Statistische Maßzahlen. Statistik Vorlesung, 10. März, Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte."

Transkript

1 Statistik Vorlesug,. ärz, Statistische aßzahle Iformatio zu verdichte, Besoderheite hervorzuhebe ittelwerte Aufgabe: die Lage der Verteilug auf der Abszisse zu zeige. Der odus: derjeige Wert, der im Häufigste vorkommt. Bei icht klassifizierte Date ka ma es eifach ablese Bei klassifizierte Date es ist durch die folgede ormel gegebe: f o = xu + i wobei o=odus, f f + x u =Klasseutergreze der Klasse, i die der odus fällt f =Häufigkeit dieser Klasse. f - =Häufigkeit der vorhergehede Klasse. f + =Häufigkeit der achfolgede Klasse. i=klassebreite, es soll bei alle drei Klasse gleich sei Pukte Pukteverteilug (Statistikklausure,,) Azahl Azahl - b.u. - b.u. - b.u. o(): x u =, f =, f - =, f + =, i=, daraus o=+*9/= Pukte. o(): x u =, f =, f - =, f + =, i=, daraus o=+*/= Pukte. Es fällt immer i die häufigste Klasse (also zwische ud i ud ud für ). - b.u. Der edia Es ist das Wert, die der Größe ach geordete Reihe halbiert. Bei icht klassifizierte Date: a/ Azahl der Beobachtuge ist eie ugerade Zahl: es gibt ei eiziges Wert, der i der itte steht. : Umsatz-Werte i iliale:,,, 9, (t) Der edia ist: t b/ Azahl der Beobachtuge ist eie gerade Zahl: der edia ist die itte beide mittlere Werte. : Umsatz-Werte i iliale:,,, 9,, (t). Der edia ist: t. Der edia für klassifizierte Werte z = xu + f wobei z=edia, x u =Klasseutergreze der Klasse, i die der edia fällt (bei dere die kumulierte relative Hfgk. erstmal grösser als / wird). f u =Häufigkeit alle vorhergehede Klasse. f e =Häufigkeit der Eifallsklasse. i=klassebreite der Eifallsklasse. =Azahl der Beobachtuge. e u i Pukte Pukteverteilug (Statistikklausure,,) Azahl Azahl - b.u. - b.u. - b.u. e(): x u =, =, f u =, f e =, i=, daraus e=+*(-)/=9, Pukte. e(): x u =, =, f u =, f e =, i=, daraus e=+*(-)/= Pukte. Es fällt immer i die Eifallklasse. Bei assymetrische Verteiluge es ist besoders gut geeiget. Es ist icht empfidlich a Extremwerte (Ausreisser). - b.u.

2 Das arithmetische ittel Summe der Beobachtuge dividiert durch dere Azahl x + x + x x x = Rechugserleichterug (awedbar we die selbe Werte mehrmals auftrete; auch für klassifizierte Date), gewogees arithmetische ittel: xf + xf xkfk x = wobei die erkmalausprägug x i war mit Häufigkeit f i beobachtet, f + f + f f k = (bei klassifizierte Date x i ist die Klassemitte). Pukte Pukteverteilug (Statistikklausure,,) Azahl Azahl - b.u. - b.u. - b.u. Arithm. ittel (): (*+*+*+*)/=, Pukte. Arithm. ittel (): (*+*+*+*)/=, Pukte. ür symmetrische Verteiluge liege die ittelwerte ahe zueiader. - b.u. Adere ittelwerte Geometrisches ittel: x x... x Gut geeiget zur berechug durchschittliche Äderug: y y = y y : alls die Lebeshaltugskoste habe vo bis um % erhöht, da ist die durchschittliche jährliche Steigerug,9% weil, / =,9 y y y... y Harmoisches ittel Wobei w, w,... w k sid die gewichte (w + w + w w k =) : wir habe km mit eier Geschwidigkeit vo km/h, ud eie adere km mit eier Geschwidigkeit vo km/h gefahre. User Durchschittgeschwidigkeit lautet Also x h = km/h xh = w wk x x = x h k,, + Streuugsmaße Diese gebe die Abweichug der Eizelwerte vo ihrem ittelwert Die Spaweite: die Differez zwische dem größte ud dem kleiste vorkommede erkmalswert (bei klassifizierte Date die Differez zwische der Obergreze der größte Klasse ud der Utergreze der kleiste Klasse). (Statistik-Pukte) Pukte - b.u. - b.u. - b.u. - b.u. Azahl Spaweite: -= Pukte. Die mittlere Abweichug Das arithmetische ittel der absolute Betrage der Abweichuge aller Beobachtuge vom arithmetische ittel. x + x + x x d = ür klassifizierte Date: x f+ x f xk fk d = (=f +f +...+f k, x i ist die Klassemitte). (Statistik-Pukte) Pukte - b.u. - b.u. - b.u. - b.u. Azahl 9 Arithm. ittel: Pukte. Die mittlere Abweichug: ( )/=, Pukte.

3 Die Variaz Das arithmetische ittel der Abweichugsquadrate aller Beobachtuge vom arithmetische ittel. ( x + ( x + ( x ( x x ο = ür klassifizierte Date: ) ( x f + ( x f ( xk fk ο = (Statistik-Pukte) Pukte - b.u. - b.u. - b.u. - b.u. Azahl 9 Arithm. ittel: Pukte. Die Variaz: ((-) + +(-) +(-) +9(-) )/=9, Pukte. Die Stadardabweichug Quadratwurzel aus der Variaz : für Statistik-Note i σ=9, Pukte (es gibt die Abweichug, die Variaz ist mathematisch iteressat). Variatioskoeffiziet (Relative Streuug): σ V = x Zeigt das Verhältis zwische Stadardabweichug ud Arithmetisches ittel (i Prozet). Je grösser, desto höher ist die Streuug (uabhägig vo dem Eiheit). ür Statistik-Note V=9/=,%. Symmetrie Histogramm vo Pukte ür symmetrische Verteiluge, odus=edia=arithm. ittel P Histogramm vo Wartezeite i ür likssteile Verteiluge, odus<edia<arithm. ittel Pearso-Schiefemaß Zur Utersuchug vo symmetrie Pe=(Arithm.ittel-odus)/Std.Abw. Bedeutug: Pe<-,: starke assymmetrie (Rechtssteil) -, Pe<-, schwache assymmetrie (Rechtssteil) -, Pe -,: (ahezu) symmetrisch,<pe,: schwache assymmetrie (Likssteil), <Pe: starke assymmetrie (Likssteil) e Histogramm vo Pukte odus=, Arithm. ittel=,, Std.Abw=,, Pe=-, P Histogramm vo Wartezeite i odus=, Arithm. ittel=,, Std.Abw=,, Pe=, ehrdimesioales Datematerial Beobachtuge, jeder hat Werte für m erkmaler, also jeder besteht aus m erkmalauspräguge. z.b. wir otiere die Grösse ud das Umsatz verschiedee iliale (m=). Beobachtugswerte vo erkmal X (Grösse): x, x, x, x Beobachtugswerte vo erkmal Y (Umsatz): y, y, y, y Die Paare x i, y i häge zusamme (gehöre zu de selbe iliale), also die Reihefolge ist wichtig!

