Einfache Statistiken in Excel

Größe: px
Ab Seite anzeigen:

Download "Einfache Statistiken in Excel"

Transkript

1 Einfache Statistiken in Excel Dipl.-Volkswirtin Anna Miller Bergische Universität Wuppertal Schumpeter School of Business and Economics Lehrstuhl für Internationale Wirtschaft und Regionalökonomik Raum P

2 Inhalt Statistiksoftware Excel Abbildungen Lage- und Streuungsmaßzahlen Verteilung Kovarianz Korrelation T-Statistik Regression 2

3 Statistiksoftware Stata SPSS Eviews Freeware R PSPP Statistiklabor Gretl Tabellenkalkulationsprogramme Excel OpenOffice 3

4 Excel Tabellenkalkulationsprogramm; Bestandteil von MS Office Eingeschränkte Statistikanwendungen Einfache Statistiken und Abbildungen erstellen Add-Ins; RExcel Analyse-Funktionen Add-Ins verfügbar Daten Datenanalyse Analyse-Funktionen Add-Ins laden: Registerkarte Datei Optionen Add-Ins Im Feld Verwalten Excel Add-Ins Gehe zu Verfügbare Add-Ins: Kontrollkästchen Analyse-Funktionen aktivieren, OK klicken 4

5 Diagramme in Excel Grafische Darstellung der Daten Erleichtert das Verständnis großer Datenmengen Erstellen Daten markieren (Zeilenbeschriftung links, Spaltenbeschriftung über) Registerkarte Einfügen ->Diagramme 5

6 Diagramme in Excel Weitere Typen im Dialogfeld Diagramm Diagrammtools Titel und Datenbeschriftungen hinzufügen Entwurf, Layout oder Format ändern Formatierung: schlichte Designs vorziehen 6

7 Diagramme in Excel Säulendiagramme Liniendiagramme Kreisdiagramme Balkendiagramme Flächendiagramme Punkt (XY) -Diagramme Kursdiagramme Oberflächendiagramme Ringdiagramme Blasendiagramme Netzdiagramme 7

8 Histogramm Darstellung der Häufigkeit für alle Werte innerhalb einer Klasse Absolute Häufigkeit Relative Häufigkeit Klassieren Erstellen Klasseneinteilung und -grenzen Klassenanzahl (k n) Daten markieren Klassenbereich eingeben (optional) Daten Datenanalyse Analysetools Histogramm 8

9 Deskriptive Statistik Aufgabe: Daten beschreiben Methoden: Tabellen und graphische Darstellungen Kenngrößen Lagemaße Streuungsmaße 9

10 Deskriptive Statistik Lagemaßzahlen beschreiben zentrale Eigenschaften einer Verteilung Stichprobe vom Umfang n Erwartungswert Arithmetisches Mittel Gibt viel Gewicht extremen Werten Funktion MITTELWERT 10

11 Deskriptive Statistik Median Mittlere Beobachtungen der nach Größe sortierten Daten Unempfindlich gegenüber Ausreißer Lokationsmaß für schiefe Verteilungen Funktion MEDIAN Modalwert Kommt am häufigsten in der Messwertreihe vor 11

12 Deskriptive Statistik α-quantil Mindestens α% der Werte diesem Wert sind 1 Quartil (α =0.25), Median (α =0.5), 3 Quartil (α =0.75) Funktion QUANTIL Maßzahlen der Streuung Spannweite: R = Maximum Minimum (extreme Werte) Quartilsabstand: 3 Quartil 1 Quartil 12

13 Deskriptive Statistik Varianz Durchschnittliche quadrierte Abweichung der Messwerte vom arithmetischen Mittel Funktion VAR.S (VARIANZ): auf Grundlage der Stichprobe Standardabweichung: Bessere Einschätzung der Variabilität Abhängig von Mittelwert Funktion STDEV.S (STABW) 13

14 Deskriptive Statistik Schiefe Beschreibt eingipfelige Verteilung (Symmetrie) Funktion SCHIEFE Wölbung (Kurtosis) Funktion KURT 14

15 Verteilung Normalverteilung Mittelwert = µ; Varianz = σ 2 ; Schiefe = 0; Kurtosis = 3 NORM.DIST (NORVERT) Symmetrisch, glockenförmig Modalwert, Median, Erwartungswert fallen zusammen Standardnormalverteilung Mittelwert = 0; Varianz = 1 NORM.S.DIST (STANDNORMVERT) Andere Verteilungstypen T.DIST; BINOM.DIST; CHISQ.DIST usw. 15

16 Kovarianz Maßzahl für den Zusammenhang zweier statistischer Zufallsvariablen (X und Y) Richtung der Beziehung Nicht standartisiert Funktion COVARIANCE (KOVAR) 16

17 Korrelation Beziehung zwischen statistischen Zufallsvariablen (X und Y) Korrelation und Kausalität (Scheinkorrelationen) Korrelationskoeffizient Maß für den Grad des linearen Zusammenhangs ρ (X,Y) ϵ [-1,1] dimensionslos Funktionen KORREL; PEARSON 17

