Klasse: Platzziffer: Punkte: / Graph zu f

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Klasse: Platzziffer: Punkte: / Graph zu f"

Transkript

1 Pflichtteil Mathematik I Aufgabe P Name: Vorame: Klasse: Platzziffer: Pukte: / P.0 Gegebe ist die Fuktio f mit der Gleichug (siehe Zeichug). y x8 y,25 4 mit GI IRIR Graph zu f O x P. x 8 Die Pukte C (x,25 4) liege auf dem Graphe der Fuktio f. Die Pukte A, dere Abszissewert stets um kleier als der Abszissewert der Pukte C ist, liege auf der x-achse. Zusamme mit de Pukte B bilde sie gleichscheklige Dreiecke A B C mit de Eigeschafte: AC BC ud AB 2cm. Zeiche Sie für x 0,5 ud x 2 die beide Dreiecke A B C ud A 2 B 2 C 2 i die Zeichug zu.0 ei. Bereche Sie soda diejeige Beleguge vo x, für die es Dreiecke A B C gibt. P.2 Uter alle Dreiecke A B C gibt es das rechtwiklige Dreieck A 3 B 3 C 3. Bereche Sie de zugehörige x-wert.

2 Pflichtteil Mathematik I Aufgabe P 2 Name: Vorame: Klasse: Platzziffer: Pukte: / P 2.0 P 2. P 2.2 Ei Afagskapital vo wird mit eiem Jahreszis vo 2,8% agelegt. Nach wie viele Jahre hat sich das Kapital um 59% erhöht, we die Zise stets weiter mit verzist werde? Begrüde Sie, ach wie viele Jahre sich ei halb so großes Kapital bei gleichem Zissatz ebefalls um 59% erhöht hat.

3 Pflichtteil Mathematik I Aufgabe P 3 Name: Vorame: Klasse: Platzziffer: Pukte: / P 3 Herr Huber stellt sich auf eie Persoewaage. Diese zeigt 93 kg a. Durch Erährugsumstellug möchte Herr Huber eie Masse vo 72 kg erreiche. Nach wie viele Woche hat er sei Ziel erreicht, we seie Masse durch die Erährugsumstellug pro Woche durchschittlich um 0,8% reduziert wird?

4 Pflichtteil Mathematik I Aufgabe P 4 Name: Vorame: Klasse: Platzziffer: Pukte: / P 4.0 Gegebe ist die Fuktio f mit der Gleichug y 6 x mit GI IR IR (siehe Zeichug). Die Pukte C(x 6x ) liege auf dem Graphe zu f. Sie bilde zusamme mit de Pukte A(0 2) ud B(2 2) Dreiecke ABC. Im Koordiatesystem sid für x {;0} die zugehörige Dreiecke ABC ud ABC 2 eigezeichet. y C A O x C 2 B P 4. P 4.2 Uter alle Dreiecke ABC gibt es Dreiecke ABC 3 bzw. ABC 4, sodass der Wikel C 3 BA bzw. C 4 BA das Maß 28 besitzt. Zeiche Sie die beide Dreiecke i das Koordiatesystem zu 4.0 ei ud bereche Sie soda die zugehörige x-koordiate der Pukte C 3 ud C 4. Utersuche Sie, ob es uter alle Dreiecke ABC ei rechtwikliges Dreieck gibt, sodass eie der Seite [BC ] die Hypoteuse ist.

5 Pflichtteil Mathematik I Aufgabe P 5 Name: Vorame: Klasse: Platzziffer: Pukte: / P 5.0 Gegebe ist eie Abbildug x' 0,8 0,6 x mit G IRIR y' 0,6 0,8 y I. P 5. Utersuche Sie, ob die Abbildug Fixpukte besitzt ud ermittel Sie gegebeefalls dere Koordiate. P 5.2 Überprüfe Sie, ob die Gerade g mit der Gleichug y 2x 3 Fixgerade der Abbildug ist.

6 Pflichtteil Mathematik I Aufgabe P 6 Name: Vorame: Klasse: Platzziffer: Pukte: / P 6.0 I der Zeichug ist ei Quadrat ABCD mit der Seiteläge a abgebildet. Trägt ma i dem Quadrat ABCD a [AB], [BC], [CD] ud [DA] gleichgroße Wikel so a, dass gilt: BAE CBF DCG ADH, da etstehe Quadrate I K L M (siehe Zeichug). D F C L M G E K I A H B P 6. P 6.2 Bestätige Sie durch Rechug, dass für de Flächeihalt der Quadrate I K L M i Abhägigkeit vo gilt: 2 2 A( ) a (cossi ) Gebe Sie ei sivolles Itervall für a. Ermittel Sie soda de Wert vo, für de der Flächeihalt des Quadrates ABCD dreimal so groß ist wie der Flächeihalt des Quadrats I K L M.

7 Pflichtteil Mathematik I Aufgabe P 7 Name: Vorame: Klasse: Platzziffer: Pukte: / P 7.0 Gegebe sid der Pukt M(0 4) ud die Pukte P( 4si 44cos ) ud Q(3si 33cos ) mit [0 ; 360 [. Im Koordiatesystem sid für {60 ;40 ; 270 } die zugehörige Dreiecke OP Q, OP 2 Q 2 ud OQ 3 P 3 eigezeichet. P 2 y M P 3 P O x Q 2 Q 3 Q P 7. Begrüde Sie durch Rechug, dass die Pukte P( 4si 44cos ) auf eiem Kreis um M(0 4) mit dem Radius MP ( ) liege ud gebe Sie soda de Radius MP ( ) a. P 7.2 Die Pukte P( 4si 44cos ) bilde zusamme mit de Pukte Q(3si 33cos ) ud dem Pukt O(0 0) Dreiecke OP Q bzw. OQ P für [0 ; 360 [ \{80 }. Aus der Zeichug lässt sich vermute, dass die Dreiecke OP Q bzw. OQ P eie besodere Form besitze. Gebe Sie diese a ud weise Sie die Form aschließed recherisch ach.

8 Pflichtteil Mathematik I Aufgabe P 8 Name: Vorame: Klasse: Platzziffer: Pukte: / P 8.0 P 8. Gegebe ist ei Würfel ABCDEFGH (der Eckpukt E liegt über dem Eckpukt A). Seie Kateläge beträgt 8 cm. Die Grudfläche ABCD des Würfels ist auch die Grudfläche vo Pyramide ABCDS, dere Spitze S auf der Raumdiagoale [BH] des Würfels liege. Zeiche Sie ei Schrägbild des Würfels wobei [AB] auf der Schrägbildachse liege soll. Zeiche Sie soda die Pyramide ABCDS ei, wobei gilt: die Pyramidehöhe [R S ] mit dem Höhefußpukt R auf [BD] soll 5 cm lag sei. Für die Zeichug: q ; 45 2 P 8.2 Die Wikel BAS zwische der Grudkate [AB] ud de Seitekate [AS ] der Pyramide ABCDS habe das Maß. Bereche Sie die Läge der Strecke [BS 2 ] für 40.

