Stochastik für WiWi - Klausurvorbereitung

Größe: px
Ab Seite anzeigen:

Download "Stochastik für WiWi - Klausurvorbereitung"

Transkript

1 Dr. Markus Kuze WS 2013/14 Dipl.-Math. Stefa Roth Stochastik für WiWi - Klausurvorbereitug Gesetz der totale Wahrscheilichkeit ud Satz vo Bayes (Ω, F, P) Wahrscheilichkeitsraum, E 1,..., E F Ereigisse mit E i E j = für alle i j ud Ω = E 1 E. Da gilt für jedes beliebige Ereigis E F 1.) P(E) = P(E E j ) P(E j ) 2.) Falls P(E) > 0 ist, so gilt außerdem P(E i E) = P(E E i) P(E i ) P(E) = P(E E i) P(E i ), i = 1,..., P(E E j ) P(E j ) Eie statistische Auswertug der SWU hat ergebe, dass im Mittel 10 % aller Fahrgäste im öffetliche Nahverkehr schwarz fahre. 70 % der Schwarzfahrer habe keie Fahrkarte, die restliche 30 % habe etweder gefälschte oder illegale Fahrscheie. Vo de ehrliche Fahrgäste habe im Schitt 5 % ihre Fahrkarte vergesse. (a) Mit welcher Wahrscheilichkeit ka ei kotrollierter Fahrgast keie Fahrkarte vorzeige? (b) Mit welcher Wahrscheilichkeit ist ei kotrollierter Fahrgast, der keie Fahrkarte vorzeige ka ei Schwarzfahrer? Lösug E = {ehrlicher Fahrgast}, S = {Schwarzfahrer}, K = {Fahrgast ka keie Fahrschei vorzeige} (a) P(K) = P(K E)P(E) + P(K S)P(S) = = (b) P(S K) = P(K S)P(S) P(K) = Tschebyscheff Ugleichug Sei X : Ω R eie Zufallsvariable auf eiem Wahrscheilichkeitsraum (Ω, F, P) mit EX 2 <. Da gilt für jedes ε > 0 P( X EX ε) Var(X) ε 2 Variaz, Kovariaz ud Korrelatioskoeffiziet X, Y : Ω R Zufallsvariable auf eiem Wahrscheilichkeitsraum (Ω, F, P) mit EX 2, EY 2 <. Wichtige Formel:

2 1.) Var(X) = EX 2 (EX) 2 2.) Cov(X, Y ) = EXY EXEY 3.) ρ(x, Y ) = Cov(X,Y ) Var(X) Var(Y ) X 1, X 2, Y 1, Y 2 : Ω R Zufallsvariable auf (Ω, F, P) mit EX1 2, EX2 2, EY 1 2, EY 2 2 Recheregel für Variaz ud Kovariaz: < ud α, β R. 1.) Cov(αX, βy ) = αβcov(x, Y ), isbesodere Var(αX) = Cov(αX, αx) = α 2 Cov(X, X) = α 2 Var(X) 2.) Cov(X 1 + X 2, Y 1 + Y 2 ) = Cov(X 1, Y 1 ) + Cov(X 1, Y 2 ) + Cov(X 2, Y 1 ) + Cov(X 2, Y 2 ) 3.) Var(X + Y ) = Var(X) + 2Cov(X, Y ) + Var(Y ) Falls X ud Y ukorreliert sid, d.h. Cov(X, Y ) = 0, so gilt außerdem 4.) Var(X + Y ) = Var(X) + Var(Y ) Wichtig: aber im Allgemeie icht umgekehrt! Blatt 5, Aufgabe 2 X ud Y uabhägig X ud Y ukorreliert Es solle e i Aktie ivestiert werde. Dabei stehe 2 Aktie zur Auswahl: Aktie 1 kostet 80 e, der erwartete Kurs i eiem Jahr beträgt 90 e, bei eier Stadardabweichug vo 2 e. Aktie 2 kostet 120 e, der erwartete Kurs i eiem Jahr beträgt 150 e, bei eier Stadardabweichug vo 10 e. Das Geld soll mit miimalem Risiko ivestiert werde. Als Risikomaß verwede wir die Variaz, d.h. wir wolle die e so ivestiere, dass der Wert useres Portfolios i eiem Jahr miimale Variaz hat. Wie ist das Geld zu ivestiere, we (a) die Kurse i eiem Jahr uabhägig sid? (b) die Kurse i eiem Jahr eie Korrelatioskoeffiziete vo 0, 4 besitze? Zusätzlich wird stets davo ausgegage, dass Leerverkäufe icht erlaubt sid ud dass die e restlos ivestiert werde. Lösug Es bezeiche X de Kurs vo Aktie 1 ach eiem Jahr ud Y de Kurs vo Aktie 2 ach eiem Jahr. Gesucht sid α, β 0, so, dass { α 80 + β 120 = Var(αX + βy ) mi Eie Lösug bekommt ma, idem ma die erste Bedigug ach α auflöst ud daach i die zweite Bedigug eisetzt. Daach verwedet ma die obige Eigeschafte der Kovariaz um die zu miimierede Fuktio kokret zu bestimme. Das Miimum fidet ma da wie üblich. Blatt 6, Aufgabe 1 Die Zufallsvariable X sei gleichverteilt auf der Mege { 2, 1, 0, 1, 2}. Sei Y = X 2. (a) Bestimme Cov(X, Y ). (b) Sid X ud Y uabhägig? (Die Atwort ist zu begrüde!) Lösug

