Biostatistik, Winter 2011/12

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Biostatistik, Winter 2011/12"

Transkript

1 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Kenngrößen Prof. Dr. Achim Klenke 7. Vorlesung: /58 Inhalt 1 2 Kenngrößen von Lagemaße 2/58

2 mit Dichte Normalverteilung Die Verteilung mit Dichte f (t) = 1 2π e t2 /2, t R, heißt Standardnormalverteilung N 0,1. 3/58 Standardnormalverteilung P[Z 1.55] = /58

3 mit Dichte Normalverteilung Die Verteilung mit Dichte f (t) = 1 2π e t2 /2, t R, heißt Standardnormalverteilung N 0,1. Ist Z standardnormalverteilt, dann ist P[Z x] = Φ(x) := 1 2π x Die Werte der Verteilungsfunktion Φ(x) = P[Z x], x R, e t2 /2 dt. sind tabelliert für x 0. Z.B. im Skript, das online steht. Für x < 0 benutzt man Φ(x) = 1 Φ( x). 5/58 mit Dichte Normalverteilung Sei Z standardnormalverteilt. Satz P[Z x] = Φ(x) = 1 Φ( x). P[Z x] = 1 Φ(x) = Φ( x). P[x 1 Z x 2 ] = Φ(x 2 ) Φ(x 1 ) für x 1 < x 2. 6/58

4 mit Dichte Normalverteilung Sei Z standardnormalverteilt. P[Z 1.55] = Φ(1.55) =. 7/58 Tabelle Normalverteilung Φ x

5 Tabelle Normalverteilung Φ x Also: Φ(1.55) = /58 mit Dichte Normalverteilung Sei Z standardnormalverteilt. P[Z 1.55] = Φ(1.55) = /58

6 Standardnormalverteilung P[Z 1.55] = /58 mit Dichte Normalverteilung Sei Z standardnormalverteilt. P[ 1.23 Z 2.04] = Φ(2.04) Φ( 1.23). Φ(2.04) = Φ( 1.23) = 1 Φ(1.23) = 12/58

7 Tabelle Normalverteilung Φ x Also: Φ(2.04) = /58 Tabelle Normalverteilung Φ x Also: Φ(1.23) = /58

8 mit Dichte Normalverteilung Sei Z standardnormalverteilt. P[ 1.23 Z 2.04] = Φ(2.04) Φ( 1.23). Φ(2.04) = Φ( 1.23) = 1 Φ(1.23) = = Und damit P[ 1.23 Z 2.04] = = /58 Standardnormalverteilung P[ 1.23 Z 2.04] = /58

9 mit Dichte Normalverteilung Sei Z standardnormalverteilt. P[Z 2] = 1 Φ(2) = = /58 Standardnormalverteilung P[Z 2] = /58

10 mit Dichte Normalverteilung Die Verteilung mit Dichte f (x) = 1 2π e x 2 /2, x R, heißt Standardnormalverteilung N 0,1. Ist X standardnormalverteilt und µ R, σ > 0, so hat Y := µ + σx die Dichte f Y (x) = 1 2πσ 2 e (x µ)2 /2σ 2. Die Verteilung von Y heißt Normalverteilung N µ,σ 2. 19/58 Dichte der Normalverteilung Z /58

11 mit Dichte Normalverteilung Sei X N µ,σ 2. Dann ist X = µ + σz mit Z standardnormalverteilt. Also ist X x µ + σz x Z x µ σ. Satz P[X x] = Φ((x µ)/σ) = 1 Φ( (x µ)/σ). P[X x] = 1 Φ((x µ)/σ) = Φ( (x µ)/σ). P[x 1 X x 2 ] = Φ((x 2 µ)/σ) Φ((x 1 µ)/σ) für x 1 < x 2. 21/58 mit Dichte Normalverteilung Die Größe von fünfjährigen Mädchen ist im Mittel 110cm mit einer Standardabweichung von 4cm. Wie groß ist die Wahrscheinlichkeit, dass ein zufällig ausgewähltes Mädchen mindestens 103cm aber höchstens 120cm groß ist? Annahme: Größe ist normalverteilt, also X N µ,σ 2 mit µ = 110 und σ = 4. P[103 X 120] = Φ(( )/4) Φ(( )/4) = Φ(2.5) Φ( 1.75) = Φ(2.5) 1 + Φ(1.75) = = Die gesuchte Wahrscheinlichkeit ist 95%. 22/58

12 Normalverteilung P[ Z 120] = /58 mit Dichte Normalverteilung Satz Seien X 1, X 2,... unabhängig und normalverteilt mit Parametern (µ 1, σ 2 1 ), (µ 2, σ 2 2 ),... und sei S n = X X n. Dann ist S n normalverteilt mit Parametern (µ, σ 2 ), wobei µ = n µ i und σ 2 = i=1 n σi 2. i=1 24/58

13 Normalapproximation der Binomialverteilung Ist Z binomialverteilt b n,p mit np(1 p) groß (mindestens 9), so ist Z np np(1 p) ungefähr N 0,1 -verteilt. Anders gesagt: Z ist ungefähr normalverteilt mit Parametern µ = np und σ = np(1 p). Ähnliche Aussage gilt viel universeller (sehen wir später). 25/58 Binomialverteilung b 10,0.4 und Normalapprox /58

