Standardnormalverteilung

Größe: px
Ab Seite anzeigen:

Download "Standardnormalverteilung"

Transkript

1 Standardnormalverteilung 1720 erstmals von Abraham de Moivre beschrieben 1809 und 1816 grundlegende Arbeiten von Carl Friedrich Gauß 1870 von Adolphe Quetelet als "ideales" Histogramm verwendet alternative Bezeichnungen: Gaußsche Glockenkurve;Fehlerkurve Natürliche Prozesse Körpergröße, Gewicht von Lebewesen Messung von physikalischen Größen Messfehlermodell Variable, die sich aus der Summe von vielen zufälligen Einzelwerten ergeben zentraler Grenzwertsatz Statistik 2 für SoziologInnen 1 Normalverteilung

2 Dichtefunktion In der einfachsten Form: Standardnormalverteilung X~N(0; 1) E(X)=0 Erwartungswert = 0 V(X)=1 Varianz bzw. Standard-Abweichung =1 fx ( ) = 1 2π e x 2 / 2 Statistik 2 für SoziologInnen 2 Normalverteilung

3 Die Standard-Normalverteilung Wendepunkte Statistik 2 für SoziologInnen 3 Normalverteilung

4 Die Standard-Normalverteilung Flaeche = 0, Statistik 2 für SoziologInnen 4 Normalverteilung

5 Die Standard-Normalverteilung Flaeche = 0, Leitregel: Ca. 95% der Beobachtungen liegen im Bereich Erwartungswert plus/minus 2*Standardabweichung Statistik 2 für SoziologInnen 5 Normalverteilung

6 Verschiedene Normalverteilungen Standardnormalverteilung N(0; 0,25) Kleinere Varianz N(0; 1) Größere Varianz N(0; 4) Statistik 2 für SoziologInnen 6 Normalverteilung

7 Verschiedene Normalverteilungen N(-3; 0,25) Verschiebung und Stauchung N(0; 1) N(2; 1) Unterschiedlicher Erwartungswert bei konstanter Varianz Statistik 2 für SoziologInnen 7 Normalverteilung

8 Dichtefunktion Im allgemeinen: Normalverteilung mit Erwartungswert µ und Varianz σ² X~N(µ; σ²) E(X) = µ V(X) = σ² fx ( ) = σ 1 2π e 1 x µ ( ) 2 σ 2 Statistik 2 für SoziologInnen 8 Normalverteilung

9 Lineartransformation Wenn X eine normalverteilte Zufallsvariable ist, dann ist auch Y=a+bX normalverteilt. E(Y)=E(a+bX)=a+bE(X) V(Y)=V(a+bX)=b²V(X) Knapp formuliert: Sei X~N(µ; σ²) und Y=a+bX dann gilt Y~N(a+bµ; b²σ²) Änderung des Erwartungswertes: Verschiebung (Translation) Änderung der Varianz: Dehnung oder Stauchung der Verteilungsform Prinzipielle Gestalt der Glockenkurve bleibt erhalten Statistik 2 für SoziologInnen 9 Normalverteilung

10 Standardisierung Aus dem vorigen folgt: Sei X~N(µ; σ²) dann gilt für Z=(X- µ)/σ standardisierte Variable Z~N(0;1) Durch Anwendung der Standardisierung lässt sich jede Normalverteilung in die Standardnormalverteilung überführen. Tabellen für Wahrscheinlichkeiten der Standardnormalverteilung Statistik 2 für SoziologInnen 10 Normalverteilung

11 Standardisierung Anwendungsbeispiel: X sei die Körpergröße in cm von einer bestimmten Population Es sei X~N(175; 64) Z=(X-175)/8 P(167<X<183)= =P(( )/8<Z<( )/8)= =P(-1<Z<1)=0,6826 Statistik 2 für SoziologInnen 11 Normalverteilung

12 N(175; 64) Koerpergroesse in cm N(0; 1) Standardeinheiten Statistik 2 für SoziologInnen 12 Normalverteilung

13 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0, Statistik 2 für SoziologInnen 13 Normalverteilung

14 0,40 0,35 0,30 0,25 0,20 0,15 0,10 0,05 0, ,40 0,35 0,30 0,25 0,20 0,15 0,10 0,05 0, Standardnormalverteilung Verteilung der Körpergrößen Statistik 2 für SoziologInnen 14 Normalverteilung

15 Bestimmung von Wahrscheinlichkeiten Die Verteilungsfunktion der Standardnormalverteilung ergibt sich durch Integration der Dichtefunktion Notation: Bleymüller: F N (z) Schlittgen: φ(z) z u 2 F ( z)= e du N 2π Statistik 2 für SoziologInnen 15 Normalverteilung

16 Von der Dichte zur Verteilungsfunktion Dichtefunktion Verteilungsfunktion P(X<1)=0, P(X<1)=0, Statistik 2 für SoziologInnen 16 Normalverteilung

17 Dichtefunktion Verteilungsfunktion 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 1 0,8 0,6 0,4 0,2 0,05 0-3,5-3,0-2,5-2,0-1,5-1,0-0,5 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3, Grenzwert: -1 Prob(Z<-1)= 0,15866 Dichtefunktion Verteilungsfunktion 0,45 1 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,8 0,6 0,4 0,2 0,05 0-3,5-3,0-2,5-2,0-1,5-1,0-0,5 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3, Grenzwert: 0 Prob(Z<0)= 0,5 Dichtefunktion Verteilungsfunktion 0,45 1 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,8 0,6 0,4 0,2 0,05 0-3,5-3,0-2,5-2,0-1,5-1,0-0,5 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3, Grenzwert: 1 Prob(Z<1)= 0,84134 Statistik 2 für SoziologInnen 17 Normalverteilung