3 (a) Es gilt: Cov(X, Y ) = Cov(X, X 2 ) = EX 3 EXEX 2 Da die Verteilug vo X symmetrisch ist, gilt EX = EX 3 = 0, also Cov(X, Y ) = 0 Also sid X ud Y ukorreliert. [EX = 1 5 ( ) = 0 ud EX3 = 1 5 ( ) = 0 ] (b) X ud Y sid aber icht uabhägig, de z.b. P(X = 1, Y = 1) = P(X = 1, X 2 = 1) = P(X = 1) = 1 5 ud also P(X = 1)P(Y = 1) = P(X = 1)P(X 2 = 1) = P(X = 1)P(X { 1, 1}) = = 2 25 P(X = 1, Y = 1) P(X = 1)P(Y = 1) Schätze vo Parameter Θ R Parameterraum, {F θ ; θ Θ} parametrische Familie vo Verteiluge, X 1,..., X Zufallsstichprobe zur Verteilug F θ, θ = (θ 1,..., θ ) Θ. Mometeschätzer Ziel ist es, g(θ) zu schätze, wobei g : Θ R m eie Fuktio des Parametervektors θ ist. Ist g(θ) = f(m 1 (θ),..., m l (θ)) eie Fuktio f : R l R m gewisser Momete vo F θ, so wählt ma de Schätzer ĝ(θ) für g(θ) als wobei ˆm k = 1 i=1 X k i. ĝ(θ) = f( ˆm 1,..., ˆm l ), Sei X 1,..., X eie Zufallsstichprobe zur LN µ,σ 2-Verteilug. Bestimme mit Hilfe der Mometemethode eie Schätzer für de Parametervektor (µ, σ 2 ). Lösug ˆm 1 = 1 x j, ˆm 2 = 1 d.h. x 2 j, EX σ2 µ+ 1 = e 2, EX1 2 = e(2µ+σ2 )σ 2. Betrachte folgedes Gleichugssystem ˆm 1 = EX 1 ˆm 2 = EX 2 1 ˆm 1 = e µ+ σ2 2 µ + σ 2 2 = log( ˆm 1) µ = log( ˆm 1 ) σ2 2 ˆm 2 = e (2µ+σ2 )σ 2 (2µ + σ 2 )σ 2 = log( ˆm 2 ) 2 log( ˆm 1 )σ 2 = log( ˆm 2 ) σ 2 = log( ˆm 2) 2 log( ˆm 1 )

4 Daraus ergibt sich der Mometeschätzer (ˆµ, ˆσ 2 ) = (log( ˆm 1 ) log( ˆm 2) 4 log( ˆm 1 ), log( ˆm 2 ) 2 log( ˆm 1 ) ) Maximum-Likelihood-Schätzer Die Likelihood-Fuktio L : R Θ R vo F θ ist defiiert durch P(X 1 = x k ) ; F θ diskret L(x 1,..., x ; θ) = k=1 f(x k ) ; F θ absolutstetig mit Dichte f k=1 Der Maximum-Likelihood-Schätzer ˆθ für θ ist derjeige Parametervektor, der die Likelihood-Fuktio für jede Datevektor (x 1,..., x ) maximiert. Oft ist es eifacher die Log-Likelihood-Fuktio logl(x 1,..., x ; θ) defiiert durch zu betrachte. logl(x 1,..., x ; θ) = log(l(x 1,..., x ; θ)) Sei X 1,..., X eie Zufallsstichprobe zur LN µ,σ 2-Verteilug. Bestimme mit Hilfe der Maximum-Likelihood- Methode eie Schätzer für de Parametervektor (µ, σ 2 ), wobei die Dichte f der LN µ,σ 2-Verteilug gegebe ist durch 1 f(x) = σx (log(x) µ) 2 2π e 2σ 2, x > 0 Lösug ( ) 1 L(x 1,..., x ; µ, σ 2 ) = σ 1 e 2π x 1 x logl(x 1,..., x ; µ, σ 2 ) = log( 2πσ 2 ) log(x j ) µ logl = σ 2 logl = 2σ σ 4 log(x j ) µ σ 2 Der ML-Schätzer für (µ, σ 2 ) ist also gegebe durch (log(x j ) µ) 2 2σ 2 (log(x j ) µ) 2 = 0 µ = 1 log(x j ) 2σ 2 (log(x j ) µ) 2 = 0 σ 2 = 1 (log(x j ) µ) 2 (ˆµ, ˆσ 2 ) = ( 1 log(x j ), 1 (log(x j ) 1 log(x j )) 2 ) Güteeigeschafte vo Schätzer Sei T (X 1,..., X ) ei Schätzer für g(θ). 1.) Erwartugstreue: ET (X 1,..., X ) = g(θ). 2.) Asymptotische Erwartugstreue: lim ET (X 1,..., X ) = g(θ).

5 3.) Starke Kosistez: lim T (X 1,..., X ) = g(θ). 4.) Schwache Kosistez: lim P( T (X 1,..., X ) g(θ) > ε) = 0, für jedes ε > 0. Wichtig: 1.) 2.) ud 3.) 4.) Im Allgemeie aber icht adersherum!

Formelsammlung Mathematik

Formelsammlung Mathematik Formelsammlug Mathematik 1 Fiazmathematik 1.1 Reterechug Sei der Zissatz p%, der Zisfaktor q = 1 + p 100. Seie R die regelmäßig zu zahlede Rate, die Laufzeit. Edwert: Barwert: achschüssig R = R q 1 q 1

Mehr

Übungsblatt 1 zur Vorlesung Angewandte Stochastik

Übungsblatt 1 zur Vorlesung Angewandte Stochastik Dr Christoph Luchsiger Übugsblatt 1 zur Vorlesug Agewadte Stochastik Repetitio WT Herausgabe des Übugsblattes: Woche 9, Abgabe der Lösuge: Woche 1 (bis Freitag, 1615 Uhr), Rückgabe ud Besprechug: Woche

Mehr

Kapitel 4: Stationäre Prozesse

Kapitel 4: Stationäre Prozesse Kapitel 4: Statioäre Prozesse M. Scheutzow Jauary 6, 2010 4.1 Maßerhaltede Trasformatioe I diesem Kapitel führe wir zuächst de Begriff der maßerhaltede Trasformatio auf eiem Wahrscheilichkeitsraum ei ud

