Kapitel 6 : Punkt und Intervallschätzer

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Kapitel 6 : Punkt und Intervallschätzer"

Transkript

1 7 Kapitel 6 : Pukt ud Itervallschätzer Puktschätzuge. I der Statistik wolle wir Rückschlüsse auf das Wahrscheilichkeitsgesetz ziehe, ach dem ei vo us beobachtetes Zufallsexperimet abläuft. Hierzu beobachte wir uabhägige Wiederholuge eier Zufallsvariable X, d.h. iid. Zufallsvariable X, X,..., X, die gemäß F, dem Zufallsgesetz vo X, verteilt sid. : = (X, X,..., X ) bezeichet ma als Stichprobe aus F der Läge ud die hierfür beobachtete Werte : = (x, x,..., x ) als Date. Mit Hilfe der Date wolle wir da gewisse Parameter θ schätze, d.h. gewisse ubekate reelle Zahle, die das spezielle Gesetz F charakterisiere. Wäre z.b. X = d N(µ, σ ), wobei µ I R ud < σ <, da sid µ ud σ solche Parameter.. Das Grudaliege des Schätzes besteht u dari, daß ma für jede der Parameter θ eie geeigete Statistik T: I R I R sucht, so daß der de Date = (x, x,..., x ) zugeordete Wert T() (bekate reelle Zahl) gerade das Wesetliche vo θ umerisch widerspiegelt. Jeder solche Wert T() heißt Schätzwert vo θ ud wird mit bezeichet. Ma ka eie Schätzwert vo θ ituitiv erhalte oder mit Hilfe vo kokrete Methode. Die zugehörige Schätzprozedur T() heißt Schätzer vo θ. Zwei wüscheswerte Eigeschafte eies Schätzers T() vo θ sid:

2 8 ) Erwartugstreue (oder Uverzerrtheit) : E(T()) = θ. Bzw. midestes asymptotische Erwartugstreue: lim = θ, ( im Mittel schätzt de Parameter θ richtig). ) Asymptotisches Verschwide der Variaz : lim =. (Im Falle der Erwartugstreue bedeutet dies, daß die mittlere quadratische Abweichug für wachsede Stichprobeumfag gege Null strebt.) Sid beide Eigeschafte erfüllt, da gilt sogar (wege der Tschebyscheffsche Ugleichug) die (schwache) Kosistez: kovergiert stochastisch gege θ, d.h. >. Beispiel.3 : X besitze eie Erwartugswert µ = E(X) ud eie Variaz σ = Var(X). Da ma µ als Mittelwert der Verteilug F vo X verstehe ka, liegt es ahe, µ mit Hilfe des Stichprobemittelwerts = zu schätze, d.h. = = ist ei Schätzer für µ. ) ist erwartugstreu: = ( ) = = µ, da X, X,..., X iid.

3 9 ) : = = =, da X, X,..., X iid. P E(X), dies ist gerade das schwache Gesetz der große Zahle. ist also ei kosisteter Schätzer vo µ. Beispiel.4 : X wie i Beispiel.3. Es liegt ahe, σ = Var (X) durch die Stichprobevariaz S = zu schätze. Da jedoch E(S ) =, ist dieser Schätzer für σ verzerrt, aber immer och asymptotisch erwartugstreu. ( )= = = = = =. Bemerkug.5 : Aus diesem Grud defiiert ma die uverzerrte Stichprobevariaz : = =. Offesichtlich ist erwartugstreu für σ : ( )=. I der Praxis wird fast ausschließlich mit gearbeitet ud meistes wird als Stichprobevariaz bezeichet ud als S geschriebe.

4 Die χ ud die t Verteilug; Quatile Für das Weitere beötige wir och zwei eue Verteiluge.. Es seie X, X,..., X d = N(,) iid. Da ist Y : = j = X d j = χ gemäß eier χ Verteilug mit Freiheitsgrade (d.h. χ ) verteilt. χ hat die Dichte: f(x) = ( ) Γ( x ) e x x < x, wobei Γ(a) = a x x e dx, für a >. f (x)dx =. Weiter gilt: Γ() = ( )! für alle I N, ud deshalb ist χ = Exp( ). Γ(+½) = ()!! für alle I N. x ;β x ;β mit f (x)dx = β, < β <, heißt β Quatil vo χ. Das Quatil ist die Umkehrfuktio der Verteilugsfuktio.. Es seie X, X,..., X d = N(,) iid. Da ist Z : = X = d t gemäß eier Studetsche t Verteilug j= X j mit Freiheitsgrade (d.h. gemäß t ) verteilt.