18 Ausnützung der Symmetrie um Null P(Z < a) = 1 - P(Z < -a) oder P(Z < -a) = 1 - P(Z < a) aa aa P(Z>a) = P(Z<-a) Statistik 2 für SoziologInnen 18 Normalverteilung

19 Arbeit mit Tabellen: P(Z<1)=? φ(1) liegt zwischen 0,841 und 0,842 Grob: P(Z<1) = φ(1) = 0,8415 Lineare Interpolation: P(Z<1) = φ(1) = 0,8413 P(Z<-1)=? φ(a)=1- φ(-a) bzw. φ(-a)=1- φ(a) P(Z<-1)=1 - φ(1) = 1-0,8413 = 0,1587 φ(-1) liegt zwischen 0,158 und 0,159 Statistik 2 für SoziologInnen 19 Normalverteilung

20 Beispiel Wir wollen für eine Normalverteilung mit Erwartungswert 170 und Standardabweichung 16 die Wahrscheinlichkeit einen Wert kleiner als 180 zu erhalten ermitteln. P(X<180) = =P(Z<( )/16)=P(Z<0,625)=F N (0,625)= =0,734 Statistik 2 für SoziologInnen 20 Normalverteilung

21 Normalverteilung in Excel: NORMVERT Für eine Normalverteilung mit Erwartungswert 170 und Standardabweichung 16 gilt, dass die Wahrscheinlichkeit einen Wert kleiner als 180 zu erhalten 73,4% beträgt. Statistik 2 für SoziologInnen 21 Normalverteilung

22 Wahrscheinlichkeiten der Normalverteilung Statistik 2 für SoziologInnen 22 Normalverteilung

23 0,0300 0,7340 0,2660 0,0250 Erwartungswert: 170 Varianz: 256 Standardabweichung: 16,0000 0,0200 Grenzwert: 180 0,0150 Prob(X < 180) = 0,7340 Prob(X > 180) = 0,2660 0,0100 0,0050 Hinweis: 0, , , , , , , , , , , , , , , , , , , , , ,0000 Eingabefelder für die Parameter der Normalverteilung und dem gewünschten Grenzwert sind hellgrün markiert. Statistik 2 für SoziologInnen 23 Normalverteilung

24 X~N(175; 64) P(X<175)=? P(Z<( )/8) = φ(0)= 0, P(X<175) Koerpergroesse in cm P(Z<0) Standardeinheiten Statistik 2 für SoziologInnen 24 Normalverteilung

25 X~N(175; 64) P(X<175)=? P(Z<( )/8) = φ(0)= 0,5 P(X<181)=? P(Z<( )/8) = φ(0,75)= 0,7734 P(X>177)=? P(Z>( )/8)= =1-P(Z<0,25)= =1- φ(0,25)= =1-0,5987=0,4013 Beispiel zur Körpergröße E(X)= 175 V(X)= 64 σ(x)= 8 Grenzwert: 181 P(X<181)= 77, % Dieser Wert kann variiert werden P(X>181)= 22, % Statistik 2 für SoziologInnen 25 Normalverteilung

26 P(X<181)= Koerpergroesse in cm Statistik 2 für SoziologInnen 26 Normalverteilung

27 P(X>177)= Koerpergroesse in cm Statistik 2 für SoziologInnen 27 Normalverteilung

28 0,0600 0,7734 0,2266 0,0500 Erwartungswert: 175 Varianz: 64 Standardabweichung: 8,0000 0,0400 Grenzwert: 181 0,0300 Prob(X < 181) = 0,7734 Prob(X > 181) = 0,2266 0,0200 0,0100 Hinweis: 0, , , , , , , , , , , , , , , , , , , , , ,0000 Eingabefelder für die Parameter der Normalverteilung und dem gewünschten Grenzwert sind hellgrün markiert. Statistik 2 für SoziologInnen 28 Normalverteilung

29 Beispiel IQ-Test E(X)= 100 V(X)= 225 σ(x)= 15 4-Sigma Gesellschaft Personen mit einem IQ über 160 P(X>100+4*σ)=? 100+4*s= 160 P(X>160)= 0,00317% Bei ,17 1 von In Österreich leben: Menschen Österreicher in 4-Sigma 254 Statistik 2 für SoziologInnen 29 Normalverteilung

30 Wahrscheinlichkeiten für Intervalle P(a<X<b) = P(X<b) P(X<a) X~N(175; 64) P(177<X<181) =? P(X<181) - P(X<177) = =P(Z<( )/8) - P(Z<( )/8) = = φ(0,75) - φ(0,25) = = 0,7734-0,5987 = 0,1747 Statistik 2 für SoziologInnen 30 Normalverteilung

31 P(177<X<181)= Koerpergroesse in cm Statistik 2 für SoziologInnen 31 Normalverteilung

32 Erwartungswert: 175 Varianz: 64 Standardabweichung: 8,0000 0,0600 0,0500 0,5987 0,1747 0,2266 Untergrenze: 177 Obergrenze: 181 Prob(177< X < 181) = 0,1747 Prob( X < 177) = 0,5987 Prob( X > 181) = 0,2266 0,0400 0,0300 0,0200 0,0100 Hinweis: Eingabefelder für die Parameter der Normalverteilung und die Grenzwerte sind hellgrün markiert. 0, , , , , , , , , , , , , , , , , , , , , ,7200 Statistik 2 für SoziologInnen 32 Normalverteilung

