der Weg zur Datenanalyse Zweite, verbesserte Auflage Mit 165 Abbildungen und 34 Tabellen Springer Inhaltsverzeichnis Vorwort v 1 Einführung

Mehr

8. Konfidenzintervalle und Hypothesentests

8. Konfidenzintervalle und Hypothesentests 8. Konfidenzintervalle und Hypothesentests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Beispiel. Sie wollen den durchschnittlichen Fruchtsaftgehalt eines bestimmten Orangennektars

Mehr

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr

3 Konfidenzintervalle

3 Konfidenzintervalle 3 Konfidenzintervalle Konfidenzintervalle sind das Ergebnis von Intervallschätzungen. Sicheres Wissen über Grundgesamtheiten kann man anhand von Stichproben nicht gewinnen. Aber mit Hilfe der Statistik

Mehr

Statistik II für Betriebswirte Vorlesung 1

Statistik II für Betriebswirte Vorlesung 1 Statistik II für Betriebswirte Vorlesung 1 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 19. Oktober 2016 Prof. Dr. Hans-Jörg Starkloff Statistik II für Betriebswirte Vorlesung

Mehr

Wir gehen wieder von einem allgemeinen (parametrischen) statistischen Modell aus, (

Wir gehen wieder von einem allgemeinen (parametrischen) statistischen Modell aus, ( Kapitel 4 Konfidenzbereiche Wir gehen wieder von einem allgemeinen parametrischen statistischen Modell aus, M, A, P ϑ ; sei eine Funktion des Parameters gegeben, die einen interessierenden Teil-Parameter

Mehr

Statistische Methoden für Bauingenieure WS 13/14. Einführungsbeispiel

Statistische Methoden für Bauingenieure WS 13/14. Einführungsbeispiel Statistische Methoden für Bauingenieure WS 13/14 Einheit 2: Statistische Schätzverfahren Univ.Prof. Dr. Christian Bucher Einführungsbeispiel Wir wollen Beton mit einer vorgegebenen Festigkeitsklasse produzieren

Mehr

Inhaltsverzeichnis. Teil I Einführung

Inhaltsverzeichnis. Teil I Einführung Inhaltsverzeichnis Teil I Einführung 1 Statistik-Programme... 1.1 Kleine Einführung in R... 1.1.1 Installieren und Starten von R. 1.1.2 R-Konsole... 1.1.3 R-Workspace... 1.1.4 R-History... 1.1.5 R-Skripteditor...

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

Allgemeines zu Tests. Statistische Hypothesentests

Allgemeines zu Tests. Statistische Hypothesentests Statistische Hypothesentests Allgemeines zu Tests Allgemeines Tests in normalverteilten Grundgesamtheiten Asymptotische Tests Statistischer Test: Verfahren Entscheidungsregel), mit dem auf Basis einer

Mehr

Grundgesamtheit und Stichprobe

Grundgesamtheit und Stichprobe Grundgesamtheit und Stichprobe Definition 1 Die Menge der Untersuchungseinheiten {U 1,U 2,...,U N } heißt Grundgesamtheit. Die Anzahl N der Einheiten ist der Umfang der Grundgesamtheit. Jeder Einheit U

Mehr

1 Dichte- und Verteilungsfunktion

1 Dichte- und Verteilungsfunktion Tutorium Yannick Schrör Klausurvorbereitungsaufgaben Statistik Lösungen Yannick.Schroer@rub.de 9.2.26 ID /455 Dichte- und Verteilungsfunktion Ein tüchtiger Professor lässt jährlich 2 Bücher drucken. Die

Mehr

Kapitel XI - Operationscharakteristik und Gütefunktion

Kapitel XI - Operationscharakteristik und Gütefunktion Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XI - Operationscharakteristik und Gütefunktion Induktive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo

Mehr

Grundgesamtheit und Stichprobe

Grundgesamtheit und Stichprobe Grundgesamtheit und Stichprobe Definition 1 Die Menge der Untersuchungseinheiten {U 1,U 2,...,U N } heißt Grundgesamtheit. Die Anzahl N der Einheiten ist der Umfang der Grundgesamtheit. Jeder Einheit U

