Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind:

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind:"

Transkript

1 Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Inhalte Themen dieses Kapitels sind: Das Konzept stetiger Zufallsvariablen Die Standard-Normalverteilung Die allgemeine Normalverteilung Statistik 2 für SoziologInnen 2 Normalverteilung 1

2 Stetige Zufalls-Variable Erweitert man den Begriff der diskreten Zufallsvariable für stetige Merkmale gibt es einige technische Probleme Die Wahrscheinlichkeit einen bestimmten konkreten Wert zu beobachten ist null, da es ja unendlich viele unterschiedliche Wert gibt. Eine stetige Zufallsvariable liefert daher Wahrscheinlichkeitswerte immer nur für Intervalle. Man erhält Wahrscheinlichkeiten indem man eine Fläche evaluiert. Konkret betrachtet man das Integral unter der Dichtefunktion, die das stetige Analogon zur Wahrscheinlichkeitsfunktion bildet. Statistik 2 für SoziologInnen 3 Normalverteilung Dichtefunktion f(x) Dichtefunktion 1) f(x) > 0 für alle x 2) Gesamte Fläche unter der Kurve ist 1 Einzelne Werte von f(x) können größer als 1 sein! f(x) ist eine Dichte aber keine Wahrscheinlichkeit Vergleiche dazu das Histogramm, wo auch die Fläche als Maß für die Häufigkeit fungiert Statistik 2 für SoziologInnen 4 Normalverteilung 2

3 Stetige Verteilungsfunktion Die theoretische Verteilungsfunktion einer steigen Zufallsvariablen X mit Dichtefunktion f(x) bezeichnen wir mit F(x) Die theoretische Verteilungsfunktion wird durch das Integral (stetiges Analogon zur Summe) definiert x F( x) P( X x) f ( udu ) Statistik 2 für SoziologInnen 5 Normalverteilung Beziehung zwischen Dichte- und Verteilungsfunktion Dichtefunktion f(x) Verteilungsfunktion F(x) 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0-3,5-3,0-2,5-2,0-1,5-1,0-0,5 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 1 0,8 0,6 0,4 0, Statistik 2 für SoziologInnen 6 Normalverteilung 3

4 Wahrscheinlichkeiten als Integral P(a X b) = P(X b) - P(X a) = F(b) - F(a) P(a X b) f (x)dx b a Statistik 2 für SoziologInnen 7 Normalverteilung Erwartungswert und Varianz einer stetigen ZV E(X) x f(x)dx V(X) ² [x E(X)]² f(x)dx Var(X) = E(X 2 ) [E(X)] 2 Statistik 2 für SoziologInnen 8 Normalverteilung 4

5 Standardnormalverteilung 1720 erstmals von Abraham de Moivre beschrieben 1809 und 1816 grundlegende Arbeiten von Carl Friedrich Gauß 1870 von Adolphe Quetelet als "ideales" Histogramm verwendet alternative Bezeichnungen: Gaußsche Glockenkurve;Fehlerkurve Natürliche Prozesse Körpergröße, Gewicht von Lebewesen Messung von physikalischen Größen Messfehlermodell Variable, die sich aus der Summe von vielen zufälligen Einzelwerten ergeben zentraler Grenzwertsatz Statistik 2 für SoziologInnen 9 Normalverteilung Dichtefunktion In der einfachsten Form: Standardnormalverteilung X~N(0; 1) E(X)=0 Erwartungswert = 0 V(X)=1 Varianz bzw. Standard-Abweichung =1 fx ( ) 1 2 e x 2 / 2 Statistik 2 für SoziologInnen 10 Normalverteilung 5

6 Die Standard-Normalverteilung Wendepunkte Statistik 2 für SoziologInnen 11 Normalverteilung Die Standard-Normalverteilung Flaeche = 0, Die Wahrscheinlichkeit, dass die Zufallsvariable einen Wert im Bereich -1 bis +1 annimmt ist 68,27% Statistik 2 für SoziologInnen 12 Normalverteilung 6

7 Flaeche = 0, Die Wahrscheinlichkeit, dass die Zufallsvariable einen Wert im Bereich -2 bis +2 annimmt, ist rund 95% Allgemein: Bei einem normalverteilten Merkmal liegen rund 95% der Beobachtungen liegen im Bereich Erwartungswert plus/minus 2*Standardabweichung Statistik 2 für SoziologInnen 13 Normalverteilung Varianten der Normalverteilung Im allgemeinen: Normalverteilung mit Erwartungswert und Varianz ² X~N( ; ²) E(X) = V(X) = ² fx ( ) 1 2 e 1 x 2 ( ) 2 Statistik 2 für SoziologInnen 14 Normalverteilung 7

8 Verschiedene Normalverteilungen Standardnormalverteilung N(0; 0,25) Kleinere Varianz N(0; 1) Größere Varianz N(0; 4) Statistik 2 für SoziologInnen 15 Normalverteilung Verschiedene Normalverteilungen N(-3; 0,25) Verschiebung und Stauchung N(0; 1) N(2; 1) Unterschiedlicher Erwartungswert bei konstanter Varianz Statistik 2 für SoziologInnen 16 Normalverteilung 8

9 Lineartransformation Wenn X eine normalverteilte Zufallsvariable ist, dann ist auch Y=a+bX normalverteilt. E(Y)=E(a+bX)=a+bE(X) V(Y)=V(a+bX)=b²V(X) Knapp formuliert: Sei X~N( ²) und Y=a+bX dann gilt Y~N(a+b ; b² ²) Änderung des Erwartungswertes: Verschiebung (Translation) Änderung der Varianz: Dehnung oder Stauchung der Verteilungsform Prinzipielle Gestalt der Glockenkurve bleibt erhalten Statistik 2 für SoziologInnen 17 Normalverteilung Standardisierung Aus dem vorigen folgt: Sei X~N( ²) dann gilt für Z=(X- standardisierte Variable Z~N(0;1) Durch Anwendung der Standardisierung lässt sich jede Normalverteilung in die Standardnormalverteilung überführen. Daher reichen Tabellen für Wahrscheinlichkeiten der Standardnormalverteilung für alle Fragestellungen Statistik 2 für SoziologInnen 18 Normalverteilung 9