5 Allgemei: Y d = N(,) ud V d = seie uabhägig d = t. + Γ( ) + x t hat die Dichte: f(x) = ( + ) π Γ( ), x I R. f (x)dx =. f(x) ist symmetrisch um die y Achse. t ; t ;β mit β f (x)dx = β, < β <, ist das β Quatil vo t..3 Für die Stadard Normalverteilug N(, ) bezeichet ma das β Quatil mit z β, < β < : = β..4 Für ist die zetrale Regio der t Verteilug eier N(, ) Dichte ählich. Im Grezfall ( ) fällt diese Dichte mit φ(x) zusamme. (Für die Awedug uterscheide sich die übliche Wahrscheilichkeite vo t ud Φ icht mehr.)

6 Bemerkug.5 : Gegebe sei die Stichprobe: X,..., X d = N(µ,σ ) iid. Betrachte de Stichprobemittelwert die uverzerrte Stichprobevariaz = = ud. (i) = d, ud deshalb d = N(,) (siehe Kapitel 5, Beispiel.5 c), Bemerkug). (ii) Ist σ ubekat, so muß es durch geschätzt werde. Ma ka zeige, daß i diesem Fall () d = ud vo uabhägig ist. Wege. ergibt sich, daß = () d = t. De Verlust des eie Freiheitsgrades ka ma sich folgedermaße plausibel mache: Zur Berechug vo muß aus de Date geschätzt werde. Bei bekatem sid da aber ur och ( ) der Variable X, X,..., X frei wählbar. 3 Kofidezitervall für de Erwartugswert µ eier Normalverteilug bei bekater ud bei ubekater Variaz σ X,..., X d = N(µ,σ ) iid. sei eie ormalverteilte Stichprobe. 3. σ = σ bekat : Wir wolle de Erwartugswert µ schätze ud gleichzeitig eie Hiweis auf die Geauigkeit ud die Vertraueswürdigkeit des Schätzwertes erhalte.

7 3 Es liegt ahe, de Mittelwert µ durch de Stichprobemittelwert zu schätze. Weiter wählt ma eie Größe C so, daß das zufällige Itervall, + µ mit hoher Wahrscheilichkeit überdeckt, d.h. daß da der Schätzfehler C. Hierzu gibt ma sich eie Wahrscheilichkeit γ ahe bei vor (typische Werte sid: γ =,9; γ =,95; γ =,99 ) ud bestimmt C so, daß, + γ. Da σ = die Stadardabweichug userer Normalverteilug ist, wählt ma C = b σ für eie geeigete Kostate b >. Wir wisse, daß d = N(, ). Deshalb ergibt sich:, + b σ b ud deshalb,+ = P( b X µ σ = Φ(b ) Φ( b ) = Φ(b ) ( Φ(b )), b ) = da φ(x) symmetrisch um die y Achse ist : = Φ(b )! = γ Φ(b ) = b = b =

8 4 Als Ergebis erhält ma I γ =, + = : ± ist das gesuchte γ Kofidezitervall (bzw. γ % KI) für µ. γ heißt Kofideziveau. 3. σ ubekat : I diesem Fall müsse wir σ durch S u = schätze, d.h. wir wähle C = b S u. Nach Bemerkug.5 wisse wir, daß Deshalb ergibt sich u : d = t., + b S u b ud deshalb, + = P( b X µ S u b ) = = t (b ) t ( b ) = t (b ) ( t (b )), da f(x) symmetrisch um die y Achse ist : = t (b )! = γ t (b ) = b = ;. b = ;

9 5 Als Ergebis erhält ma I γ = ;, + ; ist das gesuchte γ Kofidezitervall für µ. = ± ; Beispiel 3.3 : Wir habe die Körperläge vo = 6 Exemplare der Drosophila melaogaster i Rheihesse gemesse ud eie Stichprobemittelwert =,5 (mm) sowie eie Stadardabweichug s u =,3 (mm) errechet. I eier Zeitschrift habe wir gelese, daß der richtige Wert,3 (mm) ist. Ist dies mit userem Ergebis vereibar? Zur Beatwortug dieser Frage ehme wir a, daß die Körperläge N(µ, σ ) verteilt sid, ud kostruiere das 95% Kofidezitervall für µ: γ =,95 + γ =,975; ( ) = 5; t 5;,975 =,57 I,95 =,5 ±,,57 =,5 ±,3 = [,9;,8],3 ; d.h. die Agabe i der Zeitschrift ist mit usere Beobachtuge auf eiem Kofideziveau vo 95% vereibar.