14 Binomialverteilung b 20,0.4 und Normalapprox /58 Binomialverteilung b 50,0.4 und Normalapprox /58

15 Binomialverteilung b 100,0.4 und Normalapprox /58 Binomialverteilung b 1000,0.4 und Normalappr /58

16 Gartenkresse b 100,0.2 und Normalapprox /58 Gartenkresse b 100,0.5 und Normalapprox /58

17 Gartenkresse b 100,0.8 und Normalapprox /58 Gartenkresse b 100,0.98 und Normalapprox /58

18 Normalapproximation Sei X binomialverteilt b n,p und k = 0,..., n. Satz (Normalapproximation mit Korrekturterm 0.5) Ist np(1 p) > 9, so gelten P[X k] Φ ( ) k np np(1 p) und P[X k] 1 Φ ( ) k 0.5 np. np(1 p) 35/58 Normalapproximation Angenommen, die Samen der Gartenkresse keimen mit Wahrscheinlichkeit p = 0.8. Sei X die Anzahl der gekeimten Samen. Wie groß ist die Wahrscheinlichkeit w = P[X 74], dass höchstens 74 Samen gekeimt sind? 74 w = b 100,0.8 (k). k=0 Sehr langwierig auszurechnen (aber mit dem Computer im Prinzip machbar). 36/58

19 Normalapproximation (Fortsetzung) Normalapproximation ( ) ( ) k np P[X 74] Φ = Φ np(1 p) = Φ( 1.375) = 1 Φ(1.375) 37/58 Tabelle Normalverteilung Φ x Also: Φ(1.38) = /58

20 Normalapproximation (2). Normalapproximation mit n = 100, p = 0.8, k = 74 ( ) ( ) k np P[X 74] Φ = Φ np(1 p) = Φ( 1.375) = 1 Φ(1.375) = Vergleich mit exakter Rechnung 74 w = b 100,0.8 (k) = k=0 Approximation nicht präzis, aber o.k. 39/58 Normalapproximation Angenommen, die Samen der Gartenkresse keimen mit Wahrscheinlichkeit p = Sei X die Anzahl der gekeimten Samen. Wie groß ist die Wahrscheinlichkeit w = P[X 99], dass höchstens 99 Samen gekeimt sind? Normalapproximation ( ) P[X 99] Φ = Φ(1.07) = /58

21 Normalverteilung Φ x Also: Φ(1.07) = /58 Normalapproximation Angenommen, die Samen der Gartenkresse keimen mit Wahrscheinlichkeit p = Sei X die Anzahl der gekeimten Samen. Wie groß ist die Wahrscheinlichkeit w = P[X 99], dass höchstens 99 Samen gekeimt sind? Normalapproximation ( ) P[X 99] Φ = Φ(1.07) = Exakte Rechnung: P[X 99] = Fehler Das ist für viele Zwecke zu groß. Normalapproximation nicht so gut, weil np(1 p) = 1.96 < 9 ist. 42/58

22 Normalapproximation Normalapproximation ( ) P[X 99] Φ = Φ(1.07) = Exakte Rechnung: P[X 99] = , Fehler Poissonapproximation: 100 X ist ungefähr Poi 2 verteilt, also P[X 99] = P[100 X 1] = 1 P[100 X = 0] 2 20 = 1 e 0! = Fehler < Schon besser. 43/58 Fehler durch Normalapproximation der Binomialverteilung np(1 p) Max. Fehler max. Fehler für W keiten > 0.95 oder < /58

23 Fehler durch Poissonapproximation der Binomialverteilung λ = np = mittlere Anz. Erfolge. Theoretische Fehlergrenze: λ/n. Tatsächlicher maximaler Fehler für einige Werte: λ n Max. Fehler Max. Fehler für W keiten > 0.95 oder < /58 Exponentialverteilung Die Exponentialverteilung mit Parameter θ ist die Verteilung auf [0, ) mit Dichte f (x) = θe θx, x 0. Bedeutung wie geometrische Verteilung: Wartezeit auf Ereignisse. Radioaktive Zerfälle mit Rate 2.7 Becquerel. Also im Mittel 2.7 Zerfälle pro Sekunde. X Wartezeit auf nächsten Zerfall. Dann ist X exponentialverteilt mit θ = 2.7. Also P[X > x] = 2.7 x e 2.7 t dt = e 2.7 x. 46/58

24 Kenngrößen von Kenngrößen von Wie für Messdaten in der beschreibenden Statistik: Lagemaße geben an, wo die Verteilung konzentriert ist, Streumaße geben an, wie groß die Variabilität der Werte ist. 47/58 Kenngrößen von Median und Quantile Lagemaße Sei X Zufallsvariable mit reellen Werten. Definition (Median) Wir nennen jede Zahl m R mit P[X m] 1 2 und P[X m] 1 2 einen Median der Verteilung von X. 48/58

25 Kenngrößen von Median und Quantile Lagemaße Sei X Zufallsvariable mit reellen Werten. Definition (Quantile) Sei α (0, 1). Jede Zahl m α R mit der Eigenschaft P[X m α ] α und P[X m α ] 1 α heißt ein α Quantil der Verteilung von X. Speziell ist m 1/2 ein Median. Ein (1 α) Quantil wird auch α Fraktil genannt. 49/58 Kenngrößen von Median und Quantile Lagemaße Für viele gibt es Tabellen der Quantile. Z.B. für z α, das α-quantil der Standardnormalverteilung. Sei X normalverteilt mit Parametern µ = 2 und σ 2 = 1.8. Für welche Zahl x gilt P[X x] = 0.05? x ist ein 5%-Fraktil von N 2,1.8, bzw. ein 95%-Quantil. Tabelliert sind die Quantile von N 0,1 (Standardnormalverteilung). (X 2)/ 1.8 ist standardnormalverteilt, also ist (x 2)/ 1.8 = z 0.95 = 50/58