4 Die Kotigeztabelle Geeiget auch für omialskalierte Date (a, a, a k sid die erkmalauspräguge für erkmal, ud b, b, b m sid die erkmalauspräguge für erkmal ) b b b m a h, h, h,m a k h k, h k, h k,m wobei h i,j gibt die Häufigkeit diejeige Beobachtuge, die mit (a i,b j ) idetisch sid (gemeisame Häufigkeite). Radhäufigkeite h,j = h,j + h,j + +h k,j die Azahl alle Beobachtuge, die bezüglich der zweite erkmals die Ausprägug b j aufweise (auf der Kotigeztabelle ka ma diese i die letzte Zeile auftrage), sowie h l, = h l, + h l, + +h l,m ist die Azahl alle Beobachtuge, die bezüglich der erste erkmals die Ausprägug a l aufweise (auf der Kotigeztabelle ka ma diese i die letzte Spalte auftrage). Grü Brau Aufgabe: wir habe Studete die Augefarbe ud die Haarfarbe aufgeschriebe. Bereche wir die Kotigeztabelle ud die Radhäufigkeite. (Bl,Br), (Br,S), (G,Br),(G,S),(Bl,Bd),(Br,Br),(G,Br) (Bl,Bd), (Br,Bd), (G,Br),(G,Br),(Bl,Bd),(Bl,Br),(Br,S) (Bl,Br), (G,S), (G,Bd),(G,Br),(Bl,Bd),(Br,S) Auge/Haar Radhfg für Haarfarbe Blod Brau 9 Radhfg für Augefarbe = Bedigte relative Häufigkeit Verteilug (Reihe alle Relative Häufigkeite): Häufigkeit/. (: Azahl alle Beobachtuge). Die Summe ist immer! Verteilug der Augefarbe: Radhfg/= h l, /. Verteilug der erste erkmals bei gegebeer Ausprägug (z.b. b ) des zweite erkmals. : bereche wir die bedigte Verteilug für die Augefarbe bei gegebeer Haarfarbe (Bl): Haar/Auge Blod / Grü / Es ist hier h i,j /h,j für i=,...,k (: Azahl alle Beobachtuge). Brau / Auge/ Haar Bedigte relative Häufigkeit/ Verteilug der zweite erkmals bei gegebeer Ausprägug (z.b. b ) der erste erkmals. Bereche wir die bedigte Verteilug für die Haarfarbe bei gegebeer Augefarbe (Bl): Blod / Brau / Verteilug (Reihe alle Relative Häufigkeite): Häufigkeit/. (: Azahl alle Beobachtuge i die Zeile). Es ist hier h i,j /h,j für i=,...,k Uabhägigkeit Die bedigte Verteilug ist die selbe, als die ubedigte (Radverteilug): h i j /h i =h j / für alle Paare (i,j). : Geschlecht vs. Note Haufigkeite Relative Haufigkeite Schlechte N Gute Note aelich Weiblich Also: die erkmale sid uabhägig Schlechte N Gute Note aelich,, Weiblich,, Bedigte Vert. Schlechte N Gute Note alls maelich / / alls weiblich / / Radvert. (alle),,

5 Abhägigkeit Beipiel aus Studete-Date User, die Verteiluge: Auge/Haar Blod Brau /=, /9=, Grü /=, /9=, Die zwei Verteiluge: sid verschiede, also die erkmale sid abhägig Höhe Geschl Brau /=, /9=, -9 Radhfg für Augefarbe / 9/ (Bei Klassegreze die Date wurde zu de iedrigere Klasse zugeordet) Quatifizierug der Abhägigkeit Chi-Quadrat Statistik: ( h = ij E χ E ij ) i, j ij wo E ij ist die erwartete Häufigkeit der Ereigis (a i,b j ) uter der uabhägigkeit, also Eij = hi. h. j / Der Cramer-Zahl: χ mi{ ( k );( m ) } Es ist für uabhägige Date. C. Je grösser, desto starker ist die Zusammehag zwische die erkmale. aximales Wert. Es ist gültig auch für Nomialskalierte Date! A/H Grü Brau Summe, Hilfstabelle Beobachtete Blod Brau 9 Sum Erwartete Grü Brau Summe / / Chi-Sq= (-,) /,+ (-,) /,+ (-,) /,+ (-,) /,+ (-,) /,+ (-) /+ (-,) /,+ (-,) /,+ (-,) /,=,, =, A/H Blod / Brau / / / 9 / / / Es zeigt ei mittelstarke Zusammehag zwische Haar- ud Augefarbe. Sum ür die Studete-Date Beobachtuge Erwartuge H G G - -,, - -,, - -,9, -9-9,9, Daraus chi-sq=, ud die Cramér-Zahl lautet, =, Es zeigt eie starke Zusammeag

Harmonisches Mittel. Streuungsmaße. Die mittlere Abweichung. Die Standardabweichung. Die Varianz. Statistik 3. Vorlesung, März 11, ,...

