Gliederung. Value-at-Risk

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Gliederung. Value-at-Risk"

Transkript

1 Value-at-Risk Dr. Richard Herra Nürberg, 4. Noveber 26 IVS-Foru Gliederug Modell Beispiel aus der betriebliche Altersversorgug Verteilug des Gesatschades Value-at-Risk ud Tail Value-at-Risk Risikobeurteilug eier Pesioskasse Hiweise für die Praxis Seite 2

2 Modell Hauptgesatheit der versicherte Persoe gesater Bestad Abrechugsverbad Versicherte i eie Tarif Versorgugsberechtigte i eie Pesiospla Verschiedee Ursache, aus der Hauptgesatheit i eie Nebegesatheit auszuscheide Typische Ausscheideursache köe beispielsweise sei: i der Lebesversicherug: Tod, Rückkauf, Beitragsfreistellug i der Krakeversicherug: Tod, Storo i der betriebliche Altersversorgug: Tod ohe Witwe, Tod it Witwe, Ivalidität, Ausscheide it oder ohe uverfallbare Asprüche, Portabilität, Wechsel i de Altersruhestad. Seite 3 Modell Ausscheidewahrscheilichkeite Für das Mitglied der Hauptgesatheit bezeiche für die Ausscheideursache h,, q P (Ausscheide wege Ursache h) die Wahrscheilichkeit aus der Hauptgesatheit auszuscheide ud () q h q die Wahrscheilichkeit, i der Hauptgesatheit zu verbleibe. Da es sich bei der Hauptgesatheit u Versicheruge hadelt, wird i Folgede ausgeschlosse, dass sätliche Ausscheidewahrscheilichkeite ull sid, d. h. h {,, } it q > Seite 4

3 Modell Zufallsvariable des Ergebisses Bezeiche die Zufallsvariable X für Mitglied das Ergebis (Aufwad bzw. Ertrag) für die Versicherug i Geschäftsahr, da gibt es für X ( + ) ögliche Realisatioe. Bezeiche R die Mege der ögliche Realisatio vo X. Für Erwartugswert ud Variaz vo X gilt da E(X ) Var(X ) { r (h ), h,,..., } h h q r : µ ( ) 2 2 µ σ q r : Darüber hiaus existiere auch die Moete höherer Ordug. Für die Versicherug ergebe sich die Realisatioe vo X als Differeze zwische de vorhadee Veröge ud der zu erbrigede Leistug. Seite 5 Modell Bezeiche L L () de Barwert (zu Begi des Jahres) aller Leistuge, die bei Ausscheide aus der Hauptgesatheit aufgrud der Ursache h (h,, ) fällig werde, de Barwert (zu Begi des Jahres) bei Verbleibe i der Hauptgesatheit. V Deckugskapital a Begi des Jahres bei Zugehörigkeit zur Hauptgesatheit P Präie (fällig zu Begi des Jahres) P S Sparpräie v, i Zis + i Seite 6

4 Modell Da gilt () () (h ) (h ) V + P q L + q L h q L + q L (h ) () (h ) (h ) h h ( ) () (h ) (h ) () h L + q L L ( ) () (h ) (h ) () h Risikokapital K für Ausscheideursache h L + q L L S (h ) (h ) V P q K h + + Seite 7 Modell Für die idividuelle Schadefuktio werde die Realisatioe festgelegt r vo X wie folgt r K L L für h,..., () r L L () () () Der Erwartugswert E(X ) ist da ( ) h E X q r h ( ) q L L () V + P L () Seite 8

5 Beispiel aus der betriebliche Altersversorgug Pesioszusage auf gleichbleibeder Jahresrete R, 6 % Witwereteawartschaft Populatiosodell der Richttafel, d.h. drei Ausscheideursache: Ivalidität, Tod it Witwe, Tod ohe Witwe Barwerte, riskierte Kapitale ud Ausscheidewahrscheilichkeite Verbleibe i der Hauptgesatheit (h ) L () () K v V () aa x + k x + k aia aw a ( x + k + x + k + x + k + ) v R a + w a P a q i q Ivalidität (h ) 2 ( x + k + x + k + ) L R v a + w a () i iw K L L q () () () i () x + k 2 2 Tod it Witwe (h 2) 2 L w R v a (2) w y x + + K L L (2) (2) () q q h (2) aa x + k x + k (3) L (3) () ( k) Tod ohe Witwe (h 3) (3) aa q q ( ) x + h k x + k K L 2 Seite 9 Beispiel aus der betriebliche Altersversorgug Der Erwartugswert des Eizelschades beträgt bei gleiche Populatiosodell ud gleiche Ausscheidewahrscheilichkeite wie für die Bewertug aia aw a aia aw a ( ) ( x + k + x + k x k,z x k ) + ( x + k x + k + x + k +,z x k ) E X R a w a P a P v a w a P a Zusätzliche Berücksichtigug der Fluktuatio Modifikatio der Ausscheidewahrscheilichkeite für Tod ud Ivalidität erforderlich Modellerweiterug (4) Fluktuatioswahrscheilichkeit q Da gilt ( x+ k+ x+ k+ ) L v u R a + w a (4) aia aw K L L (4) (4) () it u < Uverfallbarkeitsfaktor oder (4) L K L (4) () falls keie Asprüche aufrechterhalte werde Seite

6 Verteilug des Gesatschades Der Gesatschade des Versicherugsuterehes (bzw. eies Teilbestades) ergibt sich als Sue der Eizelschäde S X Es gilt da ( ) E( X ) E S µ ud wege der Uabhägigkeit der X Var S ( ) Var( X ) 2 σ Seite Verteilug des Gesatschades Berechug der Gesatschadeverteilug durch Faltug Da die Verteiluge der Eizelschäde bekat sid, ka die Gesatschadeverteilug durch Faltug erittelt werde ittels ( ) ( ) ( ) P S a P S a K P X K h wobei das riskierte Kapital bei Ausscheide wege Ursache h (h,, ) K des Mitglieds aus der Hauptgesatheit bzw. das Verbleibe i der Hauptgesatheit (h ) bezeichet. Mit Hilfe der Faltug ka isbesodere für kleiere Bestäde die Gesatschadeverteilug exakt ud zugleich schell erittelt werde. Seite 2