26 Kenngrößen von Lagemaße Quantile der Normalverteilung α z α α z α /58 Kenngrößen von Median und Quantile Lagemaße Für viele gibt es Tabellen der Quantile. Z.B. für das z α, das α-quantil der Standardnormalverteilung. Sei X normalverteilt mit Parametern µ = 2 und σ 2 = 1.8. Für welche Zahl x gilt P[X x] = 0.05? x ist ein 5%-Fraktil von N 2,1.8, bzw. ein 95%-Quantil. Tabelliert sind die Quantile von N 0,1 (Standardnormalverteilung). (X 2)/ 1.8 ist standardnormalverteilt, also ist Auflösen nach x (x 2)/ 1.8 = z 0.95 = x = = /58

27 Kenngrößen von Lagemaße Median und Quantile Änderung durch Verschieben und Strecken Sei X eine reelle Zufallsvariable und Y := a + bx. Seien m X α und m Y α die α-quantile von X und Y. Satz Es gilt m Y α = a + bm X α. 53/58 Erwartungswert Kenngrößen von Lagemaße Definition Sei X eine Zufallsvariable mit Wertebereich W R. Ist W R diskret, so definieren wir den Erwartungswert von X durch E[X] := w W w P[X = w]. Ist W R ein Intervall (möglicherweise ganz R), und hat X die Dichte f, so setzen wir E[X] := x f (x) dx. Erwartungswert entspricht dem arithmetischen Mittel von Daten. 54/58

28 Erwartungswert Kenngrößen von Lagemaße Würfelwurf X. E[X] = P[X = 1] 1 + P[X = 2] P[X = 6] 6 = = 1 ( ) = X Wartezeit auf ersten Erfolg, Erfolg mit Wahrscheinlichkeit p. Also X geometrisch mit Parameter p. E[X] = P[X = k] k = k=0 k=0 p(1 p) k k = 1 p p. 55/58 Erwartungswert Kenngrößen von Lagemaße X binomialverteilt mit Parametern n, p: E[X] = n k=0 ( ) n p k (1 p) n k k = np. k X hypergeometrisch verteilt mit Parametern N, K, n: E[X] = Kn N. 56/58

29 Erwartungswert Kenngrößen von Lagemaße X exponentialverteilt mit Parameter θ: E[X] = 0 θe θx x dx = 1 θ. X normalverteilt mit Parametern µ, σ 2 : E[X] = 1 2πσ 2 x e (x µ)2 /(2σ 2) dx = µ. 57/58 Kenngrößen von Lagemaße Linearität des Erwartungswertes Satz Es seien X und Y reelle Zufallsvariablen mit Erwartungswert sowie a, b R. Dann gelten E[a + bx] = a + b E[X], E[X + Y ] = E[X] + E[Y ]. Erste Regel gilt auch für Median, zweite Regel nicht. 58/58

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006

Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006 1 3.34 1.1 Angabe Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006 U sei auf dem Intervall (0, 1) uniform verteilt. Zeigen

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

Monty Hall-Problem. Wochen 3 und 4: Verteilungen von Zufallsvariablen. Lernziele. Diskrete Verteilungen

Monty Hall-Problem. Wochen 3 und 4: Verteilungen von Zufallsvariablen. Lernziele. Diskrete Verteilungen Monty Hall-Problem Wochen 3 und 4: Verteilungen von Zufallsvariablen US-amerikanische Fernseh-Show Let s make a deal, moderiert von Monty Hall: WBL 15/17, 04.05.2015 Alain Hauser

Mehr

Schätzer (vgl. Kapitel 1): Stichprobenmittel X N. Stichprobenmedian X N

Schätzer (vgl. Kapitel 1): Stichprobenmittel X N. Stichprobenmedian X N Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 8.1 Schätzer für Lage- und Skalenparameter und Verteilungsmodellwahl Lageparameter (l(x + a) = l(x) + a): Erwartungswert EX Median von X

Mehr

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678 Lösungsvorschläge zu Blatt 8 X binomialverteilt mit p = 0. und n = 10: a PX = = 10 q = 1 p = 0.8 0. 0.8 10 = 0, 1,..., 10 PX = PX = 0 + PX = 1 + PX = 10 10 = 0. 0 0.8 10 + 0. 1 0.8 9 + 0 1 10 = 0.8 8 [

Mehr

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1 1. Aufgabe: Der E-Commerce-Umsatz (in Millionen Euro) der fünf größten Online- Shopping-Clubs liegt wie folgt vor: Club Nr. Umsatz 1 120 2 72 3 54 4 30 5 24 a) Bestimmen Sie den Ginikoeffizienten. b) Zeichnen

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff

Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff Zufallsgrößen 2.5 Zufallsgrößen 2.5.1 Verteilungsfunktion einer Zufallsgröße 2.5.2 Wahrscheinlichkeits- und Dichtefunktion Wahrscheinlichkeitsfunktion einer diskreten Zufallsgröße Dichtefunktion einer

Mehr

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8 . Aufgabe: Für zwei verschiedene Aktien wurde der relative Kurszuwachs (in % beobachtet. Aus den jeweils 20 Quartaldaten ergaben sich die folgenden Box-Plots. Box-and-Whisker Plot Aktie Aktie 2-0,2 0,8,8

Mehr

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Die Poisson-Verteilung Jianmin Lu RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Ausarbeitung zum Vortrag im Seminar Stochastik (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In der Wahrscheinlichkeitstheorie

Mehr

, dt. $+ f(x) = , - + < x < +, " > 0. " 2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) =

, dt. $+ f(x) = , - + < x < +,  > 0.  2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) = 38 6..7.4 Normalverteilung Die Gauß-Verteilung oder Normal-Verteilung ist eine stetige Verteilung, d.h. ihre Zufallsvariablen können beliebige reelle Zahlenwerte annehmen. Wir definieren sie durch die

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Aufgabe 1 10 ECTS. y i x j gering mittel hoch n i Hausrat 200 25 0 225 KFZ 0 10 75 85 Unfall 20 35 90 145 Reiserücktritt 40 5 0 45 n j 260 75 165 500