18 Konfidenzinterval Konfidenzinterval schließt einen Bereich um den geschätzten Wert des Parameters ein, der mit einer zuvor festgelegten Wahrscheinlichkeit die wahre Lage des Parameters trifft CONFIDENCE.NORM, CONFIDENCE.T (KONFIDENZ) Angeben: α (Konfidenzniveau), σ (Standardabweichung), n (Stichprobenumfang) 18

19 T-Test Testen einer Hypothese, dass Wert a mit x übereinstimmt t = (a-x)/σ; t größer als Wert in der Tabelle => Hypothese abgelehnt Konfidenzinterval konstruieren T-Wert berechnen Signifikanz prüfen t 2 5% Signifikanz t 3 1% Signifikanz 19

20 Regression Einfluss der Werte unabhängiger Variable auf abhängige Variable Regressionsgerade Methode der kleinsten Quadrate Funktionen KKLEINSTE T.TEST; T.DIST R 2 gibt an wie viel Prozent der Streuung erklärt werden Bestimmtheitsmaß Qualität der linearen Approximation 20

21 Daten Zeitreihe (Time Series): zeitabhängige Reihe von Datenpunkten (diskret; in endlichen zeitlichen Abständen anfallen) Zeitreihenanalyse Beschreibung; Erkennung von Veränderungen und Trends Prognose Querschnitt (Cross-sectional data): mehrere Beobachtungen zu einem Zeitpunkt Längsschnittsstudie: dieselbe empirische Studie zu mehreren Zeitpunktenngsschnittstudie Paneldaten (Panel Data) multidimensional; Beobachtungen mehrerer Untersuchungsobjekten zu verschiedenen Zeitpunkten 21

22 Daten

23 23

24 24

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen 4. Datenanalyse und Modellbildung Deskriptive Statistik 2-1 2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen Für die Auswertung einer Messreihe, die in Form

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik In der beschreibenden Statistik werden Methoden behandelt, mit deren Hilfe man Daten übersichtlich darstellen und kennzeichnen kann. Die Urliste (=Daten in der Reihenfolge ihrer Erhebung)

Mehr

Häufigkeitstabellen. Balken- oder Kreisdiagramme. kritischer Wert für χ2-test. Kontingenztafeln

Häufigkeitstabellen. Balken- oder Kreisdiagramme. kritischer Wert für χ2-test. Kontingenztafeln Häufigkeitstabellen Menüpunkt Data PivotTable Report (bzw. entsprechendes Icon): wähle Data Range (Zellen, die die Daten enthalten + Zelle mit Variablenname) wähle kategoriale Variable für Spalten- oder

Mehr

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18 3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen

Mehr

Auswertung und Darstellung wissenschaftlicher Daten (1)

Auswertung und Darstellung wissenschaftlicher Daten (1) Auswertung und Darstellung wissenschaftlicher Daten () Mag. Dr. Andrea Payrhuber Zwei Schritte der Auswertung. Deskriptive Darstellung aller Daten 2. analytische Darstellung (Gruppenvergleiche) SPSS-Andrea

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 2 28.02.2008 1 Inhalt der heutigen Übung Beschreibende Statistik Gemeinsames Lösen der Übungsaufgaben 2.1: Häufigkeitsverteilung 2.2: Tukey Boxplot 25:Korrelation

Mehr

Eine computergestützte Einführung mit

Eine computergestützte Einführung mit Thomas Cleff Deskriptive Statistik und Explorative Datenanalyse Eine computergestützte Einführung mit Excel, SPSS und STATA 3., überarbeitete und erweiterte Auflage ^ Springer Inhaltsverzeichnis 1 Statistik

Mehr

Statistik im Bachelor-Studium der BWL und VWL

Statistik im Bachelor-Studium der BWL und VWL Max C. Wewel Statistik im Bachelor-Studium der BWL und VWL Methoden, Anwendung, Interpretation Mit herausnehmbarer Formelsammlung ein Imprint von Pearson Education München Boston San Francisco Harlow,

Mehr

Methoden der empirischen Sozialforschung I

Methoden der empirischen Sozialforschung I Methoden der empirischen Sozialforschung I Annelies Blom, PhD TU Kaiserslautern Wintersemester 2011/12 Übersicht Quantitative Datenauswertung: deskriptive und induktive Statistik Wiederholung: Die wichtigsten

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

2. Korrelation, lineare Regression und multiple Regression

2. Korrelation, lineare Regression und multiple Regression multiple 2.2 Lineare 2.2 Lineare 1 / 130 2.2 Lineare 2 / 130 2.1 Beispiel: Arbeitsmotivation Untersuchung zur Motivation am Arbeitsplatz in einem Chemie-Konzern 25 Personen werden durch Arbeitsplatz zufällig

Mehr

Methoden Quantitative Datenanalyse

Methoden Quantitative Datenanalyse Leitfaden Universität Zürich ISEK - Andreasstrasse 15 CH-8050 Zürich Telefon +41 44 635 22 11 Telefax +41 44 635 22 19 www.isek.uzh.ch 11. September 2014 Methoden Quantitative Datenanalyse Vorbereitung

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

Datenanalyse und Statistik

Datenanalyse und Statistik Datenanalyse und Statistik p. 1/44 Datenanalyse und Statistik Vorlesung 2 (Graphik I) K.Gerald van den Boogaart http://www.stat.boogaart.de Datenanalyse und Statistik p. 2/44 Daten Schätzung Test Mathe

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Elisabeth Raab-Steiner/Michael Benesch. Der Fragebogen. Von der Forschungsidee zur SPSS/PASW-Auswertung. 2., aktualisierte Auflage. facultas.