7 Verteilug des Gesatschades Approxiatio der Gesatschadeverteilug durch eie zusaegesetzte Poisso-Verteilug I kollektive Modell wird der Gesatschade S als Sue aus N Eizelschäde ud de Schadehöhe Y i betrachtet ud es wird ageoe, dass die Y i idetisch verteilt ud die Zufallsvariable N, Y i, Y 2, stochastisch uabhägig sid ud dass N poissoverteilt ist. Der Erwartugswert für die Azahl der Schäde beträgt E(N) P( X > ) () q ( ) h q : λ Die Verteilug des Gesatschades ergibt sich da für x > durch *l P(S x) p ( ) x l x e λ e λ l! Seite 3 Verteilug des Gesatschades Approxiatio der Gesatschadeverteilug durch die Noralverteilug Die Eizelschäde X i sid uabhägig ud habe eie Wertebereich, der höchstes + Werte ufasst Die Eizelschäde X i sid icht idetisch verteilt zetraler Grezwertsatz ur gültig, we die Lideberg-Bedigug erfüllt ist. Zetraler Grezwertsatz gilt, we - für alle Eizelschäde die Moete 4. Ordug existiere ud durch M > begrezt sid - Variaze der Eizelrisike ach ute durch c > begrezt sid Gesatschadeverteilug kovergiert gege Noralverteilug it Erwartugswert E(S ) ud Variaz Var(S ) Seite 4

8 Value-at-Risk ud Tail Value-at-Risk Das Risikoaß Value-at-Risk (VaR) ist defiiert durch VaR α ( X) u α ( X) α (,) Der Value-at-Risk ergibt sich soit aus der Verteilugsfuktio F vo X durch VaR α ( X) F ( α ) Das Risikoaß Tail Value-at-Risk (TVaR) ist defiiert durch TVaR α β α ( X) VaR ( X) dβ α (, ) α Der TVaR ist das arithetische Mittel der Quatile vo X für - α < β <. Dadurch wird der Verlauf der Verteilugsfuktio oberhalb des ( - α)-quatils bei der Beurteilug des Risikos eibezoge. Seite 5 Value-at-Risk ud Tail Value-at-Risk I Fall der Noralverteilug X ~ N (, Value-at-Risk 2 ) it Verteilugsfuktio ist der VaR α ( X) Ψ α u ( ) α ud it Φ als Verteilugsfuktio der Stadard-Noralverteilug gilt VaR α ( X) µ + σ Φ ( α ) Für de Tail Value-at-Risk gilt da it Noralverteilug als Dichtefuktio der Stadard- TVaR σ µ + ϕ( Φ α ) α α ( X) ( ) Seite 6

9 Risikobeurteilug eier Pesioskasse Pla A: Zusage auf Alters-, Ivalide- ud Hiterbliebeerete; der Leistugsaspruch etwickelt sich proportioal zur Diestzeit bei Uterehe (lieares Steigerugssyste). Der Aspruch auf Hiterbliebeeleistuge beträgt 6 % des Aspruchs des Versorgugsberechtigte. Pla B: I Gegesatz zu Pla A wird bei vorzeitige Leistugsfälle Ivalidität ud Tod it Hiterbliebeeversorgug eie Rete gewährt, die sich icht aus de erreichte Aspruch soder durch Zurechugszeit bis zu Pesioierugsalter ergibt. Die beide Pläe uterscheide sich dadurch, dass das riskierte Kapital i Pla B aufgrud der Zurechugszeit deutlich höher ist als i Pla A. Darüber hiaus wird die Azahl der Mitglieder der Hauptgesatheit (Aktive) i beide Fälle eial it. Persoe ud eial it 5.8 Persoe ageoe. Seite 7 Risikobeurteilug eier Pesioskasse Verteilugsfuktio Pla A, 5.8 Aktive % 9% 8% 7% 6% 5% 4% 3% 2% % % Pla A, 5.8 Persoe Seite 8

10 Risikobeurteilug eier Pesioskasse Verteilugsfuktio Pla B, 5.8 Aktive % 9% 8% 7% 6% 5% 4% 3% 2% % % Pla B, 5.8 Persoe Seite 9 Risikobeurteilug eier Pesioskasse Verteilugsfuktioe i Vergleich,9,8,7,6,5,4,3,2, -6 Mio -4 Mio -2 Mio Mio 2 Mio 4 Mio 6 Mio Pla A, 5.8 Persoe Pla B, 5.8 Persoe Pla B,. Persoe, auf 5.8 Persoe hochgerechet Seite 2

11 Risikobeurteilug eier Pesioskasse Vergleich der Risikoaße ud der Risike Bestad: Pla: Deckugsrückstellug: 5.8 Persoe Pla A 5.8 Persoe Pla B. Persoe Pla B auf 5.8 Persoe hochgerechet Pla B 339 Mio 349 Mio 58 Mio 349 Mio VaR TVaR VaR TVaR VaR TVaR VaR TVaR Mio Mio Mio Mio Mio Mio Mio Mio %,3,4,6,7,3,5,7 3,2 5%,3,5,8,8,4,6 2,2 3,4 %,5,5,2 2,,6,7 3,4 3,9 Seite 2 Hiweise für die Praxis Praktische Frage bei der Awedug Gesate Verteilugsfuktio erforderlich? Recheaufwad Welche Approxiatio ist besser? Gibt es Abschätzuge für die Qualität des (Tail-) Value-at-Risk der Approxiatioe? Seite 22

12 Hiweise für die Praxis Approxiatio durch Poisso- ud Noralverteilug Darstellug der Verteilugsfuktioe,9,8,7,6,5,4,3 Faltug Poisso Noral Erwartugswert,2, Seite 23,99,98,97,96,95,94,93,92,9,9,89 Hiweise für die Praxis Approxiatio durch Poisso- ud Noralverteilug Darstellug der Verteilugsfuktioe Ausschitt für de obere Bereich Faltug Poisso Noral, Seite 24

13 Hiweise für die Praxis Value-at-Risk für verschiedee Sicherheitsiveaus Faltug Poisso Noralverteilug % 95% 97,5% 99% Sicherheitsiveau Seite 25 Hiweise für die Praxis Tail Value-at-Risk für verschiedee Sicherheitsiveaus Faltug Poisso Noralverteilug % 95% 97,5% 99% Sicherheitsiveau Seite 26