Mehr

Eingangsprüfung Stochastik,

Eingangsprüfung Stochastik, Eigagsprüfug Stochastik, 5.5. Wir gehe stets vo eiem Wahrscheilichkeitsraum (Ω, A, P aus. Die Borel σ-algebra auf wird mit B bezeichet, das Lebesgue Maß auf wird mit λ bezeichet. Aufgabe ( Pukte Sei x

Mehr

Prof. Dr. Holger Dette Musterlösung Statistik I Sommersemester 2009 Dr. Melanie Birke Blatt 5

Prof. Dr. Holger Dette Musterlösung Statistik I Sommersemester 2009 Dr. Melanie Birke Blatt 5 Prof. Dr. Holger Dette Musterlösug Statistik I Sommersemester 009 Dr. Melaie Birke Blatt 5 Aufgabe : 4 Pukte Sei X eie Poissoλ verteilte Zufallsvariable mit λ > 0, ud die Verlustfuktio L sei defiiert durch

Mehr

Wahrscheinlichkeit & Statistik

Wahrscheinlichkeit & Statistik Wahrscheilichkeit & Statistik created by Versio: 3. Jui 005 www.matheachhilfe.ch ifo@matheachhilfe.ch 079 703 7 08 Mege als Sprache der Wahrscheilichkeitsrechug, Begriffe, Grudregel Ereigisraum: Ω Ω Mege

Mehr

Aufgaben und Lösungen der Probeklausur zur Analysis I

Aufgaben und Lösungen der Probeklausur zur Analysis I Fachbereich Mathematik AG 5: Fuktioalaalysis Prof. Dr. K.-H. Neeb Dipl.-Math. Rafael Dahme Dipl.-Math. Stefa Wager ATECHNISCHE UNIVERSITÄT DARMSTADT SS 007 19. Jui 007 Aufgabe ud Lösuge der Probeklausur

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

SUCHPROBLEME UND ALPHABETISCHE CODES

SUCHPROBLEME UND ALPHABETISCHE CODES SUCHPROBLEME UND ALPHABETISCHE CODES Der Problematik der alphabetische Codes liege Suchprobleme zugrude, dere Lösug dem iformatiostheoretische Problem der Fidug eies (optimale) alphabetische Codes gleich

Mehr

Maximum Likelihood Version 1.6

Maximum Likelihood Version 1.6 Maximum Likelihood Versio 1.6 Uwe Ziegehage 15. November 2005 Logarithmegesetze log a (b) + log a (c) = log a (b c) (1) log a (b) log a (c) = log a (b/c) (2) log a (b c ) = c log a (b) (3) Ableitugsregel

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Rolad Speicher M.Sc. Tobias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 01 Musterlösug zu Blatt 0 Aufgabe 1. Käpt Schwarzbart,

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen:

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen: 61 6.2 Grudlage der mathematische Statistik 6.2.1 Eiführug i die mathematische Statistik I der mathematische Statistik behadel wir Masseerscheiuge. Wir habe es deshalb im Regelfall mit eier große Zahl

Mehr

3. Einführung in die Statistik

3. Einführung in die Statistik 3. Eiführug i die Statistik Grudlegedes Modell zu Date: uabhägige Zufallsgröße ; : : : ; mit Verteilugsfuktio F bzw. Eizelwahrscheilichkeite p ; : : : ; p r i de Aweduge: kokrete reale Auspräguge ; : :

Mehr

Kapitel 6: Statistische Qualitätskontrolle

Kapitel 6: Statistische Qualitätskontrolle Kapitel 6: Statistische Qualitätskotrolle 6. Allgemeies Für die Qualitätskotrolle i eiem Uterehme (produzieredes Gewerbe, Diestleistugsuterehme, ) gibt es verschiedee Möglichkeite. Statistische Prozesskotrolle

Mehr

Kapitel 1. Einige Begriffe aus der Asymptotik. 1.1 Wiederholung

Kapitel 1. Einige Begriffe aus der Asymptotik. 1.1 Wiederholung Kapitel Eiige Begriffe aus der Asymptotik. Wiederholug Eiwesetlicher Teil der Ökoometrie befasst sichmit der Ermittlug voschätzer ud dere Eigeschafte. Diese werde beötigt, um aus de beobachtbare Date eier

Mehr

Gliederung. Value-at-Risk

Gliederung. Value-at-Risk Value-at-Risk Dr. Richard Herra Nürberg, 4. Noveber 26 IVS-Foru Gliederug Modell Beispiel aus der betriebliche Altersversorgug Verteilug des Gesatschades Value-at-Risk ud Tail Value-at-Risk Risikobeurteilug

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

Statistische Modelle und Parameterschätzung

Statistische Modelle und Parameterschätzung Kapitel 2 Statistische Modelle ud Parameterschätzug 2. Statistisches Modell Die bisher betrachtete Modellierug eies Zufallsexperimetes erforderte isbesodere die Festlegug eier W-Verteilug. Oft besteht

Mehr

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:

Mehr

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S Statistik mit Excel 2013 Peter Wies Theme-Special 1. Ausgabe, Februar 2014 W-EX2013S 3 Statistik mit Excel 2013 - Theme-Special 3 Statistische Maßzahle I diesem Kapitel erfahre Sie wie Sie Date klassifiziere

Mehr

1 Analysis T1 Übungsblatt 1

1 Analysis T1 Übungsblatt 1 Aalysis T Übugsblatt A eier Weggabelug i der Wüste lebe zwei Brüder, die vollkomme gleich aussehe, zwische dee es aber eie gewaltige Uterschied gibt: Der eie sagt immer die Wahrheit, der adere lügt immer.