Mehr

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen David Geier und Sven Middelberg RWTH Aachen, Sommersemester 27 Inhaltsverzeichnis Information 2 Aufgabe 4 Aufgabe 2 6 4 Aufgabe

Mehr

K8 Stetige Zufallsvariablen Theorie und Praxis

K8 Stetige Zufallsvariablen Theorie und Praxis K8 Stetige Zufallsvariablen Theorie und Praxis 8.1 Theoretischer Hintergrund Wir haben (nicht abzählbare) Wahrscheinlichkeitsräume Meßbare Funktionen Zufallsvariablen Verteilungsfunktionen Dichten in R

Mehr

Schließende Statistik

Schließende Statistik Schließende Statistik Die schließende Statistik befasst sich mit dem Rückschluss von einer Stichprobe auf die Grundgesamtheit (Population). Die Stichprobe muss repräsentativ für die Grundgesamtheit sein.

Mehr

Klausur Stochastik und Statistik 31. Juli 2012

Klausur Stochastik und Statistik 31. Juli 2012 Klausur Stochastik und Statistik 31. Juli 2012 Prof. Dr. Matthias Schmid Institut für Statistik, LMU München Wichtig: ˆ Überprüfen Sie, ob Ihr Klausurexemplar vollständig ist. Die Klausur besteht aus fünf

Mehr

Kapitel 1: Elemente der Statistik

Kapitel 1: Elemente der Statistik 1 Kapitel 1: Elemente der Statistik 1.1 Beispiel Ein Elektromarkt erhält eine Lieferung von N = 10000 Glühbirnen. Darunter ist eine unbekannte Anzahl h defekt, wobei h 0 1 = {0, 1,..., N}. Um Kenntnisse

Mehr

Mögliche Fragen für mündliche Prüfung aus Statistik und Wahrscheinlichkeitstheorie von Prof. Dutter

Mögliche Fragen für mündliche Prüfung aus Statistik und Wahrscheinlichkeitstheorie von Prof. Dutter Mögliche Fragen für mündliche Prüfung aus Statistik und Wahrscheinlichkeitstheorie von Prof. Dutter Was für Kenngrößen von Verteilungen kennst du? Ortsparameter (Arithmetisches Mittel, Median, MedMed,

Mehr

Resampling. in»statistische Methoden in der Physik« Referent: Alex Ortner. Studenten-Seminar Sommersemester 2007

Resampling. in»statistische Methoden in der Physik« Referent: Alex Ortner. Studenten-Seminar Sommersemester 2007 Resampling in»statistische Methoden in der Physik«Referent: Studenten-Seminar Sommersemester 2007 Gliederung 1 Resampling Prinzip Einleitung Resampling Methoden 2 3 4 Einleitung intuitv Resampling Prinzip

Mehr

Statistische Tests (Signifikanztests)

Statistische Tests (Signifikanztests) Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2009/2010. Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2009/2010. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2009/2010 Aufgabe 1 Die Porzellanmanufaktur

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 / Übungsaufgaben Prof. Dr. Achim Klenke http://www.aklenke.de 13. Vorlesung: 10.02.2012 1/51 Aufgabe 1 Aufgabenstellung Übungsaufgaben Ein Pharmakonzern möchte ein neues Schlankheitsmedikament

Mehr

Statistik II. Sommersemester PD Dr. Michael Krapp Institut für Statistik und Mathematische Wirtschaftstheorie. Universität Augsburg

Statistik II. Sommersemester PD Dr. Michael Krapp Institut für Statistik und Mathematische Wirtschaftstheorie. Universität Augsburg Statistik II Sommersemester 2005 PD Dr. Michael Krapp Institut für Statistik und Mathematische Wirtschaftstheorie Klausur und Unterlagen Klausur: Spielregeln : Wie Statistik I Nachholklausur im WS 2005

Mehr

Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz

Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz Grundlage: Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz Die Testvariable T = X µ 0 S/ n genügt der t-verteilung mit n 1 Freiheitsgraden. Auf der Basis