14 Zusaefassug Zur Risikobeurteilug ist die (äherugsweise) Bestiug der Gesatschadeverteilug erforderlich Tail Value-at-Risk bezieht de weitere Verlauf der Verteilugsfuktio ei VaR < TVaR Eihaltug eies Sicherheitsiveaus it Hilfe des Value-at- Risk erreichbar Approxiatio durch Noralverteilug ka zu eier Uterschätzug des Risikos führe Seite 27 Dr. Richard Herra HEUBECK AG Lideallee 53 D-5968 Köl (Marieburg) Telefo: + 49 () 22 / Telefax: + 49 () 22 / e-ail: Iteret: Seite 28

Mathematik der Lebensversicherung. Dr. Karsten Kroll GeneralCologne Re

Mathematik der Lebensversicherung. Dr. Karsten Kroll GeneralCologne Re atheatik der Lebesersicherug r. Karste Kroll GeeralCologe Re atheatik der Lebesersicherug atheatische Grudasätze iskotiuierliche ethode: Sätliche Leistuge erfolge zu bestite Zeitpukte ie Zeititeralle dazwische

Mehr

Zur Definition. der wirksamen. Wärmespeicherkapazität

Zur Definition. der wirksamen. Wärmespeicherkapazität Ao. Uiv. Prof. Dipl.-Ig. Dr. tech. Klaus Kreč, Büro für Bauphysik, Schöberg a Kap, Österreich Zur Defiitio der wirksae Wärespeicherkapazität vo Ao. Uiv. Prof. Dipl.-Ig. Dr. tech. Klaus Kreč Büro für Bauphysik

Mehr

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:

Mehr

Vereinheitlichung Einheitlicher Maßstab der Risikoeinschätzung. Limitierung / Steuerung Messung und Limitierung ist fundamental für die Steuerung

Vereinheitlichung Einheitlicher Maßstab der Risikoeinschätzung. Limitierung / Steuerung Messung und Limitierung ist fundamental für die Steuerung . Marktpreisrisiko Motivatio der VaR-Ermittlug Vereiheitlichug Eiheitlicher Maßstab der Risikoeischätzug Limitierug / Steuerug Messug ud Limitierug ist fudametal für die Steuerug Kapitaluterlegug Zur Deckug

Mehr

Wahrscheinlichkeit & Statistik

Wahrscheinlichkeit & Statistik Wahrscheilichkeit & Statistik created by Versio: 3. Jui 005 www.matheachhilfe.ch ifo@matheachhilfe.ch 079 703 7 08 Mege als Sprache der Wahrscheilichkeitsrechug, Begriffe, Grudregel Ereigisraum: Ω Ω Mege

Mehr

SUCHPROBLEME UND ALPHABETISCHE CODES

SUCHPROBLEME UND ALPHABETISCHE CODES SUCHPROBLEME UND ALPHABETISCHE CODES Der Problematik der alphabetische Codes liege Suchprobleme zugrude, dere Lösug dem iformatiostheoretische Problem der Fidug eies (optimale) alphabetische Codes gleich

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Istitut für tochastik Prof. Dr. N. Bäuerle Dipl.-Math.. Urba Lösugsvorschlag 9. Übugsblatt zur Vorlesug Fiazmathematik I Aufgabe Ei euartiges Derivat) Wir sid i eiem edliche, arbitragefreie Fiazmarkt,

Mehr

Versicherungstechnik

Versicherungstechnik Operatios Research ud Wirtschaftsiformati Prof. Dr. P. Recht // Dipl.-Math. Rolf Wedt DOOR Versicherugstechi Übugsblatt 3 Abgabe bis zum Diestag, dem 03..205 um 0 Uhr im Kaste 9 Lösugsvorschlag: Vorbereituge

Mehr

Formelsammlung Mathematik

Formelsammlung Mathematik Formelsammlug Mathematik 1 Fiazmathematik 1.1 Reterechug Sei der Zissatz p%, der Zisfaktor q = 1 + p 100. Seie R die regelmäßig zu zahlede Rate, die Laufzeit. Edwert: Barwert: achschüssig R = R q 1 q 1

Mehr

3. Einführung in die Statistik

3. Einführung in die Statistik 3. Eiführug i die Statistik Grudlegedes Modell zu Date: uabhägige Zufallsgröße ; : : : ; mit Verteilugsfuktio F bzw. Eizelwahrscheilichkeite p ; : : : ; p r i de Aweduge: kokrete reale Auspräguge ; : :

Mehr

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen:

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen: 61 6.2 Grudlage der mathematische Statistik 6.2.1 Eiführug i die mathematische Statistik I der mathematische Statistik behadel wir Masseerscheiuge. Wir habe es deshalb im Regelfall mit eier große Zahl

Mehr

Herzlich willkommen zum Informationsabend «Frau und Finanz»

Herzlich willkommen zum Informationsabend «Frau und Finanz» Herzlich willkomme zum Iformatiosabed «Frau ud Fiaz» Frau ud Fiaz Fiazielle Sicherheit: Müsse Fraue aders vorsorge? Stefaia Cerfeda-Salvi Ageda Allgemeier Teil 3-Säule-System der Schweiz Aktuelles aus

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

Prof. Dr. Günter Hellmig. Klausurenskript Finanzmathematik

Prof. Dr. Günter Hellmig. Klausurenskript Finanzmathematik Prof. Dr. Güter Hellig lausureskript Fiazatheatik Ihalt: lausur vo WS 9/. Eifache Zise: Vorschüssigkeit ud Nachschüssigkeit. Reterechug: Reteedwert ud Retebarwert 3. Tilgugsrechug: Tilgugspla bei Ratetilgug

Mehr

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S Statistik mit Excel 2013 Peter Wies Theme-Special 1. Ausgabe, Februar 2014 W-EX2013S 3 Statistik mit Excel 2013 - Theme-Special 3 Statistische Maßzahle I diesem Kapitel erfahre Sie wie Sie Date klassifiziere

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

Beschreibende Statistik Kenngrößen in der Übersicht (Ac)

Beschreibende Statistik Kenngrößen in der Übersicht (Ac) Beschreibede Statistik Kegröße i der Übersicht (Ac) Im folgede wird die Berechugsweise des TI 83 (sowie vo SPSS, s. ute) verwedet. Diese geht auf eie Festlegug vo Moore ud McCabe (00) zurück. I der Literatur

Mehr

Die Risiken der privaten Altersvorsorge und deren Handling durch die Anbieter

Die Risiken der privaten Altersvorsorge und deren Handling durch die Anbieter Die ud dere Hadlig durch die Abieter 1 Übersicht Sichere Altersvorsorge: Was erwarte wir vo der private Altersvorsorge? Was macht die private Altersvorsorge usicher? Altersvorsorge i volatile Kapitalmärkte