9 Pflichtteil Mathematik I Aufgabe P 9 Name: Vorame: Klasse: Platzziffer: Pukte: / P 9.0 Für die Dreiecke A B C gilt: AC(x) (5 2x)cm, BC(x) (8 x)cmmit x IR ud CBA 60. Diese Dreiecke rotiere um die Achse A B. 60 B C A P 9. P 9.2 Utersuche Sie, ob es für x = 0,5 eie Rotatioskörper gibt. Uter alle Rotatioskörper gibt es eie, desse Axialschitt eie Raute darstellt. Bereche Sie das Volume dieses Körpers.

10 Pflichtteil Mathematik I Aufgabe P 0 Name: Vorame: Klasse: Platzziffer: Pukte: / P 0.0 Ei Würfel hat die Kateläge a = 7,6 cm (siehe Zeichug). Auf der Kate [AB] liegt der Pukt P, auf der Kate [EF] der Pukt Q. Pukte R wader auf der Kate [GH], wobei gilt: AP FQ 0, 25a ud RQE. H R G E Q F D C A P B P 0. P 0.2 Ermittel Sie das Itervall für das Maß der Wikel R QE. Bereche Sie, für welche Maße vo die Summe der Streckeläge PQ ud QR 6,3 cm lag ist.

11 Pflichtteil Mathematik I Aufgabe P Lösugsmuster ud Bewertug Hiweis: Bei eiige Teilaufgabe sid auch adere Lösugswege möglich. Für richtige adere Lösuge gelte die jeweils agegebee Pukte etspreched; die Azahl der Pukte bei de eizele Teilaufgabe darf jedoch icht verädert werde. Isbesodere sid Lösugswege, bei dee der grafikfähige Tascherecher verwedet wird, etspreched ihrer Dokumetatio bzw. ihrer Nachvollziehbarkeit zu bepukte. P. y Graph zu f C 2 C B A 2 A O B 2 x x 8, G I IR x,79 IL {, 79} x {x x,79} P.2 Die Dreieckshöhe muss halb so lag sei, wie die Hypoteuse [A 3 B 3 ]. x 8, 25 4 G I IR x 0,79 IL { 0, 79}

12 Pflichtteil Mathematik I Aufgabe P 2 Lösugsmuster ud Bewertug Hiweis: Bei eiige Teilaufgabe sid auch adere Lösugswege möglich. Für richtige adere Lösuge gelte die jeweils agegebee Pukte etspreched; die Azahl der Pukte bei de eizele Teilaufgabe darf jedoch icht verädert werde. Isbesodere sid Lösugswege, bei dee der grafikfähige Tascherecher verwedet wird, etspreched ihrer Dokumetatio bzw. ihrer Nachvollziehbarkeit zu bepukte. P 2. Fuktiosgleichug für x Jahre Alagedauer ud y Kapitalzuwachs. x f : y 7500 ( 0,028) GI IR0 IR0 x, , 028 GI IR 0 x log,59,028 x 6,8 IL {6, 8} Nach 7 Jahre hat sich das Afagskapital um 59% erhöht. P 2.2 Das Kapital hat sich ebefalls ach 7 Jahre um 59% erhöht, da die Verzisug uabhägig vom Afagskapital durchgeführt wird.

13 Pflichtteil Mathematik I Aufgabe P 3 Lösugsmuster ud Bewertug Hiweis: Bei eiige Teilaufgabe sid auch adere Lösugswege möglich. Für richtige adere Lösuge gelte die jeweils agegebee Pukte etspreched; die Azahl der Pukte bei de eizele Teilaufgabe darf jedoch icht verädert werde. Isbesodere sid Lösugswege, bei dee der grafikfähige Tascherecher verwedet wird, etspreched ihrer Dokumetatio bzw. ihrer Nachvollziehbarkeit zu bepukte. P 3 Fuktiosgleichug für die Zeit i x Woche ud der Masse i y kg. x f : y 93 ( 0,008) GI IR0 IR0 x ( 0, 008) GI IR 0 72 x log0, x 3,86 IL {3, 86} Nach 32 Woche hat er sei Idealgewicht erreicht.

14 Pflichtteil Mathematik I Aufgabe P 4 Lösugsmuster ud Bewertug Hiweis: Bei eiige Teilaufgabe sid auch adere Lösugswege möglich. Für richtige adere Lösuge gelte die jeweils agegebee Pukte etspreched; die Azahl der Pukte bei de eizele Teilaufgabe darf jedoch icht verädert werde. Isbesodere sid Lösugswege, bei dee der grafikfähige Tascherecher verwedet wird, etspreched ihrer Dokumetatio bzw. ihrer Nachvollziehbarkeit zu bepukte. P 4. y C C 3 C 4 C 2 A O x B 6x 2 ta 28 ID IR \{2} 2 x 6 2x 0,53 2 2x x 2 0,53x 4,36x 6 0 x,75 x 6,48 IL {, 75; 6, 48} P 4.2 Das etsprechede Dreieck müsste bei A rechtwiklig sei. Das bedeutet, dass eier der Pukte C auf der y-achse liege müsste, die aber Asymptote ist. Daher gibt es kei solches Dreieck.

15 Pflichtteil Mathematik I Aufgabe P 5 Lösugsmuster ud Bewertug Hiweis: Bei eiige Teilaufgabe sid auch adere Lösugswege möglich. Für richtige adere Lösuge gelte die jeweils agegebee Pukte etspreched; die Azahl der Pukte bei de eizele Teilaufgabe darf jedoch icht verädert werde. Isbesodere sid Lösugswege, bei dee der grafikfähige Tascherecher verwedet wird, etspreched ihrer Dokumetatio bzw. ihrer Nachvollziehbarkeit zu bepukte. P 5. z. B. Fixpuktbedigug: x 0,8x0,6y y0,6x0,8y y x 3 y x 3 x' x y' y GI IR IR IL {(x y) y x} 3 P 5.2 algebraische Lösug, z. B.: x' 0,8 0,6 x y' 0,6 0,8 2x3 G I IR IR ; x IR x' 2x,8 y' x2,4 x 0,5x' 0,9 y ' (0,5x ' 0,9) 2, 4 g': y0,5x,5 Wege g g ' hadelt es sich bei g icht um eie Fixgerade. geometrische Lösug, z. B.: Bei der Abbildug hadelt es sich um eie Achsespiegelug mit der Spiegelachse s: y x ( GI IRIR). 3 Die Steigug der Gerade g ist weder och 3. Damit ka g keie Fixgerade 3 sei.