Mehr

30. März Ruhr-Universität Bochum. Methodenlehre II, SS Prof. Dr. Holger Dette

30. März Ruhr-Universität Bochum. Methodenlehre II, SS Prof. Dr. Holger Dette Ruhr-Universität Bochum 30. März 2011 1 / 46 Methodenlehre II NA 3/73 Telefon: 0234 322 8284 Email: holger.dette@rub.de Internet: www.ruhr-uni-bochum.de/mathematik3/index.html Vorlesung: Montag, 8.30 10.00

Mehr

Institut für Biometrie und klinische Forschung. WiSe 2012/2013

Institut für Biometrie und klinische Forschung. WiSe 2012/2013 Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie (3) Überblick. Deskriptive Statistik I 2. Deskriptive

Mehr

Statistik für Experimente

Statistik für Experimente Kurz & gut Statistik für Experimente von Joachim Selke In diesem Artikel werden die Grundbegriffe der mathematischen Statistik vorgestellt. Der Text zielt auf Studierende ab, die bereits über Vorkenntnisse

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

- Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden.

- Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden. Normalverteilung und Standardnormalverteilung als Beispiel einer theoretischen Verteilung - Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden. - Stetige (kontinuierliche),

Mehr

Statistik II SoSe 2006 immer von 8:00-9:30 Uhr

Statistik II SoSe 2006 immer von 8:00-9:30 Uhr Statistik II SoSe 2006 immer von 8:00-9:30 Uhr Was machen wir in der Vorlesung? Testen und Lineares Modell Was machen wir zu Beginn: Wir wiederholen und vertiefen einige Teile aus der Statistik I: Konvergenzarten

Mehr

Institut für Stochastik, SoSe K L A U S U R , 13:

Institut für Stochastik, SoSe K L A U S U R , 13: Institut für Stochastik, SoSe 2014 Mathematische Statistik Paravicini/Heusel 1. K L A U S U R 12.7.2014, 13:00-16.00 Name: Geburtsdatum: Vorname: Matrikelnummer: Übungsgruppe bei: Studiengang & angestrebter

Mehr

Kapitel 2 Wahrscheinlichkeitsrechnung

Kapitel 2 Wahrscheinlichkeitsrechnung Definition 2.77: Normalverteilung & Standardnormalverteilung Es sei µ R und 0 < σ 2 R. Besitzt eine stetige Zufallsvariable X die Dichte f(x) = 1 2 πσ 2 e 1 2 ( x µ σ ) 2, x R, so heißt X normalverteilt

Mehr

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009 Übung zu Empirische Ökonomie für Fortgeschrittene Steen Elstner, Klaus Wohlrabe, Steen Henzel SS 9 1 Wichtige Verteilungen Die Normalverteilung Eine stetige Zufallsvariable mit der Wahrscheinlichkeitsdichte

Mehr

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Christian Peukert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2010

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Kurze Zusammenfassung der letzten Vorlesung Schätzung und Modellentwicklung Überblick Statistische Signifikanztests

Mehr

Statistik für SozialwissenschaftlerInnen II p.85

Statistik für SozialwissenschaftlerInnen II p.85 Schätzverfahren Statistik für SozialwissenschaftlerInnen II p.85 Schätzverfahren Ziel von Schätzverfahren: Ausgehend von Stichproben Aussagen über Populationskennwerte machen Kenntnis der Abweichung des

Mehr

Inhalt. I. Deskriptive Statistik Einführung Die Grundgesamtheit Merkmale und Verteilungen Tabellen und Grafiken...

Inhalt. I. Deskriptive Statistik Einführung Die Grundgesamtheit Merkmale und Verteilungen Tabellen und Grafiken... I. Deskriptive Statistik 1 1. Einführung 3 1.1. Die Grundgesamtheit......................... 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................ 10

Mehr

Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind:

Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind: Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Inhalte Themen dieses Kapitels sind: Das Konzept stetiger Zufallsvariablen Die

Mehr