Harmonisches Mittel. Streuungsmaße. Die mittlere Abweichung. Die Standardabweichung. Die Varianz. Statistik 3. Vorlesung, März 11, ,... Statistik. Vorlesug, März, 9 Harmoisches Mittel xh = w wk +... + x x k Wobei w, w,... w k sid die gewichte (w + w + w +...+ w k = Beispiel: wir habe km mit eier Geschwidigkeit vo km/h, ud eie adere km

Mehr

h i Deskriptive Statistik 1-dimensionale Daten Daten und Häufigkeiten Seite 1 Nominal Ordinal Metrisch (Kardinal) Metrisch - klassiert

h i Deskriptive Statistik 1-dimensionale Daten Daten und Häufigkeiten Seite 1 Nominal Ordinal Metrisch (Kardinal) Metrisch - klassiert Deskriptive Statistik dimesioale Date Date ud Häufigkeite Seite Nomial Ordial Metrisch (Kardial Metrisch klassiert Beschreibug: Date habe keie atürliche Reihefolge. Bsp: Farbe, Religio, Geschlecht, Natioalität...

Mehr

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:

Mehr

Statistik Einführung // Beschreibende Statistik 2 p.2/61

Statistik Einführung // Beschreibende Statistik 2 p.2/61 Statistik Eiführug Beschreibede Statistik Kapitel Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Beschreibede Statistik

Mehr

3. Einführung in die Statistik

3. Einführung in die Statistik 3. Eiführug i die Statistik Grudlegedes Modell zu Date: uabhägige Zufallsgröße ; : : : ; mit Verteilugsfuktio F bzw. Eizelwahrscheilichkeite p ; : : : ; p r i de Aweduge: kokrete reale Auspräguge ; : :

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen:

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen: 61 6.2 Grudlage der mathematische Statistik 6.2.1 Eiführug i die mathematische Statistik I der mathematische Statistik behadel wir Masseerscheiuge. Wir habe es deshalb im Regelfall mit eier große Zahl

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S Statistik mit Excel 2013 Peter Wies Theme-Special 1. Ausgabe, Februar 2014 W-EX2013S 3 Statistik mit Excel 2013 - Theme-Special 3 Statistische Maßzahle I diesem Kapitel erfahre Sie wie Sie Date klassifiziere

Mehr

Formelsammlung. zur Klausur. Beschreibende Statistik

Formelsammlung. zur Klausur. Beschreibende Statistik Formelsammlug zur Klausur Beschreibede Statistik Formelsammlug Beschreibede Statistik. Semester 004/005 Statistische Date Qualitative Date Nomial skalierte Merkmalsauspräguge (Uterscheidugsmerkmale) köe

Mehr

Streuungsmaße. Prof. Dr. Paul Reuber. Institut für Geographie. Seminar Methoden der empirischen Humangeographie

Streuungsmaße. Prof. Dr. Paul Reuber. Institut für Geographie. Seminar Methoden der empirischen Humangeographie Streuugsmaße Istitut für Geographie Streuugswerte (Streuugsmaße) Die Diskussio um die Mittelwerte hat die Vorteile dieser statistische Kewerte gezeigt, aber bereits, isbesodere beim arithmetische Mittel,

Mehr

Innerbetriebliche Leistungsverrechnung

Innerbetriebliche Leistungsverrechnung Ierbetriebliche Leistugsverrechug I der Kostestellerechug bzw. im Betriebsabrechugsboge (BAB ist ach der Erfassug der primäre Kostestellekoste das Ziel, die sekudäre Kostestellekoste, also die Koste der

Mehr

Beschreibende Statistik Kenngrößen in der Übersicht (Ac)

Beschreibende Statistik Kenngrößen in der Übersicht (Ac) Beschreibede Statistik Kegröße i der Übersicht (Ac) Im folgede wird die Berechugsweise des TI 83 (sowie vo SPSS, s. ute) verwedet. Diese geht auf eie Festlegug vo Moore ud McCabe (00) zurück. I der Literatur

Mehr

Umrechnung einer tatsächlichen Häufigkeitsverteilung in eine prozentuale Häufigkeitsverteilung

Umrechnung einer tatsächlichen Häufigkeitsverteilung in eine prozentuale Häufigkeitsverteilung .3. Prozetuale Häufigkeitsverteilug (HV) Die prozetuale Häufigkeitsverteilug erlaubt de Vergleich vo Auswertuge, dee uterschiedliche Stichprobegröße zugrude liege. Es köe auch uterschiedliche Stichprobegröße

Mehr

Univariate Verteilungen

Univariate Verteilungen (1) Aalyse: "deskriptive Statistike" Aalysiere -> deskriptive Statistike -> deskriptive Statistik Keie tabellarische Darstellug der Häufigkeitsverteilug () Aalyse: "Häufigkeitsverteilug" Aalysiere -> deskriptive

Mehr

Parameter von Häufigkeitsverteilungen

Parameter von Häufigkeitsverteilungen Kapitel 3 Parameter vo Häufigkeitsverteiluge 3. Mittelwerte Mo Der Modus (:= häufigster Wert, Abk.: Mo) ist der Merkmalswert mit der größte Häufigkeit, falls es eie solche gibt. Er sollte ur bei eigipflige

Mehr

h i :=h a i f i = h a i n Absolute Häufigkeit: Relative Häufigkeit: h 2 h 4 h 6 :=h der Elemente mit der Ausprägung i=6 zu der Anzahl n aller Werte

h i :=h a i f i = h a i n Absolute Häufigkeit: Relative Häufigkeit: h 2 h 4 h 6 :=h der Elemente mit der Ausprägung i=6 zu der Anzahl n aller Werte . Wer Rechtschreibfehler fidet, darf sie behalte. Rechefehler werde zurückgeomme. Absolute Häufigkeit: h Wie viele Elemete weise diese bestimmte Wert (= diese bestimmte Ausprägug) auf? > Azahl h der Elemete

Mehr

2.2.1 Lagemaße. Exkurs: Quantile. und n. p n

2.2.1 Lagemaße. Exkurs: Quantile. und n. p n Ekurs: Quatile Ausgagspukt : Geordete Urliste Jeder Wert p, mit 0 < p

Mehr

Übungen mit dem Applet erwartungstreu

Übungen mit dem Applet erwartungstreu Übuge mit dem Applet erwartugstreu Visualisierug vo erwartugstreu Begriffe ud statischer Hitergrud. Visualisieruge mit dem Applet..3. Zufallsstreuug der Eizelwerte...3. Mittelwerte 3.3 Variaz. 4.4 Variaz

Mehr

Wahrscheinlichkeit & Statistik

Wahrscheinlichkeit & Statistik Wahrscheilichkeit & Statistik created by Versio: 3. Jui 005 www.matheachhilfe.ch ifo@matheachhilfe.ch 079 703 7 08 Mege als Sprache der Wahrscheilichkeitsrechug, Begriffe, Grudregel Ereigisraum: Ω Ω Mege