10 Standardisierung Anwendungsbeispiel: X sei die Körpergröße in cm von einer bestimmten Population Es sei X~N(175; 64) dann ist Z=(X-175)/8 Frage: P(167<X<183)=? P(167<X<183)= =P(( )/8<Z<( )/8)= =P(-1<Z<1)=0,6826 Bei Kenntnis des Mittelwertes und der Varianz lassen sich unter der Modellannahme, dass das Merkmal normalverteilt ist, die Wahrscheinlichkeit für alle denkmöglichen Fragestellungen mit der Standardnormalverteilung ermitteln. Statistik 2 für SoziologInnen 19 Normalverteilung Unterschiedlicher Maßstab! N(175; 64) Koerpergroesse in cm N(0; 1) Standardeinheiten Statistik 2 für SoziologInnen 20 Normalverteilung 10

11 Bestimmung von Wahrscheinlichkeiten Die Verteilungsfunktion der Standardnormalverteilung ergibt sich durch Integration der Dichtefunktion Unterschiedliche Notation: Bleymüller: F N (z) Schlittgen: (z) z u 2 F ( z) e du N 2 Statistik 2 für SoziologInnen 21 Normalverteilung Von der Dichte zur Verteilungsfunktion Dichtefunktion Verteilungsfunktion P(X<1)=0, P(X<1)=0, Statistik 2 für SoziologInnen 22 Normalverteilung 11

12 -3,5-3,0-2,5-2,0-1,5-1,0-0,5 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5-3,5-3,0-2,5-2,0-1,5-1,0-0,5 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5-3,5-3,0-2,5-2,0-1,5-1,0-0,5 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 0,45 0,4 0,35 0,3 0,25 Dichtefunktion Verteilungsfunktion 1 0,8 0,6 0,2 0,15 0,4 0,1 0,2 0, Grenzwert: -1 Prob(Z<-1)= 0,15866 Dichtefunktion Verteilungsfunktion 0,45 1 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,8 0,6 0,4 0,2 0, Grenzwert: 0 Prob(Z<0)= 0,5 Dichtefunktion Verteilungsfunktion 0,45 1 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,8 0,6 0,4 0,2 0, Grenzwert: 1 Prob(Z<1)= 0,84134 Statistik 2 für SoziologInnen 23 Normalverteilung Ausnützung der Symmetrie um Null P(Z < a) = 1 - P(Z < -a) oder P(Z < -a) = 1 - P(Z < a) aa aa P(Z>a) = P(Z<-a) Statistik 2 für SoziologInnen 24 Normalverteilung 12

13 Arbeit mit Tabellen: P(Z<1)=? (1) liegt zwischen 0,841 und 0,842 Grob: P(Z<1) = (1) = 0,8415 Lineare Interpolation: P(Z<1) = (1) = 0,8413 P(Z<-1)=? (a)=1- (-a) bzw. (-a)=1- (a) P(Z<-1)=1 - (1) = 1-0,8413 = 0,1587 (-1) liegt zwischen 0,158 und 0,159 Statistik 2 für SoziologInnen 25 Normalverteilung Beispiel Wir wollen für eine Normalverteilung mit Erwartungswert 170 und Standardabweichung 16 die Wahrscheinlichkeit einen Wert kleiner als 180 zu erhalten ermitteln. P(X<180) = =P(Z<( )/16)=P(Z<0,625)=F N (0,625)= =0,734 Statistik 2 für SoziologInnen 26 Normalverteilung 13

14 Normalverteilung in Excel: NORMVERT Für eine Normalverteilung mit Erwartungswert 170 und Standardabweichung 16 gilt, dass die Wahrscheinlichkeit einen Wert kleiner als 180 zu erhalten 73,4% beträgt. Statistik 2 für SoziologInnen 27 Normalverteilung Wahrscheinlichkeiten der Normalverteilung Statistik 2 für SoziologInnen 28 Normalverteilung 14

15 Erwartungswert: 170 Varianz: 256 Standardabweichung: 16,0000 0,0300 0,0250 0,7340 0,2660 Grenzwert: 180 0,0200 Prob(X < 180) = 0,7340 Prob(X > 180) = 0,2660 0,0150 0,0100 0,0050 Hinweis: Eingabefelder für die Parameter der Normalverteilung und dem gewünschten Grenzwert sind hellgrün markiert. 0, , , , , , , , , , , , , , , , , , , , , ,4400 Statistik 2 für SoziologInnen 29 Normalverteilung X~N(175; 64) P(X<175)=? P(Z<( )/8) = (0)= 0, P(X<175) Koerpergroesse in cm P(Z<0) Standardeinheiten Statistik 2 für SoziologInnen 30 Normalverteilung 15

16 X~N(175; 64) P(X<175)=? P(Z<( )/8) = (0)= 0,5 P(X<181)=? P(Z<( )/8) = (0,75)= 0,7734 P(X>177)=? P(Z>( )/8)= =1-P(Z<0,25)= =1- (0,25)= =1-0,5987=0,4013 Beispiel zur Körpergröße E(X)= 175 V(X)= 64 (X)= 8 Grenzwert: 181 Dieser Wert kann variiert werden P(X<181)= 77, % P(X>181)= 22, % Statistik 2 für SoziologInnen 31 Normalverteilung P(X<181)= Koerpergroesse in cm Statistik 2 für SoziologInnen 32 Normalverteilung 16

17 P(X>177)= Koerpergroesse in cm Statistik 2 für SoziologInnen 33 Normalverteilung Erwartungswert: 175 Varianz: 64 Standardabweichung: 8,0000 0,0600 0,0500 0,7734 0,2266 Grenzwert: 181 0,0400 Prob(X < 181) = 0,7734 Prob(X > 181) = 0,2266 0,0300 0,0200 0,0100 Hinweis: Eingabefelder für die Parameter der Normalverteilung und dem gewünschten Grenzwert sind hellgrün markiert. 0, , , , , , , , , , , , , , , , , , , , , ,7200 Statistik 2 für SoziologInnen 34 Normalverteilung 17