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5 Vl Statistische Prozess- ud Qualitätskotrolle ud Versuchsplaug Übug 5 Aufgabe ) Sei p = P(A) die Wahrscheilichkeit für ei Ereigis A, dh., es gilt 0 p. Bereche Sie das Maximum der Fuktio f(p) = p(-p). Aufgabe

Mehr

Tests statistischer Hypothesen

Tests statistischer Hypothesen KAPITEL 0 Tests statistischer Hypothese I der Statistik muss ma oft Hypothese teste, z.b. muss ma ahad eier Stichprobe etscheide, ob ei ubekater Parameter eie vorgegebee Wert aimmt. Zuerst betrachte wir

Mehr

Wirksamkeit, Effizienz

Wirksamkeit, Effizienz 3 Parameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische Verteilugsaahme mit Parameterraum Θ. 1 Seie θ ud θ erwartugstreue

Mehr

4 Schwankungsintervalle Schwankungsintervalle 4.2

4 Schwankungsintervalle Schwankungsintervalle 4.2 4 Schwakugsitervalle Schwakugsitervalle 4. Bemerkuge Die bekate Symmetrieeigeschaft Φ(x) = 1 Φ( x) bzw. Φ( x) = 1 Φ(x) für alle x R überträgt sich auf die Quatile N p der Stadardormalverteilug i der Form

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Empirische Wirtschaftsforschug ud Ökoometrie Dr. Rolad Füss Statistik II: Schließede Statistik SS 2007 6. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug

Mehr

Wirksamkeit, Effizienz. Beispiel: Effizienz. Mittlerer quadratischer Fehler (MSE) Konsistenz im quadratischen Mittel

Wirksamkeit, Effizienz. Beispiel: Effizienz. Mittlerer quadratischer Fehler (MSE) Konsistenz im quadratischen Mittel 3 arameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez 3 arameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Beispiel: Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische

Mehr

Schätzen von Populationswerten

Schätzen von Populationswerten Schätze vo Populatioswerte SS00 7.Sitzug vom.06.00 Schätze vo Populatioswerte Ziel: Ermöglichug vo Aussage über die Grudgesamtheit ahad vo Stichprobedate Logische Methode: Iduktiosschluß Grudlage des Iduktiosschlusses:

Mehr

X X Schätzen von Vertrauensintervallen Schwankungsintervall

X X Schätzen von Vertrauensintervallen Schwankungsintervall .. Schätze vo Vertrauesitervalle..1. Schwakugsitervall Beispiel: X = Betrag vo Geldüberweisuge, ormalverteilt, µ = 5000, = 1000 Zufallsstichprobe mit = 100, Schätzer für µ: X X Gesucht: Itervall, i dem

Mehr

Schätzen von Populationswerten

Schätzen von Populationswerten Schätze vo Populatioswerte 7.Sitzug 35 Seite, SoSe 003 Schätze vo Populatioswerte Ziel: Ermöglichug vo Aussage über die Grudgesamtheit ahad vo Stichprobedate Logische Methode: Iduktiosschluss Grudlage

Mehr

Prof. Dr. Roland Füss Statistik II SS 2008

Prof. Dr. Roland Füss Statistik II SS 2008 1. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug ergibt sich aus de Grezwertsätze. Grezwertsätze sid Aussage über eie Zufallsvariable für de Fall, dass die Azahl

Mehr

Konfidenzintervalle. Praktische Übung Stochastik SS 2017 Lektion 10 1

Konfidenzintervalle. Praktische Übung Stochastik SS 2017 Lektion 10 1 Kofidezitervalle Praktische Übug Stochastik SS 017 Lektio 10 1 Kofidezitervalle Geerelle Aahme: Parametrisches Modell (P ϑ ) ϑ Θ Beobachtuge X 1,..., X u.i.v. ach P ϑ mit ubekatem ϑ Θ Grudidee: Schätzer