Mehr

Übungsblatt 1 zur Vorlesung Angewandte Stochastik

Übungsblatt 1 zur Vorlesung Angewandte Stochastik Dr Christoph Luchsiger Übugsblatt 1 zur Vorlesug Agewadte Stochastik Repetitio WT Herausgabe des Übugsblattes: Woche 9, Abgabe der Lösuge: Woche 1 (bis Freitag, 1615 Uhr), Rückgabe ud Besprechug: Woche

Mehr

Jugendliche (18-24 Jahre) in Westdeutschland

Jugendliche (18-24 Jahre) in Westdeutschland Modus Beispiel: Modus Jugedliche (8-4 Jahre) i Westdeutschlad Parameter oder Kewerte eier Häufigkeitsverteilug sid Kegröße, mit dere Hilfe die Verteilug z.t. oder vollstädig rekostruiert werde ka D West

Mehr

Kapitel 6: Statistische Qualitätskontrolle

Kapitel 6: Statistische Qualitätskontrolle Kapitel 6: Statistische Qualitätskotrolle 6. Allgemeies Für die Qualitätskotrolle i eiem Uterehme (produzieredes Gewerbe, Diestleistugsuterehme, ) gibt es verschiedee Möglichkeite. Statistische Prozesskotrolle

Mehr

Sind Sie mit unserem Angebot zufrieden? ja nein weiß nicht

Sind Sie mit unserem Angebot zufrieden? ja nein weiß nicht STATISTIK Eiführug Statistik kommt vom italieische Wort statistica, was so viel wie Staatsma bedeutet. Früher verwedete ma de Begriff ur für eie Auswertug vo Date (Klima, Bevölkerug, Bräuche,...) eies

Mehr

Empirische Methoden I

Empirische Methoden I Hochschule für Wirtschaft ud 2012 Umwelt Nürtige-Geislige Fakultät Betriebswirtschaft ud Iteratioale Fiaze Prof. Dr. Max C. Wewel Prof. Dr. Corelia Niederdrek-Felger Aufgabe zum Tutorium Empirische Methode

Mehr

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert.

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert. Prof. Dr. H. Rommelfager: Etscheidugstheorie, Kaitel 3 7 3. Etscheidug bei Risiko (subjektive oder objektive) Eitrittswahrscheilichkeite für das Eitrete der mögliche Umweltzustäde köe vom Etscheidugsträger

Mehr

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares 4 6 Fachgebiet Regelugstechik Leiter: Prof. Dr.-Ig. Joha Reger Kleies Matrix-ABC 1 Eleetares Eie ( )-Matrix ist eie rechteckige Aordug vo reelle oder koplexe Zahle a ij (auch Skalare geat) ud besteht aus

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

Kennwerte Univariater Verteilungen

Kennwerte Univariater Verteilungen Kewerte Uivariater Verteiluge Kewerte Beschreibug vo Verteiluge durch eie (oder weige) Werte Werde auch als Parameter oder Maße vo Verteiluge bezeichet Ma uterscheidet: Lagemaße oder auch Maße der zetrale

Mehr

s xy x i x y i y s xy = 1 n i=1 y 2 i=1 x 2 s 1 n x n i Streudiagramme empirische Kovarianz x=5,5 y=7,5

s xy x i x y i y s xy = 1 n i=1 y 2 i=1 x 2 s 1 n x n i Streudiagramme empirische Kovarianz x=5,5 y=7,5 Streudiagramme für metrisch skalierte Variable paarweise Messwerte (x,y) x 5 7 y 7 5 7 5 5 7 Aussage zu Zusammehäge. empirische Kovariaz Stadardabweichug der WertPAARE x i x y Wert x Mittelwert aller x

Mehr

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst.

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst. Krytologie: Krytograhie ud Krytoaalyse Krytologie ist die Wisseschaft, die sich mit dem Ver- ud Etschlüssel vo Iformatioe befasst. Beisiel Iteretkommuikatio: Versiegel (Itegrität der Nachricht) Sigiere

Mehr

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt 2.4.5 Gauss-Test ud t-test für verbudee Stichprobe 2.4.5.8 Zum Begriff der verbudee Stichprobe Verbudee Stichprobe: Vergleich zweier Merkmale X ud Y, die jetzt a deselbe Persoe erhobe werde. Vorsicht:

Mehr

Der Modus. Lageparameter. Beispiel (Einrichtungen) Beispiel (Lieblingsfarben) Modus. Untersuchungseinheiten U 1,...,U n. Merkmal X

Der Modus. Lageparameter. Beispiel (Einrichtungen) Beispiel (Lieblingsfarben) Modus. Untersuchungseinheiten U 1,...,U n. Merkmal X Lageparameter Der Modus Utersuchugseiheite U,...,U Modus mod Mermal X Urliste,..., geordete Urliste (),..., () Es gilt i.allg.: ( ), i, K i i, Mermalsauspräguge a,..., a wird auch Modalwert oder häufigster

Mehr

Konzentration und Disparität

Konzentration und Disparität Begleitede Uterlage zur Übug Deskriptive Statistik Michael Westerma Uiversität Esse Ihaltsverzeichis 6 Kozetratios- ud Disparitätsmessug................................ 2 6.1 Begriff ud Eileitug.......................................

Mehr

Variiert man zusätzlich noch die Saatstärke (z.b. 3 Stärkearten), würde man von einer zweifaktoriellen Varianzanalyse sprechen.