Mehr

Model CreditRisk + : The Economic Perspective of Portfolio Credit Risk Part I

Model CreditRisk + : The Economic Perspective of Portfolio Credit Risk Part I Model CreditRisk + : The Ecoomic Perspective of Portfolio Credit Risk Part I Semiar: Portfolio Credit Risk Istructor: Rafael Weißbach Speaker: Pablo Kimmig Ageda 1. Asatz ud Ziele Was ist CreditRisk +

Mehr

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen Testumfag für die Ermittlug ud Agabe vo Fehlerrate i biometrische Systeme Peter Uruh SRC Security Research & Cosultig GmbH peter.uruh@src-gmbh.de Eileitug Biometrische Systeme werde durch zwei wichtige

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Istitut für tochastik Prof. Dr. N. Bäuerle Dipl.-Math.. Urba Lösugsvorschlag 9. Übugsblatt zur Vorlesug Fiazmathematik I Aufgabe Ei euartiges Derivat) Wir sid i eiem edliche, arbitragefreie Fiazmarkt,

Mehr

Statistik I Februar 2005

Statistik I Februar 2005 Statistik I Februar 2005 Aufgabe 0 Pukte Ei Merkmal X mit de mögliche Auspräguge 0 ud, das im Folgede wie ei kardialskaliertes Merkmal behadelt werde ka, wird a Merkmalsträger beobachtet. Dabei bezeichet

Mehr

Monte Carlo-Simulation

Monte Carlo-Simulation Mote Carlo-Simulatio Mote Carlo-Methode Der Begriff Mote Carlo-Methode etstad i de 1940er Jahre, als ma im Zusammehag mit dem Bau der Atombombe die Simulatio vo Zufallsprozesse erstmals i größerem Stil

Mehr

Einführung in die mathematische Statistik

Einführung in die mathematische Statistik Kapitel 7 Eiführug i die mathematische Statistik 7.1 Statistische Modellierug Bei der Modellierug eies Zufallsexperimets besteht oft Usicherheit darüber, welche W-Verteilug auf der Ergebismege adäquat

Mehr

Vereinheitlichung Einheitlicher Maßstab der Risikoeinschätzung. Limitierung / Steuerung Messung und Limitierung ist fundamental für die Steuerung

Vereinheitlichung Einheitlicher Maßstab der Risikoeinschätzung. Limitierung / Steuerung Messung und Limitierung ist fundamental für die Steuerung . Marktpreisrisiko Motivatio der VaR-Ermittlug Vereiheitlichug Eiheitlicher Maßstab der Risikoeischätzug Limitierug / Steuerug Messug ud Limitierug ist fudametal für die Steuerug Kapitaluterlegug Zur Deckug

Mehr

6.1 Grundlagen der Wahrscheinlichkeitsrechnung 6.1.1 Definitionen und Beispiele Beispiel 1 Zufallsexperiment 1,2,3,4,5,6 Elementarereignis

6.1 Grundlagen der Wahrscheinlichkeitsrechnung 6.1.1 Definitionen und Beispiele Beispiel 1 Zufallsexperiment 1,2,3,4,5,6 Elementarereignis 6. Grudlage der Wahrscheilichkeitsrechug 6.. Defiitioe ud Beispiele Spiele aus dem Alltagslebe: Würfel, Müze, Karte,... u.s.w. sid gut geeiget die Grudlage der Wahrscheilichkeitsrechug darzustelle. Wir

Mehr

Prof. Dr. Roland Füss Statistik II SS 2008

Prof. Dr. Roland Füss Statistik II SS 2008 1. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug ergibt sich aus de Grezwertsätze. Grezwertsätze sid Aussage über eie Zufallsvariable für de Fall, dass die Azahl

Mehr

Kapitel 6: Quadratisches Wachstum

Kapitel 6: Quadratisches Wachstum Kapitel 6: Quadratisches Wachstum Dr. Dakwart Vogel Ui Esse WS 009/10 1 Drei Beispiele Beispiel 1 Bremsweg eies PKW Bremsweg Auto.xls Ui Esse WS 009/10 Für user Modell des Bremsweges gilt a = a + d a =

Mehr

Qualitätskennzahlen für IT-Verfahren in der öffentlichen Verwaltung Lösungsansätze zur Beschreibung von Metriken nach V-Modell XT

Qualitätskennzahlen für IT-Verfahren in der öffentlichen Verwaltung Lösungsansätze zur Beschreibung von Metriken nach V-Modell XT Qualitätskezahle für IT-Verfahre i der öffetliche Verwaltug Lösugsasätze zur Vo Stefa Bregezer Der Autor arbeitet im Bereich Softwaretest ud beschäftigt sich als Qualitätsbeauftragter mit Theme zu Qualitätssicherug

Mehr

Nennenswertes zur Stetigkeit

Nennenswertes zur Stetigkeit Neeswertes zur Stetigkeit.) Puktweise Stetigkeit: Vo Floria Modler Defiitio der pukteweise Stetigkeit: Eie Fuktio f : D R ist geau da i x D stetig, we gilt: ε > δ >, so dass f ( x) f ( x ) < ε x D mit

Mehr

Grundkompetenz-Aufgaben

Grundkompetenz-Aufgaben Durch starte Mathematik übugsbuch bis Grudkompetez-Aufgabe Aufgrud der eue schriftliche Reifeprüfug i Mathematik ist es otwedig, sich mit de eue Grudkompetez-Aufgabe auseiaderzusetze. Die Olie-Ergäzug

Mehr

5 Bernoulli-Kette. 5.1 Bernoulli-Experiment. Jakob Bernoulli 1654-1705 Schweizer Mathematiker und Physiker. 5.1.1 Einleitung

5 Bernoulli-Kette. 5.1 Bernoulli-Experiment. Jakob Bernoulli 1654-1705 Schweizer Mathematiker und Physiker. 5.1.1 Einleitung Seite vo 7 5 Beroulli-Kette Jakob Beroulli 654-705 Schweizer Mathematiker ud Physiker 5. Beroulli-Exerimet 5.. Eileitug Oft iteressiert ma sich bei Zufallsexerimete icht für die eizele Ergebisse, soder

Mehr

Klasse: Platzziffer: Punkte: / Graph zu f

Klasse: Platzziffer: Punkte: / Graph zu f Pflichtteil Mathematik I Aufgabe P Name: Vorame: Klasse: Platzziffer: Pukte: / P.0 Gegebe ist die Fuktio f mit der Gleichug (siehe Zeichug). y x8 y,25 4 mit GI IRIR Graph zu f O x P. x 8 Die Pukte C (x,25

Mehr

( ) Formelsammlung. Kombinatorik. Permutation: ohne Wiederholung. n! = n (n - 1) (n - 2)... 3 2 1 n= alle Elemente. Permutation: mit Wiederholung

( ) Formelsammlung. Kombinatorik. Permutation: ohne Wiederholung. n! = n (n - 1) (n - 2)... 3 2 1 n= alle Elemente. Permutation: mit Wiederholung Formelsammlug Kombiatori Permutatio: ohe Wiederholug! = ( - 1) ( - 2).... 3 2 1 = alle Elemete Permutatio: mit Wiederholug!! P, = = usw. = gleiche Elemete! 1! K 2! Stichprobe (SP) = geordete Auswahl Geordete

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert.