Mehr

Lerneinheit 2: Grundlagen der Investition und Finanzierung

Lerneinheit 2: Grundlagen der Investition und Finanzierung Lereiheit 2: Grudlage der Ivestitio ud Fiazierug 1 Abgrezug zu de statische Verfahre Durchschittsbetrachtug wird aufgegebe Zeitpukt der Zahlugsmittelbewegug explizit berücksichtigt exakte Erfassug der

Mehr

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222 Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme

Mehr

Model CreditRisk + : The Economic Perspective of Portfolio Credit Risk Part I

Model CreditRisk + : The Economic Perspective of Portfolio Credit Risk Part I Model CreditRisk + : The Ecoomic Perspective of Portfolio Credit Risk Part I Semiar: Portfolio Credit Risk Istructor: Rafael Weißbach Speaker: Pablo Kimmig Ageda 1. Asatz ud Ziele Was ist CreditRisk +

Mehr

Innerbetriebliche Leistungsverrechnung

Innerbetriebliche Leistungsverrechnung Ierbetriebliche Leistugsverrechug I der Kostestellerechug bzw. im Betriebsabrechugsboge (BAB ist ach der Erfassug der primäre Kostestellekoste das Ziel, die sekudäre Kostestellekoste, also die Koste der

Mehr

Methodische Grundlagen der Kostenkalkulation

Methodische Grundlagen der Kostenkalkulation Methodische Grudlage der Kostekalkulatio Plaugsebee Gebrauchsgüter Die i der ladwirtschaftliche Produktio eigesetzte Produktiosmittel werde i Gebrauchsgüter ud Verbrauchsgüter uterteilt. Zu de Gebrauchsgüter

Mehr

PrivatKredit. Direkt ans Ziel Ihrer Wünsche

PrivatKredit. Direkt ans Ziel Ihrer Wünsche PrivatKredit Direkt as Ziel Ihrer Wüsche Erlebe Sie eue Freiräume. Leiste Sie sich, was Ihe wichtig ist. Sie träume scho seit lagem vo eier eue Aschaffug, wie z. B.: eiem eue Auto eue Möbel Oder es stehe

Mehr

Stochastik für WiWi - Klausurvorbereitung

Stochastik für WiWi - Klausurvorbereitung Dr. Markus Kuze WS 2013/14 Dipl.-Math. Stefa Roth 11.02.2014 Stochastik für WiWi - Klausurvorbereitug Gesetz der totale Wahrscheilichkeit ud Satz vo Bayes (Ω, F, P) Wahrscheilichkeitsraum, E 1,..., E F

Mehr

Integrationsseminar zur BBL und ABWL Wintersemester 2002/2003

Integrationsseminar zur BBL und ABWL Wintersemester 2002/2003 Credit Risk+ Itegratiossemiar zur BBL ud BWL Witersemester 2002/2003 Oksaa Obukhova lia Sirsikova Credit Risk+ 1 Ihalt. Eiführug i die Thematik B. Ökoomische Grudlage I. Ziele II. wedugsmöglichkeite 1.

Mehr

KASSENBUCH ONLINE Online-Erfassung von Kassenbüchern

KASSENBUCH ONLINE Online-Erfassung von Kassenbüchern KASSENBUCH ONLINE Olie-Erfassug vo Kassebücher Ihaltsverzeichis 1 Leistugsbeschreibug... 3 2 Itegratio i das Ageda-System... 4 3 Highlights... 5 3.1 Ituitive Olie-Erfassug des Kassebuchs... 5 3.2 GoB-sicher

Mehr

Kapitel 6: Statistische Qualitätskontrolle

Kapitel 6: Statistische Qualitätskontrolle Kapitel 6: Statistische Qualitätskotrolle 6. Allgemeies Für die Qualitätskotrolle i eiem Uterehme (produzieredes Gewerbe, Diestleistugsuterehme, ) gibt es verschiedee Möglichkeite. Statistische Prozesskotrolle

Mehr

Mathematik. Vorlesung im Bachelor-Studiengang Business Administration (Modul BWL 1A) an der FH Düsseldorf im Wintersemester 2008/09

Mathematik. Vorlesung im Bachelor-Studiengang Business Administration (Modul BWL 1A) an der FH Düsseldorf im Wintersemester 2008/09 Mathematik Vorlesug im Bachelor-Studiegag Busiess Admiistratio (Modul BWL A) a der FH Düsseldorf im Witersemester 2008/09 Dozet: Dr. Christia Kölle Teil I Fiazmathematik, Lieare Algebra, Lieare Optimierug

Mehr

Robuste Asset Allocation in der Praxis

Robuste Asset Allocation in der Praxis Fiazmarkt Sachgerechter Umgag mit Progosefehler Robuste Asset Allocatio i der Praxis Pesiosfods ud adere istitutioelle Aleger sid i aller Regel a ei bestimmtes Rediteziel (Rechugszis) gebude, das Jahr

Mehr

Beurteilung des Businessplans zur Tragfähigkeitsbescheinigung

Beurteilung des Businessplans zur Tragfähigkeitsbescheinigung Fachkudige Stellugahme Beurteilug des Busiessplas zur Tragfähigkeitsbescheiigug Name Datum Has Musterma 7. Oktober 2015 Wilfried Orth Grüdugsberatug Stadort Würzburg: Stadort Stuttgart: Waldleite 9a Möhriger

Mehr

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110 Name, Vorame Matrikel-Nr. Studiezetrum Studiegag Fach Art der Leistug Klausur-Kz. Betriebswirtschaft Wirtschaftsmathematik Studieleistug Datum 10.11.2001 BW-WMT-S12 011110 Verwede Sie ausschließlich das

Mehr

Stichproben im Rechnungswesen, Stichprobeninventur

Stichproben im Rechnungswesen, Stichprobeninventur Stichprobe im Rechugswese, Stichprobeivetur Prof Dr Iree Rößler ud Prof Dr Albrecht Ugerer Duale Hochschule Bade-Württemberg Maheim Im eifachste Fall des Dollar-Uit oder Moetary-Uit Samplig (DUS oder MUS-

Mehr

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert.