18 Beispiel IQ-Test E(X)= 100 V(X)= 225 (X)= 15 4-Sigma Gesellschaft Personen mit einem IQ über 160 P(X>100+4* )=? 100+4*s= 160 P(X>160)= 0,00317% Bei ,17 1 von In Österreich leben: Menschen Österreicher in 4-Sigma 254 Statistik 2 für SoziologInnen 35 Normalverteilung Wahrscheinlichkeiten für Intervalle P(a<X<b) = P(X<b) P(X<a) X~N(175; 64) P(177<X<181) =? P(X<181) - P(X<177) = =P(Z<( )/8) - P(Z<( )/8) = = (0,75) - (0,25) = = 0,7734-0,5987 = 0,1747 Statistik 2 für SoziologInnen 36 Normalverteilung 18

19 P(177<X<181)= Koerpergroesse in cm Statistik 2 für SoziologInnen 37 Normalverteilung Erwartungswert: 175 Varianz: 64 Standardabweichung: 8,0000 0,0600 0,0500 0,5987 0,1747 0,2266 Untergrenze: 177 Obergrenze: 181 Prob(177< X < 181) = 0,1747 Prob( X < 177) = 0,5987 Prob( X > 181) = 0,2266 0,0400 0,0300 0,0200 0,0100 Hinweis: Eingabefelder für die Parameter der Normalverteilung und die Grenzwerte sind hellgrün markiert. 0, , , , , , , , , , , , , , , , , , , , , ,7200 Statistik 2 für SoziologInnen 38 Normalverteilung 19

20 Symmetrische Intervalle P(-1<Z<1)=? P(-1<Z<1)= (1) - (-1)= 0,8413-0,1587 = 0,6826 P(-a<Z<a)=P(Z<a)-P(Z<-a)= (a)-(1- (a))=2 (a)-1 P(-a<Z<a)=2 (a)-1 P(-1<Z<1)= 2* (1) -1=2*0,8413-1=0,6826 Statistik 2 für SoziologInnen 39 Normalverteilung X~N(175; 64) Wie groß ist die Wahrscheinlichkeit, dass eine Person maximal 8 cm vom Erwartungswert abweicht? P(167<X<183) = (( )/8) - (( )/8) (1) - (-1) = 0,8413-0,1587 = 0,6827 P(167<X<183) = 2* (( )/8) -1= = 2* (1)-1 = 2*0, = 0,6827 Statistik 2 für SoziologInnen 40 Normalverteilung 20

21 Erwartungswert: 175 Varianz: 64 Standardabweichung: 8,0000 0,0600 0,0500 0,1587 0,6827 0,1587 maximale Abweichung: 8 0,0400 Prob(167< X < 183) = 0,6827 Prob(X < 167) = 0,1587 Prob(X > 183) = 0,1587 0,0300 0,0200 0,0100 Hinweis: Eingabefelder für die Parameter der Normalverteilung und die maximale Abweichung sind hellgrün markiert. 0, , , , , , , , , , , , , , , , , , , , , ,7200 Statistik 2 für SoziologInnen 41 Normalverteilung Inverse Fragestellung Gesucht sind Quantilwerte z für die bestimmte Wahrscheinlichkeitsaussagen gelten: P(Z< z ) = (z ) = P(Z<z ) = z Nachschlagen in der Tabelle: ==> z Gesucht ist jene Körpergröße x für die gilt, daß die Wahrscheinlichkeit P(X<x )=0,9 Lösung: x = + z x = ,2816*8 Statistik 2 für SoziologInnen 42 Normalverteilung 21

22 Erwartungswert: 175 Varianz: 64 Standardabweichung: 8,0000 0,0600 0, ,2524 0,9000 0,1000 Wahrscheinlichkeit: 0,9 Quantil von Z~N(0;1): 1,2816 0,0400 0,0300 Grenzwert = 185,2524 Prob(185,25 < 0,9) = 0,9000 Prob(185,25 > 0,9) = 0,1000 0,0200 0,0100 Hinweis: Eingabefelder für die Parameter der Normalverteilung und der gewünschten Wahrscheinlichkeit sind hellgrün markiert. 0, , , , , , , , , , , , , , , , , , , , , ,7200 Statistik 2 für SoziologInnen 43 Normalverteilung Normalverteilung in Excel: NORMINV Für eine Standardnormalverteilung gilt, dass die Wahrscheinlichkeit einen Wert kleiner als 1, zu erhalten 95% beträgt. Statistik 2 für SoziologInnen 44 Normalverteilung 22

23 Zentrale Schwankungsintervalle (Streubereiche) symmetrische Intervalle um den Erwartungswert [ -c; +c] Von Interesse sind Aussagen der Form a) P( -c < X < +c) =? b) P( -? < X < +?) = 1- Beispiel für a) Wie groß ist die Wahrscheinlichkeit, dass eine Person maximal 8 cm vom Erwartungswert abweicht? Beispiel für b) Wie groß ist das symmetrische Intervall in welchem Personen mit einer Wahrscheinlichkeit 1- liegen? Wir ordnen dem zentralen Schwankungsbereich die Wahrscheinlichkeit 1- zu. Dadurch kommt außerhalb des Bereichs an jedem Ende eine Randwahrscheinlichkeit von /2 zustande. Statistik 2 für SoziologInnen 45 Normalverteilung Konzept zentraler Schwankungsintervalle alpha/2 1-alpha alpha/ Statistik 2 für SoziologInnen 46 Normalverteilung 23