Aufgabe 1 10 ECTS. y i x j gering mittel hoch n i Hausrat 200 25 0 225 KFZ 0 10 75 85 Unfall 20 35 90 145 Reiserücktritt 40 5 0 45 n j 260 75 165 500 Aufgabe 1 Für die Securance-Versicherung liegen Ihnen die gemeinsamen absoluten Häugkeiten der Merkmale X: Schadenshöhe und Y : Versicherungsart für die letzten 500 gemeldeten Schäden vor. 1. Interpretieren

Mehr

Statistik - Fehlerrechnung - Auswertung von Messungen

Statistik - Fehlerrechnung - Auswertung von Messungen 2013-11-13 Statistik - Fehlerrechnung - Auswertung von Messungen TEIL I Vorbereitungskurs F-Praktikum B (Physik), RWTH Aachen Thomas Hebbeker Literatur Eindimensionaler Fall: Grundbegriffe Wahrscheinlichkeitsverteilungen:

Mehr

Klausur Statistik Lösungshinweise

Klausur Statistik Lösungshinweise Klausur Statistik Lösungshinweise Prüfungsdatum: 1. Juli 2015 Prüfer: Etschberger, Heiden, Jansen Studiengang: IM und BW Aufgabe 1 14 Punkte Ein Freund von Ihnen hat über einen Teil seiner Daten, die er

Mehr

Kursthemen 12. Sitzung. Spezielle Verteilungen: Warteprozesse. Spezielle Verteilungen: Warteprozesse

Kursthemen 12. Sitzung. Spezielle Verteilungen: Warteprozesse. Spezielle Verteilungen: Warteprozesse Kursthemen 12. Sitzung Folie I - 12-1 Spezielle Verteilungen: Warteprozesse Spezielle Verteilungen: Warteprozesse A) Die Geometrische Verteilung (Folien 2 bis 7) A) Die Geometrische Verteilung (Folien

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Vergleich zweier Stichproben, nichtparametrische Tests Prof. Dr. Achim Klenke http://www.aklenke.de 11. Vorlesung: 27.01.2012 1/86 Inhalt 1 Tests t-test 2 Vergleich zweier

Mehr

Genexpression. Expression eines einzelnen Gens. Expressionsmessung. Genexpressionsmessung. Transkription (Vorgang) Genexpression

Genexpression. Expression eines einzelnen Gens. Expressionsmessung. Genexpressionsmessung. Transkription (Vorgang) Genexpression Genexpressionsmessung Genexpression Transkription (Vorgang) Genexpression (quantitativ) Wieviele m-rna Moleküle eines bestimmten Gens sind in den Zellen? Genomische Datenanalyse 8. Kapitel Wie mißt man

Mehr

Ein möglicher Unterrichtsgang

Ein möglicher Unterrichtsgang Ein möglicher Unterrichtsgang. Wiederholung: Bernoulli Experiment und Binomialverteilung Da der sichere Umgang mit der Binomialverteilung, auch der Umgang mit dem GTR und den Diagrammen, eine notwendige

Mehr

Stochastische Eingangsprüfung, 17.05.2008

Stochastische Eingangsprüfung, 17.05.2008 Stochastische Eingangsprüfung, 17.5.8 Wir gehen stets von einem Wahrscheinlichkeitsraum (Ω, A, P) aus. Aufgabe 1 ( Punkte) Sei X : Ω [, ) eine integrierbare Zufallsvariable mit XdP = 1. Sei Q : A R, Q(A)

Mehr

Monte-Carlo Simulation

Monte-Carlo Simulation Monte-Carlo Simulation Sehr häufig hängen wichtige Ergebnisse von unbekannten Werten wesentlich ab, für die man allerhöchstens statistische Daten hat oder für die man ein Modell der Wahrscheinlichkeitsrechnung

Mehr

Die Binomialverteilung

Die Binomialverteilung Fachseminar zur Stochastik Die Binomialverteilung 23.11.2015 Referenten: Carolin Labrzycki und Caroline Kemper Gliederung Einstieg Definition der Binomialverteilung Herleitung der Formel an einem Beispiel

Mehr

Binäre abhängige Variablen

Binäre abhängige Variablen Binäre abhängige Variablen Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Einführung Oft wollen wir qualitative Variablen

Mehr

Klausur: Einführung in die Statistik

Klausur: Einführung in die Statistik 1 Lösungen immer unter die jeweiligen Aufgaben schreiben. Bei Platzmangel auf die Rückseite schreiben (dann Nummer der bearbeiteten Aufgabe mit anmerken!!!). Lösungen, die nicht auf den Aufgabenblättern

Mehr

Statistik II für Betriebswirte Vorlesung 3

Statistik II für Betriebswirte Vorlesung 3 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 3 5. November 2013 Beispiel: Aktiensplit (Aczel & Sounderpandan, Aufg. 14-28) Ein Börsenanalyst

Mehr

Ausarbeitung des Seminarvortrags zum Thema

Ausarbeitung des Seminarvortrags zum Thema Ausarbeitung des Seminarvortrags zum Thema Anlagepreisbewegung zum Seminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn von Imke Meyer im W9/10 Anlagepreisbewegung

Mehr

Analog definiert man das Nichteintreten eines Ereignisses (Misserfolg) als:

Analog definiert man das Nichteintreten eines Ereignisses (Misserfolg) als: 9-9 Die befasst sich mit der Untersuchung, wie wahrscheinlich das Eintreten eines Falles aufgrund bestimmter Voraussetzungen stattfindet. Bis anhin haben wir immer logisch gefolgert: 'Wenn diese Voraussetzung

Mehr

Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist

Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist Frage Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist k a F (x) =1 k>0,x k x Finden Sie den Erwartungswert und den Median der Dichte für a>1. (Bei

Mehr

Statistik II für Betriebswirte Vorlesung 2

Statistik II für Betriebswirte Vorlesung 2 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 2 21. Oktober 2014 Verbundene Stichproben Liegen zwei Stichproben vor, deren Werte einander

Mehr

Mini-Skript Wahrscheinlichkeitstheorie und Statistik

Mini-Skript Wahrscheinlichkeitstheorie und Statistik Mini-Skript Wahrscheinlichkeitstheorie und Statistik Peter Bühlmann Georg Grafendorfer, Lukas Meier Inhaltsverzeichnis 1 Der Begriff der Wahrscheinlichkeit 1 1.1 Rechenregeln für Wahrscheinlichkeiten........................