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert. Prof. Dr. H. Rommelfager: Etscheidugstheorie, Kaitel 3 7 3. Etscheidug bei Risiko (subjektive oder objektive) Eitrittswahrscheilichkeite für das Eitrete der mögliche Umweltzustäde köe vom Etscheidugsträger

Mehr

Finanzmathematische Formeln und Tabellen

Finanzmathematische Formeln und Tabellen Jui 2008 Dipl.-Betriebswirt Riccardo Fischer Fiazmathematische Formel ud Tabelle Arbeitshilfe für Ausbildug, Studium ud Prüfug im Fach Fiaz- ud Ivestitiosrechug Dieses Werk, eischließlich aller seier Teile,

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Studiegag Betriebswirtschaft Fach Wirtschaftsmathematik Art der Leistug Studieleistug Klausur-Kz. BW-WMT-S1 040508 Datum 08.05.004 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich: Verwede

Mehr

Übungsblatt 1 zur Vorlesung Angewandte Stochastik

Übungsblatt 1 zur Vorlesung Angewandte Stochastik Dr Christoph Luchsiger Übugsblatt 1 zur Vorlesug Agewadte Stochastik Repetitio WT Herausgabe des Übugsblattes: Woche 9, Abgabe der Lösuge: Woche 1 (bis Freitag, 1615 Uhr), Rückgabe ud Besprechug: Woche

Mehr

Versuch 1/1 POISSON STATISTIK Blatt 1 POISSON STATISTIK. 1. Vorbemerkung

Versuch 1/1 POISSON STATISTIK Blatt 1 POISSON STATISTIK. 1. Vorbemerkung Versuch 1/1 POISSON STATISTIK Blatt 1 POISSON STATISTIK Physikalische Prozesse, die eier statistische Gesetzmäßigkeit uterworfe sid, lasse sich mit eier Verteilugsfuktio beschreibe. Die Gauß-Verteilug

Mehr

Grundgesamtheitsanaylsen und Stichproben. Betrachtungen zur Stichprobenfindung

Grundgesamtheitsanaylsen und Stichproben. Betrachtungen zur Stichprobenfindung MaMaEuSch Maagemet Mathematics for Europea Schools http://www.mathematik.uikl.de/ mamaeusch Grudgesamtheitsaaylse ud Stichprobe. Betrachtuge zur Stichprobefidug Paula Lagares Justo Puerto 1 MaMaEuSch 2

Mehr

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt 2.4.5 Gauss-Test ud t-test für verbudee Stichprobe 2.4.5.8 Zum Begriff der verbudee Stichprobe Verbudee Stichprobe: Vergleich zweier Merkmale X ud Y, die jetzt a deselbe Persoe erhobe werde. Vorsicht:

Mehr

5 Bernoulli-Kette. 5.1 Bernoulli-Experiment. Jakob Bernoulli 1654-1705 Schweizer Mathematiker und Physiker. 5.1.1 Einleitung

5 Bernoulli-Kette. 5.1 Bernoulli-Experiment. Jakob Bernoulli 1654-1705 Schweizer Mathematiker und Physiker. 5.1.1 Einleitung Seite vo 7 5 Beroulli-Kette Jakob Beroulli 654-705 Schweizer Mathematiker ud Physiker 5. Beroulli-Exerimet 5.. Eileitug Oft iteressiert ma sich bei Zufallsexerimete icht für die eizele Ergebisse, soder

Mehr

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen Testumfag für die Ermittlug ud Agabe vo Fehlerrate i biometrische Systeme Peter Uruh SRC Security Research & Cosultig GmbH peter.uruh@src-gmbh.de Eileitug Biometrische Systeme werde durch zwei wichtige

Mehr

Finanzmathematik für HAK

Finanzmathematik für HAK Fiazmathematik für HAK Dr.Mafred Gurter 2008. Kapitalverzisug bei der Bak mit lieare (eifache) Zise währed des Jahres Beispiel : Ei Kapital vo 3000 wird mit 5% für 250 Tage verzist. Wie viel bekommt ma

Mehr

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3 INHALTSVERZEICHNIS AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2 Datefluß ud Programmablauf 2 Vorbedigug 3 Nachbedigug 3 Schleifeivariate 3 KONSTRUKTION 4 ALTERNATIVE ENTWURFSMÖGLICHKEITEN 5 EFFEKTIVE

Mehr

3 Die Außenfinanzierung durch Fremdkapital (Kreditfinanzierung)

3 Die Außenfinanzierung durch Fremdkapital (Kreditfinanzierung) 3 Die Außefiazierug durch Fremdkapital (Kreditfiazierug) 3.1 Die Charakteristika ud Forme der Kreditfiazierug Aufgabe 3.1: Idealtypische Eigeschafte vo Eige- ud Fremdkapital Stelle Sie die idealtypische

Mehr

Kunde. Kontobewegung

Kunde. Kontobewegung Techische Uiversität Müche WS 2003/04, Fakultät für Iformatik Datebaksysteme I Prof. R. Bayer, Ph.D. Lösugsblatt 4 Dipl.-Iform. Michael Bauer Dr. Gabi Höflig 17.11. 2003 Abbildug E/R ach relatioal - Beispiel:

Mehr

HONORAR Honorarabrechnung

HONORAR Honorarabrechnung HONORAR Hoorarabrechug Ihaltsverzeichis 1 Leistugsbeschreibug... 3 2 Itegratio i das Ageda-System... 4 3 Highlights... 5 3.1 Freie Formulargestaltug... 5 3.2 Positiosvorschläge aus Leistuge bzw. Gegestadswerte...

Mehr

LS Retail. Die Branchenlösung für den Einzelhandel auf Basis von Microsoft Dynamics NAV

LS Retail. Die Branchenlösung für den Einzelhandel auf Basis von Microsoft Dynamics NAV LS Retail Die Brachelösug für de Eizelhadel auf Basis vo Microsoft Dyamics NAV akquiet Focus auf das Wesetliche User Focus liegt immer auf der Wirtschaftlichkeit: So weig wie möglich, soviel wie ötig.