Elisabeth Raab-Steiner/Michael Benesch. Der Fragebogen. Von der Forschungsidee zur SPSS/PASW-Auswertung. 2., aktualisierte Auflage. facultas. Elisabeth Raab-Steiner/Michael Benesch Der Fragebogen Von der Forschungsidee zur SPSS/PASW-Auswertung 2., aktualisierte Auflage facultas.wuv Inhaltsverzeichnis 1 Elementare Definitionen 11 1.1 Deskriptive

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

Einführung in die Statistik mir R

Einführung in die Statistik mir R Einführung in die Statistik mir R ww w. syn t egris.de Überblick GESCHÄFTSFÜHRUNG Andreas Baumgart, Business Processes and Service Gunar Hofmann, IT Solutions Sven-Uwe Weller, Design und Development Jens

Mehr

8. Methoden der klassischen multivariaten Statistik

8. Methoden der klassischen multivariaten Statistik 8. Methoden der klassischen multivariaten Statistik 8.1. Darstellung von Daten Voraussetzungen auch in diesem Kapitel: Grundgesamtheit (Datenraum) Ω von Objekten (Fällen, Instanzen), denen J-Tupel von

Mehr

Verteilungsanalyse. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/35

Verteilungsanalyse. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/35 Verteilungsanalyse Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/35 Datentypen Als Sammeln von Daten bezeichnet man in der Statistik das Aufzeichnen von Fakten. Erhobene Daten klassifziert man

Mehr

Evaluation der Normalverteilungsannahme

Evaluation der Normalverteilungsannahme Evaluation der Normalverteilungsannahme. Überprüfung der Normalverteilungsannahme im SPSS P. Wilhelm; HS SPSS bietet verschiedene Möglichkeiten, um Verteilungsannahmen zu überprüfen. Angefordert werden

Mehr

Korrelation - Regression. Berghold, IMI

Korrelation - Regression. Berghold, IMI Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines

Mehr

2. Eindimensionale (univariate) Datenanalyse

2. Eindimensionale (univariate) Datenanalyse 2. Eindimensionale (univariate) Datenanalyse Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Kennzahlen, Statistiken In der Regel interessieren uns nicht so sehr die beobachteten Einzeldaten

Mehr

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur.

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur. Statistik Grundlagen Charakterisierung von Verteilungen Einführung Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsverteilungen Schätzen und Testen Korrelation Regression Einführung Die Analyse und modellhafte

Mehr

Grundlagen der Datenanalyse am Beispiel von SPSS

Grundlagen der Datenanalyse am Beispiel von SPSS Grundlagen der Datenanalyse am Beispiel von SPSS Einführung Dipl. - Psych. Fabian Hölzenbein hoelzenbein@psychologie.uni-freiburg.de Einführung Organisatorisches Was ist Empirie? Was ist Statistik? Dateneingabe

Mehr

Boxplot (Liniendiagramm) mit einem (qualitativen) Unterscheidungsmerkmal erstellen, beschrieben an der Körpergröße für Männer und Frauen

Boxplot (Liniendiagramm) mit einem (qualitativen) Unterscheidungsmerkmal erstellen, beschrieben an der Körpergröße für Männer und Frauen Boxplot (Liniendiagramm) mit einem (qualitativen) Unterscheidungsmerkmal erstellen, beschrieben an der Körpergröße für Männer und Frauen 01) Berechnen Sie für jede Ihrer Vergleichsgruppen (im Beispiel

Mehr

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1 Inhaltsverzeichnis Regressionsanalyse... 2 Lernhinweise... 2 Einführung... 2 Theorie (1-8)... 2 1. Allgemeine Beziehungen... 3 2. 'Best Fit'... 3 3. 'Ordinary Least Squares'... 4 4. Formel der Regressionskoeffizienten...

Mehr

Excel für Fortgeschrittener

Excel für Fortgeschrittener Excel-2 Über das Arbeitsheft Excel für Fortgeschrittener Ein Arbeitsheft - kann beliebige viele Blätter haben - Die Arbeitsblätter können voneinander unabhängige Tabellen haben. - Der aktive AB hat dicke

Mehr

SPSS-Skriptum. 1. Vorbereitungen für die Arbeit mit SPSS (im Seminar)

SPSS-Skriptum. 1. Vorbereitungen für die Arbeit mit SPSS (im Seminar) Die folgenden Erklärungen und Abbildungen sollen den Umgang mit SPSS im Rahmen des POK erleichtern. Diese beschreiben nicht alle Möglichkeiten, die SPSS bietet, sondern nur die Verfahren, die im Seminar

Mehr

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table("c:\\compaufg\\kredit.