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert. Prof. Dr. H. Rommelfager: Etscheidugstheorie, Kaitel 3 7 3. Etscheidug bei Risiko (subjektive oder objektive) Eitrittswahrscheilichkeite für das Eitrete der mögliche Umweltzustäde köe vom Etscheidugsträger

Mehr

Vorlesung Einführung in die mathematische Statistik

Vorlesung Einführung in die mathematische Statistik Vorlesug Eiführug i die mathematische Statistik Prof. A. Atille Sommersemester 2004 Literatur P.J. Bickel K.A. Doksum, Mathematical Statistics: Basic Ideas ad Selected Topics Holde-Day, 1977. L. Breima,

Mehr

... a ik) i=1...m, k=1...n A = = ( a mn

... a ik) i=1...m, k=1...n A = = ( a mn Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n,

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n, f : a P UNIVERSIÄ DES SAARLANDES FACHRICHUNG 6. MAHEMAIK Prof. Dr. Rolad Speicher M.Sc. obias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 202 Musterlösug zu Blatt Aufgabe. Zeige Sie durch Abwadlug

Mehr

Stichproben im Rechnungswesen, Stichprobeninventur

Stichproben im Rechnungswesen, Stichprobeninventur Stichprobe im Rechugswese, Stichprobeivetur Prof Dr Iree Rößler ud Prof Dr Albrecht Ugerer Duale Hochschule Bade-Württemberg Maheim Im eifachste Fall des Dollar-Uit oder Moetary-Uit Samplig (DUS oder MUS-

Mehr

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008 Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe

Mehr

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110 Name, Vorame Matrikel-Nr. Studiezetrum Studiegag Fach Art der Leistug Klausur-Kz. Betriebswirtschaft Wirtschaftsmathematik Studieleistug Datum 10.11.2001 BW-WMT-S12 011110 Verwede Sie ausschließlich das

Mehr

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte.

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte. Statistik Vorlesug,. ärz, Statistische aßzahle Iformatio zu verdichte, Besoderheite hervorzuhebe ittelwerte Aufgabe: die Lage der Verteilug auf der Abszisse zu zeige. Der odus: derjeige Wert, der im Häufigste

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Studiegag Betriebswirtschaft Fach Wirtschaftsmathematik Art der Leistug Studieleistug Klausur-Kz. BW-WMT-S1 040508 Datum 08.05.004 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich: Verwede

Mehr

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I Uiversität des Saarlades Fakultät für Mathematik ud Iformatik Witersemester 2003/04 Prof. Dr. Joachim Weickert Dr. Marti Welk Dr. Berhard Burgeth Lösuge der Aufgabe zur Vorbereitug auf die Klausur Mathematik

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

LV "Grundlagen der Informatik" Programmierung in C (Teil 2)

LV Grundlagen der Informatik Programmierung in C (Teil 2) Aufgabekomplex: Programmiere i C (Teil vo ) (Strukturierte Datetype: Felder, Strukture, Zeiger; Fuktioe mit Parameterübergabe; Dateiarbeit) Hiweis: Alle mit * gekezeichete Aufgabe sid zum zusätzliche Übe

Mehr

Informatik II Dynamische Programmierung

Informatik II Dynamische Programmierung lausthal Iformatik II Dyamische Programmierug. Zachma lausthal Uiversity, ermay zach@i.tu-clausthal.de Zweite Techik für de Algorithmeetwurf Zum Name: "Dyamische " hat ichts mit "Dyamik" zu tu, soder mit

Mehr

Ungleichungen werden mit Äquivalenzumformungen gelöst. Hierzu werden die sogenannten Monotoniegesetze angegeben.

Ungleichungen werden mit Äquivalenzumformungen gelöst. Hierzu werden die sogenannten Monotoniegesetze angegeben. Floria Häusler Ugleichuge. Grudsätzliches I folgede ist ur vo reelle Zahle die Rede, ohe daß dies im eizele betot wird. Es seie A, B, C,... Terme reeller Zahle, u. U. auch mit Variable. Für Ugleichuge

Mehr

Parameter von Häufigkeitsverteilungen

Parameter von Häufigkeitsverteilungen Kapitel 3 Parameter vo Häufigkeitsverteiluge 3. Mittelwerte Mo Der Modus (:= häufigster Wert, Abk.: Mo) ist der Merkmalswert mit der größte Häufigkeit, falls es eie solche gibt. Er sollte ur bei eigipflige

Mehr

Logarithmusfunktion, Rechenregeln für Logarithmen, Ableiten von Logarithmen (die Ableitung nach p wird hier stets als p geschrieben)

Logarithmusfunktion, Rechenregeln für Logarithmen, Ableiten von Logarithmen (die Ableitung nach p wird hier stets als p geschrieben) Wirtschaftswisseschaftliches Zetrum Uiversität Basel Statistik Dr. Thomas Zehrt (Pukt)Schätze Motivatio Eie vollstädige Iformatio über die Verteilug eies Merkmals X i eier Grudgesamtheit ka ur durch eie