16 Pflichtteil Mathematik I Aufgabe P 6 Lösugsmuster ud Bewertug Hiweis: Bei eiige Teilaufgabe sid auch adere Lösugswege möglich. Für richtige adere Lösuge gelte die jeweils agegebee Pukte etspreched; die Azahl der Pukte bei de eizele Teilaufgabe darf jedoch icht verädert werde. Isbesodere sid Lösugswege, bei dee der grafikfähige Tascherecher verwedet wird, etspreched ihrer Dokumetatio bzw. ihrer Nachvollziehbarkeit zu bepukte. P 6. 2 A IK IK AK KB AK cos AB AK a cos KB si AB KB a si IK a cos a si 2 2 Aa (cossi ) P 6.2 [0 ; 45 [ A ABCD 3A IKLM a 3a (cossi ) (cossi ) [0 ; 45 [ 20,9 IL {20, 9 }

17 Pflichtteil Mathematik I Aufgabe P 7 Lösugsmuster ud Bewertug Hiweis: Bei eiige Teilaufgabe sid auch adere Lösugswege möglich. Für richtige adere Lösuge gelte die jeweils agegebee Pukte etspreched; die Azahl der Pukte bei de eizele Teilaufgabe darf jedoch icht verädert werde. Isbesodere sid Lösugswege, bei dee der grafikfähige Tascherecher verwedet wird, etspreched ihrer Dokumetatio bzw. ihrer Nachvollziehbarkeit zu bepukte. P 7. 4si MP ( ) [0 ; 360 [ 44cos4 2 2 MP ( ) 6si 6 cos LE MP 4 LE P 7.2 Die Dreiecke OP Q bzw. OQ P sid rechtwiklig, da gilt: OP OQ 0 3si 4si OQ ( ) OP ( ) 33cos 44cos ( 3si ) ( 4si ) ( 33cos ) (44cos ) si 2 2 cos 2 cos2 cos (w) [0 ; 360 [ \{80 }

18 Pflichtteil Mathematik I Aufgabe P 8 Lösugsmuster ud Bewertug Hiweis: Bei eiige Teilaufgabe sid auch adere Lösugswege möglich. Für richtige adere Lösuge gelte die jeweils agegebee Pukte etspreched; die Azahl der Pukte bei de eizele Teilaufgabe darf jedoch icht verädert werde. Isbesodere sid Lösugswege, bei dee der grafikfähige Tascherecher verwedet wird, etspreched ihrer Dokumetatio bzw. ihrer Nachvollziehbarkeit zu bepukte. P 8. H G E F S D C R A B P cm ta SBA 8cm BS ( ) 8 cm si si[80 ( 54,74 )] 8si BS ( ) cm si( 54,74 ) 8si40 BS2 cm si(4054,74 ) SBA54,74 BS2 SBA ]0;90[ ]0 ; 90 ] 5,6 cm

19 Pflichtteil Mathematik I Aufgabe P 9 Lösugsmuster ud Bewertug Hiweis: Bei eiige Teilaufgabe sid auch adere Lösugswege möglich. Für richtige adere Lösuge gelte die jeweils agegebee Pukte etspreched; die Azahl der Pukte bei de eizele Teilaufgabe darf jedoch icht verädert werde. Isbesodere sid Lösugswege, bei dee der grafikfähige Tascherecher verwedet wird, etspreched ihrer Dokumetatio bzw. ihrer Nachvollziehbarkeit zu bepukte. P 9. Damit es Rotatioskörper gibt, muss es Dreiecke C F B mit F als Lotfußpukt des Lotes vom Pukt C auf die Rotatiosachse A B gebe. Damit gilt: AC>CF CF(x) si 60 (8 x) cm x {x x8} CF(x) 0,5 3(8 x)cm CF(x) (4 30,5 3x)cm 52x>4 30,5 3x x(20,5 3)>4 3 5 x>0,67 Es gibt keie Rotatioskörper für x = 0,5. oder: (5 20,5) cm (8 0,5) cm si 60 si B A C... P 9.2 Das etsprechede rotierede Dreieck muss gleichseitig sei: 8x 52x x {x x8} x IL {} Die Seiteläge dieses Dreiecks beträgt 7 cm ud ist damit auch die Höhe des Rotatioskörpers. Der Radius des Rotatioskörpers ist die Höhe des gleichseitige Dreiecks: 3,5 3 cm V (3,5 3) 7cm V 269,39 cm 3

20 Pflichtteil Mathematik I Aufgabe P 0 Lösugsmuster ud Bewertug Hiweis: Bei eiige Teilaufgabe sid auch adere Lösugswege möglich. Für richtige adere Lösuge gelte die jeweils agegebee Pukte etspreched; die Azahl der Pukte bei de eizele Teilaufgabe darf jedoch icht verädert werde. Isbesodere sid Lösugswege, bei dee der grafikfähige Tascherecher verwedet wird, etspreched ihrer Dokumetatio bzw. ihrer Nachvollziehbarkeit zu bepukte. P 0. a ta mi mi 53,3 mi ]0 ;80 [ 0,75a * ta ta 75,96 0,25a max 8075,96 max 04,04 [53,3 ;65,96 ] * a P PQ 7,6 3,8 cm PQ 8,5 cm 7,6 cm si [53,3 ;65,96 ] 6,3 cm 8,5 cm IL {77 ;03 }

Abschlussprüfung 2008 an den Realschulen in Bayern

Abschlussprüfung 2008 an den Realschulen in Bayern Abschlussprüfug 8 a de Realschule i Bayer Mathematik I Haupttermi Aufgabe A Lösugsmuster ud Bewertug FUNKTIONEN A. ID f { > } Gleichug der Asymptote h: GI y Graph zu f C C D M B Graph zu f D M B A O A

Mehr

Abschlussprüfung 2010 an den Realschulen in Bayern

Abschlussprüfung 2010 an den Realschulen in Bayern Lösugsmuster ud Bewertug Miute Abschlussprüfug a de Realschule i Bayer Mathematik I Aufgabe A - Haupttermi FUNKTIONEN A. y k = y = y + + ; k \{} 55 + 5= k k \{} K k =,999874 IL = {,999874} Fuktiosgleichug:

Mehr

Abschlussprüfung 2011 an den Realschulen in Bayern

Abschlussprüfung 2011 an den Realschulen in Bayern Lösugsmuster ud Bewertug Abschlussprüfug 0 a de Realschule i Bayer Mathematik I Aufgabe A - Nachtermi FUNKTIONEN A. x + + y=,05 GI = 0 0 K A. 6 y=,05 y=,0 Am Ede des sechste Tages ware vo Bakterie bedeckt.