Variiert man zusätzlich noch die Saatstärke (z.b. 3 Stärkearten), würde man von einer zweifaktoriellen Varianzanalyse sprechen. 3. Variazaalyse Die Variazaalyse mit eier quatitative abhägige Variable ud eier oder mehrerer qualitativer uabhägiger Variable wird auch als ANOVA (Aalysis of Variace) bezeichet. Mit eier Variazaalyse

Mehr

Lage- und Streuungsmaße

Lage- und Streuungsmaße Statistik 1 für SoziologIe Lage- ud Streuugsmaße Uiv.Prof. Dr. Marcus Hudec Streuugsmaße Statistische Maßzahle, welche die Variabilität oder die Streubreite i de Date messe. Sie beschreibe die Abweichug

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Methode der kleiste Quadrate KAPITEL 5: REGRESSIONSRECHNUNG Die Methode der kleiste Quadrate (MklQ) ist ei Verfahre zur Apassug eier Fuktio a eie Puktwolke. Agewadt wird sie beispielsweise, um eie Gesetzmäßigkeit

Mehr

Kapitel XI - Korrelationsrechnung

Kapitel XI - Korrelationsrechnung Istitut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökoometrie ud Statistik Kapitel XI - Korrelatiosrechug Deskriptive Statistik Prof. Dr. W.-D. Heller Hartwig Seska Carlo Siebeschuh Aufgabe der Korrelatiosrechug

Mehr

Kapitel 5: Schließende Statistik

Kapitel 5: Schließende Statistik Kapitel 5: Schließede Statistik Statistik, Prof. Dr. Kari Melzer 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

... a ik) i=1...m, k=1...n A = = ( a mn

... a ik) i=1...m, k=1...n A = = ( a mn Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,

Mehr

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222 Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme

Mehr

Statistik I Februar 2005

Statistik I Februar 2005 Statistik I Februar 2005 Aufgabe 0 Pukte Ei Merkmal X mit de mögliche Auspräguge 0 ud, das im Folgede wie ei kardialskaliertes Merkmal behadelt werde ka, wird a Merkmalsträger beobachtet. Dabei bezeichet

Mehr

Lineare Transformationen

Lineare Transformationen STAT 4 FK Herleituge Lieare Trasformatioe Sei eie lieare Trasformatio vo, so gilt Allgemei: a b, () Lieare Trasformatio des arithmetische Mittels y a+b x i () Da a eie additiv verküpfte Kostate ist, ka

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Istitut für tochastik Prof. Dr. N. Bäuerle Dipl.-Math.. Urba Lösugsvorschlag 9. Übugsblatt zur Vorlesug Fiazmathematik I Aufgabe Ei euartiges Derivat) Wir sid i eiem edliche, arbitragefreie Fiazmarkt,

Mehr

14 Statistische Beziehungen zwischen nomi nalen Merkmalen

14 Statistische Beziehungen zwischen nomi nalen Merkmalen 14 Statistische Beziehuge zwische omi ale Merkmale 14.1 Der Chi Quadrat Test auf Uabhägigkeit für Vier Feldertafel 14.2 Der Chi Quadrat Test auf Uabhägigkeit für r s Kotigeztafel 14.3 Zusammmehagsmaße

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Empirische Wirtschaftsforschug ud Ökoometrie Dr. Rolad Füss Statistik II: Schließede Statistik SS 2007 6. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug

Mehr

Stochastik für WiWi - Klausurvorbereitung

Stochastik für WiWi - Klausurvorbereitung Dr. Markus Kuze WS 2013/14 Dipl.-Math. Stefa Roth 11.02.2014 Stochastik für WiWi - Klausurvorbereitug Gesetz der totale Wahrscheilichkeit ud Satz vo Bayes (Ω, F, P) Wahrscheilichkeitsraum, E 1,..., E F

Mehr

3. Tilgungsrechnung. 3.1. Tilgungsarten

3. Tilgungsrechnung. 3.1. Tilgungsarten schreier@math.tu-freiberg.de 03731) 39 2261 3. Tilgugsrechug Die Tilgugsrechug beschäftigt sich mit der Rückzahlug vo Kredite, Darlehe ud Hypotheke. Dabei erwartet der Gläubiger, daß der Schulder seie

Mehr

Statistische Formelsammlung Begleitende Materialien zur Statistik - Vorlesung des Grundstudiums im Fachbereich IK

Statistische Formelsammlung Begleitende Materialien zur Statistik - Vorlesung des Grundstudiums im Fachbereich IK Statistische Formelsammlug Begleitede Materialie zur Statistik - Vorlesug des Grudstudiums im Fachbereich IK Erstellt im Rahme des studierede Projektes PROST Studiejahr 00/00 uter Aleitug vo Frau Prof.

Mehr

Absolutskala: metrische Skala mit einem natürlichen Nullpunkt und einer natürlichen Einheit. (Z.B. Einwohnerzahl). Nicht alle Variablen lassen sich

Absolutskala: metrische Skala mit einem natürlichen Nullpunkt und einer natürlichen Einheit. (Z.B. Einwohnerzahl). Nicht alle Variablen lassen sich Grudbegrie Die beschreibede Statistik (deskriptive Statistik) ist eie systematische Zusammestellug vo Zahle ud Date zur Beschreibug bestimmter Zustäde, Etwickluge oder Phäomee. Die beschreibede Statistik

Mehr

Die Gasgesetze. Die Beziehung zwischen Volumen und Temperatur (Gesetz von J.-L. und J. Charles): Gay-Lussac

Die Gasgesetze. Die Beziehung zwischen Volumen und Temperatur (Gesetz von J.-L. und J. Charles): Gay-Lussac Die Gasgesetze Die Beziehug zwische olume ud Temeratur (Gesetz vo J.-L. Gay-Lussac ud J. Charles): cost. T oder /T cost. cost.. hägt h vo ud Gasmege ab. Die extraolierte Liie scheidet die Temeratur- skala

Mehr

Finanzmathematische Formeln und Tabellen

Finanzmathematische Formeln und Tabellen Jui 2008 Dipl.-Betriebswirt Riccardo Fischer Fiazmathematische Formel ud Tabelle Arbeitshilfe für Ausbildug, Studium ud Prüfug im Fach Fiaz- ud Ivestitiosrechug Dieses Werk, eischließlich aller seier Teile,

Mehr

Übersicht: BS - 08 BS Häufigkeitsverteilung. Häufigkeitsverteilungen. Parametrisierung. unklassiert. eindimensional. klassiert.