Mehr

Parameterschätzung. Kapitel Schätzfunktionen

Parameterschätzung. Kapitel Schätzfunktionen Kapitel 8 Parameterschätzug 8.1 Schätzfuktioe Def. 8.1.1: Es seie X 1,X,...,X uabhägige ZV, die alle die gleiche Verteilug besitze. θ sei ei ubekater Parameter dieser Verteilug. X 1,X,...,X ist als eie

Mehr

Eingangsprüfung Stochastik,

Eingangsprüfung Stochastik, Eigagsprüfug Stochastik, 5.5. Wir gehe stets vo eiem Wahrscheilichkeitsraum (Ω, A, P aus. Die Borel σ-algebra auf wird mit B bezeichet, das Lebesgue Maß auf wird mit λ bezeichet. Aufgabe ( Pukte Sei x

Mehr

Empirische Verteilungsfunktion

Empirische Verteilungsfunktion KAPITEL 3 Empirische Verteilugsfuktio 3.1. Empirische Verteilugsfuktio Seie X 1,..., X uabhägige ud idetisch verteilte Zufallsvariable mit theoretischer Verteilugsfuktio F (t) = P[X i t]. Es sei (x 1,...,

Mehr

2. Schätzverfahren 2.1 Punktschätzung wirtschaftlicher Kennzahlen. Allgemein: Punktschätzung eines Parameters:

2. Schätzverfahren 2.1 Punktschätzung wirtschaftlicher Kennzahlen. Allgemein: Punktschätzung eines Parameters: . Schätzverfahre. Puktschätzug wirtschaftlicher Kezahle Allgemei: Puktschätzug eies Parameters: Ermittlug eies Schätzwertes für eie ubekate Parameter eier Zufallsvariable i der Grudgesamtheit mit Hilfe

Mehr

Einführung in die Stochastik 10. Übungsblatt

Einführung in die Stochastik 10. Übungsblatt Eiführug i die Stochastik. Übugsblatt Fachbereich Mathematik SS M. Kohler.7. A. Fromkorth D. Furer Gruppe ud Hausübug Aufgabe 37 (4 Pukte) Ei Eremit am Südpol hat sich für die eibrechede polare Nacht mit

Mehr

Kapitel 9: Schätzungen

Kapitel 9: Schätzungen - 73 (Kapitel 9: chätzuge) Kapitel 9: chätzuge Betrachte wir folgedes 9. Beispiel : I eiem Krakehaus wurde Date über Zwilligsgeburte gesammelt. Bei vo 48 Paare hatte die beide Zwillige verschiedees Geschlecht.

Mehr

X in einer Grundgesamtheit vollständig beschreiben.

X in einer Grundgesamtheit vollständig beschreiben. Prof. Dr. Rolad Füss Statistik II SS 008. Puktschätzug vo Parameter eier Grudgesamtheit Nur durch eie Totalerhebug ka ma die Verteilug eier Zufallsvariable X i eier Grudgesamtheit vollstädig beschreibe.

Mehr

Kapitel 5: Schließende Statistik

Kapitel 5: Schließende Statistik Kapitel 5: Schließede Statistik Statistik, Prof. Dr. Kari Melzer 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte

Mehr

Statistik. 5. Schließende Statistik: Typische Fragestellung anhand von Beispielen. Kapitel 5: Schließende Statistik

Statistik. 5. Schließende Statistik: Typische Fragestellung anhand von Beispielen. Kapitel 5: Schließende Statistik Statistik Kapitel 5: Schließede Statistik 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel 1» Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte der arithmetische

Mehr

6. Grenzwertsätze. 6.1 Tschebyscheffsche Ungleichung

6. Grenzwertsätze. 6.1 Tschebyscheffsche Ungleichung 6. Grezwertsätze 6.1 Tschebyscheffsche Ugleichug Sofer für eie Zufallsvariable X die Verteilug bekat ist, lässt sich die Wahrscheilichkeit dafür bestimme, dass X i eiem bestimmte Itervall liegt. Wie ist

Mehr

Übungen mit dem Applet erwartungstreu

Übungen mit dem Applet erwartungstreu Übuge mit dem Applet erwartugstreu Visualisierug vo erwartugstreu Begriffe ud statischer Hitergrud. Visualisieruge mit dem Applet..3. Zufallsstreuug der Eizelwerte...3. Mittelwerte 3.3 Variaz. 4.4 Variaz