Mehr

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten Kugel-Fächer-Modell n Kugeln (Rosinen) sollen auf m Fächer (Brötchen) verteilt werden, zunächst 3 Kugeln auf 3 Fächer. 1fach 3fach Für die Einzelkugel gibt es 3 Möglichkeiten } 6fach 3! Möglichkeiten Es

Mehr

Monte Carlo Simulationen

Monte Carlo Simulationen Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt Stefan Wunsch 31. Mai 2014 INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK (IEKP) KIT Universität des Landes Baden-Württemberg und

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

Stochastik für WiWi - Klausurvorbereitung

Stochastik für WiWi - Klausurvorbereitung Dr. Markus Kuze WS 2013/14 Dipl.-Math. Stefa Roth 11.02.2014 Stochastik für WiWi - Klausurvorbereitug Gesetz der totale Wahrscheilichkeit ud Satz vo Bayes (Ω, F, P) Wahrscheilichkeitsraum, E 1,..., E F

Mehr

Name:... Matrikel-Nr.:... 3 Aufgabe Handyklingeln in der Vorlesung (9 Punkte) Angenommen, ein Student führt ein Handy mit sich, das mit einer Wahrscheinlichkeit von p während einer Vorlesung zumindest

Mehr

2. Eindimensionale (univariate) Datenanalyse

2. Eindimensionale (univariate) Datenanalyse 2. Eindimensionale (univariate) Datenanalyse Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Kennzahlen, Statistiken In der Regel interessieren uns nicht so sehr die beobachteten Einzeldaten

Mehr

Beispiele zur UE Wirtschaftsstatistik 1 bei Nagel

Beispiele zur UE Wirtschaftsstatistik 1 bei Nagel Beispiele zur UE Wirtschaftsstatistik 1 bei Nagel 1 Ereignisse und Wahrscheinlichkeiten 1. Ein Würfel wird zweimal geworfen, der Stichprobenraum Ω ist Ihnen nicht neu. Versuchen Sie, den Stichprobenraum

Mehr

1 Stochastische Prozesse in stetiger Zeit

1 Stochastische Prozesse in stetiger Zeit 1 Stochastische Prozesse in stetiger Zeit 1.1 Grundlagen Wir betrachten zufällige Prozesse, definiert auf einem Wahrscheinlichkeitsraum (Ω, F, P), welche Werte in einen fest gewählten Zustandsraum annehmen.

Mehr

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Dozent: Volker Krätschmer Fakultät für Mathematik, Universität Duisburg-Essen, WS 2012/13 1. Präsenzübung Aufgabe T 1 Sei (Z 1,...,

Mehr

Grundlagen Wahrscheinlichkeitsrechnung, Statistik

Grundlagen Wahrscheinlichkeitsrechnung, Statistik Grundlagen Wahrscheinlichkeitsrechnung, Statistik Was ist Statistik? Wahrscheinlichkeit Grundgesamtheit und Verteilung Verteilung von Stichprobenparametern und Intervallschätzung Werkzeug Varianzanalyse

Mehr

Einführung in die. Wahrscheinlichkeitstheorie und Statistik

Einführung in die. Wahrscheinlichkeitstheorie und Statistik Institut für Mathematische Stochastik Einführung in die Wahrscheinlichkeitstheorie und Statistik (Kurzskript zur Vorlesung Wintersemester 2014/15 von Prof. Dr. Norbert Gaffke Inhaltsverzeichnis 1 Wahrscheinlichkeitsräume

Mehr

Einführung in die Statistik

Einführung in die Statistik Meteorologisches Institut der Universität Bonn Skript zur Vorlesung Einführung in die Statistik Wintersemester 2004/2005 Andreas Hense Thomas Burkhardt Petra Friederichs Version: 31. Oktober 2005 1 Inhaltsverzeichnis

Mehr

Lebensdauer eines x-jährigen

Lebensdauer eines x-jährigen Lebensdauer eines x-jährigen Sabrina Scheriau 20. November 2007, Graz 1 INHALTSVERZEICHNIS 2 Inhaltsverzeichnis 1 Einleitung 3 2 Sterbewahrscheinlichkeiten 4 2.1 Definition und Ermittlung....................

Mehr

$ % + 0 sonst. " p für X =1 $

$ % + 0 sonst.  p für X =1 $ 31 617 Spezielle Verteilungen 6171 Bernoulli Verteilung Wir beschreiben zunächst drei diskrete Verteilungen und beginnen mit einem Zufallsexperiment, indem wir uns für das Eintreffen eines bestimmten Ereignisses

Mehr

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen

Mehr

Statistik im Versicherungs- und Finanzwesen

Statistik im Versicherungs- und Finanzwesen Springer Gabler PLUS Zusatzinformationen zu Medien von Springer Gabler Grimmer Statistik im Versicherungs- und Finanzwesen Eine anwendungsorientierte Einführung 2014 1. Auflage Übungsaufgaben zu Kapitel

Mehr

Grundbegriffe der Biostatistik

Grundbegriffe der Biostatistik Grundbegriffe der Biostatistik Theo Gasser & Burkhardt Seifert Abteilung Biostatistik Universität Zürich 3. Auflage 2006 INHALTSVERZEICHNIS i Inhaltsverzeichnis 1 Einführung 1 1.1 Was bietet die Statistik?.............................