Übersicht: BS - 08 BS Häufigkeitsverteilung. Häufigkeitsverteilungen. Parametrisierung. unklassiert. eindimensional. klassiert. Übersicht: eidimesioal mehrdimesioal Häufigkeitsverteilug uklassiert klassiert tabellarische Darstellug Modul 07, graphische Darstellug Modul 07,2 Parametrisierug Lageparameter Modul 08 Streuugsparameter

Mehr

Kovarianz und Korrelation

Kovarianz und Korrelation Kapitel 2 Kovariaz ud Korrelatio Josef Leydold c 2006 Mathematische Methode II Kovariaz ud Korrelatio 1 / 41 Lerziele Mathematische ud statistische Grudlage der Portfoliotheorie Kovariaz ud Korrelatio

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik ud Wahrscheilichkeitsrechug Dr. Joche Köhler 9.04.008 Äderug Übugsstude Statistik ud Wahrscheilichkeitsrechug Die Gruppe vo Markus trifft sich am Doerstag statt im HCI D zusamme mit der Gruppe

Mehr

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I Uiversität des Saarlades Fakultät für Mathematik ud Iformatik Witersemester 2003/04 Prof. Dr. Joachim Weickert Dr. Marti Welk Dr. Berhard Burgeth Lösuge der Aufgabe zur Vorbereitug auf die Klausur Mathematik

Mehr

2. Schätzverfahren 2.1 Punktschätzung wirtschaftlicher Kennzahlen. Allgemein: Punktschätzung eines Parameters:

2. Schätzverfahren 2.1 Punktschätzung wirtschaftlicher Kennzahlen. Allgemein: Punktschätzung eines Parameters: . Schätzverfahre. Puktschätzug wirtschaftlicher Kezahle Allgemei: Puktschätzug eies Parameters: Ermittlug eies Schätzwertes für eie ubekate Parameter eier Zufallsvariable i der Grudgesamtheit mit Hilfe

Mehr

Beispiel: p-wert bei Chi-Quadrat-Anpassungstest (Grafik) Auftragseingangsbeispiel, realisierte Teststatistik χ 2 = , p-wert: 0.

Beispiel: p-wert bei Chi-Quadrat-Anpassungstest (Grafik) Auftragseingangsbeispiel, realisierte Teststatistik χ 2 = , p-wert: 0. 8 Apassugs- ud Uabhägigkeitstests Chi-Quadrat-Apassugstest 8.1 Beispiel: p-wert bei Chi-Quadrat-Apassugstest (Grafik) Auftragseigagsbeispiel, realisierte Teststatistik χ 2 = 12.075, p-wert: 0.0168 f χ

Mehr

Prof. Dr. Roland Füss Statistik II SS 2008

Prof. Dr. Roland Füss Statistik II SS 2008 1. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug ergibt sich aus de Grezwertsätze. Grezwertsätze sid Aussage über eie Zufallsvariable für de Fall, dass die Azahl

Mehr

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5 Vl Statistische Prozess- ud Qualitätskotrolle ud Versuchsplaug Übug 5 Aufgabe ) Sei p = P(A) die Wahrscheilichkeit für ei Ereigis A, dh., es gilt 0 p. Bereche Sie das Maximum der Fuktio f(p) = p(-p). Aufgabe

Mehr

Formelsammlung Mathematik

Formelsammlung Mathematik Formelsammlug Mathematik 1 Fiazmathematik 1.1 Reterechug Sei der Zissatz p%, der Zisfaktor q = 1 + p 100. Seie R die regelmäßig zu zahlede Rate, die Laufzeit. Edwert: Barwert: achschüssig R = R q 1 q 1

Mehr

Klasse: Platzziffer: Punkte: / Graph zu f

Klasse: Platzziffer: Punkte: / Graph zu f Pflichtteil Mathematik I Aufgabe P Name: Vorame: Klasse: Platzziffer: Pukte: / P.0 Gegebe ist die Fuktio f mit der Gleichug (siehe Zeichug). y x8 y,25 4 mit GI IRIR Graph zu f O x P. x 8 Die Pukte C (x,25

Mehr

Statistik. 5. Schließende Statistik: Typische Fragestellung anhand von Beispielen. Kapitel 5: Schließende Statistik

Statistik. 5. Schließende Statistik: Typische Fragestellung anhand von Beispielen. Kapitel 5: Schließende Statistik Statistik Kapitel 5: Schließede Statistik 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel 1» Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte der arithmetische

Mehr

Kapitel 6: Quadratisches Wachstum

Kapitel 6: Quadratisches Wachstum Kapitel 6: Quadratisches Wachstum Dr. Dakwart Vogel Ui Esse WS 009/10 1 Drei Beispiele Beispiel 1 Bremsweg eies PKW Bremsweg Auto.xls Ui Esse WS 009/10 Für user Modell des Bremsweges gilt a = a + d a =

Mehr

Zahlenfolgen, Grenzwerte und Zahlenreihen

Zahlenfolgen, Grenzwerte und Zahlenreihen KAPITEL 5 Zahlefolge, Grezwerte ud Zahlereihe. Folge Defiitio 5.. Uter eier Folge reeller Zahle (oder eier reelle Zahlefolge) versteht ma eie auf N 0 erlarte reellwertige Futio, die jedem N 0 ei a R zuordet:

Mehr

Beispiel: p-wert bei Chi-Quadrat-Anpassungstest (Grafik) Auftragseingangsbeispiel, realisierte Teststatistik χ 2 = , p-wert: 0.

Beispiel: p-wert bei Chi-Quadrat-Anpassungstest (Grafik) Auftragseingangsbeispiel, realisierte Teststatistik χ 2 = , p-wert: 0. 8 Apassugs- ud Uabhägigkeitstests Chi-Quadrat-Apassugstest 81 Beispiel: p-wert bei Chi-Quadrat-Apassugstest (Grafik) Auftragseigagsbeispiel, realisierte Teststatistik χ 2 = 12075, p-wert: 00168 f χ 2 (4)

Mehr

2. Diophantische Gleichungen

2. Diophantische Gleichungen 2. Diophatische Gleichuge [Teschl05, S. 91f] 2.1. Was ist eie diophatische Gleichug ud wozu braucht ma sie? Def D2-1: Eie diophatische Gleichug ist eie Polyomfuktio i x,y,z,, bei der als Lösuge ur gaze

Mehr

WISTA WIRTSCHAFTSSTATISTIK

WISTA WIRTSCHAFTSSTATISTIK WISTA WIRTSCHAFTSSTATISTIK PROF. DR. ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Seiar für Theoretische Wirtschaftslehre Vorlesugsprogra 14.05.2013 Streuugsaße 1. Norierte Etropie 2. Spaweite, Quartilsabstad,