Mehr

elektr. und magnet. Feld A 7 (1)

elektr. und magnet. Feld A 7 (1) FachHochschule Lausitz Physikalisches Praktikum α- ud β-strahlug im elektr. ud maget. Feld A 7 Name: Matrikel: Datum: Ziel des Versuches Das Verhalte vo α- ud β-strahlug im elektrische ud magetische Feld

Mehr

Beschreibende Statistik Kenngrößen in der Übersicht (Ac)

Beschreibende Statistik Kenngrößen in der Übersicht (Ac) Beschreibede Statistik Kegröße i der Übersicht (Ac) Im folgede wird die Berechugsweise des TI 83 (sowie vo SPSS, s. ute) verwedet. Diese geht auf eie Festlegug vo Moore ud McCabe (00) zurück. I der Literatur

Mehr

Musterlösung zu Übungsblatt 2

Musterlösung zu Übungsblatt 2 Prof. R. Padharipade J. Schmitt C. Schießl Fuktioetheorie 25. September 15 HS 2015 Musterlösug zu Übugsblatt 2 Aufgabe 1. Reelle Fuktioe g : R R stelle wir us üblicherweise als Graphe {(x, g(x)} R R vor.

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12 Mthemtisches Istitut der Uiversität Müche Prof. Dr. Peter Otte WiSe 203/4 Lösug 2 2.0.204 Aufgbe 2. [8 Pute] Übuge zur Alysis für Iformtier ud Sttistier Lösug zu Bltt 2 Für eie Teilmege Ω R, sei {, flls

Mehr

2. Diophantische Gleichungen

2. Diophantische Gleichungen 2. Diophatische Gleichuge [Teschl05, S. 91f] 2.1. Was ist eie diophatische Gleichug ud wozu braucht ma sie? Def D2-1: Eie diophatische Gleichug ist eie Polyomfuktio i x,y,z,, bei der als Lösuge ur gaze

Mehr

Zusammenfassung Wirtschaftsinformatik Stefan Käßmann

Zusammenfassung Wirtschaftsinformatik Stefan Käßmann I. Iformatio ud Nachricht 1. Iformatio ud Nachricht - Nachricht (Sytax), Sigale, Zeiche - Iformatio (Sematik), bit - Rausche 2. digitale Nachrichte - digitale Sigale (Sigalparameter aus edlicher Zeichevorrat)

Mehr

Robuste Asset Allocation in der Praxis

Robuste Asset Allocation in der Praxis Fiazmarkt Sachgerechter Umgag mit Progosefehler Robuste Asset Allocatio i der Praxis Pesiosfods ud adere istitutioelle Aleger sid i aller Regel a ei bestimmtes Rediteziel (Rechugszis) gebude, das Jahr

Mehr

Zahlenfolgen, Grenzwerte und Zahlenreihen

Zahlenfolgen, Grenzwerte und Zahlenreihen KAPITEL 5 Zahlefolge, Grezwerte ud Zahlereihe. Folge Defiitio 5.. Uter eier Folge reeller Zahle (oder eier reelle Zahlefolge) versteht ma eie auf N 0 erlarte reellwertige Futio, die jedem N 0 ei a R zuordet:

Mehr

Mathematische Statistik

Mathematische Statistik Skript Mathematische Statistik Max v. Reesse Aufgezeichet vo Tobias Weihrauch Sommersemester 202 Uiversität Leipzig INHALTSVERZEICHNIS Ihaltsverzeichis Eiführug 3. Statistik als Teil der Stochastik........................

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3 INHALTSVERZEICHNIS AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2 Datefluß ud Programmablauf 2 Vorbedigug 3 Nachbedigug 3 Schleifeivariate 3 KONSTRUKTION 4 ALTERNATIVE ENTWURFSMÖGLICHKEITEN 5 EFFEKTIVE

Mehr

Seminar: Randomisierte Algorithmen Routenplanung in Netzwerken

Seminar: Randomisierte Algorithmen Routenplanung in Netzwerken Semiar: Radomisierte Algorithme Routeplaug i Netzwerke Marie Gotthardt 3. Oktober 008 Ihaltsverzeichis 1 Routeplaug i Netzwerke 1.1 Laufzeit eies determiistische Algorithmus'................ 1. Radomisierter

Mehr

Elementare Wahrscheinlichkeitsrechnung und Statistik

Elementare Wahrscheinlichkeitsrechnung und Statistik CURANDO UNIVERSITÄT ULM SCIENDO DOCENDO Elemetare Wahrscheilichkeitsrechug ud Statistik Uiversität Ulm Istitut für Stochastik Vorlesugsskript Prof. Dr. Volker Schmidt Stad: Witersemester 28/9 Ulm, im Februar

Mehr

7. Stichproben und Punktschätzung

7. Stichproben und Punktschätzung 7. Stichprobe ud Puktschätzug 7. Grudgesamtheit ud Stichprobe Ausgagspukt der iduktive Statistik (beurteilede Statistik) sid Stichprobedate. Speziell stamme die Date aus Zufallsstichprobe. Die Stichprobeergebisse

Mehr

Wintersemester 2006/2007, Universität Rostock Abgabetermin: spätestens 24.10.2006, 09:00 Uhr. Aufgabe 1.1: (5 P)

Wintersemester 2006/2007, Universität Rostock Abgabetermin: spätestens 24.10.2006, 09:00 Uhr. Aufgabe 1.1: (5 P) Serie Abgabetermi: spätestes 24.0.2006, 09:00 Uhr Aufgabe.: 5 P Zeige Sie, dass das geometrische Mittel icht größer ist als das arithmetische Mittel, d.h., dass für alle Zahle a, b R mit a, b 0 gilt ab

Mehr

Aufgaben zur Analysis I

Aufgaben zur Analysis I Aufgabe zur Aalysis I Es werde folgede Theme behadelt:. Logik, Iduktio, Mege, Abbilduge 2. Supremum, Ifimum 3. Folge, Fuktioefolge 4. Reihe, Potezreihe 5. Mootoie ud Stetigkeit 6. Differetialrechug 7.