24 Zentrale Schwankungsintervalle Sei X~N(, ²) so ergibt sich das zentrale Schwankungsintervall,welches eine Wahrscheinlichkeit von 1- abdeckt durch: [ -z 1- /2 ; + z 1- /2 ] bzw. P( - z 1- /2 < X < + z 1- /2 ) = 1- Für =0,1 ( =0,05; =0,01) ergibt sich aus der Tabelle für z 1- /2 d.h. P( - 1,6449 < Z < + ) = 0,9 P( - 1,96 < Z < + ) = 0,95 P( - 2,5758 < Z < + 2,5758) = 0,99 Statistik 2 für SoziologInnen 47 Normalverteilung X~N(175; 64) Gesucht ist ein zentrales Schwankungsintervall, das eine Wahrscheinlichkeit von 0,95 aufweist P( - z 1- /2 < X < + z 1- /2 ) = 1- = 0,05 1- /2 = 0,975 P(175-1,96*8 < X < ,96*8) = 0,95 P(159,32 < X < 190,68) = 0,95 Falls man eine höhere Wahrscheinlichkeit anstrebt wird das Intervall größer: P(175-2,5758 *8 < X < ,5758 *8) = 0,99 P(154,39 < X < 195,61) = 0,99 Statistik 2 für SoziologInnen 48 Normalverteilung 24

25 Erwartungswert: 175 Varianz: 64 Standardabweichung: 8,0000 Wahrscheinlichkeit des zentralen Intervalls 1- : 0,95 1- /2 Quantil von Z~N(0;1): 1,9600 0,0600 0,0500 0,0400 0, ,32 0,95 190,68 Prob(159,32< X < 190,68) = 0,9500 Untergrenze: 159,32 Obergrenze: 190,68 Hinweis: Eingabefelder für die Parameter der Normalverteilung und die Wahrscheinlichkeit für das zentrale Intervall sind hellgrün markiert. 0,0200 0,0100 0, , , , , , , , , , , , , , , , , , , , , ,7200 Statistik 2 für SoziologInnen 49 Normalverteilung Erwartungswert: 175 Varianz: 64 Standardabweichung: 8,0000 Wahrscheinlichkeit des zentralen Intervalls 1- : 0,99 1- /2 Quantil von Z~N(0;1): 2,5758 0,0600 0,0500 0,0400 0, ,39 0,99 195,61 Prob(154,39< X < 195,61) = 0,9900 Untergrenze: 154,39 Obergrenze: 195,61 Hinweis: Eingabefelder für die Parameter der Normalverteilung und die Wahrscheinlichkeit für das zentrale Intervall sind hellgrün markiert. 0,0200 0,0100 0, , , , , , , , , , , , , , , , , , , , , ,7200 Statistik 2 für SoziologInnen 50 Normalverteilung 25

26 Zentraler Grenzwertsatz Die Normalverteilung verdankt ihre universelle theoretische und praktische Bedeutung dem zentralen Grenzwertsatz. Unabhängig von der konkreten Ausgangsverteilung konvergiert nämlich die Verteilungsfunktion einer Summe gegen die Normalverteilung. (sehr grob formuliert) Ist die Anzahl der Summanden (n) hinreichend groß, so kann in der Praxis die Verteilung einer Summe durch die Normalverteilung approximiert werden. Die Frage, ab wann n hinreichend groß ist, hängt von der gewünschten Genauigkeit und der Form der Ausgangsverteilung ab. Statistik 2 für SoziologInnen 51 Normalverteilung Was wir uns merken sollten Wie eine stetige Zufallsvariable mittels Dichtefunktion und Verteilungsfunktion beschrieben wird Einige wichtige Eigenschaften der Normalverteilung (Symmetrie, zentrale Schwankungsintervalle [z.b. 95% plus/minus 2xStandardabweichung], Lineartransformationen) Wie man mittels Tabellen oder Excel konkrete Wahrscheinlichkeiten bestimmen kann Statistik 2 für SoziologInnen 52 Normalverteilung 26

Standardnormalverteilung

Standardnormalverteilung Standardnormalverteilung 1720 erstmals von Abraham de Moivre beschrieben 1809 und 1816 grundlegende Arbeiten von Carl Friedrich Gauß 1870 von Adolphe Quetelet als "ideales" Histogramm verwendet alternative

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion Kapitel 12 Stetige Zufallsvariablen 12.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Exponentialverteilung

Exponentialverteilung Exponentialverteilung Dauer von kontinuierlichen Vorgängen (Wartezeiten; Funktionszeiten technischer Geräte) Grenzübergang von der geometrischen Verteilung Pro Zeiteinheit sei die Eintrittswahrscheinlichkeit

Mehr

STETIGE VERTEILUNGEN

STETIGE VERTEILUNGEN STETIGE VERTEILUNGEN. Die Näherungsformel von Moivre Laplace Betrachtet man die Binomialverteilungen Bnp für wachsendes n bei konstantem p, so werden die Histogramme einer binomialverteilten Zufallsvariablen

Mehr

Stetige Verteilungen Rechteckverteilung

Stetige Verteilungen Rechteckverteilung Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s X. Zufallsgrößen ================================================================= 10.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

Das Histogramm ist glockenförmig. Es würde bei mehr als vier Fehlerquellen sich der Glockenform noch besser annähern.