Mehr

Abschlussprüfung 2014 an den Realschulen in Bayern

Abschlussprüfung 2014 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Name: Abschlussprüfug 014 a de Realschule i ayer Mathematik II Vorame: Klasse: Platzziffer: Pukte: Aufgabe A 1 Nachtermi A 10 Agler verwede sogeate Schwimmer, die a der Agelschur

Mehr

Abschlussprüfung 2012 an den Realschulen in Bayern

Abschlussprüfung 2012 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Abschlussprüfug 01 a de Realschule i Bayer Mathematik II Aufgabe B 1 Haupttermi B 1.0 Die Parabel p verläuft durch die Pukte P( 5 19) ud Q(7 5). Sie hat eie Gleichug der Form y

Mehr

Abschlussprüfung 2011 an den Realschulen in Bayern

Abschlussprüfung 2011 an den Realschulen in Bayern Lösugsmuster ud Bewertug Abschlussprüfug a de Realschule i Bayer Mathematik I Aufgabe A - Haupttermi FUNKTIONEN A. + + y,5 GI K A. y,5 y 95,5 Am Ede des dritte Versuchstages ist die Azahl der Wasserflöhe

Mehr

Abschlussprüfung 2012 an den Realschulen in Bayern

Abschlussprüfung 2012 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 0 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A cos 6 A 0 Die Pfeile OP ( ) ud OQ ( ) cos cos spae für [0 ;80 ] Dreiecke

Mehr

Abschlussprüfung 200X Wahlteil Mathematik I Aufgabe A 1

Abschlussprüfung 200X Wahlteil Mathematik I Aufgabe A 1 Abschlussprüfug 200X Wahlteil Mathematik I Aufgabe A 1 Vorame: Klasse: Platzziffer: Pukte: / A 1.0 A 1.1 Gegebe ist die Fuktio f mit der Gleichug 0,5 y 2 ( 3) 4,5 ( GI IR IR ). Begrüde Sie, warum ma bei

Mehr

Abschlussprüfung 2016 an den Realschulen in Bayern

Abschlussprüfung 2016 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Abschlussprüfug 016 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A 1 Haupttermi A 10 Die gleichscheklige Dreiecke ABC habe die Base AB

Mehr

Abschlussprüfung 2013 an den Realschulen in Bayern

Abschlussprüfung 2013 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 03 a de Realschule i Bayer Mathematik II Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A Haupttermi A 0 Die ebestehede kizze zeigt de Axialschitt eier massive

Mehr

Abschlussprüfung 2015 an den Realschulen in Bayern

Abschlussprüfung 2015 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 05 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A Nachtermi A 0 Für Trapeze ABC D mit de parallele Seite [AD ] ud [BC ]

Mehr

Abschlussprüfung 2017 an den Realschulen in Bayern

Abschlussprüfung 2017 an den Realschulen in Bayern Prüfugsdauer: 50 Miute bschlussprüfug 07 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: ufgabe Haupttermi.0 Trapeze BD mit de parallele Seite D ud B rotiere um die Gerade

Mehr

Abschlussprüfung 2010 an den Realschulen in Bayern

Abschlussprüfung 2010 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Abschlussprüfug 2010 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A 1 Nachtermi A 1.0 Lekt ma eie Schiffschaukel auf eie Afagshöhe vo 2,00

Mehr

Abschlussprüfung 2012 an den Realschulen in Bayern

Abschlussprüfung 2012 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 202 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A Haupttermi A 0 Die Pukte A(2 0), B(5 ) ud C bilde das gleichseitige Dreieck

Mehr

Abschlussprüfung 2010 an den Realschulen in Bayern

Abschlussprüfung 2010 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 00 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A A.0 I eiem Hadbuch zur Wetterkude fide Sie im Kapitel Erdatmosphäre die

Mehr

Abschlussprüfung 2013 an den Realschulen in Bayern

Abschlussprüfung 2013 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 03 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A Haupttermi A 0 I eier Medikametestudie wird i drei zeitgleich begiede

Mehr

Abschlussprüfung 2014 an den Realschulen in Bayern

Abschlussprüfung 2014 an den Realschulen in Bayern Lösugsmuster ud ewertug bschlussprüfug 0 a de Realschule i ayer Mathematik I ufgabe 3 Nachtermi RUMGEOMETRIE 6. ta 56,3 L. PS( ) P sis 3 P si 56,3 si 80 56,3 P si56,3 cm si(56,3 ) ]0 ; 90 ] si56,3 3 (

Mehr

Abschlussprüfung 150 Minuten an den Realschulen in Bayern

Abschlussprüfung 150 Minuten an den Realschulen in Bayern Prüfugsdauer: Abschlussprüfug 50 Miute a de Realschule i Bayer 2009 Mathematik I Haupttermi Aufgabe A Name: Vorame: Klasse: Platzziffer: Pukte: A.0 Ei Messbecher fasst, bis zum Rad gefüllt, geau eie Liter

Mehr

Mathematik I Nachtermin Aufgabe P 1. Name: Vorname: Klasse: Platzziffer: Punkte:

Mathematik I Nachtermin Aufgabe P 1. Name: Vorname: Klasse: Platzziffer: Punkte: Prüfugsdauer: Abschlussprüfug 2008 150 Miute a de Realschule i Bayer R4/R6 Mathematik I Nachtermi Aufgabe P 1 Name: Vorame: Klasse: Platzziffer: Pukte: P 1.0 Die ebestehede Tabelle zeigt die Azahl der

Mehr

Abschlussprüfung 2013 an den Realschulen in Bayern

Abschlussprüfung 2013 an den Realschulen in Bayern Prüfugsdauer: 0 Miute Abschlussprüfug 03 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A Nachtermi A 0 Pukte ( ) auf der Gerade g mit der Gleichug y (GI IRIR) ud

Mehr

Mathematik II Wahlteil Haupttermin Aufgabe A 1

Mathematik II Wahlteil Haupttermin Aufgabe A 1 Prüfugsdauer: Abschlussprüfug 006 Mathematik II Wahlteil Haupttermi Aufgabe A 1 A 1.0 Gegebe sid die Parabel p mit der Gleichug y = 0,15x + 0,3x + 6,85 ud die 3 Gerade g mit der Gleichug y= x+ mit GI =

Mehr

Abschlussprüfung 2016 an den Realschulen in Bayern

Abschlussprüfung 2016 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Abschlussprüfug 016 a de Realschule i ayer Mathematik II Name: Vorame: Klasse: Platzziffer: Pukte: A 1.0 A 1.1 Aufgabe A 1 Haupttermi Der Wertverlust verschiedeer E-ike-Modelle

Mehr

1. Mathematikschulaufgabe

1. Mathematikschulaufgabe .0 Die Pukte P(0/-7) ud Q(5/-) liege auf eier ach ute geöffete Normalparabel p. G< x. Bereche die Gleichug der Parabel p. (Ergebis: y = - x + 6x - 7 ). Bestimme die Koordiate des Parabel-Scheitels. Gib

Mehr

Abschlussprüfung 2017 an den Realschulen in Bayern

Abschlussprüfung 2017 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Name: Abschlussprüfug 017 a de Realschule i Bayer Mathematik II Vorame: Klasse: Platzziffer: Pukte: Aufgabe A 1 Haupttermi A 1.0 Ei 90 heißes Geträk wird zur Abkühlug is Freie gestellt.