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik ud Wahrscheilichkeitsrechug Dr. Joche Köhler 9.04.008 Äderug Übugsstude Statistik ud Wahrscheilichkeitsrechug Die Gruppe vo Markus trifft sich am Doerstag statt im HCI D zusamme mit der Gruppe

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR MATHEMATISCHE STOCHASTIK WS 005/06 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Klausur Wahrscheilichkeitstheorie ud Statistik vom 9..006 Musterlösuge Aufgabe A: Gegebe sei eie Urliste

Mehr

Statistische Modelle und Parameterschätzung

Statistische Modelle und Parameterschätzung Kapitel 2 Statistische Modelle ud Parameterschätzug 2. Statistisches Modell Die bisher betrachtete Modellierug eies Zufallsexperimetes erforderte isbesodere die Festlegug eier W-Verteilug. Oft besteht

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

Einführung in die induktive Statistik. Inferenzstatistik. Konfidenzintervalle. Friedrich Leisch

Einführung in die induktive Statistik. Inferenzstatistik. Konfidenzintervalle. Friedrich Leisch Spiel Körpergröße Zahl: Azahl weiblich Eiführug i die iduktive Statistik Friedrich Leisch Istitut für Statistik Ludwig-Maximilias-Uiversität Müche Tafelgruppe 8.5 8.6 8.7 8.8 8.9 9.0 9.1 4 5 3 2 1 0 1

Mehr

10. Übungsblatt zur Einführung in die Stochastik

10. Übungsblatt zur Einführung in die Stochastik Fachbereich Mathematik rof. Dr. Michael Kohler Dipl.-Math. Adreas Fromkorth Dipl.-If. Jes Mehert SS 09 6.7.2009 0. Übugsblatt zur Eiführug i die Stochastik Aufgabe 38 (3 ukte Die Zufallsvariable X,...,

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren Dr. Jürge Seger INDUKTIVE STATISTIK Wahrscheilichkeitstheorie, Schätz- ud Testverfahre ÜBUNG. - LÖSUNGEN. ypothesetest für die Dicke vo Plättche Die Dicke X vo Plättche, die auf eier bestimmte Maschie

Mehr

Klausur zu,,einführung in die Wahrscheinlichkeitstheorie. Musterlösungen

Klausur zu,,einführung in die Wahrscheinlichkeitstheorie. Musterlösungen Istitut für agewadte Mathematik Witersemester 9/ Adreas Eberle, Matthias Erbar, Berhard Hader. (Reelle Zufallsvariable) Klausur zu,,eiführug i die Wahrscheilichkeitstheorie Musterlösuge a) Die Verteilugsfuktio

Mehr

Normalverteilung. Standardnormalverteilung. Intervallwahrscheinlichkeiten. Verteilungsfunktion

Normalverteilung. Standardnormalverteilung. Intervallwahrscheinlichkeiten. Verteilungsfunktion Normalverteilug Stadardormalverteilug Normalverteilug N(μ, ) mit ichte : Gaußche Glockekurve μ μ μ+ μ >, f ( ) = ( μ) WS 6/7 Prof. r. J. Schütze, FB GW NV π Eigechafte der ichte: - Maimum i μ - mmetrich

Mehr

Empirische Ökonomie 1 Sommersemester Formelsammlung. Statistische Grundlagen. Erwartungswert und Varianz einer Zufallsvariable.

Empirische Ökonomie 1 Sommersemester Formelsammlung. Statistische Grundlagen. Erwartungswert und Varianz einer Zufallsvariable. Empirische Ökoomie 1 Sommersemester 2013 Formelsammlug Hiweis: Alle Variable, Parameter ud Symbole sid wie i de Vorlesugsuterlage defiiert. Statistische Grudlage Erwartugswert Erwartugswert ud Variaz eier

Mehr

Übungen Abgabetermin: Freitag, , 10 Uhr THEMEN: Testtheorie

Übungen Abgabetermin: Freitag, , 10 Uhr THEMEN: Testtheorie Uiversität Müster Istitut für Mathematische Statistik Stochastik WS 203/204, Blatt Löwe/Heusel Aufgabe (4 Pukte) Übuge Abgabetermi: Freitag, 24.0.204, 0 Uhr THEMEN: Testtheorie Die Sollstärke der Rohrwäde