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table(c:\\compaufg\\kredit. Lösung 16.3 Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

3 Deskriptive Statistik in R (univariat)

3 Deskriptive Statistik in R (univariat) (univariat) Markus Burkhardt (markus.burkhardt@psychologie.tu-chemnitz.de) Inhalt 3.1 Ziel... 1 3.2 Häufigkeiten... 1 3.3 Deskriptive Kennziffern I Lagemaße... 2 3.4 Streuungsmaße... 5 3.5 Standardisierung:

Mehr

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen.

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen. Modul G.1 WS 07/08: Statistik 17.01.2008 1 Wiederholung Kovarianz und Korrelation Kovarianz = Maß für den linearen Zusammenhang zwischen zwei Variablen x und y Korrelation Die Korrelation ist ein standardisiertes

Mehr

Einleitung 19. Teil I SPSS kennen lernen 25. Kapitel 1 In 25 Minuten zum SPSS-Profi 27

Einleitung 19. Teil I SPSS kennen lernen 25. Kapitel 1 In 25 Minuten zum SPSS-Profi 27 Inhaltsverzeichnis Einleitung 19 SPSS oder PASW oder was? 19 Über dieses Buch 20 Konventionen in diesem Buch 20 Was Sie nicht lesen müssen 21 Törichte Annahmen über den Leser 21 Wie dieses Buch aufgebaut

Mehr

Versuchsauswertung mit Polynom-Regression in Excel

Versuchsauswertung mit Polynom-Regression in Excel Versuchsauswertung mit Polynom-Regression in Excel Aufgabenstellung: Gegeben sei die in Bild 1 gezeigte Excel-Tabelle mit Messwertepaaren y i und x i. Aufgrund bekannter physikalischer Zusammenhänge wird

Mehr

5.2 Optionen Auswahl der Statistiken, die bei der jeweiligen Prozedur zur Verfügung stehen.

5.2 Optionen Auswahl der Statistiken, die bei der jeweiligen Prozedur zur Verfügung stehen. 5 Statistik mit SPSS Die Durchführung statistischer Auswertungen erfolgt bei SPSS in 2 Schritten, der Auswahl der geeigneten Methode, bestehend aus Prozedur Variable Optionen und der Ausführung. 5.1 Variablen

Mehr

5.2. Nichtparametrische Tests. 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY

5.2. Nichtparametrische Tests. 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY 5.2. Nichtparametrische Tests 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY Voraussetzungen: - Die Verteilungen der beiden Grundgesamtheiten sollten eine ähnliche Form aufweisen. - Die

Mehr

SPSS 16 für b ummies

SPSS 16 für b ummies Felix Brosius SPSS 16 für b ummies WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Inhaltsverzeichnis Über den Autor 7 Einführung 21 Über dieses Buch 21 Konventionen in diesem Buch 22 Was Sie nicht lesen müssen

Mehr

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14.

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14. Aufgabe : einfacher T-Test Statistik bei einer Stichprobe Standardfehl Standardab er des Mittelwert weichung Mittelwertes 699 39.68 76.59 2.894 Test bei einer Sichprobe Testwert = 45.5 95% Konfidenzintervall

Mehr

IBM SPSS Statistics Base 21

IBM SPSS Statistics Base 21 IBM SPSS Statistics Base 21 Hinweis: Lesen Sie zunächst die allgemeinen Informationen unter Hinweise auf S. 343, bevor Sie dieses Informationsmaterial sowie das zugehörige Produkt verwenden. Diese Ausgabe

Mehr

Abhängigkeit zweier Merkmale

Abhängigkeit zweier Merkmale Abhängigkeit zweier Merkmale Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/33 Allgemeine Situation Neben der Untersuchung auf Unterschiede zwischen zwei oder mehreren Untersuchungsgruppen hinsichtlich

Mehr

Statistik mit Excel 2010. Themen-Special. Peter Wies. 1. Ausgabe, September 2011 W-EX2010S

Statistik mit Excel 2010. Themen-Special. Peter Wies. 1. Ausgabe, September 2011 W-EX2010S Statistik mit Excel 2010 Peter Wies 1. Ausgabe, September 2011 Themen-Special W-EX2010S 3 Statistik mit Excel 2010 - Themen-Special 3 Statistische Maßzahlen In diesem Kapitel erfahren Sie wie Sie Daten

Mehr

Anwendung von Statistik in Excel Deskriptive Statistik und Wirtschaftsstatistik

Anwendung von Statistik in Excel Deskriptive Statistik und Wirtschaftsstatistik Anwendung von Statistik in Excel Deskriptive Statistik und Wirtschaftsstatistik Wintersemester 08/09 Kai Schaal Universität zu Köln Organisatorisches und Einleitung (1) Was, wann, wo? Anwendung von Statistik

Mehr

Regression mit Gretl Eine erste Einführung 1

Regression mit Gretl Eine erste Einführung 1 Kurzeinführung in Gretl S. 1 Regression mit Gretl Eine erste Einführung 1 Installation: Gretl für das entsprechende Betriebssystem herunterladen und die Setup-Datei ausführen. Hinweis: Für die Benutzung