Das Histogramm ist glockenförmig. Es würde bei mehr als vier Fehlerquellen sich der Glockenform noch besser annähern. 10. Stetige Zufallsvariable, Normalverteilung 55 Die in den folgenden Beispielen dargestellten Verteilungen haben ungefähr Glockenform. Sie können durch die sogenannte Normalverteilung oder Gaussverteilung

Mehr

Übung 1: Wiederholung Wahrscheinlichkeitstheorie

Übung 1: Wiederholung Wahrscheinlichkeitstheorie Übung 1: Wiederholung Wahrscheinlichkeitstheorie Ü1.1 Zufallsvariablen Eine Zufallsvariable ist eine Variable, deren numerischer Wert solange unbekannt ist, bis er beobachtet wird. Der Wert einer Zufallsvariable

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch 6 Stetige Verteilungen 1 Kapitel 6: Stetige Verteilungen A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch dargestellt. 0.2 6

Mehr

1 Dichte- und Verteilungsfunktion

1 Dichte- und Verteilungsfunktion Tutorium Yannick Schrör Klausurvorbereitungsaufgaben Statistik Lösungen Yannick.Schroer@rub.de 9.2.26 ID /455 Dichte- und Verteilungsfunktion Ein tüchtiger Professor lässt jährlich 2 Bücher drucken. Die

Mehr

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)

Mehr

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen 6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Bisher: Diskrete Zufallsvariablen,

Mehr

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Spezielle stetige Verteilungen

Spezielle stetige Verteilungen Spezielle stetige Verteilungen schon bekannt: Die Exponentialverteilung mit Parameter k R, k > 0 hat die Dichte f (x) = ke kx für x 0 und die Verteilungsfunktion F (x) = 1 e kx für x 0. Eigenschaften Für

Mehr

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5 4 Verteilungen und ihre Kennzahlen 1 Kapitel 4: Verteilungen und ihre Kennzahlen A: Beispiele Beispiel 1: Eine diskrete Zufallsvariable X, die nur die Werte 1,, 3, 4, 5 mit positiver Wahrscheinlichkeit

Mehr

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc.

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc. Abiturvorbereitung Stochastik neue friedländer gesamtschule Klasse 12 GB 24.02.2014 Holger Wuschke B.Sc. Siedler von Catan, Rühlow 2014 Organisatorisches 0. Begriffe in der Stochastik (1) Ein Zufallsexperiment

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr

Von der Normalverteilung zu z-werten und Konfidenzintervallen

Von der Normalverteilung zu z-werten und Konfidenzintervallen Von der Normalverteilung zu z-werten und Konfidenzintervallen Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH

Mehr

Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen

Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen Georg Bol georg.bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de Stetige Verteilungen Definition: Sei

Mehr

Institut für Biometrie und klinische Forschung. WiSe 2012/2013

Institut für Biometrie und klinische Forschung. WiSe 2012/2013 Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie (3) Überblick. Deskriptive Statistik I 2. Deskriptive

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de lordsofthebortz.de lordsofthebortz.de/g+

Mehr

Spezielle Eigenschaften der Binomialverteilung

Spezielle Eigenschaften der Binomialverteilung Spezielle Eigenschaften der Binomialverteilung Wir unterscheiden: 1) die Wahrscheinlichkeitsfunktion einer diskreten Variablen 2) die Verteilungsfunktion einer diskreten Variablen. 1) Die Wahrscheinlichkeitsfunktion

Mehr

Wahrscheinlichkeitsrechnung und Quantentheorie

Wahrscheinlichkeitsrechnung und Quantentheorie Physikalische Chemie II: Atombau und chemische Bindung Winter 2013/14 Wahrscheinlichkeitsrechnung und Quantentheorie Messergebnisse können in der Quantenmechanik ganz prinzipiell nur noch mit einer bestimmten

Mehr

Normalverteilung und Standardisierung

Normalverteilung und Standardisierung Normalverteilung und Standardisierung N(0,1) z 0 z N(µ,) }{{}}{{} µ µ z z z µ+z Die Normalverteilungen N(µ, ) ergeben sich aus der Standardnormalverteilung N(0, 1) (Gaussche Glockenkurve) durch strecken

Mehr

Verteilungen eindimensionaler stetiger Zufallsvariablen Einführung Stetige Verteilungen

Verteilungen eindimensionaler stetiger Zufallsvariablen Einführung Stetige Verteilungen Verteilungen eindimensionaler stetiger Zufallsvariablen Einführung Stetige Verteilungen Stetige Gleichverteilung Exponentialverteilung Normalverteilung Bibliografie: Prof. Dr. Kück Universität Rostock

Mehr

Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec

Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec Binomialverteilung Jakob Bernoulli (1654-1705) Ars Conjectandi Klassisches Verteilungsmodell für die Berechnung der Wahrscheinlichkeit für die Häufigkeit des Eintretens von Ereignissen in bestimmten noch

Mehr

Kenngrößen von Zufallsvariablen

Kenngrößen von Zufallsvariablen Kenngrößen von Zufallsvariablen Die Wahrscheinlichkeitsverteilung kann durch die sogenannten Kenngrößen beschrieben werden, sie charakterisieren sozusagen die Verteilung. Der Erwartungswert Der Erwartungswert

Mehr

Statistik III. Walter Zucchini Fred Böker Andreas Stadie

Statistik III. Walter Zucchini Fred Böker Andreas Stadie Statistik III Walter Zucchini Fred Böker Andreas Stadie Inhaltsverzeichnis 1 Zufallsvariablen und ihre Verteilung 1 1.1 Diskrete Zufallsvariablen........................... 1 1.2 Stetige Zufallsvariablen............................

Mehr

Stochastik. 1. Wahrscheinlichkeitsräume

Stochastik. 1. Wahrscheinlichkeitsräume Stochastik 1. Wahrscheinlichkeitsräume Ein Zufallsexperiment ist ein beliebig oft und gleichartig wiederholbarer Vorgang mit mindestens zwei verschiedenen Ergebnissen, bei dem der Ausgang ungewiß ist.