Mehr

Einführung in die Stochastik für Informatiker Sommersemester 2000 Prof. Mathar

Einführung in die Stochastik für Informatiker Sommersemester 2000 Prof. Mathar Einführung in die Stochastik für Informatiker Sommersemester 2000 Prof. Mathar getext von René Wörzberger rene@woerzberger.de Bilder Thorsten Uthke Review Diego Biurrun diego@pool.informatik.rwth-aachen.de

Mehr

Statistik. R. Frühwirth. Statistik. fru@hephy.oeaw.ac.at. VO 142.090 http://tinyurl.com/tu142090. Februar 2010. R. Frühwirth Statistik 1/536

Statistik. R. Frühwirth. Statistik. fru@hephy.oeaw.ac.at. VO 142.090 http://tinyurl.com/tu142090. Februar 2010. R. Frühwirth Statistik 1/536 fru@hephy.oeaw.ac.at VO 142.090 http://tinyurl.com/tu142090 Februar 2010 1/536 Übersicht über die Vorlesung Teil 1: Deskriptive Teil 2: Wahrscheinlichkeitsrechnung Teil 3: Zufallsvariable Teil 4: Parameterschätzung

Mehr

Abitur 2007 Mathematik GK Stochastik Aufgabe C1

Abitur 2007 Mathematik GK Stochastik Aufgabe C1 Seite 1 Abiturloesung.de - Abituraufgaben Abitur 2007 Mathematik GK Stochastik Aufgabe C1 Eine Werbeagentur ermittelte durch eine Umfrage im Auftrag eines Kosmetikunternehmens vor Beginn einer Werbekampagne

Mehr

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses.

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses. XI. Binomialverteilung ================================================================== 11.1 Definitionen -----------------------------------------------------------------------------------------------------------------

Mehr

Physik im Studium. Physik I - IV. Theoretische Vorlesungen. Praktika. Vorlesungen für Fortgeschrittene. Praktika für Fortgeschrittene

Physik im Studium. Physik I - IV. Theoretische Vorlesungen. Praktika. Vorlesungen für Fortgeschrittene. Praktika für Fortgeschrittene Physik im Studium Physik I - IV Übungen Theoretische Vorlesungen Praktika Vorlesungen für Fortgeschrittene Praktika für Fortgeschrittene Einführung in die Physik Teil I: Einführung: Philosophisches und

Mehr

Die Monte-Carlo-Methode mit Pseudo- und Quasi-Zufallszahlen

Die Monte-Carlo-Methode mit Pseudo- und Quasi-Zufallszahlen Die Monte-Carlo-Methode mit Pseudo- und Quasi-Zufallszahlen Marco A. Harrendorf Hauptseminar Methoden der experimentellen Teilchenphysik WS 2011/2012 Karlsruhe Institut für Technologie (KIT) 25.11.2011

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

2.1 Berechnung gleichverteilter Zufallszahlen. (Linearer Kongruenz-Generator)

2.1 Berechnung gleichverteilter Zufallszahlen. (Linearer Kongruenz-Generator) Seydel: Skript umerische Finanzmathematik, Kap. 2 (Version 20) 33 ¾º Ö ÒÙÒ ÚÓÒ Ù ÐÐ Þ Ð Ò Definition (Stichprobe einer Verteilung) Eine Folge von Zahlen heißt Stichprobe (sample) von einer Verteilungsfunktion

Mehr

Data Mining: Einige Grundlagen aus der Stochastik

Data Mining: Einige Grundlagen aus der Stochastik Data Mining: Einige Grundlagen aus der Stochastik Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 21. Oktober 2015 Vorwort Das vorliegende Skript enthält eine Zusammenfassung verschiedener

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

5. Schließende Statistik. 5.1. Einführung

5. Schließende Statistik. 5.1. Einführung 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

Coupon Collector's-Problem (Sammelbilderproblem) Name: Walter Wolf Matrikelnr.: 533440 Dozent: Dr. W. Kössler

Coupon Collector's-Problem (Sammelbilderproblem) Name: Walter Wolf Matrikelnr.: 533440 Dozent: Dr. W. Kössler Coupon Collector's-Problem (Sammelbilderproblem) Name: Walter Wolf Matrikelnr.: 533440 Dozent: Dr. W. Kössler Problemstellung Als Sammelbilderproblem bezeichnet man die Frage, wie viele Produkte bzw. Bilder

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt. Stock, Nordflügel R. 0-49 (Persike) R. 0- (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de WS 008/009 Fachbereich

Mehr

Extremwertverteilungen

Extremwertverteilungen Seminar Statistik Institut für Stochastik 12. Februar 2009 Gliederung 1 Grenzwertwahrscheinlichkeiten 2 3 MDA Fréchet MDA Weibull MDA Gumbel 4 5 6 Darstellung von multivariaten, max-stabilen Verteilungsfunktionen

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Institut für Stochastik Prof. r. N. Bäuerle ipl.-math. S. Urban Lösungsvorschlag 3. Übungsblatt zur Vorlesung Finanzmathematik I Aufgabe as endnutzenoptimale Aktienportfolio bei Exp-Nutzen Wir betrachten

Mehr

Verteilungsanalyse. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/35

Verteilungsanalyse. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/35 Verteilungsanalyse Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/35 Datentypen Als Sammeln von Daten bezeichnet man in der Statistik das Aufzeichnen von Fakten. Erhobene Daten klassifziert man