Mehr

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression Institut für Soziologie Methoden 2 Regressionsanalyse I: Einfache lineare Regression Programm Anwendungsbereich Vorgehensweise Interpretation Annahmen Zusammenfassung Übungsaufgabe Literatur # 2 Anwendungsbereich

Mehr

3.2 Bivariate Verteilungen

3.2 Bivariate Verteilungen 3.2 Bivariate Verteilungen zwei Variablen X, Y werden gemeinsam betrachtet (an jedem Objekt i, i = 1,..., n, werden gleichzeitig zwei Merkmale beobachtet) Beobachtungswerte sind Paare/Kombinationen von

Mehr

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel 16.11.01 MP1 - Grundlagen quantitativer Sozialforschung - (4) Datenanalyse 1 Gliederung Datenanalyse (inferenzstatistisch)

Mehr

Multivariate and Geostatistical Data Analysis. Multivariate and Geostatistical Data Analysis

Multivariate and Geostatistical Data Analysis. Multivariate and Geostatistical Data Analysis Multivariate and Geostatistical Data Analysis Multivariate and Geostatistical Data Analysis c 2012 Helmut Schaeben Geomathematics and Geoinformatics Technische Universität Bergakademie Freiberg, Germany

Mehr

Die beiliegende CD enthält alle Beispiele des Buches mit und ohne Lösungen. Dadurch sind die Beispiele direkt am PC nachzuvollziehen.

Die beiliegende CD enthält alle Beispiele des Buches mit und ohne Lösungen. Dadurch sind die Beispiele direkt am PC nachzuvollziehen. Vorwort Die Reihe Software-Praxis ist auf das visuelle Lernen der neuen Programme von Microsoft Office 2007 ausgerichtet. Viele Screen-Shots zeigen und beschreiben die jeweilige Arbeitssituation in klaren

Mehr

Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear":

Das Dialogfeld für die Regressionsanalyse (Lineare Regression) findet sich im Statistik- Menu unter Regression-Linear: Lineare Regression Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear": Im einfachsten Fall werden mehrere Prädiktoren (oder nur

Mehr

Zusammenhänge zwischen metrischen Merkmalen

Zusammenhänge zwischen metrischen Merkmalen Zusammenhänge zwischen metrischen Merkmalen Darstellung des Zusammenhangs, Korrelation und Regression Daten liegen zu zwei metrischen Merkmalen vor: Datenpaare (x i, y i ), i = 1,..., n Beispiel: x: Anzahl

Mehr

Wahrscheinlichkeitsrechnung anhand realer Situationen

Wahrscheinlichkeitsrechnung anhand realer Situationen MaMaEuSch Management Mathematics for European Schools http://www.mathematik.unikl.de/ mamaeusch Wahrscheinlichkeitsrechnung anhand realer Situationen Paula Lagares Barreiro 1 Frederico Perea Rojas-Marcos

Mehr

Multivariate Statistik

Multivariate Statistik Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)

Mehr

Schätzer (vgl. Kapitel 1): Stichprobenmittel X N. Stichprobenmedian X N

Schätzer (vgl. Kapitel 1): Stichprobenmittel X N. Stichprobenmedian X N Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 8.1 Schätzer für Lage- und Skalenparameter und Verteilungsmodellwahl Lageparameter (l(x + a) = l(x) + a): Erwartungswert EX Median von X

Mehr

Institut für Soziologie Dr. Christian Ganser. Methoden 2. Einführung, grundlegende PASW-Bedienung, univariate Statistik

Institut für Soziologie Dr. Christian Ganser. Methoden 2. Einführung, grundlegende PASW-Bedienung, univariate Statistik Institut für Soziologie Dr. Methoden 2 Einführung, grundlegende PASW-Bedienung, univariate Statistik Programm Wiederholung zentraler Aspekten der Übungen Literatur zur Veranstaltung Erste Schritte mit

Mehr

Medizinische Biometrie (L5)

Medizinische Biometrie (L5) Medizinische Biometrie (L5) Vorlesung II Daten Deskription Prof. Dr. Ulrich Mansmann Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie mansmann@ibe.med.uni-muenchen.de IBE,

Mehr

IBM SPSS Statistics Base 22

IBM SPSS Statistics Base 22 IBM SPSS Statistics Base 22 Hinweis Vor Verwendung dieser Informationen und des darin beschriebenen Produkts sollten die Informationen unter Bemerkungen auf Seite 199 gelesen werden. Produktinformation

Mehr

T-TEST BEI EINER STICHPROBE:

T-TEST BEI EINER STICHPROBE: Kapitel 19 T-Test Mit Hilfe der T-TEST-Prozeduren werden Aussagen über Mittelwerte getroffen. Dabei wird versucht, aus den Beobachtungen einer Stichprobe Rückschlüsse auf die Grundgesamtheit zu ziehen.