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Noémie Becker & Dirk Metzler 31. Mai 2016 Inhaltsverzeichnis 1 Binomialverteilung 1 2 Normalverteilung 2 3 T-Verteilung

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009 Übung zu Empirische Ökonomie für Fortgeschrittene Steen Elstner, Klaus Wohlrabe, Steen Henzel SS 9 1 Wichtige Verteilungen Die Normalverteilung Eine stetige Zufallsvariable mit der Wahrscheinlichkeitsdichte

Mehr

0, t 0,5

0, t 0,5 XIII. Die Normalverteilung ==================================================================. Der lokale Grenzwertsatz --------------------------------------------------------------------------------------------------------------

Mehr

15.5 Stetige Zufallsvariablen

15.5 Stetige Zufallsvariablen 5.5 Stetige Zufallsvariablen Es gibt auch Zufallsvariable, bei denen jedes Elementarereignis die Wahrscheinlich keit hat. Beispiel: Lebensdauer eines radioaktiven Atoms Die Lebensdauer eines radioaktiven

Mehr

(8 + 2 Punkte) = = 0.75

(8 + 2 Punkte) = = 0.75 Aufgabe 1 (8 + 2 Punkte) Von 20 Teilnehmern einer Bergwanderung geben 8 Personen an Knieschmerzen zu haben. 6 Teilnehmer leiden an Sonnenbrand. 8 Teilnehmer blieben unversehrt. a) Wie groß ist die Wahrscheinlichkeit,

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Noémie Becker & Dirk Metzler http://evol.bio.lmu.de/_statgen 7. Juni 2013 1 Binomialverteilung 2 Normalverteilung 3 T-Verteilung

Mehr

Kapitel 2 Wahrscheinlichkeitsrechnung

Kapitel 2 Wahrscheinlichkeitsrechnung Definition 2.77: Normalverteilung & Standardnormalverteilung Es sei µ R und 0 < σ 2 R. Besitzt eine stetige Zufallsvariable X die Dichte f(x) = 1 2 πσ 2 e 1 2 ( x µ σ ) 2, x R, so heißt X normalverteilt

Mehr

2 Aufgaben aus [Teschl, Band 2]

2 Aufgaben aus [Teschl, Band 2] 20 2 Aufgaben aus [Teschl, Band 2] 2.1 Kap. 25: Beschreibende Statistik 25.3 Übungsaufgabe 25.3 a i. Arithmetisches Mittel: 10.5 ii. Median: 10.4 iii. Quartile: x 0.25 Y 4 10.1, x 0.75 Y 12 11.1 iv. Varianz:

Mehr

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

8. Stetige Zufallsvariablen

8. Stetige Zufallsvariablen 8. Stetige Zufallsvariablen Idee: Eine Zufallsvariable X ist stetig, falls ihr Träger eine überabzählbare Teilmenge der reellen Zahlen R ist. Beispiel: Glücksrad mit stetigem Wertebereich [0, 2π] Von Interesse

Mehr

Übungsaufgaben, Statistik 1

Übungsaufgaben, Statistik 1 Übungsaufgaben, Statistik 1 Kapitel 3: Wahrscheinlichkeiten [ 4 ] 3. Übungswoche Der Spiegel berichtet in Heft 29/2007 von folgender Umfrage vom 3. und 4. Juli 2007:,, Immer wieder werden der Dalai Lama

Mehr

STATISTIK 1 - BEGLEITVERANSTALTUNG

STATISTIK 1 - BEGLEITVERANSTALTUNG STATISTIK 1 - BEGLEITVERANSTALTUNG VORLESUNG 3 - NORMALVERTEILUNG 05.12.2014 1 05.12.2014 1 Mona Ulrich, Psychologie (M.Sc.) AGENDA 01 DIE NORMALVERTEILUNG 02 ZENTRALES GRENZTHEOREM 03 Z-WERTE 04 KONFIDENZINTERVALLE

Mehr

Grundlagen der Mathematik II (LVA U)

Grundlagen der Mathematik II (LVA U) Dr. Marcel Dettling 21.05.2010 Dr. Daniel Haase FS 2010 daniel.haase@math.ethz.ch Grundlagen der Mathematik II (LVA 401-0622-00 U 11 Zur Übungsstunde vom 21.05.2010 Aufgabe 31 (Rechnen mit der Normalverteilung

Mehr

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten Zufallsgrößen Ergebnisse von Zufallsexperimenten werden als Zahlen dargestellt 0 Einführung Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Hypothesentests

Mehr

Prüfung aus Statistik 1 für SoziologInnen. Musterlösung

Prüfung aus Statistik 1 für SoziologInnen. Musterlösung Prüfung aus Statistik 1 für SoziologInnen Gesamtpunktezahl =80 1) Wissenstest (maximal 20 Punkte) Prüfungsdauer: 2 Stunden Musterlösung Kreuzen ( ) Sie die jeweils richtige Antwort an. Jede richtige Antwort

Mehr

Statistik II. Statistische Tests. Statistik II

Statistik II. Statistische Tests. Statistik II Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen

Mehr

Statistische Tests (Signifikanztests)

Statistische Tests (Signifikanztests) Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)

Mehr

Bachelor BEE Statistik Übung: Blatt 1 Ostfalia - Hochschule für angewandte Wissenschaften Fakultät Versorgungstechnik Aufgabe (1.1): Gegeben sei die folgende Messreihe: Nr. ph-werte 1-10 6.4 6.3 6.7 6.5

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

P n (k) f(k) = 1 σ 2π e ) 2. σ 2π

P n (k) f(k) = 1 σ 2π e ) 2. σ 2π 53 Allgemein gilt der folgende Satz. Satz 6.1 (Lokaler Grenzwertsatz von de Moivre und Laplace) Die Wahrscheinlichkeit P n (k) einer Binomialverteilung (mit der Erfolgswahrscheinlichkeit p im Einzelexperiment)

Mehr

9 Die Normalverteilung

9 Die Normalverteilung 9 Die Normalverteilung Dichte: f(x) = 1 2πσ e (x µ)2 /2σ 2, µ R,σ > 0 9.1 Standard-Normalverteilung µ = 0, σ 2 = 1 ϕ(x) = 1 2π e x2 /2 Dichte Φ(x) = 1 x 2π e t2 /2 dt Verteilungsfunktion 331 W.Kössler,

Mehr

Tabelle 11.2 zeigt die gemeinsame Wahrscheinlichkeitsfunktion und die Randverteilungen

Tabelle 11.2 zeigt die gemeinsame Wahrscheinlichkeitsfunktion und die Randverteilungen Kapitel 11 Stichprobenfunktionen Um eine Aussage über den Wert eines unbekannten Parameters θ zu machen, zieht man eine Zufallsstichprobe vom Umfang n aus der Grundgesamtheit. Das Merkmal wird in diesem