Mehr

Empirische Verteilungsfunktion

Empirische Verteilungsfunktion KAPITEL 3 Empirische Verteilugsfuktio 3.1. Empirische Verteilugsfuktio Seie X 1,..., X uabhägige ud idetisch verteilte Zufallsvariable mit theoretischer Verteilugsfuktio F (t) = P[X i t]. Es sei (x 1,...,

Mehr

Kreuztabellenanalyse und Assoziationsmaße

Kreuztabellenanalyse und Assoziationsmaße FB 1 W. Ludwig-Mayerhofer Statistik 1 Herzlich willkomme zur Vorlesug Statistik Zusammehäge zwische omiale (ud/oder ordiale) Merkmale: aalyse ud FB 1 W. Ludwig-Mayerhofer Statistik 2 eige sich zur Darstellug

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

Der natürliche Werkstoff Holz - Statistische Betrachtungen zum uniaxialen Zugversuch am Beispiel von Furnier

Der natürliche Werkstoff Holz - Statistische Betrachtungen zum uniaxialen Zugversuch am Beispiel von Furnier Der atürliche Werkstoff Holz - Statistische Betrachtuge zum uiaxiale Zugversuch am Beispiel vo Furier B. Bellair, A. Dietzel, M. Zimmerma, Prof. Dr.-Ig. H. Raßbach Zusammefassug FH Schmalkalde, 98574 Schmalkalde,

Mehr

Fakultät für Wirtschafts- und Rechtswissenschaften

Fakultät für Wirtschafts- und Rechtswissenschaften F A C H H O C H S C H U L E K Ö L N Fakultät für Wirtschafts- ud Rechtswisseschafte F O R M E L S A M M L U N G Deskriptive Statistik Iduktive Statistik Herausgeber: c 2004 Fachgruppe Quatitative Methode

Mehr

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE Versuch 3/ NEWTONSCHE INTERFERENZRINGE Blatt NEWTONSCHE INTERFERENZRINGE Die Oberfläche vo Lise hat im allgemeie Kugelgestalt. Zur Messug des Krümmugsradius diet das Sphärometer. Bei sehr flacher Krümmug

Mehr

Aufgaben zur Übung und Vertiefung

Aufgaben zur Übung und Vertiefung Aufgabe zur Übug ud Vertiefug ARITHMETISCHE ZAHLENFOLGEN Berufliches Gymasium / Uterstufe () Stelle Sie fest, welche der gegebee Folge arithmetisch sid: Bestimme Sie zuächst die erste füf Folgeglieder,

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Methodelehre e e Prof. Dr. G. Meihardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstude jederzeit ach Vereibarug ud ach der Vorlesug. Mathematische ud statistische Methode I Dr. Malte Persike persike@ui-maiz.de

Mehr

Übungsaufgaben - Organisatorisches

Übungsaufgaben - Organisatorisches Übugsaufgabe - Orgaisatorisches Der Abgabetermi der eue Übugsblätter ist: Motag, 4:00 Uhr Fehlerrechugsbriefkaste Der Abgabetermi der verbesserte Übugsblätter ist: Freitag, 6:00 Uhr T. Kießlig: Auswertug

Mehr

3 Kritischer Bereich zum Niveau α = 0.10: K = (χ 2 k 1;1 α, + ) = (χ2 5;0.90, + ) = (9.236, + ) 4 Berechnung der realisierten Teststatistik:

3 Kritischer Bereich zum Niveau α = 0.10: K = (χ 2 k 1;1 α, + ) = (χ2 5;0.90, + ) = (9.236, + ) 4 Berechnung der realisierten Teststatistik: 8 Apassugs- ud Uabhägigkeitstests Chi-Quadrat-Apassugstest 81 Beispiel: p-wert bei Chi-Quadrat-Apassugstest (Grafik) Auftragseigagsbeispiel, realisierte Teststatistik χ 2 1275, p-wert: 168 8 Apassugs-

Mehr

Löslichkeitsdiagramm. Grundlagen

Löslichkeitsdiagramm. Grundlagen Grudlage Löslichkeitsdiagramm Grudlage Zur etrachtug des Mischugsverhaltes icht vollstädig mischbarer Flüssigkeite, das heißt Flüssigkeite, die sich icht bei jeder Temperatur i alle Megeverhältisse miteiader

Mehr

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen Testumfag für die Ermittlug ud Agabe vo Fehlerrate i biometrische Systeme Peter Uruh SRC Security Research & Cosultig GmbH peter.uruh@src-gmbh.de Eileitug Biometrische Systeme werde durch zwei wichtige

Mehr

Übungsaufgaben - Organisatorisches

Übungsaufgaben - Organisatorisches Übugsaufgabe - Orgaisatorisches Der Abgabetermi der eue Übugsblätter ist: Motag, 4:00 Uhr Fehlerrechugsbriefkaste Der Abgabetermi der verbesserte Übugsblätter ist: Freitag, 6:00 Uhr T. Kießlig: Auswertug

Mehr

e) ( 4a + 8b + 9a + 18b ) : a + 2b f) 2 log (x) + 3 log (2y) 0.5 log (z)

e) ( 4a + 8b + 9a + 18b ) : a + 2b f) 2 log (x) + 3 log (2y) 0.5 log (z) Mathematik 1 Test SELBSTTEST MATHEMATIK 1. Forme Sie die folgede Terme um: a) y y y y + y : ( ) ( ) b) ( 9 ) 18 c) 5 3 3 3 d) 6 5 4 ( 7 y ) 3 4 5 ( 14 y ) e) ( 4a + 8b + 9a + 18b ) : a + b f) log () +

Mehr

Statistik ) 217 Haushalte 3) 2) Anzahl der TV-Geräte ) 220 Personen, 96 Personen, 285 Personen 2) 6,6. 8,7 m 1 0,06

Statistik ) 217 Haushalte 3) 2) Anzahl der TV-Geräte ) 220 Personen, 96 Personen, 285 Personen 2) 6,6. 8,7 m 1 0,06 Statistik 7 7. Erstelle eier stabelle i der Klasse, idividuell verschiedee Ergebisse sid möglich. 7. ) ordial ) omial 3) metrisch ) metrisch 7.3 ) Diskret. Es komme ur atürliche Zahle als Ergebis i Frage.