Mehr

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i D. Reterechug 1.1. Jährliche Retezahluge 1.1.1. Vorschüssige Retezahluge Ausgagspukt: Über eie edliche Zeitraum wird aus eiem Kapital (Retebarwert RBW v,i ), das ziseszislich agelegt ist, jeweils zu Begi

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares 4 6 Fachgebiet Regelugstechik Leiter: Prof. Dr.-Ig. Joha Reger Kleies Matrix-ABC 1 Eleetares Eie ( )-Matrix ist eie rechteckige Aordug vo reelle oder koplexe Zahle a ij (auch Skalare geat) ud besteht aus

Mehr

Qualitätskennzahlen für IT-Verfahren in der öffentlichen Verwaltung Lösungsansätze zur Beschreibung von Metriken nach V-Modell XT

Qualitätskennzahlen für IT-Verfahren in der öffentlichen Verwaltung Lösungsansätze zur Beschreibung von Metriken nach V-Modell XT Qualitätskezahle für IT-Verfahre i der öffetliche Verwaltug Lösugsasätze zur Vo Stefa Bregezer Der Autor arbeitet im Bereich Softwaretest ud beschäftigt sich als Qualitätsbeauftragter mit Theme zu Qualitätssicherug

Mehr

Mietnebenkosten von A-Z

Mietnebenkosten von A-Z Beck-Rechtsberater im dtv 50758 Mietebekoste vo A-Z Begriffe, Musterformulieruge, Berechugsbeispiele, Checkliste vo Dr. Klaus Lützekirche 6. Auflage Verlag C.H. Beck Müche 2014 Verlag C.H. Beck im Iteret:

Mehr

Statistik. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.html

Statistik. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.html Statistik Prof. Dr. K. Melzer kari.melzer@hs-esslige.de http://www.hs-esslige.de/de/mitarbeiter/kari-melzer.html Ihaltsverzeichis 1 Eileitug ud Übersicht 3 2 Dategewiug (kurzer Überblick) 3 2.1 Plaugsphase

Mehr

3. Tilgungsrechnung. 3.1. Tilgungsarten

3. Tilgungsrechnung. 3.1. Tilgungsarten schreier@math.tu-freiberg.de 03731) 39 2261 3. Tilgugsrechug Die Tilgugsrechug beschäftigt sich mit der Rückzahlug vo Kredite, Darlehe ud Hypotheke. Dabei erwartet der Gläubiger, daß der Schulder seie

Mehr

Inhaltsverzeichnis. 1 Leistungsbeschreibung... 3

Inhaltsverzeichnis. 1 Leistungsbeschreibung... 3 FIBU Kosterechug Ihaltsverzeichis 1 Leistugsbeschreibug... 3 2 Highlights... 4 2.1 Variable oder fixe Kostestelleverteilug... 4 2.2 Mehrstufiges Umlageverfahre... 5 2.3 Kosolidierugsebee für die Wertekotrolle...

Mehr

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v Tao De / Pa JiaWei Ihrig/Pflaumer Fiazmathematik Oldeburg Verlag 1999 1..Ei Darlehe vo. DM soll moatlich mit 1% verzist ud i Jahre durch kostate Auitäte getilgt werde. Wie hoch sid a) die Moatsrate? b)

Mehr

Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield

Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield Augabeblatt 4 Lösuge A. Deiitioe Zis = Rate Ziskurve = Zisstruktur Redite = Yield A. Deiitioe Zerobod = Nullkupoaleihe = Zero coupo bod Aleihe, die vor Ede der Lauzeit keie Zahluge leistet ud am Ede der

Mehr

Variiert man zusätzlich noch die Saatstärke (z.b. 3 Stärkearten), würde man von einer zweifaktoriellen Varianzanalyse sprechen.

Variiert man zusätzlich noch die Saatstärke (z.b. 3 Stärkearten), würde man von einer zweifaktoriellen Varianzanalyse sprechen. 3. Variazaalyse Die Variazaalyse mit eier quatitative abhägige Variable ud eier oder mehrerer qualitativer uabhägiger Variable wird auch als ANOVA (Aalysis of Variace) bezeichet. Mit eier Variazaalyse

Mehr

FINANZMATHEMATIK. 1. Zinsen und Zinseszinsen. Finanzmathematik 81

FINANZMATHEMATIK. 1. Zinsen und Zinseszinsen. Finanzmathematik 81 Fiazmathematik 8 FINANZMATHEMATIK. Zise ud Ziseszise Die Zise als Preis für die Zurverfügugstellug vo Geld bilde das zetrale Elemet i der Fiazmathematik. Hierbei sid verschiedee Arte der Verzisug zu uterscheide.

Mehr

elektr. und magnet. Feld A 7 (1)

elektr. und magnet. Feld A 7 (1) FachHochschule Lausitz Physikalisches Praktikum α- ud β-strahlug im elektr. ud maget. Feld A 7 Name: Matrikel: Datum: Ziel des Versuches Das Verhalte vo α- ud β-strahlug im elektrische ud magetische Feld

Mehr

4 Deckungsrückstellung

4 Deckungsrückstellung eckugsrückstellug 33 4 eckugsrückstellug iel: erfhre zur Erittlug des Wertes eies ersicherugsvertrgs ud der zur eckug der Risike ötige Rückstelluge des ersicherugsuterehes. Proble: Präie werde kostt gezhlt,

Mehr

2 Organisationseinheiten und -strukturen

2 Organisationseinheiten und -strukturen 2 Orgaisatioseiheite ud -strukture 2. Eiführug Verkaufsorgaisatio (SD) Vertriebsweg (SD) Sparte (LO) Verkaufsbüro (SD) Verkäufergruppe (SD) Madat Buchugskreis (FI) Kreditkotrollbereich (FI) Werk (LO) Versadstelle

Mehr

Bewertung von Anleihen

Bewertung von Anleihen Bewertug vo Aleihe Arithmetik der Aleihebewertug: Überblick Zerobods ud Koupoaleihe Ziskurve: Spot Zise ud Yield to Maturity Day cout Kovetioe Replikatio ud Arbitrage Forward Zise Yield ud ex post realisierte

Mehr

Unternehmensbewertung und Aktienanalyse von Karina Liebenstein & Bartholomäus Fietzek

Unternehmensbewertung und Aktienanalyse von Karina Liebenstein & Bartholomäus Fietzek Uterehmesbewertug ud Aktieaalyse vo Karia Liebestei & Bartholomäus Fietzek Uterehmesbewertug Es gibt kei allgemei verbidliches Verfahre, soder eie Vielzahl vo Methode Sie diee zur Bewertug vo Uterehme

Mehr

1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren

1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren Forelsalug zur Fiazatheatik 1. Eifache Zisrechug (lieare Verzisug) 1.1 Berechug des Edwerts eier Eialalage bei liearer gazjähriger Verzisug ach Verzisugsjahre p = 1 + = ( 1+ i ) 1 1.2 Berechug des Gegewartswerts

Mehr

Der natürliche Werkstoff Holz - Statistische Betrachtungen zum uniaxialen Zugversuch am Beispiel von Furnier