Mehr

3 Grundlagen statistischer Tests (Kap. 8 IS)

3 Grundlagen statistischer Tests (Kap. 8 IS) 3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung

Mehr

Übungsscheinklausur,

Übungsscheinklausur, Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

Definition 2.1 Der Erwartungswert einer diskreten Zufallsvariablen mit Wahrscheinlichkeitsfunktion

Definition 2.1 Der Erwartungswert einer diskreten Zufallsvariablen mit Wahrscheinlichkeitsfunktion Kapitel 2 Erwartungswert 2.1 Erwartungswert einer Zufallsvariablen Definition 2.1 Der Erwartungswert einer diskreten Zufallsvariablen mit Wahrscheinlichkeitsfunktion È ist definiert als Ü ÜÈ Üµ Für spätere

Mehr

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr

Diskrete Wahrscheinlichkeitsverteilungen

Diskrete Wahrscheinlichkeitsverteilungen Diskrete Wahrscheinlichkeitsverteilungen Worum geht es in diesem Modul? Zufallsvariablen Wahrscheinlichkeitsverteilungen Maßzahlen theoretischer Verteilungen Eigenschaften von Erwartungswert und Varianz

Mehr

Motivation. Benötigtes Schulwissen. Übungsaufgaben. Wirtschaftswissenschaftliches Zentrum 10 Universität Basel. Statistik

Motivation. Benötigtes Schulwissen. Übungsaufgaben. Wirtschaftswissenschaftliches Zentrum 10 Universität Basel. Statistik Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Statistik Dr. Thomas Zehrt Ausblick Motivation Wir werfen einen Würfel 000-mal und wir möchten die Wahrscheinlichkeit P bestimmen, dass zwischen

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR STOCHASTIK SS 2007 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Dipl.-Math. oec. W. Lao Klausur (Maschineningenieure) Wahrscheinlichkeitstheorie und Statistik vom 2.9.2007 Musterlösungen

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Elementarereignis: Stellt ein Einzelergebnis eines Zufallsexperimentes dar, wird oftmals mit E bezeichnet.

Elementarereignis: Stellt ein Einzelergebnis eines Zufallsexperimentes dar, wird oftmals mit E bezeichnet. Statistik Grundlagen Charakterisierung von Verteilungen Einführung Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsverteilungen Schätzen und Testen Korrelation Regression Einführung Die Einführung in grundlegende

Mehr

Verteilungsfunktion und dquantile

Verteilungsfunktion und dquantile Statistik 1 für SoziologInnen Verteilungsfunktion und dquantile Univ.Prof. Dr. Marcus Hudec Kumulierte Häufigkeiten Hinweis: Damit die Kumulation inhaltlich sinnvoll ist, muss das Merkmal zumindest ordinal

Mehr

Inhalt. I. Deskriptive Statistik Einführung Die Grundgesamtheit Merkmale und Verteilungen Tabellen und Grafiken...

Inhalt. I. Deskriptive Statistik Einführung Die Grundgesamtheit Merkmale und Verteilungen Tabellen und Grafiken... I. Deskriptive Statistik 1 1. Einführung 3 1.1. Die Grundgesamtheit......................... 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................ 10

Mehr

Univariates Datenmaterial

Univariates Datenmaterial Univariates Datenmaterial 1.6.1 Deskriptive Statistik Zufallstichprobe: Umfang n, d.h. Stichprobe von n Zufallsvariablen o Merkmal/Zufallsvariablen: Y = {Y 1, Y 2,..., Y n } o Realisationen/Daten: x =

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11.

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11. Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11 Namensschild Dr. Martin Becker Hinweise für die Klausurteilnehmer

Mehr

Hydrologie und Flussgebietsmanagement

Hydrologie und Flussgebietsmanagement Hydrologie und Flussgebietsmanagement o.univ.prof. DI Dr. H.P. Nachtnebel Institut für Wasserwirtschaft, Hydrologie und konstruktiver Wasserbau Gliederung der Vorlesung Statistische Grundlagen Etremwertstatistik

Mehr

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung 0 Einführung 1 Wahrscheinlichkeitsrechnung Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Intervallschätzung Motivation und Hinführung Der wahre Anteil der rot-grün Wähler 009 war genau

Mehr

12 Die Normalverteilung

12 Die Normalverteilung 12 Die Normalverteilung Die Normalverteilung ist eine der wichtigsten Wahrscheinlichkeitsverteilungen in der Praxis, weil aufgrund des sogenannten zentralen Grenzwertsatzes in vielen Situationen angenommen

Mehr

Normalverteilung. 1 2πσ. Gauß. 2 e 1 2 ((x µ)2 σ 2 ) Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt.

Normalverteilung. 1 2πσ. Gauß. 2 e 1 2 ((x µ)2 σ 2 ) Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt. Normalverteilung Diskrete Stetige f(x) = 1 2πσ 2 e 1 2 ((x µ)2 σ 2 ) Gauß 91 / 169 Normalverteilung Diskrete Stetige Satz: f aus (1) ist Dichte. Beweis: 1. f(x) 0 x R und σ > 0. 2. bleibt z.z. lim F(x)

Mehr

Stochastik für die Naturwissenschaften

Stochastik für die Naturwissenschaften Stochastik für die Naturwissenschaften Dr. C.J. Luchsinger 4. Zufallsgrösse X Literatur Kapitel 4 * Storrer: Kapitel (37.2)-(37.8), (38.2)-(38.3), (38.5), (40.2)-(40.5) * Stahel: Kapitel 4, 5 und 6 (ohne

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Punkt- und Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr.