33 Symmetrische Intervalle P(-1<Z<1)=? P(-1<Z<1)= φ(1) - φ(-1)= 0,8413-0,1587 = 0,6826 P(-a<Z<a)=P(Z<a)-P(Z<-a)=φ(a)-(1-φ(a))=2φ(a)-1 P(-a<Z<a)=2φ(a)-1 P(-1<Z<1)= 2*φ(1) -1=2*0,8413-1=0,6826 Statistik 2 für SoziologInnen 33 Normalverteilung

34 X~N(175; 64) Wie groß ist die Wahrscheinlichkeit, dass eine Person maximal 8 cm vom Erwartungswert abweicht? P(167<X<183) = φ(( )/8) - φ(( )/8) = φ(1) - φ(-1) = 0,8413-0,1587 = 0,6827 P(167<X<183) = 2* φ(( )/8) -1= = 2* φ(1)-1 = 2*0, = 0,6827 Statistik 2 für SoziologInnen 34 Normalverteilung

35 Erwartungswert: 175 Varianz: 64 Standardabweichung: 8,0000 0,0600 0,0500 0,1587 0,6827 0,1587 maximale Abweichung: 8 0,0400 Prob(167< X < 183) = 0,6827 Prob(X < 167) = 0,1587 Prob(X > 183) = 0,1587 0,0300 0,0200 0,0100 Hinweis: Eingabefelder für die Parameter der Normalverteilung und die maximale Abweichung sind hellgrün markiert. 0, , , , , , , , , , , , , , , , , , , , , ,7200 Statistik 2 für SoziologInnen 35 Normalverteilung

36 Inverse Fragestellung Gesucht sind Quantilwerte z α für die bestimmte Wahrscheinlichkeitsaussagen gelten: P(Z< z α ) = φ(z α ) =α P(Z<z 0,9 ) = 0,9 ==> z α =? Nachschlagen in der Tabelle: ==> z 0,9 = 1,2816 Gesucht ist jene Körpergröße x α für die gilt, daß die Wahrscheinlichkeit P(X<x α )=0,9 Lösung: x α = µ + σ z α x α = ,2816*8 = 185,25 Statistik 2 für SoziologInnen 36 Normalverteilung

37 Erwartungswert: 175 Varianz: 64 Standardabweichung: 8,0000 0,0600 0, ,2524 0,9000 0,1000 Wahrscheinlichkeit: 0,9 α Quantil von Z~N(0;1): 1,2816 0,0400 0,0300 Grenzwert = 185,2524 Prob(185,25 < 0,9) = 0,9000 Prob(185,25 > 0,9) = 0,1000 0,0200 0,0100 Hinweis: Eingabefelder für die Parameter der Normalverteilung und der gewünschten Wahrscheinlichkeit sind hellgrün markiert. 0, , , , , , , , , , , , , , , , , , , , , ,7200 Statistik 2 für SoziologInnen 37 Normalverteilung

38 Normalverteilung in Excel: NORMINV Für eine Standardnormalverteilung gilt, dass die Wahrscheinlichkeit einen Wert kleiner als 1, zu erhalten 95% beträgt. Statistik 2 für SoziologInnen 38 Normalverteilung

39 Symmetrie von Quantilen Aus der Symmetrie der NV folgt unmittelbar, daß das α-quantil und das (1-α)-Quantil einer Standardnormalverteilung symmetrisch um null liegen: Sei z α jener Quantil für den gilt φ(z α ) =α bzw. φ(z 1-α ) =1-α dann gilt: φ(-z α ) =1-α bzw. φ(-z 1-α ) =α P(Z<z 0,9 ) = 0,9 ==> z 0,9 = 1,2816 P(Z<z 0,1 ) = P(Z<z 1 0,9 ) = 1-0,9 = 0,1 z 0,1 = 1,2816 Statistik 2 für SoziologInnen 39 Normalverteilung

40 Zentrale Schwankungsintervalle auch Streubereiche symmetrische Intervalle um den Erwartungswert [µ-c;µ+c] Von Interesse sind Aussagen der Form a) P(µ-c < X < µ+c) =? b) P(µ-? < X < µ+?) = 1-α Wir ordnen dem zentralen Schwankungsbereich die Wahrscheinlichkeit 1-α zu. Dadurch kommt außerhalb des Bereichs an jedem Ende eine Randwahrscheinlichkeit von α/2 zustande. Statistik 2 für SoziologInnen 40 Normalverteilung

41 Konzept zentraler Schwankungsintervalle alpha/2 1-alpha alpha/ Statistik 2 für SoziologInnen 41 Normalverteilung

42 Zentrale Schwankungsintervalle Sei X~N(µ,σ²) so ergibt sich das zentrale Schwankungsintervall,welches eine Wahrscheinlichkeit von 1-α abdeckt durch: [µ-z 1-α/2 σ;µ+ z 1-α/2 σ] bzw. P(µ- z 1-α/2 σ < X < µ+ z 1-α/2 σ) = 1-α Für α=0,1 (α=0,05; α=0,01) ergibt sich aus der Tabelle für z 1-α/2 = 1,6449 (1,96; 2,5758) d.h. P(µ- 1,6449 < Z < µ+ 1,6449) = 0,9 P(µ- 1,96 < Z < µ+ 1,96) = 0,95 P(µ- 2,5758 < Z < µ+ 2,5758) = 0,99 Statistik 2 für SoziologInnen 42 Normalverteilung

43 X~N(175; 64) Gesucht ist ein zentrales Schwankungsintervall, das eine Wahrscheinlichkeit von 0,95 aufweist P(µ- z 1-α/2 σ < X < µ+ z 1-α/2 σ) = 1-α α = 0,05 1-α/2 = 0,975 P(175-1,96*8 < X < ,96*8) = 0,95 P(159,32 < X < 190,68) = 0,95 Falls man eine höhere Wahrscheinlichkeit anstrebt wird das Intervall größer: P(175-2,5758 *8 < X < ,5758 *8) = 0,99 P(154,39 < X < 195,61) = 0,99 Statistik 2 für SoziologInnen 43 Normalverteilung