Mehr

Abschlussprüfung 2015 an den Realschulen in Bayern

Abschlussprüfung 2015 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 205 a de Realschule i Bayer Mathematik II Name: Vorame: Klasse: Platzziffer: Pukte: A.0 A. Aufgabe A Die ebestehede Figur ist durch de Kreisboge BC mit dem Radius

Mehr

Mathematik II Haupttermin Aufgabe A 1. IR. Die Gerade g hat die Gleichung y= 0,25x+ 5,5 mit GI = IR

Mathematik II Haupttermin Aufgabe A 1. IR. Die Gerade g hat die Gleichung y= 0,25x+ 5,5 mit GI = IR Prüfugsdauer: Abschlussprüfug 008 50 Miute a de Realschule i Bayer Mathematik II Haupttermi Aufgabe A A.0 Die Parabel p verläuft durch die Pukte A( 3) ud C(6 3). Sie hat eie Glei- chug der Form y= 0,5x

Mehr

Abschlussprüfung 2015 an den Realschulen in Bayern

Abschlussprüfung 2015 an den Realschulen in Bayern Prüfugsdauer: 50 Miute bschlussprüfug 05 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: ufgabe Haupttermi.0 Gegebe sid rechtwiklige Dreiecke BM mit M 4 cm ud de Hypoteuse

Mehr

Abschlussprüfung 20XX Muster an den Realschulen in Bayern

Abschlussprüfung 20XX Muster an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 0XX Muster a de Realschule i ayer Mathematik I Hilfsmittelfreier Teil Name: orame: Klasse: Platzziffer: Pukte: A Aufgabeteil A ereche Sie. a) vo 70 sid Haupttermi

Mehr

Mathematik I Aufgabengruppe A Aufgabe A 1

Mathematik I Aufgabengruppe A Aufgabe A 1 Seite vo 9 Prüfugsdauer: Abschlussprüfug 004 50 Miute a de Realschule i Bayer Mathematik I Aufgabegruppe A Aufgabe A A.0 Ei Kodesator (Speicher für elektrische Eergie) wird a eier Elektrizitätsquelle für

Mehr

Abschlussprüfung 2015 an den Realschulen in Bayern

Abschlussprüfung 2015 an den Realschulen in Bayern Prüfugsdauer: 50 Miute bschlussprüfug 05 a de Realschule i ayer Mathematik II Name: Vorame: Klasse: Platzziffer: Pukte: ufgabe Haupttermi.0 Die Skizze zeigt de Grudriss eies Hafebeckes. Ei Schiff befidet

Mehr

Abschlussprüfung 2017 an den Realschulen in Bayern

Abschlussprüfung 2017 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 07 a de Realschule i ayer Mathematik II Name: Vorame: Klasse: Platzziffer: Pukte: A 0 A Aufgabe A Nachtermi Die Itesität vo Licht, das i eie See eifällt, immt prozetual

Mehr

Abschlussprüfung 20XX Muster an den Realschulen in Bayern

Abschlussprüfung 20XX Muster an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussrüfug 0XX Muster a de Realschule i ayer Mathematik II Hilfsmittelfreier Teil Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabeteil A Hauttermi A ereche Sie. a) vo 40 sid

Mehr

Abschlussprüfung 2016 an den Realschulen in Bayern

Abschlussprüfung 2016 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 06 a de Realschule i Bayer Mathematik II Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A Nachtermi A 0 Gegebe ist die Fuktio f mit der Gleichug y 3 + + = mit

Mehr

Abschlussprüfung 2013 an den Realschulen in Bayern

Abschlussprüfung 2013 an den Realschulen in Bayern Prüfugsdauer: 50 iute Abschlussprüfug 03 a de Realschule i Bayer athematik II Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A Nachtermi A Die ebestehede Skizze zeigt die Figur, die zum ibau eier Küchespüle

Mehr

Abschlussprüfung 2011 an den Realschulen in Bayern

Abschlussprüfung 2011 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 0 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A Haupttermi A.0 Daphe plat eie Teilahme bei Juged forscht. Für ihre Beitrag

Mehr

Abschlussprüfung 2012 an den Realschulen in Bayern

Abschlussprüfung 2012 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Abschlussprüfug 01 a de Realschule i Bayer Mathematik II Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A 1 Haupttermi A 1 Die ebestehede Skizze zeigt de Pla C eies dreieckige

Mehr

Mathematik II Haupttermin Aufgabe A 1

Mathematik II Haupttermin Aufgabe A 1 50 Miute a de Realschule i ayer Mathematik II Haupttermi ufgabe.0 Gegebe ist ei Kreissektor mit M = M= 7cm ud der ogeläge» = 8cm (siehe Skizze). M. ereche Sie das Maß α des Mittelpuktswikels M des Kreissektors

Mehr

Abschlussprüfung 2010 an den Realschulen in Bayern

Abschlussprüfung 2010 an den Realschulen in Bayern Prüfugsdauer: 50 Miute bschlussprüfug 00 a de Realschule i Bayer Mathematik II Name: Vorame: Klasse: Platzziffer: Pukte: ufgabe Haupttermi.0 Das radioaktive Cäsium-7 wird i der Medizi eigesetzt. Es zerfällt

Mehr

Übungsaufgaben zur Abschlussprüfung

Übungsaufgaben zur Abschlussprüfung Übugsaufgabe zur Abschlussprüfug Klasse I. Bei de gleichseitige Dreiece ABC mit A(/) liege die Fußpute jeweilige Höhe vo A auf [BC ] auf der Gerade g mit der Gleichug y = x+ 8 (G= x ). E der. Zeiche Sie

Mehr

Abschlussprüfung 2012 an den Realschulen in Bayern

Abschlussprüfung 2012 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Abschlussprüfug 01 a de Realschule i Bayer Mathematik II Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A 1 Nachtermi A 1 Die ebestehede Skizze zeigt das Dracheviereck D ABD

Mehr

ABITURPRÜFUNG 2007 GRUNDFACH MATHEMATIK

ABITURPRÜFUNG 2007 GRUNDFACH MATHEMATIK ABITURPRÜFUNG 007 GRUNDFACH MATHEMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: 0 Miute Wörterbuch zur deutsche Rechtschreibug Tascherecher (icht programmierbar, icht grafikfähig) Tafelwerk Wähle Sie vo

Mehr

1 Analysis T1 Übungsblatt 1

1 Analysis T1 Übungsblatt 1 Aalysis T Übugsblatt A eier Weggabelug i der Wüste lebe zwei Brüder, die vollkomme gleich aussehe, zwische dee es aber eie gewaltige Uterschied gibt: Der eie sagt immer die Wahrheit, der adere lügt immer.

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus.

Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus. bschlussprüfug 0 a de Realschule i Bayer usterlösug Lösug Diese Lösug wurde erstellt vo orelia azebacher. ie ist keie offizielle Lösug des Bayerische taatsmiisteriums für Uterricht ud Kultus. ufgabe.0

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222 Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme

Mehr

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110 Name, Vorame Matrikel-Nr. Studiezetrum Studiegag Fach Art der Leistug Klausur-Kz. Betriebswirtschaft Wirtschaftsmathematik Studieleistug Datum 10.11.2001 BW-WMT-S12 011110 Verwede Sie ausschließlich das

Mehr

e) ( 4a + 8b + 9a + 18b ) : a + 2b f) 2 log (x) + 3 log (2y) 0.5 log (z)

e) ( 4a + 8b + 9a + 18b ) : a + 2b f) 2 log (x) + 3 log (2y) 0.5 log (z) Mathematik 1 Test SELBSTTEST MATHEMATIK 1. Forme Sie die folgede Terme um: a) y y y y + y : ( ) ( ) b) ( 9 ) 18 c) 5 3 3 3 d) 6 5 4 ( 7 y ) 3 4 5 ( 14 y ) e) ( 4a + 8b + 9a + 18b ) : a + b f) log () +

Mehr

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S Statistik mit Excel 2013 Peter Wies Theme-Special 1. Ausgabe, Februar 2014 W-EX2013S 3 Statistik mit Excel 2013 - Theme-Special 3 Statistische Maßzahle I diesem Kapitel erfahre Sie wie Sie Date klassifiziere

Mehr

3. Tilgungsrechnung. 3.1. Tilgungsarten

3. Tilgungsrechnung. 3.1. Tilgungsarten schreier@math.tu-freiberg.de 03731) 39 2261 3. Tilgugsrechug Die Tilgugsrechug beschäftigt sich mit der Rückzahlug vo Kredite, Darlehe ud Hypotheke. Dabei erwartet der Gläubiger, daß der Schulder seie

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Studiegag Betriebswirtschaft Fach Wirtschaftsmathematik Art der Leistug Studieleistug Klausur-Kz. BW-WMT-S1 040508 Datum 08.05.004 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich: Verwede

Mehr

Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr

Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr ZAHLENFOLGEN Teil Geometrische Folge Auch Wachstumsfolge Viele Aufgabe Lösuge ur auf der Mathe-CD Hier ur Ausschitte Datei Nr. 00 Friedrich Buckel März 00 Iteretbibliothek für Schulmathematik 00 Geometrische

Mehr

BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Handelsschule

BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Handelsschule BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Hadelsschule Abschlussprüfug Sommer Fach: MATHEMATIK Bearbeitugszeit: Erlaubte Hilfsmittel: Zeitstude Nicht-programmierbarer Tascherecher

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Rolad Speicher M.Sc. Tobias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 01 Musterlösug zu Blatt 0 Aufgabe 1. Käpt Schwarzbart,

Mehr

Übungsblatt 1 zur Vorlesung Angewandte Stochastik

Übungsblatt 1 zur Vorlesung Angewandte Stochastik Dr Christoph Luchsiger Übugsblatt 1 zur Vorlesug Agewadte Stochastik Repetitio WT Herausgabe des Übugsblattes: Woche 9, Abgabe der Lösuge: Woche 1 (bis Freitag, 1615 Uhr), Rückgabe ud Besprechug: Woche

Mehr

AT AB., so bezeichnet man dies als innere Teilung von

AT AB., so bezeichnet man dies als innere Teilung von Teilverhältisse Aus der Geometrie der Dreiecke ket ma die Aussage, dass der Schwerpukt T eies Dreiecks die Seitehalbierede im Verhältis : teilt. Für die Strecke AT ud TM gilt gemäß der Abbildug AT : TM

Mehr

Wirtschaftsingenieurwesen Wirtschaftsmathematik Prüfungsleistung WI-WMT-P12 040703. Studiengang Fach Art der Leistung Klausur-Knz. Datum 03.07.

Wirtschaftsingenieurwesen Wirtschaftsmathematik Prüfungsleistung WI-WMT-P12 040703. Studiengang Fach Art der Leistung Klausur-Knz. Datum 03.07. Studiegag Fach Art der Leistug Klausur-Kz. Wirtschaftsigeieurwese Wirtschaftsmathematik Prüfugsleistug WI-WMT-P 040703 Datum 03.07.004 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich:

Mehr

Abitur - Grundkurs Mathematik. Sachsen-Anhalt Gebiet G2 Analytische Geometrie

Abitur - Grundkurs Mathematik. Sachsen-Anhalt Gebiet G2 Analytische Geometrie Abitur - Grudkurs Mathematik Sachse-Ahalt 00 Gebiet G Aalytische Geometrie Aufgabe.. 4 0 I eiem kartesische Koordiatesystem sid die Vektore a, b 8 sowie der Pukt 4 4 A 3 gegebe. a) Weise Sie ach, dass

Mehr

1 Funktionen und Flächen

1 Funktionen und Flächen Fuktioe ud Fläche. Fläche Defiitio: Die Ebee R ist defiiert als Mege aller geordete Paare vo reelle Zahle: R = {(,, R} Der erste Eitrag heißt da auch Koordiate ud der zweite Koordiate. Für zwei Pukte (,,

Mehr

Exponentialfunktionen und die e- Funktion. Bei den bisher betrachteten Funktionen traten Exponenten nur als Zahlen auf.

Exponentialfunktionen und die e- Funktion. Bei den bisher betrachteten Funktionen traten Exponenten nur als Zahlen auf. R. Brikma http://brikma-du.de Seite.. Eiführug Epoetialfuktioe ud die e- Fuktio Bei de bisher betrachtete Fuktioe trate Epoete ur als Zahle auf. q Potezfuktio : f a mit q Beispiel: f Fuktioe mit positiver

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

Musterlösung zu Übungsblatt 2

Musterlösung zu Übungsblatt 2 Prof. R. Padharipade J. Schmitt C. Schießl Fuktioetheorie 25. September 15 HS 2015 Musterlösug zu Übugsblatt 2 Aufgabe 1. Reelle Fuktioe g : R R stelle wir us üblicherweise als Graphe {(x, g(x)} R R vor.

Mehr

A 2. Abb. 1: Analogon zum rechtwinkligen Dreieck

A 2. Abb. 1: Analogon zum rechtwinkligen Dreieck Has Walser, [0076], [0080] Verallgemeierug des Satzes vo Pythagoras Hiweis: H. Sch., W. Im Raum. Aalogo zum rechtwiklige Dreieck Wir ersetze de zweidimesioale rechte Wikel durch eie Raumecke, wie sie bei

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 04..05 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 6. Übugsblatt Aufgabe

Mehr

Zentrale Klassenarbeit unter Prüfungsbedingungen im Schuljahr 2009/2010. Mathematik (A) 26. März 2010

Zentrale Klassenarbeit unter Prüfungsbedingungen im Schuljahr 2009/2010. Mathematik (A) 26. März 2010 Miisterium für Bildug, Juged ud Sport Zetrale Klassearbeit uter Prüfugsbediguge im Schuljahr 009/00 Mathematik (A) 6. März 00 Zugelassee Hilfsmittel: - Tascherecher (icht programmierbar ud icht grafikfähig)

Mehr

Ganzrationale Funktionen

Ganzrationale Funktionen Gazratioale Fuktioe 9. Defiitio gazratioaler Fuktioe Im Folgede werde ebe lieare ud quadratische Fuktioe auch solche betrachtet, bei dee die Variable i der dritte, vierte oder auch i eier och höhere Potez

Mehr

Mathematischer Vorkurs zum Studium der Physik

Mathematischer Vorkurs zum Studium der Physik Uiversität Heidelberg Mathematischer Vorkurs zum Studium der Physik Übuge Aufgabe zu Kapitel 1 (aus: K. Hefft Mathematischer Vorkurs zum Studium der Physik, sowie Ergäzuge) Aufgabe 1.1: SI-Eiheite: a)

Mehr

Quantenmechanik I. Musterlösung 12.