Mehr

Gaußsche Prozesse - ein funktionalanalytischer Zugang

Gaußsche Prozesse - ein funktionalanalytischer Zugang Universität Ulm Fakultät für Mathematik und Wirtschaftswissenschaften Gaußsche Prozesse - ein funktionalanalytischer Zugang Bachelorarbeit in Wirtschaftsmathematik vorgelegt von Clemens Kraus am 31. Mai

Mehr

Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse

Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse Yannik Behr Gliederung 1 Stochastische Prozesse Stochastische Prozesse Ein stochastischer Prozess ist ein Phänomen, dessen

Mehr

MA Projekt: Langfristige Kapitalmarktsimulation

MA Projekt: Langfristige Kapitalmarktsimulation MA Projekt: Langfristige Kapitalmarktsimulation Einführung in die Simulation Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring

Mehr

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008 Aufgabe 1 Ihnen liegt

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 07. Mai 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 5 1 Klassische Wahrscheinlichkeitsdefinition

Mehr

Die Monte-Carlo-Methode mit Pseudound Quasi-Zufallszahlen

Die Monte-Carlo-Methode mit Pseudound Quasi-Zufallszahlen Hauptseminar Methoden der experimentellen Teilchenphysik WS 2011/2012 Die Monte-Carlo-Methode mit Pseudound Quasi-Zufallszahlen Marco A. Harrendorf Karlsruhe Institut für Technologie, Bachelor Physik Vortrag

Mehr

Unsupervised Kernel Regression

Unsupervised Kernel Regression 9. Mai 26 Inhalt Nichtlineare Dimensionsreduktion mittels UKR (Unüberwachte KernRegression, 25) Anknüpfungspunkte Datamining I: PCA + Hauptkurven Benötigte Zutaten Klassische Kernregression Kerndichteschätzung

Mehr

Zusatzaufgaben zur Vorlesung Stochastik für Informatikstudenten

Zusatzaufgaben zur Vorlesung Stochastik für Informatikstudenten Zusatzaufgaben zur Vorlesung Stochastik für Informatikstudenten I.1 Erweitertes Urnenmodell mit Zurücklegen In einer Urne befinden sich ( N Kugeln, davon M 1 der Farbe F 1, M 2 der Farbe l ) F 2,..., M

Mehr

Standardisierte kompetenzorientierte schriftliche Reifeprüfung. Mathematik. Probeklausur März 2014. Teil-1-Aufgaben

Standardisierte kompetenzorientierte schriftliche Reifeprüfung. Mathematik. Probeklausur März 2014. Teil-1-Aufgaben Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik Probeklausur März 2014 Teil-1-Aufgaben Beurteilung Jede Aufgabe in Teil 1 wird mit 0 oder 1 Punkt bewertet, jede Teilaufgabe in

Mehr

1.3 Die Beurteilung von Testleistungen

1.3 Die Beurteilung von Testleistungen 1.3 Die Beurteilung von Testleistungen Um das Testergebnis einer Vp zu interpretieren und daraus diagnostische Urteile ableiten zu können, benötigen wir einen Vergleichsmaßstab. Im Falle des klassischen

Mehr

Stochastische Modelle

Stochastische Modelle Klausur (Teilprüfung) zur Vorlesung Stochastische Modelle (WS04/05 Februar 2005, Dauer 90 Minuten) 1. Es sollen für eine Zufallsgröße X mit der Dichte Zufallszahlen generiert werden. (a) Zeigen Sie, dass

Mehr

Monte Carlo Methoden in Kreditrisiko-Management

Monte Carlo Methoden in Kreditrisiko-Management Monte Carlo Methoden in Kreditrisiko-Management P Kreditportfolio bestehend aus m Krediten; Verlustfunktion L = n i=1 L i; Die Verluste L i sind unabhängig bedingt durch einen Vektor Z von ökonomischen

Mehr

Einfache Statistiken in Excel

Einfache Statistiken in Excel Einfache Statistiken in Excel Dipl.-Volkswirtin Anna Miller Bergische Universität Wuppertal Schumpeter School of Business and Economics Lehrstuhl für Internationale Wirtschaft und Regionalökonomik Raum

Mehr

Klausur Nr. 1. Wahrscheinlichkeitsrechnung. Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.

Klausur Nr. 1. Wahrscheinlichkeitsrechnung. Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Klausur Nr. 1 2014-02-06 Wahrscheinlichkeitsrechnung Pflichtteil Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Name: 0. Für Pflicht- und Wahlteil gilt: saubere und übersichtliche Darstellung,

Mehr

Teil I Beschreibende Statistik 29

Teil I Beschreibende Statistik 29 Vorwort zur 2. Auflage 15 Vorwort 15 Kapitel 0 Einführung 19 0.1 Methoden und Aufgaben der Statistik............................. 20 0.2 Ablauf statistischer Untersuchungen..............................