44 Erwartungswert: 175 Varianz: 64 Standardabweichung: 8,0000 0,0600 0, ,32 0,95 190,68 Hinweis: Wahrscheinlichkeit des zentralen Intervalls 1-α: 0,95 1-α/2 Quantil von Z~N(0;1): 1,9600 Prob(159,32< X < 190,68) = 0,9500 Untergrenze: 159,32 Obergrenze: 190,68 0,0400 0,0300 0,0200 0,0100 Eingabefelder für die Parameter der Normalverteilung und die Wahrscheinlichkeit für das zentrale Intervall sind hellgrün markiert. 0, , , , , , , , , , , , , , , , , , , , , ,7200 Statistik 2 für SoziologInnen 44 Normalverteilung

45 Erwartungswert: 175 Varianz: 64 Standardabweichung: 8,0000 0,0600 0, ,39 0,99 195,61 Hinweis: Wahrscheinlichkeit des zentralen Intervalls 1-α: 0,99 1-α/2 Quantil von Z~N(0;1): 2,5758 Prob(154,39< X < 195,61) = 0,9900 Untergrenze: 154,39 Obergrenze: 195,61 0,0400 0,0300 0,0200 0,0100 Eingabefelder für die Parameter der Normalverteilung und die Wahrscheinlichkeit für das zentrale Intervall sind hellgrün markiert. 0, , , , , , , , , , , , , , , , , , , , , ,7200 Statistik 2 für SoziologInnen 45 Normalverteilung

Standardnormalverteilung

Standardnormalverteilung Standardnormalverteilung 1720 erstmals von Abraham de Moivre beschrieben 1809 und 1816 grundlegende Arbeiten von Carl Friedrich Gauß 1870 von Adolphe Quetelet als "ideales" Histogramm verwendet alternative

Mehr

Marcus Hudec. Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Statistik 2 für SoziologInnen 1 Normalverteilung

Marcus Hudec. Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Statistik 2 für SoziologInnen 1 Normalverteilung Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Stetige Zufalls-Variable Erweitert man den Begriff der diskreten Zufallsvariable

Mehr

Marcus Hudec. Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Statistik 2 für SoziologInnen 1 Normalverteilung

Marcus Hudec. Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Statistik 2 für SoziologInnen 1 Normalverteilung Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Inhalte Themen dieses Kapitels sind: Das Konzept stetiger Zufallsvariablen Die

Mehr

Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind:

Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind: Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Inhalte Themen dieses Kapitels sind: Das Konzept stetiger Zufallsvariablen Die

Mehr

Bestimmte Zufallsvariablen sind von Natur aus normalverteilt. - naturwissenschaftliche Variablen: originär z.b. Intelligenz, Körpergröße, Messfehler

Bestimmte Zufallsvariablen sind von Natur aus normalverteilt. - naturwissenschaftliche Variablen: originär z.b. Intelligenz, Körpergröße, Messfehler 6.6 Normalverteilung Die Normalverteilung kann als das wichtigste Verteilungsmodell der Statistik angesehen werden. Sie wird nach ihrem Entdecker auch Gaußsche Glockenkurve genannt. Die herausragende Stellung

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion Kapitel 1 Stetige Zufallsvariablen 1.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:

Mehr

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion Kapitel 12 Stetige Zufallsvariablen 12.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig

Mehr

Kapitel VII. Einige spezielle stetige Verteilungen

Kapitel VII. Einige spezielle stetige Verteilungen Kapitel VII Einige spezielle stetige Verteilungen D. 7.. (Normalverteilung) Eine stetige Zufallsgröße X sei als normalverteilt bezeichnet, wenn sie folgende Wahrscheinlichkeitsdichte besitzt: µ f ( ; µ,

Mehr

Stetige Standardverteilungen

Stetige Standardverteilungen Universität Basel Wirtschaftswissenschaftliches Zentrum Stetige Standardverteilungen Dr. Thomas Zehrt Inhalt: 1. Die stetige Gleichverteilung 2. Die Normalverteilung (a) Einstimmung (b) Standardisierung

Mehr

Verteilung von Summen

Verteilung von Summen Verteilung von Summen Beispiel: Würfelwurf Frage: Wie verhält sich die Verteilung der Augensumme von -Würfeln bei wachsendem? Zur Beantwortung führen wir ein Simulationseperiment durch. 6 Würfe mit 1 Würfel

Mehr

Vorlesung 7b. Unabhängigkeit bei Dichten. und die mehrdimensionale Standardnormalverteilung

Vorlesung 7b. Unabhängigkeit bei Dichten. und die mehrdimensionale Standardnormalverteilung Vorlesung 7b Unabhängigkeit bei Dichten und die mehrdimensionale Standardnormalverteilung 0. Wiederholung: Die Normalverteilung Dichtefunktion ϕ der Standardnormalverteilung ϕ(x) 0.0 0.1 0.2 0.3 0.4 4

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Karin Waldherr & Pantelis Christodoulides 11. Mai 2011 Waldherr / Christodoulides Einführung in Quantitative Methoden- 8.VO 1/40 Poisson-Verteilung Diese Verteilung

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 09.12.2011 1/58 Inhalt 1 2 Kenngrößen von Lagemaße 2/58 mit Dichte Normalverteilung

Mehr

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)

Mehr

Normalverteilung und Standardisierung

Normalverteilung und Standardisierung Normalverteilung und Standardisierung N(0,1) z 0 z N(µ,) }{{}}{{} µ µ z z z µ+z Die Normalverteilungen N(µ, ) ergeben sich aus der Standardnormalverteilung N(0, 1) (Gaussche Glockenkurve) durch strecken

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Das Histogramm ist glockenförmig. Es würde bei mehr als vier Fehlerquellen sich der Glockenform noch besser annähern.