Quantenmechanik I. Musterlösung 12. Quatemechaik I. Musterlösug 1. Herbst 011 Prof. Reato Reer Übug 1. Ster-Gerlach (19). Ei Strahl aus ugeladee Teilche mit Spi s = 1 läuft etlag der x-achse ud durchquert ei i z-richtug stark ihomogees Magetfeld.

Mehr

Prüfungsaufgaben der Abschlussprüfung an Realschulen in Bayern! mit ausführlichen Musterlösungen. und Querverweise auf Theoriedateien der Mathe-CD

Prüfungsaufgaben der Abschlussprüfung an Realschulen in Bayern! mit ausführlichen Musterlösungen. und Querverweise auf Theoriedateien der Mathe-CD Vektor-Geometrie Koordiategeometrie Prüfugsaufgabe uter Verwedug vo Abbildugsgleichuge Prüfugsaufgabe der Abschlussprüfug a Realschule i Bayer! mit ausführliche Musterlösuge ud Querverweise auf Theoriedateie

Mehr

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015 Lösuge zum Feriekurs Aalysis, Vorlesug Witersemester 04/05 Fabia Hafer, Thomas Baldauf I Richtig oder Falsch Sid folgede Aussage richtig oder falsch? Korrigiere bzw. ergäze Sie falsche Aussage. Gebe Sie

Mehr

Aufgabenbereich Analysis: Lösungen

Aufgabenbereich Analysis: Lösungen a) Schittpukte x-achse: N( ) e x (- x) -,5x (da e x für alle x IR) x Schittpukt y-achse: P( ) f()e (-,5) Asymptote: Aufgabebereich Aalysis: Lösuge für x gilt: f(x) Die x-achse ist für de Graphe für x eie

Mehr

Klausur 1 über Folgen

Klausur 1 über Folgen www.mathe-aufgabe.com Klausur über Folge Hiweis: Der GTR darf für alle Aufgabe eigesetzt werde. Aufgabe : Bestimme eie explizite ud eie rekursive Darstellug! a) für eie arithmetische Folge mit a = 6, ;

Mehr

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares 4 6 Fachgebiet Regelugstechik Leiter: Prof. Dr.-Ig. Joha Reger Kleies Matrix-ABC 1 Eleetares Eie ( )-Matrix ist eie rechteckige Aordug vo reelle oder koplexe Zahle a ij (auch Skalare geat) ud besteht aus

Mehr

Transformator. n Windungen

Transformator. n Windungen echische iversität Dresde stitut für Ker- ud eilchephysik R. Schwierz V/5/29 Grudpraktikum Physik Versuch R rasformator rasformatore werde i viele ereiche der Elektrotechik ud Elektroik eigesetzt. Für

Mehr

Bsp.: Kostenfunktion: Gerade, nichtlineare Kurve Stichwort: Fixkosten, Variable Kosten, proportional/überproportional steigend

Bsp.: Kostenfunktion: Gerade, nichtlineare Kurve Stichwort: Fixkosten, Variable Kosten, proportional/überproportional steigend FerUNI Hage WS 00/0 Differetialrechug für Fkt. Eier Variable Ziel: Maß für lokale Äderuge eier Fuktio Bei Etscheiduge sid of icht die absolute Koste iteressat, soder vielmehr die Veräderug, die eie Produktio

Mehr

... a ik) i=1...m, k=1...n A = = ( a mn

... a ik) i=1...m, k=1...n A = = ( a mn Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,

Mehr

Lösungen zu den Aufgaben zu Mathematik I. w w w f f f f w w f f w w f f w f w w f w w w w f f w w w w w w. s = p q p q erhalten wir folgende Tabelle:

Lösungen zu den Aufgaben zu Mathematik I. w w w f f f f w w f f w w f f w f w w f w w w w f f w w w w w w. s = p q p q erhalten wir folgende Tabelle: TEIL B Lösuge zu de Aufgabe zu Mathematik I.. Logik... A B A B A B A B A B w w w f f f f w f f w f w w f w f w w f w f f f w w w w A B A B B A B [ ] ( A B) ( A B) A ( ) ( ) A B A B A w w w f f f f w w

Mehr

Ungleichungen werden mit Äquivalenzumformungen gelöst. Hierzu werden die sogenannten Monotoniegesetze angegeben.

Ungleichungen werden mit Äquivalenzumformungen gelöst. Hierzu werden die sogenannten Monotoniegesetze angegeben. Floria Häusler Ugleichuge. Grudsätzliches I folgede ist ur vo reelle Zahle die Rede, ohe daß dies im eizele betot wird. Es seie A, B, C,... Terme reeller Zahle, u. U. auch mit Variable. Für Ugleichuge

Mehr

Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield

Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield Augabeblatt 4 Lösuge A. Deiitioe Zis = Rate Ziskurve = Zisstruktur Redite = Yield A. Deiitioe Zerobod = Nullkupoaleihe = Zero coupo bod Aleihe, die vor Ede der Lauzeit keie Zahluge leistet ud am Ede der

Mehr

Abschlussprüfung 2011 an den Realschulen in Bayern

Abschlussprüfung 2011 an den Realschulen in Bayern Prüfungsdauer: 150 Minuten Abschlussprüfung 2011 an den Realschulen in Bayern Mathematik I Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Nachtermin A 1.0 Lebensmittelchemiker untersuchten das

Mehr

Repetitionsaufgaben Potenzfunktionen

Repetitionsaufgaben Potenzfunktionen Repetitiosaufgabe Potezfuktioe Ihaltsverzeichis A) Vorbemerkuge/Defiitio 1 B) Lerziele 1 C) Etdeckuge (Graphe) 2 D) Zusammefassug 7 E) Bedeutug der Parameter 7 F) Aufgabe mit Musterlösuge 9 A) Vorbemerkuge

Mehr

Die Gasgesetze. Die Beziehung zwischen Volumen und Temperatur (Gesetz von J.-L. und J. Charles): Gay-Lussac

Die Gasgesetze. Die Beziehung zwischen Volumen und Temperatur (Gesetz von J.-L. und J. Charles): Gay-Lussac Die Gasgesetze Die Beziehug zwische olume ud Temeratur (Gesetz vo J.-L. Gay-Lussac ud J. Charles): cost. T oder /T cost. cost.. hägt h vo ud Gasmege ab. Die extraolierte Liie scheidet die Temeratur- skala