Mehr

Signalverarbeitung 2. Volker Stahl - 1 -

Signalverarbeitung 2. Volker Stahl - 1 - - 1 - Überblick Bessere Modelle, die nicht nur den Mittelwert von Referenzvektoren sondern auch deren Varianz berücksichtigen Weniger Fehlklassifikationen Mahalanobis Abstand Besseres Abstandsmaß basierend

Mehr

Wiederholung der Hauptklausur STATISTIK

Wiederholung der Hauptklausur STATISTIK Name, Vorname: Matrikel-Nr. Die Klausur enthält zwei Typen von Aufgaben: Teil A besteht aus Fragen mit mehreren vorgegebenen Antwortvorschlägen, von denen mindestens eine Antwort richtig ist und von denen

Mehr

Stochastik für die Naturwissenschaften

Stochastik für die Naturwissenschaften Stochastik für die Naturwissenschaften Dr. C.J. Luchsinger 6. Ausgewählte Verteilungen (Distributions) * diskret: Bernoulli, Binomial, Geometrisch, Poisson * stetig: Uniform, Exponential, Normal, χ 2,

Mehr

Zufallsgröße: X : Ω R mit X : ω Anzahl der geworfenen K`s

Zufallsgröße: X : Ω R mit X : ω Anzahl der geworfenen K`s 4. Zufallsgrößen =============================================================== 4.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

1.6 Der Vorzeichentest

1.6 Der Vorzeichentest .6 Der Vorzeichentest In diesem Kapitel soll der Vorzeichentest bzw. Zeichentest vorgestellt werden, mit dem man Hypothesen bezüglich des Medians der unabhängig und identisch stetig verteilten Zufallsvariablen

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Unabhängigkeit von Ereignissen A, B unabhängig:

Mehr

Webinar Induktive Statistik. - Wahrscheinlichkeitsrechnung - Stichprobentheorie

Webinar Induktive Statistik. - Wahrscheinlichkeitsrechnung - Stichprobentheorie Webinar Induktive Statistik - Wahrscheinlichkeitsrechnung - Stichprobentheorie Wahrscheinlichkeitstheorie Aufgabe : Zwei Lieferanten decken den Bedarf eines PKW-Herstellers von 00.000 Einheiten pro Monat.

Mehr

, dt. $+ f(x) = , - + < x < +, " > 0. " 2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) =

, dt. $+ f(x) = , - + < x < +,  > 0.  2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) = 38 6..7.4 Normalverteilung Die Gauß-Verteilung oder Normal-Verteilung ist eine stetige Verteilung, d.h. ihre Zufallsvariablen können beliebige reelle Zahlenwerte annehmen. Wir definieren sie durch die

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Beispiel: Zweidimensionale Normalverteilung I

Beispiel: Zweidimensionale Normalverteilung I 10 Mehrdimensionale Zufallsvariablen Bedingte Verteilungen 10.6 Beispiel: Zweidimensionale Normalverteilung I Wichtige mehrdimensionale stetige Verteilung: mehrdimensionale (multivariate) Normalverteilung

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

Übungsblatt 9. f(x) = e x, für 0 x

Übungsblatt 9. f(x) = e x, für 0 x Aufgabe 1: Übungsblatt 9 Basketball. Ein Profi wirft beim Training aus einer Entfernung von sieben Metern auf den Korb. Er trifft bei jedem Wurf mit einer Wahrscheinlichkeit von p = 1/2. Die Zufallsvariable

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13 Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13 Aufgabenstellung und Ergebnisse Dr. Martin Becker Hinweise für die

Mehr

Hypergeometrische Verteilung

Hypergeometrische Verteilung Hypergeometrische Verteilung Typischer Anwendungsfall: Ziehen ohne Zurücklegen Durch den Ziehungsprozess wird die Wahrscheinlichkeit des auch hier zu Grunde liegenden Bernoulli-Experimentes verändert.

Mehr

Demokurs. Modul Grundlagen der Wirtschaftsmathematik Grundlagen der Statistik

Demokurs. Modul Grundlagen der Wirtschaftsmathematik Grundlagen der Statistik Demokurs Modul 31101 Grundlagen der Wirtschaftsmathematik und Statistik Kurs 40601 Grundlagen der Statistik 13. Juli 2010 KE 1 2.4 Schiefe und Wölbung einer Verteilung Seite: 53 2.4 Schiefe und Wölbung

Mehr

4. Kumulierte Häufigkeiten und Quantile

4. Kumulierte Häufigkeiten und Quantile 4. Kumulierte Häufigkeiten und Quantile Kumulierte Häufigkeiten Oft ist man nicht an der Häufigkeit einzelner Merkmalsausprägungen interessiert, sondern an der Häufigkeit von Intervallen. Typische Fragestellung:

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

Lösungsvorschläge zu Blatt 1 1) ZV X := Produkt der Augenzahlen bei einem Wurf mit 2 Würfeln. des Produktes Wurfergebnis P (X = k) 1 (1, 1) 1/36

Lösungsvorschläge zu Blatt 1 1) ZV X := Produkt der Augenzahlen bei einem Wurf mit 2 Würfeln. des Produktes Wurfergebnis P (X = k) 1 (1, 1) 1/36 Lösungsvorschläge zu Blatt ) ZV X := Produkt der Augenzahlen bei einem Wurf mit Würfeln Mögl. Werte k des Produktes Wurfergebnis P X = k), ) /6, ),, ) /6, ),, ) /6, ),, ),, ) /6 5, 5), 5, ) /6 6, 6),,

Mehr

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5 Inhaltsverzeichnis Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite 1.0 Erste Begriffsbildungen 1 1.1 Merkmale und Skalen 5 1.2 Von der Urliste zu Häufigkeitsverteilungen 9 1.2.0 Erste Ordnung

Mehr

Vorwort Abbildungsverzeichnis Teil I Mathematik 1

Vorwort Abbildungsverzeichnis Teil I Mathematik 1 Inhaltsverzeichnis Vorwort Abbildungsverzeichnis V XIII Teil I Mathematik 1 1 Elementare Grundlagen 3 1.1 Grundzüge der Mengenlehre... 3 1.1.1 Darstellungsmöglichkeiten von Mengen... 4 1.1.2 Mengenverknüpfungen...

Mehr