Mehr

Physica-Lehrbuch. Ein anwendungsorientiertes Lehr- und Arbeitsbuch. von Christine Duller

Physica-Lehrbuch. Ein anwendungsorientiertes Lehr- und Arbeitsbuch. von Christine Duller Physica-Lehrbuch Einführung in die Statistik mit EXCEL und SPSS Ein anwendungsorientiertes Lehr- und Arbeitsbuch von Christine Duller Neuausgabe Einführung in die Statistik mit EXCEL und SPSS Duller schnell

Mehr

Grundprinzipien der Bayes-Statistik

Grundprinzipien der Bayes-Statistik Grundprinzipien der Bayes-Statistik Karl-Rudolf Koch Zusammenfassung: In drei wesentlichen Punkten unterscheidet sich die Bayes-Statistik von der traditionellen Statistik. Zunächst beruht die Bayes-Statistik

Mehr

3 Monte-Carlo-Simulationen

3 Monte-Carlo-Simulationen 3 Monte-Carlo-Simulationen In diesem Kapitel soll mit der so genannten Monte-Carlo-Methode ein wichtiges Anwendungsgebiet des in Kapitel 2 erarbeiteten Begriffs- und Methodenapparats detaillierter beleuchtet

Mehr

Verteilungsanalyse. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/31

Verteilungsanalyse. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/31 Verteilungsanalyse Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/31 Datentypen Als Sammeln von Daten bezeichnet man in der Statistik das Aufzeichnen von Fakten. Erhobene Daten klassifziert man

Mehr

Finanz- und Versicherungsmathematik

Finanz- und Versicherungsmathematik Finanz- und Versicherungsmathematik Hansjörg Albrecher Institut für Mathematik B Technische Universität Graz Version: Februar 2006 2 Inhaltsverzeichnis 1 Risikomodelle 5 1.1 Das individuelle Risikomodell....................

Mehr

Risiko und Symmetrie. Prof. Dr. Andrea Wirth

Risiko und Symmetrie. Prof. Dr. Andrea Wirth Risiko und Symmetrie Prof. Dr. Andrea Wirth Gliederung 1. Einleitung Was ist eigentlich Risiko? 2. Risiko Mathematische Grundlagen 3. Anwendungsbeispiele Wo genau liegt der Schmerz des Risikos? 4. Sie

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

12. Vergleich mehrerer Stichproben

12. Vergleich mehrerer Stichproben 12. Vergleich mehrerer Stichproben Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Häufig wollen wir verschiedene Populationen, Verfahren, usw. miteinander vergleichen. Beipiel: Vergleich

Mehr

Grundlagen der Monte-Carlo-Simulation. Dr. Sebastian Lück 7. Februar 2012

Grundlagen der Monte-Carlo-Simulation. Dr. Sebastian Lück 7. Februar 2012 Grundlagen der Monte-Carlo-Simulation Dr. Sebastian Lück 7. Februar 2012 page 2 Contents Motivation Erzeugung von SPZZ Software Transformation von SPZZ Akzeptanz- und Verwerfungsmethode Monte-Carlo-Integration

Mehr

1 Motivation 5. 2 Mittelwerte 7. 2.1 Das arithmetische Mittel... 7. 2.2 Der Median (= Zentralwert)... 8. 2.3 Das geometrische Mittel...

1 Motivation 5. 2 Mittelwerte 7. 2.1 Das arithmetische Mittel... 7. 2.2 Der Median (= Zentralwert)... 8. 2.3 Das geometrische Mittel... 1 Inhaltsverzeichnis I Deskriptive Statistik 5 1 Motivation 5 2 Mittelwerte 7 2.1 Das arithmetische Mittel...................... 7 2.2 Der Median (= Zentralwert).................... 8 2.3 Das geometrische

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Statistik, Datenanalyse und Simulation Skript zur Vorlesung von Dr. Rainer Wanke Zuletzt gedruckt am: 0. Mai 005 Bearbeitet von: Peter Otte & Pörsch Wintersemester 004/005 ii Inhaltsverzeichnis Wahrscheinlichkeit.

Mehr

Repetitionsaufgaben: Lineare Gleichungen

Repetitionsaufgaben: Lineare Gleichungen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Gleichungen Zusammengestellt von Hannes Ernst, KSR Lernziele: - Lineare Gleichungen von Hand auflösen können. - Lineare Gleichungen mit Parametern

Mehr

FAKTORIELLE VERSUCHSPLÄNE. Andreas Handl

FAKTORIELLE VERSUCHSPLÄNE. Andreas Handl FAKTORIELLE VERSUCHSPLÄNE Andreas Handl 1 Inhaltsverzeichnis 1 Versuchsplanung 4 2 Einfaktorielle Varianzanalyse 6 2.1 DieAnnahmen... 6 2.2 Die ANOVA-Tabelle und der F -Test... 6 2.3 Versuche mit zwei

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015. Vorlesung 5, Donnerstag, 20.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015. Vorlesung 5, Donnerstag, 20. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 5, Donnerstag, 20. November 2014 (Wie baut man eine Hash Map, Universelles Hashing)

Mehr

Risikomessung und Value at Risk Wintersemester 2013/14

Risikomessung und Value at Risk Wintersemester 2013/14 Risikomessung und Value at Risk Wintersemester 2013/14 Walter Sanddorf-Köhle Statistik und Ökonometrie Foliensatz Nr. 11 Version vom 24. Januar 2014 1 / 45 6.5.1 Bisherige Vorgehensweise zur Berechnung

Mehr

Überblick über die Tests

Überblick über die Tests Anhang A Überblick über die Tests A.1 Ein-Stichproben-Tests A.1.1 Tests auf Verteilungsannahmen ˆ Shapiro-Wilk-Test Situation: Test auf Normalverteilung H 0 : X N(µ, σ 2 ) H 1 : X nicht normalverteilt

Mehr

R ist freie Software und kann von der Website. www.r-project.org

R ist freie Software und kann von der Website. www.r-project.org R R ist freie Software und kann von der Website heruntergeladen werden. www.r-project.org Nach dem Herunterladen und der Installation von R kann man R durch Doppelklicken auf das R-Symbol starten. R wird

Mehr

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde

Mehr

Statistische Auswertung der Daten von Blatt 13

Statistische Auswertung der Daten von Blatt 13 Statistische Auswertung der Daten von Blatt 13 Problemstellung 1 Graphische Darstellung der Daten 1 Diskussion der Normalverteilung 3 Mittelwerte und deren Konfidenzbereiche 3 Signifikanz der Behandlung

Mehr