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker I (Witersemester 00/004) Aufgabeblatt 7 (5. Dezember

Mehr

10 Aussagen mit Quantoren und

10 Aussagen mit Quantoren und 0 Aussage mit Quatore ud 0.6. Eisatz vo (bereits bekater) Eistezaussage Bisher hatte wir Eistezbeweise geführt, idem wir ei passedes Objekt agegebe habe ( Setze... ). Stattdesse ka ma auch auf bereits

Mehr

Kunde. Kontobewegung

Kunde. Kontobewegung Techische Uiversität Müche WS 2003/04, Fakultät für Iformatik Datebaksysteme I Prof. R. Bayer, Ph.D. Lösugsblatt 4 Dipl.-Iform. Michael Bauer Dr. Gabi Höflig 17.11. 2003 Abbildug E/R ach relatioal - Beispiel:

Mehr

sfg Quadratwurzeln a ist diejenige nichtnegative Zahl (a 0), die quadriert a ergibt: Die Zahl a unter der Wurzel heißt Radikand:

sfg Quadratwurzeln a ist diejenige nichtnegative Zahl (a 0), die quadriert a ergibt: Die Zahl a unter der Wurzel heißt Radikand: M 9.1 Quadratwurzel a ist diejeige ichtegative Zahl (a 0), die quadriert a ergibt: a 2 = a Die Zahl a uter der Wurzel heißt Radikad: a Quadratwurzel sid ur für ichtegative Zahle defiiert: a 0 25 = 5; 81

Mehr

1 = 1. 6 Induktionsannahme: Die Formal gelte für n = k. Induktionsschritt: Gültigkeit der Formel für k+1: 1 2 + 2 2 +... + k 2 + (k + 1) 2 = 2 = 6 = 6

1 = 1. 6 Induktionsannahme: Die Formal gelte für n = k. Induktionsschritt: Gültigkeit der Formel für k+1: 1 2 + 2 2 +... + k 2 + (k + 1) 2 = 2 = 6 = 6 65 Eric Müller Vollstädige Iduktio Nach GIUSEPPE PEANO (858-93) ka ma die Mege N der atürliche Zahle durch folgede Axiome defiiere []:. ist eie atürliche Zahl.. Zu jeder atürliche Zahl gibt es geau eie

Mehr

Wintersemester 2006/2007, Universität Rostock Abgabetermin: spätestens 24.10.2006, 09:00 Uhr. Aufgabe 1.1: (5 P)

Wintersemester 2006/2007, Universität Rostock Abgabetermin: spätestens 24.10.2006, 09:00 Uhr. Aufgabe 1.1: (5 P) Serie Abgabetermi: spätestes 24.0.2006, 09:00 Uhr Aufgabe.: 5 P Zeige Sie, dass das geometrische Mittel icht größer ist als das arithmetische Mittel, d.h., dass für alle Zahle a, b R mit a, b 0 gilt ab

Mehr

1 a+ 5 a b + 5a b 5ab(a+ = 10 a + 10a b 10a (a+ 2 3a. b a ab a. a a ab+ ab b b

1 a+ 5 a b + 5a b 5ab(a+ = 10 a + 10a b 10a (a+ 2 3a. b a ab a. a a ab+ ab b b 8. Jahrgagsstufe (G8) Zahle Bruchterme sid um Beispiel: + a b,, a c+ d.. Erweiter ud Küre Ei Bruchterm wird erweitert (gekürt), idem ma Zähler ud Neer mit dem selbe Term multipliiert (durch de selbe Term

Mehr

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I Uiversität des Saarlades Fakultät für Mathematik ud Iformatik Witersemester 2003/04 Prof. Dr. Joachim Weickert Dr. Marti Welk Dr. Berhard Burgeth Lösuge der Aufgabe zur Vorbereitug auf die Klausur Mathematik

Mehr

Aufgaben und Lösungen der Probeklausur zur Analysis I

Aufgaben und Lösungen der Probeklausur zur Analysis I Fachbereich Mathematik AG 5: Fuktioalaalysis Prof. Dr. K.-H. Neeb Dipl.-Math. Rafael Dahme Dipl.-Math. Stefa Wager ATECHNISCHE UNIVERSITÄT DARMSTADT SS 007 19. Jui 007 Aufgabe ud Lösuge der Probeklausur

Mehr

Mathematik I Pflichtteil - Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte:

Mathematik I Pflichtteil - Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte: Prüfungsdauer: Abschlussprüfung 2006 150 Minuten an den Realschulen in Bayern R4/R6 Mathematik I Pflichtteil - Nachtermin Aufgabe P 1 Name: Vorname: Klasse: Platzziffer: Punkte: P 1.0 Gegeben sind der

Mehr

Stetigkeit und Differenzierbarkeit

Stetigkeit und Differenzierbarkeit Didaktik der Mathematik der Sek II Umkehrfuktioe Ableitugsregel für Umkehrfuktioe (Umkehrregel) Beispiele für die Awedug der Umkehrregel Stetigkeit ud Differezierbarkeit Neuma/Roder Umkehrfuktio Fuktio

Mehr

Gruppe 108: Janina Bär Christian Hörr Robert Rex

Gruppe 108: Janina Bär Christian Hörr Robert Rex TEHNIHE UNIVEITÄT HEMNITZ FAULTÄT FÜ INFOMATI Hardwarepraktikum im W /3 Versuch 3 equetielle ysteme I Gruppe 8: aia Bär hristia Hörr obert ex hemitz, 7. November Hardwarepraktikum equetielle ysteme I Aufgabe

Mehr

Lichtquellen Körper die selbst Licht erzeugen, nennt man Lichtquellen. Die meisten Lichtquellen sind glühende Körper mit hoher Temperatur.

Lichtquellen Körper die selbst Licht erzeugen, nennt man Lichtquellen. Die meisten Lichtquellen sind glühende Körper mit hoher Temperatur. PS - OPTIK P. Redulić 2007 LICHT STRAHLENOPTIK LICHT. Lichtquelle ud beleuchtete Körper Sichtbare Körper sede teilweise Licht aus, teilweise reflektiere sie aber auch das auf sie fallede Licht. Lichtquelle

Mehr

Grundwissen. Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium. Jahrgangsstufe: 9 G8

Grundwissen. Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium. Jahrgangsstufe: 9 G8 Gymasium Ecketal Mathematisch-aturwisseschaftliches Gymasium Neusprachliches Gymasium Gymasium Ecketal Neukircheer Straße 904 Ecketal Grudwisse Jahrgagsstufe: 9 G8. Wurzel, Poteze mit ratioalem Expoete

Mehr

Zahlenfolgen und Konvergenzkriterien

Zahlenfolgen und Konvergenzkriterien www.mathematik-etz.de Copyright, Page of 7 Zahlefolge ud Kovergezkriterie Defiitio: (Zahle-Folge, Grezwert) Eie Folge ist eie Abbildug der atürliche Zahle i die Mege A. Es ist also im Fall A: ; f: mit

Mehr