Mehr

Lösungsvorschlag Probeklausur zur Elementaren Wahrscheinlichkeitsrechnung

Lösungsvorschlag Probeklausur zur Elementaren Wahrscheinlichkeitsrechnung Prof. Dr. V. Schmidt WS 200/20 G. Gaiselma, A. Spettl 7.02.20 Lösugsvorschlag Probeklausur zur Elemetare Wahrscheilichkeitsrechug Hiweis: Der Umfag ud Schwierigkeitsgrad dieser Probeklausur muss icht dem

Mehr

Zufallsvariable. Die Wahrscheinlichkeitsverteilung p (probability function) ist definiert durch: p(x i ) := P (X = x i ),

Zufallsvariable. Die Wahrscheinlichkeitsverteilung p (probability function) ist definiert durch: p(x i ) := P (X = x i ), ETHZ 90-683 Dr. M. Müller Statistische Methode WS 00/0 Zufallsvariable Zusammehag: Wirklichkeit Modell Wirklichkeit Stichprobe Date diskret stetig rel. Häufigkeit Häufigkeitstabelle Stabdiagramm Histogramm

Mehr

7. Stichproben und Punktschätzung

7. Stichproben und Punktschätzung 7. Stichprobe ud Puktschätzug 7. Grudgesamtheit ud Stichprobe Ausgagspukt der iduktive Statistik (beurteilede Statistik) sid Stichprobedate. Speziell stamme die Date aus Zufallsstichprobe. Die Stichprobeergebisse

Mehr

Testen statistischer Hypothesen

Testen statistischer Hypothesen Kapitel 9 Teste statistischer Hypothese 9.1 Eiführug, Sigifiaztests Sigifiaztest für µ bei der ormalverteilug bei beatem σ = : X i seie uabhägig ud µ, ) verteilt, µ sei ubeat. Stelle eie Hypothese über

Mehr

Prof. Dr. Holger Dette Musterlösung Statistik I Sommersemester 2009 Dr. Melanie Birke Blatt 5

Prof. Dr. Holger Dette Musterlösung Statistik I Sommersemester 2009 Dr. Melanie Birke Blatt 5 Prof. Dr. Holger Dette Musterlösug Statistik I Sommersemester 009 Dr. Melaie Birke Blatt 5 Aufgabe : 4 Pukte Sei X eie Poissoλ verteilte Zufallsvariable mit λ > 0, ud die Verlustfuktio L sei defiiert durch

Mehr

Seminarausarbeitung: Gegenbeispiele in der Wahrscheinlichkeitstheorie. Unterschiedliche Konvergenzarten von Folgen von Zufallsvariablen

Seminarausarbeitung: Gegenbeispiele in der Wahrscheinlichkeitstheorie. Unterschiedliche Konvergenzarten von Folgen von Zufallsvariablen Semiarausarbeitug: Gegebeispiele i der Wahrscheilichkeitstheorie - Uterschiedliche Kovergezarte vo Folge vo Zufallsvariable Volker Michael Eberle 4. März 203 Eileitug Die vorliegede Arbeit thematisiert

Mehr

Stochastisches Integral

Stochastisches Integral Kapitel 11 Stochastisches Itegral Josef Leydold c 26 Mathematische Methode XI Stochastisches Itegral 1 / 2 Lerziele Wieer Prozess ud Browsche Bewegug Stochastisches Itegral Stochastische Differetialgleichug

Mehr

Induktive Schlussweise. Schätzfunktionen und Schätzverfahren. Bibliografie

Induktive Schlussweise. Schätzfunktionen und Schätzverfahren. Bibliografie Auswertug uivariater Datemege -iduktiv - Iduktive Schlussweise Schätzfuktioe ud Schätzverfahre Schätzug I Bibliografie Prof. Dr. Kück Uiversität Rostock Statistik, Vorlesugsskript Abschitt 7..; 7.. Bleymüller

Mehr

Ereignis Wahrscheinlichkeit P (A) A oder B P (A + B) A und B P (AB) B, wenna P (B A)

Ereignis Wahrscheinlichkeit P (A) A oder B P (A + B) A und B P (AB) B, wenna P (B A) Kapitel 10 Statistik 10.1 Wahrscheilichkeit Das Ergebis eier Messug oder Beobachtug wird Ereigis geat. Ereigisse werde mit de Buchstabe A, B,...bezeichet. Die Messug eier kotiuierliche Variable x gibt