Mehr

MS SQL Server 2012 (4)

MS SQL Server 2012 (4) MS SQL Server 2012 (4) Data Mining, Analyse und multivariate Verfahren Marco Skulschus Jan Tittel Marcus Wiederstein Webseite zum Buch: http://vvwvv.comelio-medien.com/buch-kataiog/ms sql_server/ms sql

Mehr

Univariate Lineare Regression. (eine unabhängige Variable)

Univariate Lineare Regression. (eine unabhängige Variable) Univariate Lineare Regression (eine unabhängige Variable) Lineare Regression y=a+bx Präzise lineare Beziehung a.. Intercept b..anstieg y..abhängige Variable x..unabhängige Variable Lineare Regression y=a+bx+e

Mehr

Inhaltsverzeichnis. I Einführung in STATISTICA 1. 1 Erste Schritte in STATISTICA 3

Inhaltsverzeichnis. I Einführung in STATISTICA 1. 1 Erste Schritte in STATISTICA 3 I Einführung in STATISTICA 1 1 Erste Schritte in STATISTICA 3 2 Datenhaltung in STATISTICA 11 2.1 Die unterschiedlichen Dateitypen in STATISTICA....... 11 2.2 Import von Daten......... 12 2.3 Export von

Mehr

Datenanalyse mit SPSS spezifische Analysen

Datenanalyse mit SPSS spezifische Analysen Datenanalyse mit SPSS spezifische Analysen Arnd Florack Tel.: 0251 / 83-34788 E-Mail: florack@psy.uni-muenster.de Raum 2.015 Sprechstunde: Dienstags 15-16 Uhr 25. Mai 2001 2 Auswertung von Häufigkeitsdaten

Mehr

Quantitative Methoden der Bildungsforschung

Quantitative Methoden der Bildungsforschung Glieung Wieholung Korrelationen Grundlagen lineare Regression Lineare Regression in SPSS Übung Wieholung Korrelationen Standardisiertes Zusammenhangsmaß (unstandardisiert: Kovarianz) linearer Zusammenhang

Mehr

Varianzanalyse ANOVA

Varianzanalyse ANOVA Varianzanalyse ANOVA Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/23 Einfaktorielle Varianzanalyse (ANOVA) Bisher war man lediglich in der Lage, mit dem t-test einen Mittelwertsvergleich für

Mehr

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8 . Aufgabe: Für zwei verschiedene Aktien wurde der relative Kurszuwachs (in % beobachtet. Aus den jeweils 20 Quartaldaten ergaben sich die folgenden Box-Plots. Box-and-Whisker Plot Aktie Aktie 2-0,2 0,8,8

Mehr

Linearer Zusammenhang von Datenreihen

Linearer Zusammenhang von Datenreihen Linearer Zusammenhang von Datenreihen Vielen Problemen liegen (möglicherweise) lineare Zusammenhänge zugrunde: Mein Internetanbieter verlangt eine Grundgebühr und rechnet minutenweise ab Ich bestelle ein

Mehr

Eine Einführung in SPSS

Eine Einführung in SPSS Eine Einführung in SPSS Aufbau von SPSS 14 Bemerkung: SPSS 14 kann in den Subzentren in der Kopernikusgasse installiert werden, falls dies noch nicht geschehen ist. Dazu öffnet man den Application Explorer

Mehr

Verteilungsanalyse. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/31

Verteilungsanalyse. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/31 Verteilungsanalyse Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/31 Datentypen Als Sammeln von Daten bezeichnet man in der Statistik das Aufzeichnen von Fakten. Erhobene Daten klassifziert man

Mehr

3 Zusammenhangsmaße Zusammenhangshypothesen

3 Zusammenhangsmaße Zusammenhangshypothesen 3 Zusammenhangsmaße Zusammenhangshypothesen Zusammenhänge (zwischen 2 Variablen) misst man mittels Korrelationen. Die Wahl der Korrelation hängt ab von: a) Skalenniveau der beiden Variablen: 1) intervallskaliert

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Grundlagen von Versuchsmethodik und Datenanalyse

Grundlagen von Versuchsmethodik und Datenanalyse Grundlagen von Versuchsmethodik und Datenanalyse Der Anfang: Hypothesen über Ursache-Wirkungs-Zusammenhänge Ursache Wirkung Koffein verbessert Kurzzeitgedächtnis Gewaltfilme führen zu aggressivem Verhalten

Mehr

Kapitel 23 Lineare Regression

Kapitel 23 Lineare Regression Kapitel 23 Lineare Regression Sowohl einfache als auch multiple Regressionsanalysen können Sie mit dem Befehl STATISTIK REGRESSION LINEAR... durchführen. Dabei lassen sich mit Hilfe diverser Optionen zahlreiche

Mehr

Bland-Altman-Plot in Excel 2010 erstellen

Bland-Altman-Plot in Excel 2010 erstellen Bland-Altman-Plot in Excel 2010 erstellen 1. Sie berechnen für jedes Messwertpaar den Mittelwert der beiden Methoden nach der Formel: (messwert_verfahren1 + messwert_verfahren2)/2, im Beispiel =(A5+B5)/2:

Mehr

Folien zum Proseminar Altersvorsorge in Deutschland

Folien zum Proseminar Altersvorsorge in Deutschland Proseminar im SoSe 2007 Proseminar - Arbeiten mit Excel und Power Point - Dipl.-Kfm. J. Huber 1. Arbeiten mit Excel 2. Erstellen und Formatieren von Grafiken 3. Erstellen einer Präsentation http://www.uni-trier.de/uni/fb4/vwl_amk/index.htm

Mehr

Kapitel 7: Varianzanalyse mit Messwiederholung

Kapitel 7: Varianzanalyse mit Messwiederholung Kapitel 7: Varianzanalyse mit Messwiederholung Durchführung einer einfaktoriellen Varianzanalyse mit Messwiederholung 1 Durchführung einer zweifaktoriellen Varianzanalyse mit Messwiederholung auf einem

Mehr

Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik

Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik Ludwig Fahrmeir, Nora Fenske Institut für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik 29. März 21 Hinweise:

Mehr

SFB 833 Bedeutungskonstitution. Kompaktkurs. Datenanalyse. Projekt Z2 Tübingen, Mittwoch, 18. und 20. März 2015

SFB 833 Bedeutungskonstitution. Kompaktkurs. Datenanalyse. Projekt Z2 Tübingen, Mittwoch, 18. und 20. März 2015 SFB 833 Bedeutungskonstitution Kompaktkurs Datenanalyse Projekt Z2 Tübingen, Mittwoch, 18. und 20. März 2015 Messen und Skalen Relativ (Relationensystem): Menge A von Objekten und eine oder mehrere Relationen

Mehr

7 Ausreißer Erkennen, Interpretieren und Umgehen

7 Ausreißer Erkennen, Interpretieren und Umgehen 7 Ausreißer Erkennen, Interpretieren und Umgehen Das unscheinbare Ausreißerproblem gilt als so alt wie die Statistik selbst, birgt es doch in sich das Risiko, die Robustheit statistischer Verfahren massiv

Mehr

UNIVARIATE DATENANALYSE STATISTISCHE MASSZAHLEN MODUL 7 PROSEMINAR ANALYSE UND DARSTELLUNG VON DATEN I (DESKRIPTIVE STATISTIK)

UNIVARIATE DATENANALYSE STATISTISCHE MASSZAHLEN MODUL 7 PROSEMINAR ANALYSE UND DARSTELLUNG VON DATEN I (DESKRIPTIVE STATISTIK) INSTITUT FÜR ERZIEHUNGSWISSENSCHAFT - UNIVERSITÄT SALZBURG PROSEMINAR ANALYSE UND DARSTELLUNG VON DATEN I (DESKRIPTIVE STATISTIK) GÜNTER HAIDER WS 1997/98 MODUL 7 UNIVARIATE DATENANALYSE STATISTISCHE MASSZAHLEN

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

1. Biometrische Planung

1. Biometrische Planung 1. Biometrische Planung Die biometrische Planung ist Teil der Studienplanung für wissenschaftliche Studien, in denen eine statistische Bewertung von Daten erfolgen soll. Sie stellt alle erforderlichen

Mehr

Einführung in SPSS. 1. Die Datei Seegräser

Einführung in SPSS. 1. Die Datei Seegräser Einführung in SPSS 1. Die Datei Seegräser An 25 verschiedenen Probestellen wurde jeweils die Anzahl der Seegräser pro m 2 gezählt und das Vorhandensein von Seeigeln vermerkt. 2. Programmaufbau Die wichtigsten

Mehr

Anleitung zum Einrichten der Berliner Schulmail unter

Anleitung zum Einrichten der Berliner Schulmail unter Anleitung zum Einrichten der Berliner Schulmail unter Outlook 2003 Inhaltsverzeichnis 1. Einleitung... 3 2 E-Mail-Konto einrichten... 3 2.1 Vorbereitung... 3 2.2 Erstellen eines den Sicherheitsanforderungen

Mehr

Modellbildung und Simulation

Modellbildung und Simulation Modellbildung und Simulation 5. Vorlesung Wintersemester 2007/2008 Klaus Kasper Value at Risk (VaR) Glossar Portfolio: In der Ökonomie bezeichnet der Begriff Portfolio ein Bündel von Investitionen, das

Mehr

Hinweise zur Fehlerrechnung im Grundpraktikum der Physik

Hinweise zur Fehlerrechnung im Grundpraktikum der Physik Grundpraktikum der Physik Hinweise zur Fehlerrechnung im Grundpraktikum der Physik Sascha Hankele sascha@hankele.com Patrick Paul patrick.paul@uni-ulm.de 11. Mai 2011 Inhaltsverzeichnis 1 Einführung und

Mehr

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Einfaktorielle Versuchspläne 27/40 Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Abweichung Einfach Differenz Helmert Wiederholt Vergleich Jede Gruppe mit Gesamtmittelwert

Mehr

Schätzung des Lifetime Values von Spendern mit Hilfe der Überlebensanalyse

Schätzung des Lifetime Values von Spendern mit Hilfe der Überlebensanalyse Schätzung Lifetime Values von Spenn mit Hilfe Überlebensanalyse Einführung in das Verfahren am Beispiel Einzugsgenehmigung Überlebensanalysen o Ereignisdatenanalysen behandeln das Problem, mit welcher