Mehr

Tests für beliebige Zufallsvariable

Tests für beliebige Zufallsvariable Kapitel 10 Tests für beliebige Zufallsvariable 10.1 Der Chi-Quadrat-Apassugstest Sei x eie gaz beliebige Zufallsvariable, dere Dichtefuktio icht oder icht geau bekat ist. Beispiel: Es seie z.b. mittels

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR MATHEMATISCHE STOCHASTIK WS 005/06 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Klausur Wahrscheilichkeitstheorie ud Statistik vom 9..006 Musterlösuge Aufgabe A: Gegebe sei eie Urliste

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meihardt 6. Stock, Taubertsberg R. 06-06 (Persike) R. 06-31 (Meihardt) Sprechstude jederzeit ach Vereibarug Forschugsstatistik I Dr. Malte Persike persike@ui-maiz.de http://psymet03.sowi.ui-maiz.de/

Mehr

Kursthemen 5. Sitzung. Lagemaße

Kursthemen 5. Sitzung. Lagemaße Kurstheme 5. Sitzug Folie I - 5 - Lagemaße A) Arithmetisches Mittel (AM), Media ud Modus (Folie 2 bis 8) A) Arithmetisches Mittel (AM), Media ud Modus (Folie 2 bis 8) B) Der Additiossatz für AM (Folie

Mehr

Mathematik Funktionen Grundwissen und Übungen

Mathematik Funktionen Grundwissen und Übungen Mathematik Fuktioe Grudwisse ud Übuge Potezfuktio Hyperbel Epoetialfuktio Umkehrfuktio Stefa Gärter 004 Gr Mathematik Fuktioe Seite Grudwisse Potezfuktio Defiitio Durch die Zuordugsvorschrift f: Æ mit

Mehr

Inhaltsverzeichnis Office Excel 2003 - Themen-Special: Statistik I

Inhaltsverzeichnis Office Excel 2003 - Themen-Special: Statistik I W-EX2003S Autor: Christia Müster Ihaltliches Lektorat: Peter Wies Überarbeitete Ausgabe vom 23. Mai 2007 by HERDT-Verlag für Bildugsmedie GmbH, Bodeheim Microsoft Office Excel 2003 für Widows Theme-Special:

Mehr

4 Schwankungsintervalle Schwankungsintervalle 4.2

4 Schwankungsintervalle Schwankungsintervalle 4.2 4 Schwakugsitervalle Schwakugsitervalle 4. Bemerkuge Die bekate Symmetrieeigeschaft Φ(x) = 1 Φ( x) bzw. Φ( x) = 1 Φ(x) für alle x R überträgt sich auf die Quatile N p der Stadardormalverteilug i der Form

Mehr

Kennwerte eindimensionaler Häufigkeitsverteilungen Einführung

Kennwerte eindimensionaler Häufigkeitsverteilungen Einführung Kewerte eidimesioaler Häufigkeitsverteiluge Eiführug Statistische Kewerte vo Verteiluge sid umerische Maße mit der Fuktio, zusammefassed eie Eidruck vo 1) dem Schwerpukt, ) der Variabilität ud 3) der Form

Mehr

KORRELATION VON ORDINALDATEN Rangkorrelation nach Spearman Terminologie Berechnung Signifikanzprüfung

KORRELATION VON ORDINALDATEN Rangkorrelation nach Spearman Terminologie Berechnung Signifikanzprüfung KORRELATION VON ORDINALDATEN Ragkorrelatio ach Spearma Termiologie Berechug Sigifikazprüfug Ziel: Ei Maß für de Zusammehag zweier ordialskalierter Variable ermittel Beispiele: Messug vo Kameradschaftlichkeit

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Rolad Speicher M.Sc. Tobias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 01 Musterlösug zu Blatt 0 Aufgabe 1. Käpt Schwarzbart,

Mehr

Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen. Reihen reeller Zahlen

Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen. Reihen reeller Zahlen Höhere Mathematik für techische Studiegäge Vorereitugsaufgae für die Üuge Reihe reeller Zahle. Utersuche Sie die folgede Reihe mit Hilfe geeigeter Kovergezkriterie otwediges Kovergezkriterium, Quotiete-,

Mehr

Weitere Lagemaße: Quantile/Perzentile II. Weitere Lagemaße: Quantile/Perzentile I. Weitere Lagemaße: Quantile/Perzentile IV

Weitere Lagemaße: Quantile/Perzentile II. Weitere Lagemaße: Quantile/Perzentile I. Weitere Lagemaße: Quantile/Perzentile IV 3 Auswertug vo eidimesioale Date Lagemaße 3.3 Weitere Lagemaße: Quatile/Perzetile I 3 Auswertug vo eidimesioale Date Lagemaße 3.3 Weitere Lagemaße: Quatile/Perzetile II Für jede Media x med gilt: Midestes

Mehr

Grundgesamtheitsanaylsen und Stichproben. Betrachtungen zur Stichprobenfindung

Grundgesamtheitsanaylsen und Stichproben. Betrachtungen zur Stichprobenfindung MaMaEuSch Maagemet Mathematics for Europea Schools http://www.mathematik.uikl.de/ mamaeusch Grudgesamtheitsaaylse ud Stichprobe. Betrachtuge zur Stichprobefidug Paula Lagares Justo Puerto 1 MaMaEuSch 2

Mehr

Aufgaben und Lösungen der Probeklausur zur Analysis I

Aufgaben und Lösungen der Probeklausur zur Analysis I Fachbereich Mathematik AG 5: Fuktioalaalysis Prof. Dr. K.-H. Neeb Dipl.-Math. Rafael Dahme Dipl.-Math. Stefa Wager ATECHNISCHE UNIVERSITÄT DARMSTADT SS 007 19. Jui 007 Aufgabe ud Lösuge der Probeklausur

Mehr

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable Allgemeie Lösuge der -dimesioale Laplace-Gleichug ud ihre komplexe Variable Dr. rer. at. Kuag-lai Chao Göttige, de 4. Jauar 01 Abstract Geeral solutios of the -dimesioal Laplace equatio ad its complex

Mehr

Eigenschaften von Texten

Eigenschaften von Texten Worthäufigkeite Eigeschafte vo Texte Eiige Wörter sid sehr gebräuchlich. 2 der häufigste Wörter (z.b. the, of ) köe ca. 0 % der Wortvorkomme ausmache. Die meiste Wörter sid sehr selte. Die Hälfte der Wörter

Mehr