Der natürliche Werkstoff Holz - Statistische Betrachtungen zum uniaxialen Zugversuch am Beispiel von Furnier Der atürliche Werkstoff Holz - Statistische Betrachtuge zum uiaxiale Zugversuch am Beispiel vo Furier B. Bellair, A. Dietzel, M. Zimmerma, Prof. Dr.-Ig. H. Raßbach Zusammefassug FH Schmalkalde, 98574 Schmalkalde,

Mehr

Inhaltsverzeichnis. 1 Leistungsbeschreibung... 3. 2 Integration in das Agenda-System... 4

Inhaltsverzeichnis. 1 Leistungsbeschreibung... 3. 2 Integration in das Agenda-System... 4 USt Umsatzsteuer Ihaltsverzeichis 1 Leistugsbeschreibug... 3 2 Itegratio i das Ageda-System... 4 3 Highlights... 5 3.1 Kompakte Erfassugsmaske auf Basis der Steuerformulare... 5 3.2 Orgaschaft & Kosolidierug...

Mehr

Sichtbar im Web! Websites für Handwerksbetriebe. Damit Sie auch online gefunden werden.

Sichtbar im Web! Websites für Handwerksbetriebe. Damit Sie auch online gefunden werden. Sichtbar im Web! Websites für Hadwerksbetriebe. Damit Sie auch olie gefude werde. Professioelles Webdesig für: Hadwerksbetriebe Rudum-sorglos-Pakete Nur für Hadwerksbetriebe Webdesig zu Festpreise - ukompliziert

Mehr

Statistik und Wahrscheinlichkeitslehre

Statistik und Wahrscheinlichkeitslehre Statistik ud Wahrscheilichkeitslehre Zufall ud Mittelwerte Für alle techische Studiegäge Prof. Dr.-Ig. habil. Thomas Adamek Grudlage der Wahrscheilichkeitsrechug. Eiführug Grudlage vo Statistik ud Wahrscheilichkeitsrechug

Mehr

Monte Carlo-Simulation

Monte Carlo-Simulation Mote Carlo-Simulatio Mote Carlo-Methode Der Begriff Mote Carlo-Methode etstad i de 1940er Jahre, als ma im Zusammehag mit dem Bau der Atombombe die Simulatio vo Zufallsprozesse erstmals i größerem Stil

Mehr

Aktueller Status hinsichtlich der angekündigten Kursgewinnsteuer

Aktueller Status hinsichtlich der angekündigten Kursgewinnsteuer ÄNDERUNGEN IM JAHR 2011 Aktueller Status hisichtlich der ageküdigte Kursgewisteuer Abei möchte wir Sie über wesetliche Ihalte aus der Regierugsvorlage Budgetbegleitgesetz 2011-2014 vom 30.11.2010 zur Kursgewibesteuerug

Mehr

Kapitel 4: Stationäre Prozesse

Kapitel 4: Stationäre Prozesse Kapitel 4: Statioäre Prozesse M. Scheutzow Jauary 6, 2010 4.1 Maßerhaltede Trasformatioe I diesem Kapitel führe wir zuächst de Begriff der maßerhaltede Trasformatio auf eiem Wahrscheilichkeitsraum ei ud

Mehr

VAIO-Link Kundenservice Broschüre

VAIO-Link Kundenservice Broschüre VAIO-Lik Kudeservice Broschüre Wir widme us jedem eizele Kude mit der gebührede Aufmerksamkeit, mit großer Achtug ud Respekt. Wir hoffe damit, de Erwartuge jedes Eizele a das VAIO-Lik Kudeservice-Zetrum

Mehr

Behandlung von Messunsicherheiten (Fehlerrechnung)

Behandlung von Messunsicherheiten (Fehlerrechnung) Behadlug vo Messusicherheite (Fehlerrechug). Ermittlug vo Messusicherheite. Messug ud Messusicherheit Die Messug eier physikalische Größe erfolgt durch de Vergleich dieser Größe mit eier Bezugseiheit ach

Mehr

Höhere Finanzmathematik. Sehr ausführliches Themenheft (d. h. mit Theorie) Aber auch mit vielen Trainingsaufgaben

Höhere Finanzmathematik. Sehr ausführliches Themenheft (d. h. mit Theorie) Aber auch mit vielen Trainingsaufgaben Expoetielles Wachstum Höhere Fiazmathematik Sehr ausführliches Themeheft (d. h. mit Theorie) Aber auch mit viele Traiigsaufgabe Es hadelt sich um eie Awedug vo Expoetialfuktioe (Wachstumsfuktioe) Datei

Mehr

Kapitel 6: Quadratisches Wachstum

Kapitel 6: Quadratisches Wachstum Kapitel 6: Quadratisches Wachstum Dr. Dakwart Vogel Ui Esse WS 009/10 1 Drei Beispiele Beispiel 1 Bremsweg eies PKW Bremsweg Auto.xls Ui Esse WS 009/10 Für user Modell des Bremsweges gilt a = a + d a =

Mehr

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008 Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe

Mehr

Industrieökonomie Vorlesung Dr. Kübler (Mitschrift von Timo Schygulla)

Industrieökonomie Vorlesung Dr. Kübler (Mitschrift von Timo Schygulla) Idustrieökooie Vorlesug Dr. Kübler (Mitschrift vo Tio Schygulla) 14.4.05: (Vorlesug gehalte vo eier Assisteti des Lehrstuhls) Teri-Überscheidug it der Vorlesug Fiazwisseschaft I vo Prof. Dr. K.-D. Heke.

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Rolad Speicher M.Sc. Tobias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 01 Musterlösug zu Blatt 0 Aufgabe 1. Käpt Schwarzbart,

Mehr

LV "Grundlagen der Informatik" Programmierung in C (Teil 2)

LV Grundlagen der Informatik Programmierung in C (Teil 2) Aufgabekomplex: Programmiere i C (Teil vo ) (Strukturierte Datetype: Felder, Strukture, Zeiger; Fuktioe mit Parameterübergabe; Dateiarbeit) Hiweis: Alle mit * gekezeichete Aufgabe sid zum zusätzliche Übe

Mehr

... a ik) i=1...m, k=1...n A = = ( a mn

... a ik) i=1...m, k=1...n A = = ( a mn Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,

Mehr

BILANZ. Bilanzbericht

BILANZ. Bilanzbericht BILANZ Bilazbericht Ihaltsverzeichis 1 Leistugsbeschreibug... 03 2 Itegratio i das AGENDA-System... 04 3 Highlights... 05 3.1 Gestaltug vo Bilazberichte... 05 3.2 Stadardbausteie idividuell apasse... 06

Mehr

Calmet Calibration. Calmet C300 Der Kalibrator für nicht sinusförmige Signalverläufe - Oberwellen Erweiterte Spezifikationen.