Das Histogramm ist glockenförmig. Es würde bei mehr als vier Fehlerquellen sich der Glockenform noch besser annähern. 10. Stetige Zufallsvariable, Normalverteilung 55 Die in den folgenden Beispielen dargestellten Verteilungen haben ungefähr Glockenform. Sie können durch die sogenannte Normalverteilung oder Gaussverteilung

Mehr

Sigma-Umgebung. Vergleichen wir die beiden Binomialverteilungen: n = 30 p = 0,5. n = 20 p = 0,75

Sigma-Umgebung. Vergleichen wir die beiden Binomialverteilungen: n = 30 p = 0,5. n = 20 p = 0,75 Sigma-Umgebung Vergleichen wir die beiden Binomialverteilungen: n = 30 p = 0,5 0,2 (z.b. 30-maliges Werfen einer Münze, X Anzahl von Zahl ) 5 10 15 20 n = 20 p = 0,75 0,2 5 10 15 20 Der Erwartungswert

Mehr

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ),

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ), 2.5 Parameter einer Verteilung 2.5. Erwartungswert X eine Zufallsvariable, g : R R stetig. Der Erwartungswert E[g(X)] von g(x) ist definiert durch: E[g(X)] := k g(x k )w(x = x k ), falls X diskret ist

Mehr

1 Dichte- und Verteilungsfunktion

1 Dichte- und Verteilungsfunktion Tutorium Yannick Schrör Klausurvorbereitungsaufgaben Statistik Lösungen Yannick.Schroer@rub.de 9.2.26 ID /455 Dichte- und Verteilungsfunktion Ein tüchtiger Professor lässt jährlich 2 Bücher drucken. Die

Mehr

von x-würfeln bei wachsendem n? Zur Beantwortung führen wir ein Simulationsexperiment durch.

von x-würfeln bei wachsendem n? Zur Beantwortung führen wir ein Simulationsexperiment durch. Zentraler Grenzwertsatz Die Normalverteilung verdankt ihre universelle theoretische und praktische Bedeutung dem zentralen Grenzwertsatz. Unabhängig von der konkreten k Ausgangsverteilung konvergiert die

Mehr

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle Patric Müller ETHZ Teil VIII Zentraler Grenzwertsatz und Vertrauensintervalle WBL 17/19, 29.05.2017 Wahrscheinlichkeit

Mehr

Kapitel VII - Funktion und Transformation von Zufallsvariablen

Kapitel VII - Funktion und Transformation von Zufallsvariablen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VII - Funktion und Transformation von Zufallsvariablen Markus Höchstötter Lehrstuhl

Mehr

STETIGE VERTEILUNGEN

STETIGE VERTEILUNGEN STETIGE VERTEILUNGEN. Die Näherungsformel von Moivre Laplace Betrachtet man die Binomialverteilungen Bnp für wachsendes n bei konstantem p, so werden die Histogramme einer binomialverteilten Zufallsvariablen

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme Binomialverteilung Wahrscheinlichkeitsfunktion Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder

Mehr

Übungsblatt 9 (25. bis 29. Juni)

Übungsblatt 9 (25. bis 29. Juni) Statistik 2 Dr. Andrea Beccarini Dipl.-Vw. Dipl.-Kffr. Heike Bornewasser-Hermes Sommersemester 2012 Übungsblatt 9 (25. bis 29. Juni) Stetiges Verteilungsmodell und Gemeinsame Verteilung Stetiges Verteilungsmodell

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

9 Die Normalverteilung

9 Die Normalverteilung 9 Die Normalverteilung Dichte: f(x) = 1 2πσ e (x µ)2 /2σ 2, µ R,σ > 0 9.1 Standard-Normalverteilung µ = 0, σ 2 = 1 ϕ(x) = 1 2π e x2 /2 Dichte Φ(x) = 1 x 2π e t2 /2 dt Verteilungsfunktion 331 W.Kössler,

Mehr

Der Zentrale Grenzwertsatz

Der Zentrale Grenzwertsatz Der Zentrale Grenzwertsatz Der Zentrale Grenzwertsatz & Konfidenzintervalle Die Normalverteilung Dichte φ der Standardnormalverteilung φ(x) 0.0 0.1 0.2 0.3 0.4 4 2 0 2 4 x φ(x) 0.0 0.1 0.2 0.3 0.4 Die

Mehr

Finanzierung und Investition

Finanzierung und Investition Kruschwitz/Husmann (2012) Finanzierung und Investition 1/31 Kruschwitz/Husmann (2012) Finanzierung und Investition 2/31 Finanzierung und Investition Kruschwitz/Husmann (2012) Oldenbourg Verlag München

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungen stetiger Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Spezielle stetige Verteilungen

Spezielle stetige Verteilungen Spezielle stetige Verteilungen schon bekannt: Die Exponentialverteilung mit Parameter k R, k > 0 hat die Dichte f (x) = ke kx für x 0 und die Verteilungsfunktion F (x) = 1 e kx für x 0. Eigenschaften Für

Mehr

Stetige Verteilungen Rechteckverteilung

Stetige Verteilungen Rechteckverteilung Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a

Mehr

Zentraler Grenzwertsatz

Zentraler Grenzwertsatz Statistik 2 für SoziologInnen Zentraler Grenzwertsatz Univ.Prof. Dr. Marcus Hudec Statistik für SoziologInnen 1 Zentraler Grenzwertsatz Inhalte Themen dieses Kapitels sind: Der zentrale Grenzwertsatz und