Mehr

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222 Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme

Mehr

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst.

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst. Krytologie: Krytograhie ud Krytoaalyse Krytologie ist die Wisseschaft, die sich mit dem Ver- ud Etschlüssel vo Iformatioe befasst. Beisiel Iteretkommuikatio: Versiegel (Itegrität der Nachricht) Sigiere

Mehr

Aussagenlogik Schnelldurchlauf

Aussagenlogik Schnelldurchlauf Aussagelogik Schelldurchlauf Michael Leuschel Softwaretechik ud Programmiersprache Lecture 3 Teil 1: Sprache (Sytax) Bestadteile Atomare Aussage (atomic propositios) Etweder wahr oder falsch (Wahrheitswert,

Mehr

Höhere Finanzmathematik. Sehr ausführliches Themenheft (d. h. mit Theorie) Aber auch mit vielen Trainingsaufgaben

Höhere Finanzmathematik. Sehr ausführliches Themenheft (d. h. mit Theorie) Aber auch mit vielen Trainingsaufgaben Expoetielles Wachstum Höhere Fiazmathematik Sehr ausführliches Themeheft (d. h. mit Theorie) Aber auch mit viele Traiigsaufgabe Es hadelt sich um eie Awedug vo Expoetialfuktioe (Wachstumsfuktioe) Datei

Mehr

Einführung in die induktive Statistik. Inferenzstatistik. Konfidenzintervalle. Friedrich Leisch

Einführung in die induktive Statistik. Inferenzstatistik. Konfidenzintervalle. Friedrich Leisch Spiel Körpergröße Zahl: Azahl weiblich Eiführug i die iduktive Statistik Friedrich Leisch Istitut für Statistik Ludwig-Maximilias-Uiversität Müche Tafelgruppe 8.5 8.6 8.7 8.8 8.9 9.0 9.1 4 5 3 2 1 0 1

Mehr

Statistik. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.html

Statistik. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.html Statistik Prof. Dr. K. Melzer kari.melzer@hs-esslige.de http://www.hs-esslige.de/de/mitarbeiter/kari-melzer.html Ihaltsverzeichis 1 Eileitug ud Übersicht 3 2 Dategewiug (kurzer Überblick) 3 2.1 Plaugsphase

Mehr

Grundgesamtheitsanaylsen und Stichproben. Betrachtungen zur Stichprobenfindung

Grundgesamtheitsanaylsen und Stichproben. Betrachtungen zur Stichprobenfindung MaMaEuSch Maagemet Mathematics for Europea Schools http://www.mathematik.uikl.de/ mamaeusch Grudgesamtheitsaaylse ud Stichprobe. Betrachtuge zur Stichprobefidug Paula Lagares Justo Puerto 1 MaMaEuSch 2

Mehr

Der natürliche Werkstoff Holz - Statistische Betrachtungen zum uniaxialen Zugversuch am Beispiel von Furnier

Der natürliche Werkstoff Holz - Statistische Betrachtungen zum uniaxialen Zugversuch am Beispiel von Furnier Der atürliche Werkstoff Holz - Statistische Betrachtuge zum uiaxiale Zugversuch am Beispiel vo Furier B. Bellair, A. Dietzel, M. Zimmerma, Prof. Dr.-Ig. H. Raßbach Zusammefassug FH Schmalkalde, 98574 Schmalkalde,

Mehr

Demo für www.mathe-cd.de

Demo für www.mathe-cd.de Wahrscheilichkeitsrechug Hypergeometrische Verteilug Themeheft ud Traiigsheft Datei r. 4211 Stad 17. April 2010 Friedrich W. Buckel Demo für ITERETBIBLIOTHEK FÜR SCHULMATHEMATIK 4211 Hypergeometrische

Mehr

Statistische Formelsammlung Begleitende Materialien zur Statistik - Vorlesung des Grundstudiums im Fachbereich IK

Statistische Formelsammlung Begleitende Materialien zur Statistik - Vorlesung des Grundstudiums im Fachbereich IK Statistische Formelsammlug Begleitede Materialie zur Statistik - Vorlesug des Grudstudiums im Fachbereich IK Erstellt im Rahme des studierede Projektes PROST Studiejahr 00/00 uter Aleitug vo Frau Prof.

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

Übungsblatt 9 zur Vorlesung. Statistische Methoden

Übungsblatt 9 zur Vorlesung. Statistische Methoden Dr. Christof Luchsiger Übugsblatt 9 zur Vorlesug Statistische Methode Schätztheorie ud Kofidezitervalle Herausgabe des Übugsblattes: Woche 8, Abgabe der Lösuge: Woche 9 (bis Freitag, 65 Uhr), Besprechug:

Mehr

e) ( 4a + 8b + 9a + 18b ) : a + 2b f) 2 log (x) + 3 log (2y) 0.5 log (z)

e) ( 4a + 8b + 9a + 18b ) : a + 2b f) 2 log (x) + 3 log (2y) 0.5 log (z) Mathematik 1 Test SELBSTTEST MATHEMATIK 1. Forme Sie die folgede Terme um: a) y y y y + y : ( ) ( ) b) ( 9 ) 18 c) 5 3 3 3 d) 6 5 4 ( 7 y ) 3 4 5 ( 14 y ) e) ( 4a + 8b + 9a + 18b ) : a + b f) log () +

Mehr

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer vo Prof. Dr. Ig. Dirk Rbe FH Emde/Leer Überblick: Folge ud Reihe Folge: Zhlefolge ( ) ; ; ; ist eie geordete Liste vo Zhle ( IN) : Glieder der Folge f(): Bildugsgesetz (eplizit i oder rekursiv) z.b.: (

Mehr

}) = ϑ Einsen (1 ϑ) Nullen,

}) = ϑ Einsen (1 ϑ) Nullen, 6. Schätzprobleme 6.1. Beispiele a) I eiem Teich befidet sich eie ubekate Azahl vo Fische. Ma schätze z. B. durch Agel, markiere, wieder aussetze ud ochmal agel; vgl. Übug) b) Weiteres Beispiel: Wie groß

Mehr

Fehlerrechnung. 3. Genauigkeit von Meßergebnissen am Beispiel der Längenmessung

Fehlerrechnung. 3. Genauigkeit von Meßergebnissen am Beispiel der Längenmessung 1 Gie 11/000 Fehlerrechug 1. Physikalische Größe: Zahlewert ud Eiheit. Ursache vo Meßfehler 3. Geauigkeit vo Meßergebisse am Beispiel der Lägemessug 4. Messug eier kostate Größe ud Mittelwert 5. Messug

Mehr

Wirtschaftsingenieurwesen Wirtschaftsmathematik Prüfungsleistung WI-WMT-P12 040703. Studiengang Fach Art der Leistung Klausur-Knz. Datum 03.07.