Calmet Calibration. Calmet C300 Der Kalibrator für nicht sinusförmige Signalverläufe - Oberwellen Erweiterte Spezifikationen. C300 Der Kalibrator für icht siusförmige Sigalverläufe - Oberwelle Erweiterte Spezifikatioe Calibratio Awedugsbericht Was bedeutet Leistugs-/Eergiekalibrierug bei icht siusförmige Ströme/Spauge Elektrische

Mehr

Die grundsätzlichen Aufgaben der Investitionsrechnung Unterschiedliche Verfahren der Investitionsrechnung

Die grundsätzlichen Aufgaben der Investitionsrechnung Unterschiedliche Verfahren der Investitionsrechnung 2 Ivestitio 2.1 Grudlage der Ivestitiosrechug Lerziele Dieses Kapitel vermittelt: Die grudsätzliche Aufgabe der Ivestitiosrechug Uterschiedliche Verfahre der Ivestitiosrechug 2.1.1 Ivestitiosbegriffe ud

Mehr

Elektronikpraktikum: Digitaltechnik 2

Elektronikpraktikum: Digitaltechnik 2 Elektroikpraktikum: Digitaltechik 2 Datum, Ort: 16.05.2003, PHY/D-213 Betreuer: Schwierz Praktikate: Teshi C. Hara, Joas Posselt (beide 02/2/PHY/02) Gruppe: 8 Ziele Aufbau eier 3-Bit-Dekodierschaltug;

Mehr

Bestimmte Gegenstände können drei Jahre lang mit einem festen Wert angesetzt werden, wenn folgende Voraussetzungen

Bestimmte Gegenstände können drei Jahre lang mit einem festen Wert angesetzt werden, wenn folgende Voraussetzungen 2.1 Ivetur 2.1.4 Bewertug der Vermögesgegestäde 2.1.4.1 Eizelbewertug Grudsätzlich sid bei eier Ivetur die Vermögesgegestäde eizel zu erfasse ud etspreched zu bewerte.esgibtzweiausahme vomgrudsatz dereizelbewertug.

Mehr

beck-shop.de 2. Online-Marketing

beck-shop.de 2. Online-Marketing beck-shop.de 2. Olie-Marketig aa) Dateschutzrechtliche Eiwilligug immer erforderlich Ohe Eiwilligug des Nutzers ist eie Erhebug persoebezogeer Date icht zulässig. Eie derartige Eiwilligug ka auch icht

Mehr

Internet-Zahlungsverfahren aus Sicht der Händler: Ergebnisse der Umfrage IZH5

Internet-Zahlungsverfahren aus Sicht der Händler: Ergebnisse der Umfrage IZH5 Iteret- aus Sicht der Hädler: Ergebisse der Umfrage IZH5 Vorab-Kurzauswertug ausgewählter Aspekte Dezember 2009 1 Gegestad ud ausgewählte Ergebisse der Studie Mit der aktuelle füfte Umfragewelle zum Thema

Mehr

Projektübergreifende Geschäftssteuerung mit

Projektübergreifende Geschäftssteuerung mit Projektübergreifede Geschäftssteuerug mit Der globale Wettbewerb zwigt Uterehme, die strategische Vorgabe immer scheller ud präziser i operative Maßahme umzusetze, um die kurzfristige Ergebiserwartug ud

Mehr

Investitionsund Finanzierungsplanung mittels Kapitalwertmethode, Interner Zinsfuß

Investitionsund Finanzierungsplanung mittels Kapitalwertmethode, Interner Zinsfuß Ivesiiosud Fiazierugsplaug miels Kapialwermehode, Ierer Zisfuß Bearbeie vo Fraka Frid, Chrisi Klegel WI. Aufgabe: Eie geplae Ivesiio mi Aschaffugsausgabe vo.,- läss jeweils zum Jahresede die folgede Eiahme

Mehr

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel:

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel: E Tilgugsrechug.. Jährliche Raeilgug Ausgagspuk: Bei Raeilgug wird die chuldsumme (Newer des Kredis [Aleihe, Hypohek, Darleh]) i gleiche Teilberäge T geilg. Die Tilgugsrae läss sich ermiel als: T =.. Jährliche

Mehr

Drucklufttechnik Potenziale zur Energieeinsparung. www.energieagentur.nrw.de

Drucklufttechnik Potenziale zur Energieeinsparung. www.energieagentur.nrw.de Drucklufttechik Poteziale zur Eergieeisparug www.eergieagetur.rw.de 2 Drucklufttechik optimiere ud Eergieverluste miimiere I fast jeder Produktiosstätte wird Druckluft geutzt. Die Eisatzgebiete reiche

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Methodelehre e e Prof. Dr. G. Meihardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstude jederzeit ach Vereibarug ud ach der Vorlesug. Mathematische ud statistische Methode I Dr. Malte Persike persike@ui-maiz.de

Mehr

Handelsrecht 16. Auflage 2016. Skripten. Alpmann/Braasch. Alpmann Schmidt

Handelsrecht 16. Auflage 2016. Skripten. Alpmann/Braasch. Alpmann Schmidt S Skripte Alpma/Braasch Hadelsrecht 16. Auflage 2016 Alpma Schmidt Überblick Überblick Das Hadelsrecht ist das besodere Privatrecht der Kaufleute. Es diet de Aforderuge des Wirtschaftsverkehrs, für de

Mehr

2 Wahl des Betriebsrats

2 Wahl des Betriebsrats 2 Wahl des Betriebsrats Übersicht R R Stadardprobleme aus diesem Kapitel 1 1. Wer ist wahlberechtigt?.. 1 2. Soderküdigugsschutz bei Wahle.... 2 3. Afechtug ud Nichtigkeit vo Betriebsratswahle.... 3 4.

Mehr

Ambulante Pflege und Assistenz

Ambulante Pflege und Assistenz 24 Stude Rufbereitschaft Beratug ud Hilfe Hauswirtschaftliche Versorgug Pflegekurse für Agehörige Ambulate Pflege ud Assistez Leistuge der Pflegeversicherug Herzlich willkomme im Ev. Johaeswerk Die Pflege

Mehr