Mehr

6.6 Poisson-Verteilung

6.6 Poisson-Verteilung 6.6 Poisson-Verteilung Die Poisson-Verteilung ist eine Wahrscheinlichkeitsverteilung, die zur Modellierung der Anzahl von zufälligen Vorkommnissen in einem bestimmten räumlichen oder zeitlichen Abschnitt

Mehr

3 Stetige Zufallsvariablen

3 Stetige Zufallsvariablen 3 Stetige Zufallsvariablen Eine Zufallsvariable heißt stetig, falls zu je zwei Werten a < b auch jeder Zwischenwert im Intervall [a, b] möglich ist Beispiele: X = Alter, X = Körpergröße, X = Temperatur,

Mehr

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI Lösungen zu Übungsblatt 9 Höhere Mathematik/Stochastik Anpassung von Verteilungen Zu Aufgabe ) a) Zeichnen des Histogranmmes: Um das Histogramm zu zeichnen, benötigen wir die Höhe der Balken. Die Höhe

Mehr

Eine Zufallsvariable X sei stetig gleichverteilt im Intervall [0,5]. Die Wahrscheinlichkeit P(2< x <4) ist dann

Eine Zufallsvariable X sei stetig gleichverteilt im Intervall [0,5]. Die Wahrscheinlichkeit P(2< x <4) ist dann 4. Übung Themenkomplex: Zufallsvariablen und ihre Verteilung Aufgabe 1 Für eine stetige Zufallsvariable gilt: a) P (x = t) > 0 b) P (x 1) = F (1) c) P (x = 1) = 0 d) P (x 1) = 1 F(1) e) P (x 1) = 1 F(1)

Mehr

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung Heute Die Binomialverteilung Poissonverteilung Approximation der Binomialverteilung durch die Normalverteilung Arbeiten mit Wahrscheinlichkeitsverteilungen Die Binomialverteilung Man werfe eine Münze n

Mehr

0, t 0,5

0, t 0,5 XIII. Die Normalverteilung ==================================================================. Der lokale Grenzwertsatz --------------------------------------------------------------------------------------------------------------

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 2. Stock, Nordflügel R. 02-429 (Persike) R. 02-431 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de WS 2008/2009

Mehr

Vorlesung Stetige Verteilungen / Mathematische Behandlung

Vorlesung Stetige Verteilungen / Mathematische Behandlung B E A C D Z Faultät Verehrswissenschaften Friedrich List Professur für Verehrsströmungslehre Verehrssystemtheorie I+II (V.-Wirtschaft) Vorlesung..0 Stetige Verteilungen / Mathematische Behandlung Neufert,

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 5. Vorlesung Verteilungsfunktion (VF) Definition 9 Die Verteilungsfunktion (VF) einer Zufallsgröße X ist F : R R definiert als F (x) := P({ω Ω : X (ω) x}) = P( X x ) für jedes x R. Satz 9 - Eigenschaften

Mehr

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s X. Zufallsgrößen ================================================================= 10.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 23. Dezember 2011 1 Stetige Zufallsvariable, Normalverteilungen Der zentrale Grenzwertsatz und die 3-Sigma Regel

Mehr

Normalverteilung. 1 2πσ. Gauß. 2 e 1 2 ((x µ)2 σ 2 ) Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt.

Normalverteilung. 1 2πσ. Gauß. 2 e 1 2 ((x µ)2 σ 2 ) Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt. Normalverteilung Diskrete Stetige f(x) = 1 2πσ 2 e 1 2 ((x µ)2 σ 2 ) Gauß 91 / 169 Normalverteilung Diskrete Stetige Satz: f aus (1) ist Dichte. Beweis: 1. f(x) 0 x R und σ > 0. 2. bleibt z.z. lim F(x)

Mehr

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009 Übung zu Empirische Ökonomie für Fortgeschrittene Steen Elstner, Klaus Wohlrabe, Steen Henzel SS 9 1 Wichtige Verteilungen Die Normalverteilung Eine stetige Zufallsvariable mit der Wahrscheinlichkeitsdichte

Mehr

Übungen mit dem Applet

Übungen mit dem Applet Übungen mit dem Applet 1. Visualisierung der Verteilungsform... 1.1. Normalverteilung... 1.. t-verteilung... 1.3. χ -Verteilung... 1.4. F-Verteilung...3. Berechnung von Wahrscheinlichkeiten...3.1. Visualisierung

Mehr

von x-würfeln bei wachsendem n? Zur Beantwortung führen wir ein Simulationsexperiment durch.

von x-würfeln bei wachsendem n? Zur Beantwortung führen wir ein Simulationsexperiment durch. Zentraler Grenzwertsatz Die Normalverteilung verdankt ihre universelle theoretische und praktische Bedeutung dem zentralen Grenzwertsatz. Unabhängig von der konkreten k Ausgangsverteilung konvergiert nämlich

Mehr

Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm.

Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm. Veranstaltung: Statistik für das Lehramt 16.12.2016 Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm Erwartungswert Varianz Standardabweichung Die Wahrscheinlichkeitsverteilung

Mehr

2 Aufgaben aus [Teschl, Band 2]

2 Aufgaben aus [Teschl, Band 2] 20 2 Aufgaben aus [Teschl, Band 2] 2.1 Kap. 25: Beschreibende Statistik 25.3 Übungsaufgabe 25.3 a i. Arithmetisches Mittel: 10.5 ii. Median: 10.4 iii. Quartile: x 0.25 Y 4 10.1, x 0.75 Y 12 11.1 iv. Varianz:

Mehr

Anhang: Statistische Tafeln und Funktionen

Anhang: Statistische Tafeln und Funktionen A1 Anhang: Statistische Tafeln und Funktionen Verteilungsfunktion Φ(z) der Standardnormalverteilung Die Tabelle gibt die Werte Φ(z) der Verteilungsfunktion zu vorgegebenem Wert z 0 an; ferner gilt Φ( z)

Mehr

Eindimensionale Zufallsvariablen

Eindimensionale Zufallsvariablen Eindimensionale Grundbegriffe Verteilungstypen Diskrete Stetige Spezielle Maßzahlen für eindimensionale Erwartungswert Varianz Standardabweichung Schwankungsintervalle Bibliografie Bleymüller / Gehlert

Mehr

Grundbegriffe der Stochastik II

Grundbegriffe der Stochastik II Grundbegriffe der Stochastik II Henrik Gebauer 6. Oktober 9 Zusammenfassung Dieser Vortrag dient der Wiederholung zentraler Begriffe der kontinuierlichen Stochastik. Wahrscheinlichkeitsverteilungen Sei

Mehr

Kennwerteverteilungen von Häufigkeiten und Anteilen

Kennwerteverteilungen von Häufigkeiten und Anteilen Kennwerteverteilungen von Häufigkeiten und Anteilen 6. Sitzung 32 S., SoSe 2003 Die hypergeometrische Verteilung Wahrscheinlichkeitsverteilung der Häufigkeit eines binären Merkmals bei Einfacher Zufallsauswahl

Mehr

Exponentialverteilung

Exponentialverteilung Exponentialverteilung Dauer von kontinuierlichen Vorgängen (Wartezeiten; Funktionszeiten technischer Geräte) Grenzübergang von der geometrischen Verteilung Pro Zeiteinheit sei die Eintrittswahrscheinlichkeit

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 1. Dezember 21 1 Integralrechnung Flächeninhalt Stammfunktion Rechenregeln 2 Dichten von Erwartungswert und Varianz

Mehr

Verteilungen eindimensionaler stetiger Zufallsvariablen Stetige Verteilungen. Chi-Quadrat-Verteilung Studentverteilung Fisher-Verteilung

Verteilungen eindimensionaler stetiger Zufallsvariablen Stetige Verteilungen. Chi-Quadrat-Verteilung Studentverteilung Fisher-Verteilung Verteilungen eindimensionaler stetiger Zufallsvariablen Stetige Verteilungen Chi-Quadrat-Verteilung Studentverteilung Fisher-Verteilung Typisierung der stetigen theoretischen Verteilungen Bibliografie:

Mehr

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc.

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc. Abiturvorbereitung Stochastik neue friedländer gesamtschule Klasse 12 GB 24.02.2014 Holger Wuschke B.Sc. Siedler von Catan, Rühlow 2014 Organisatorisches 0. Begriffe in der Stochastik (1) Ein Zufallsexperiment

Mehr

2.3 Intervallschätzung

2.3 Intervallschätzung 2.3.1 Motivation und Hinführung Bsp. 2.11. [Wahlumfrage] Der wahre Anteil der rot-grün Wähler 2009 war genau 33.7%. Wie groß ist die Wahrscheinlichkeit, in einer Zufallsstichprobe von 1000 Personen genau

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Punkt- und Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr.

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

Kapitel 9. Verteilungsmodelle. 9.1 Diskrete Verteilungsmodelle Die Gleichverteilung

Kapitel 9. Verteilungsmodelle. 9.1 Diskrete Verteilungsmodelle Die Gleichverteilung Kapitel 9 Verteilungsmodelle Es gibt eine Reihe von Verteilungsmodellen für univariate diskrete und stetige Zufallsvariablen, die sich in der Praxis bewährt haben. Wir wollen uns von diesen einige anschauen.

Mehr

Stichproben Parameterschätzung Konfidenzintervalle:

Stichproben Parameterschätzung Konfidenzintervalle: Stichproben Parameterschätzung Konfidenzintervalle: Beispiel Wahlprognose: Die Grundgesamtheit hat einen Prozentsatz p der Partei A wählt. Wenn dieser Prozentsatz bekannt ist, dann kann man z.b. ausrechnen,

Mehr

j K j d j m j h j f j

j K j d j m j h j f j Für eine stetige Zufallsvariable X in einem Intervall [ a ; b ] kann X jeden beliebigen Wert annehmen. Die Wahrscheinlichkeiten werden in diesem Fall nicht mehr wie bei einer diskreten Zufallsvariable

Mehr

Statistik I für Betriebswirte Vorlesung 14

Statistik I für Betriebswirte Vorlesung 14 Statistik I für Betriebswirte Vorlesung 14 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 13. Juli 017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 14 Version: 8. Juli

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Noémie Becker & Dirk Metzler http://evol.bio.lmu.de/_statgen 7. Juni 2013 1 Binomialverteilung 2 Normalverteilung 3 T-Verteilung

Mehr

2.3 Intervallschätzung

2.3 Intervallschätzung 2.3.1 Motivation und Hinführung Bsp. 2.15. [Wahlumfrage] Der wahre Anteil der rot-grün Wähler unter allen Wählern war 2009 auf eine Nachkommastelle gerundet genau 33.7%. Wie groß ist die Wahrscheinlichkeit,

Mehr

Auswertung von Messungen Teil II

Auswertung von Messungen Teil II Auswertung von Messungen Teil II 1. Grundgesamtheit und Stichprobe. Modellverteilungen.1 Normalverteilung. Binominalverteilung.3 Poissonverteilung.4 Näherungen von Binominal- und Poissonverteilung 3. Zentraler

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 9. Dezember 2010 1 Konfidenzintervalle Idee Schätzung eines Konfidenzintervalls mit der 3-sigma-Regel Grundlagen