Mehr

Stichprobenauslegung. für stetige und binäre Datentypen

Stichprobenauslegung. für stetige und binäre Datentypen Stichprobenauslegung für stetige und binäre Datentypen Roadmap zu Stichproben Hypothese über das interessierende Merkmal aufstellen Stichprobe entnehmen Beobachtete Messwerte abbilden Schluss von der Beobachtung

Mehr

12. Vergleich mehrerer Stichproben

12. Vergleich mehrerer Stichproben 12. Vergleich mehrerer Stichproben Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Häufig wollen wir verschiedene Populationen, Verfahren, usw. miteinander vergleichen. Beipiel: Vergleich

Mehr

EFS 10.8 Neue Features

EFS 10.8 Neue Features EFS 10.8 Neue Features Version 1.0, 1.10.2015 2015 Questback GmbH Die in dieser Publikation enthaltene Information ist Eigentum der Questback GmbH. Weitergabe und Vervielfältigung dieser Publikation oder

Mehr

Statistik Musterlösungen

Statistik Musterlösungen Statistik Musterlösungen Regina Tüchler & Achim Zeileis Institut für Statistik & Mathematik Wirtschaftsuniversität Wien 1 Grundbegriffe (1.23) Skript Reaktionen auf Videofilm. Aussagen M, E, P, S h(m)

Mehr

Der Internetdienst für Ihre Online-Umfragen. Leitfaden statistische Auswertung

Der Internetdienst für Ihre Online-Umfragen. Leitfaden statistische Auswertung Der Internetdienst für Ihre Online-Umfragen Leitfaden statistische Auswertung Weitere in dieser Reihe bei 2ask erschienene Leitfäden Allgemeiner Leitfaden zur Fragebogenerstellung Sie möchten einen Fragebogen

Mehr

Neuerungen in Minitab 16

Neuerungen in Minitab 16 Neuerungen in Minitab 16 minitab@additive-net.de - Telefon: 06172 / 5905-30 Willkommen zu Minitab 16! Die neueste Version der Minitab Statistical Software umfasst mehr als siebzig neue Funktionen und Verbesserungen,

Mehr

Anhang A: Fragebögen und sonstige Unterlagen

Anhang A: Fragebögen und sonstige Unterlagen Anhang Anhang A: Fragebögen und sonstige Unterlagen A.: Flyer zur Probandenrekrutierung 46 A.: Fragebogen zur Meditationserfahrung 47 48 A.3: Fragebogen Angaben zur Person 49 5 5 A.4: Termin- und Einladungsschreiben

Mehr

25. Januar 2010. Ruhr-Universität Bochum. Methodenlehre III, WS 2009/2010. Prof. Dr. Holger Dette. 4. Multivariate Mittelwertvergleiche

25. Januar 2010. Ruhr-Universität Bochum. Methodenlehre III, WS 2009/2010. Prof. Dr. Holger Dette. 4. Multivariate Mittelwertvergleiche Ruhr-Universität Bochum 25. Januar 2010 1 / 75 2 / 75 4.1 Beispiel: Vergleich von verschiedenen Unterrichtsmethoden Zwei Zufallsstichproben (A und B) mit je 10 Schülern und 8 Schülern Gruppe A wird nach

Mehr

Commercial Banking. Kreditportfoliosteuerung

Commercial Banking. Kreditportfoliosteuerung Commercial Banking Kreditportfoliosteuerung Dimensionen des Portfoliorisikos Risikomessung: Was ist Kreditrisiko? Marking to Market Veränderungen des Kreditportfolios: - Rating-Veränderung bzw. Spreadveränderung

Mehr

Prof. Dr. P. von der Lippe Statistik I NK SS 2002 Seite 1

Prof. Dr. P. von der Lippe Statistik I NK SS 2002 Seite 1 Prof. Dr. P. von der Lippe Statistik I NK SS 2002 Seite 1 Aufgabe 1 a) BWL-Student S hat von seinem Lieblingsonkel 10.000 geschenkt bekommen mit der Auflage damit etwas Vernünftiges zu machen. Nachdem

Mehr

1 Übungsaufgaben. 1.1 Übungsaufgaben zu Operations Research 1 ÜBUNGSAUFGABEN 0

1 Übungsaufgaben. 1.1 Übungsaufgaben zu Operations Research 1 ÜBUNGSAUFGABEN 0 1 ÜBUNGSAUFGABEN 0 1 Übungsaufgaben In diesem Kapitel sind Übungsaufgaben zusammengestellt, die den Stoff der Vorlesung vertiefen und die für Prüfungen erforderliche Praxis und Schnelligkeit vermitteln

Mehr

Statistische Verfahren für das Data Mining in einem Industrieprojekt

Statistische Verfahren für das Data Mining in einem Industrieprojekt Statistische Verfahren für das Data Mining in einem Industrieprojekt Thorsten Dickhaus Forschungszentrum Jülich GmbH Zentralinstitut für Angewandte Mathematik Telefon: 02461/61-4193 E-Mail: th.dickhaus@fz-juelich.de

Mehr