Wirtschaftsingenieurwesen Wirtschaftsmathematik Prüfungsleistung WI-WMT-P12 040703. Studiengang Fach Art der Leistung Klausur-Knz. Datum 03.07. Studiegag Fach Art der Leistug Klausur-Kz. Wirtschaftsigeieurwese Wirtschaftsmathematik Prüfugsleistug WI-WMT-P 040703 Datum 03.07.004 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich:

Mehr

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable Allgemeie Lösuge der -dimesioale Laplace-Gleichug ud ihre komplexe Variable Dr. rer. at. Kuag-lai Chao Göttige, de 4. Jauar 01 Abstract Geeral solutios of the -dimesioal Laplace equatio ad its complex

Mehr

Analysis I Probeklausur 2

Analysis I Probeklausur 2 WS /2 Mriescu/ Ert Alysis I Probeklusur 2. Aufgbe Die Folge (x ) N sei rekursiv defiiert durch x =, x + = 2+x. () Beweise, dss die Folge (x ) N streg mooto wchsed ist. (b) Beweise, dss (x ) N durch 2 ch

Mehr

Elektronikpraktikum: Digitaltechnik 2

Elektronikpraktikum: Digitaltechnik 2 Elektroikpraktikum: Digitaltechik 2 Datum, Ort: 16.05.2003, PHY/D-213 Betreuer: Schwierz Praktikate: Teshi C. Hara, Joas Posselt (beide 02/2/PHY/02) Gruppe: 8 Ziele Aufbau eier 3-Bit-Dekodierschaltug;

Mehr

1.2. Taylor-Reihen und endliche Taylorpolynome

1.2. Taylor-Reihen und endliche Taylorpolynome 1.. aylor-reihe ud edliche aylorpolyome 1..1 aylor-reihe Wir köe eie Fuktio f() i eier Umgebug eies Puktes o gut durch ihre agete i o: t o () = f(o) + f (o) (-o) aäher: Wir sehe: Je weiter wir vo o weg

Mehr

Einführung in die Wahrscheinlichkeitstheorie

Einführung in die Wahrscheinlichkeitstheorie WS 2014/15 Eiführug i die Wahrscheilichkeitstheorie Prof. Dr. Nia Gatert 7. Februar 2015 Ihaltsverzeichis 0 Eileitug 3 1 Diskrete Wahrscheilichkeitsräume 4 1.1 Grudbegriffe..................................

Mehr

x 2 + 2 m c Φ( r, t) = n q n (t) φ n ( r) (5) ( + k 2 n ) φ n ( r) = 0 (6a)

x 2 + 2 m c Φ( r, t) = n q n (t) φ n ( r) (5) ( + k 2 n ) φ n ( r) = 0 (6a) Quatisierug eies skalare Feldes Das Ziel ist eigetlich das elektromagetische Feld zu quatisiere, aber wie ma scho a de MAXWELLsche Gleichuge sehe ka, ist es zu kompliziert, um damit zu begie. Außerdem

Mehr

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt 2.4.5 Gauss-Test ud t-test für verbudee Stichprobe 2.4.5.8 Zum Begriff der verbudee Stichprobe Verbudee Stichprobe: Vergleich zweier Merkmale X ud Y, die jetzt a deselbe Persoe erhobe werde. Vorsicht:

Mehr

Investitionsund Finanzierungsplanung mittels Kapitalwertmethode, Interner Zinsfuß

Investitionsund Finanzierungsplanung mittels Kapitalwertmethode, Interner Zinsfuß Ivesiiosud Fiazierugsplaug miels Kapialwermehode, Ierer Zisfuß Bearbeie vo Fraka Frid, Chrisi Klegel WI. Aufgabe: Eie geplae Ivesiio mi Aschaffugsausgabe vo.,- läss jeweils zum Jahresede die folgede Eiahme

Mehr

Logarithmus - Übungsaufgaben. I. Allgemeines

Logarithmus - Übungsaufgaben. I. Allgemeines Eie Gleichug höhere Grdes wie z. B. Gymsium / Relschule Logrithmus - Üugsufge Klsse 0 I. Allgemeies k ch ufgelöst werde, idem m die Wurzel zieht. Tritt die Uekte jedoch im Epoete eier Potez uf, spricht

Mehr

Calmet Calibration. Calmet C300 Der Kalibrator für nicht sinusförmige Signalverläufe - Oberwellen Erweiterte Spezifikationen.

Calmet Calibration. Calmet C300 Der Kalibrator für nicht sinusförmige Signalverläufe - Oberwellen Erweiterte Spezifikationen. C300 Der Kalibrator für icht siusförmige Sigalverläufe - Oberwelle Erweiterte Spezifikatioe Calibratio Awedugsbericht Was bedeutet Leistugs-/Eergiekalibrierug bei icht siusförmige Ströme/Spauge Elektrische

Mehr

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel:

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel: E Tilgugsrechug.. Jährliche Raeilgug Ausgagspuk: Bei Raeilgug wird die chuldsumme (Newer des Kredis [Aleihe, Hypohek, Darleh]) i gleiche Teilberäge T geilg. Die Tilgugsrae läss sich ermiel als: T =.. Jährliche

Mehr