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR STOCHASTIK SS 2007 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Dipl.-Math. oec. W. Lao Klausur (Maschineningenieure) Wahrscheinlichkeitstheorie und Statistik vom 2.9.2007 Musterlösungen

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Noémie Becker & Dirk Metzler 31. Mai 2016 Inhaltsverzeichnis 1 Binomialverteilung 1 2 Normalverteilung 2 3 T-Verteilung

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

FF Düsseldorf WS 2007/08 Prof. Dr. Horst Peters. Vorlesung Quantitative Methoden 1B im Studiengang Business Administration (Bachelor) Seite 1 von 6

FF Düsseldorf WS 2007/08 Prof. Dr. Horst Peters. Vorlesung Quantitative Methoden 1B im Studiengang Business Administration (Bachelor) Seite 1 von 6 Vorlesung Quantitative Methoden 1B im Studiengang Business Administration (Bachelor) Seite 1 von 6 (Wahrscheinlichkeitsrechnung, Verteilungen) 1. Eine Illustrierte veranstaltet wöchentlich ein Ratespiel,

Mehr

Übung zur Vorlesung: Geostatistik 1 Philipp, Mo. 15: Türcode: 1516

Übung zur Vorlesung: Geostatistik 1 Philipp, Mo. 15: Türcode: 1516 Übung zur Vorlesung: Geostatistik 1 Philipp, Mo. 15:45 3067 Türcode: 1516 Deskriptive Statistik Maße der Zentraltendenz Deskriptive Statistik Maße der Zentraltendenz arithmetischer Mittewert klassenorientierter

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

Teil IV. Diskrete Verteilungen. Woche 3: Verteilungen. Diskrete Zufallsvariablen Wiederholung. Lernziele

Teil IV. Diskrete Verteilungen. Woche 3: Verteilungen. Diskrete Zufallsvariablen Wiederholung. Lernziele Woche 3: Verteilungen Teil IV Patric Müller Diskrete Verteilungen ETHZ WBL 17/19, 08.05.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Wahrscheinlichkeit

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Punkt- und Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr.

Mehr

Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen

Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen Georg Bol georg.bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de Stetige Verteilungen Definition: Sei

Mehr

Klausur zur Vorlesung

Klausur zur Vorlesung Institut für Mathematische Stochastik WS 2006/2007 Universität Karlsruhe 12. Februar 2007 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Aufgabe 1 (15 Punkte) Klausur zur Vorlesung Statistik für Biologen

Mehr

Abbildung 1: Dieses Quiz soll Ihnen helfen, die Residuenplots besser zu verstehen. Am Schluss kommen noch vermischte Aufgaben zur Wiederholung.

Abbildung 1: Dieses Quiz soll Ihnen helfen, die Residuenplots besser zu verstehen. Am Schluss kommen noch vermischte Aufgaben zur Wiederholung. Residuals vs Fitted Normal Q Q Residuals 2 1 0 1 2 16 18 30 Standardized residuals 2 1 0 1 2 18 30 16 5 10 15 20 25 30 Fitted values 2 1 0 1 2 Theoretical Quantiles Abbildung 1: Dieses Quiz soll Ihnen

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik Kapitel 11 Diskrete Zufallsvariablen 11.1. Wahrscheinlichkeits- und diskret Wahrscheinlichkeitsverteilungen Wahrscheinlichkeitsfunktion von X Nimmt abzählbare Anzahl von Ausprägungen an (z.b. Zählvariablen)

Mehr

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Aufgabe 1: Wieviele der folgenden Variablen sind quantitativ stetig? Schulnoten, Familienstand, Religion, Steuerklasse, Alter, Reaktionszeit, Fahrzeit,

Mehr

Hypothesentests für Erwartungswert und Median. Statistik (Biol./Pharm./HST) FS 2015

Hypothesentests für Erwartungswert und Median. Statistik (Biol./Pharm./HST) FS 2015 Hypothesentests für Erwartungswert und Median Statistik (Biol./Pharm./HST) FS 2015 Normalverteilung X N μ, σ 2 X ist normalverteilt mit Erwartungswert μ und Varianz σ 2 pdf: pdf cdf:??? cdf 1 Zentraler

Mehr

Psychologische Methodenlehre und Statistik I

Psychologische Methodenlehre und Statistik I Psychologische Methodenlehre und Statistik I Pantelis Christodoulides & Karin Waldherr SS 2013 Pantelis Christodoulides & Karin Waldherr Psychologische Methodenlehre und Statistik I 1/61 Zufallsexperiment

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr 1.4.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen Sei X eine kontinuierliche Zufallsvariable. Wir können aus X leicht eine diskrete Zufallsvariable konstruieren, indem wir

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Übungsscheinklausur,

Übungsscheinklausur, Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...

Mehr

Modul 206: Verteilungen!!Normalverteilung!!Poisson-Verteilung!

Modul 206: Verteilungen!!Normalverteilung!!Poisson-Verteilung! 0.20 0.8 0.6 0.4 0.2 0.0 0.08 0.06 0.04 0.02 0.00 0 5 0 5 20 k Modul 206: Verteilungen!!Normalverteilung!!Poisson-Verteilung! 0.20 0.8 0.6 0.4 0.2 0.0 0.08 0.06 0.04 0.02 0.00 0 5 0 5 20 k Normalverteilung!

Mehr

Einführung in die Induktive Statistik: Testen von Hypothesen

Einführung in die Induktive Statistik: Testen von Hypothesen Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am 5..201 von 10:00 bis 11:00 Uhr Bearbeiten Sie zwei der drei folgenden Aufgaben! Sätze aus der Vorlesung und den Übungen dürfen Sie ohne

Mehr