Mehr

Evaluation & Forschungsstrategien

Evaluation & Forschungsstrategien Evaluatio & Forschugsstrategie WS2/2 Prof. Dr. G. Meihardt Johaes Guteberg Uiversität Maiz Prizipie des statistische Schliesses Samplig - Modellvorstellug Populatio Samplig Stichprobe Kewerte x Theoretische

Mehr

Induktive Statistik. Formelsammlung. Prof. Dr. W. Assenmacher. Stichprobenraum: Ω = {ω 1, ω 2,...,ω m }

Induktive Statistik. Formelsammlung. Prof. Dr. W. Assenmacher. Stichprobenraum: Ω = {ω 1, ω 2,...,ω m } Prof. Dr. W. Assemacher Statistik ud Ökoometrie Uiversität Duisburg-Esse Campus Esse Iduktive Statistik Formelsammlug Stichproberaum: Ω = {ω 1, ω,...,ω m } Vollstädiges System vo Ereigisse {A 1,..., A

Mehr

Aufgaben zu Kapitel 40

Aufgaben zu Kapitel 40 Aufgabe zu Kapitel 40 Aufgabe zu Kapitel 40 Verstädisfrage Aufgabe 40 Es seie X,,X iid-gleichverteilt im Itervall [a,b] Wie sieht die Likelihood-Fuktio L a,b aus? Aufgabe 40 Sie kaufe Lose Sie gewie mit

Mehr

Statistik I Februar 2005

Statistik I Februar 2005 Statistik I Februar 2005 Aufgabe 0 Pukte Ei Merkmal X mit de mögliche Auspräguge 0 ud, das im Folgede wie ei kardialskaliertes Merkmal behadelt werde ka, wird a Merkmalsträger beobachtet. Dabei bezeichet

Mehr

KAPITEL 11. Ungleichungen. g(x) g(x 0 ) + K 0 (x x 0 ).

KAPITEL 11. Ungleichungen. g(x) g(x 0 ) + K 0 (x x 0 ). KAPITEL 11 Ugleichuge 111 Jese-Ugleichug Defiitio 1111 Eie Fuktio g : R R heißt kovex, we ma für jedes x R ei K = K (x ) R fide ka, so dass für alle x R gilt: g(x) g(x ) + K (x x ) Bemerkug 111 Eie Fuktio

Mehr

Klausur vom

Klausur vom UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Domiik Faas Stochastik Witersemester 00/0 Klausur vom 7.0.0 Aufgabe 3+.5+.5=6 Pukte Bei eier Umfrage wurde 60 Hotelbesucher ach ihrer Zufriedeheit

Mehr

KAPITEL 9. Konfidenzintervalle

KAPITEL 9. Konfidenzintervalle KAPITEL 9 Kofiezitervalle Sei {h θ (x) : θ Θ} eie Familie vo Dichte bzw Zählichte I iesem Kapitel ist Θ = (a, b) R ei Itervall Seie X,, X uabhägige u ietisch verteilte Zufallsvariable mit Dichte bzw Zählichte

Mehr

Übungsblatt 9 zur Vorlesung. Statistische Methoden

Übungsblatt 9 zur Vorlesung. Statistische Methoden Dr. Christof Luchsiger Übugsblatt 9 zur Vorlesug Statistische Methode Schätztheorie ud Kofidezitervalle Herausgabe des Übugsblattes: Woche 8, Abgabe der Lösuge: Woche 9 (bis Freitag, 65 Uhr), Besprechug:

Mehr

Maximum Likelihood Version 1.6

Maximum Likelihood Version 1.6 Maximum Likelihood Versio 1.6 Uwe Ziegehage 15. November 2005 Logarithmegesetze log a (b) + log a (c) = log a (b c) (1) log a (b) log a (c) = log a (b/c) (2) log a (b c ) = c log a (b) (3) Ableitugsregel

Mehr

10. Intervallschätzung 10.1 Begriff des Konfidenzintervalls

10. Intervallschätzung 10.1 Begriff des Konfidenzintervalls 10. Itervallschätzug 10.1 Begriff des Kofidezitervalls Mit uterschiedliche Stichprobe werde verschiedee Puktschätzer für de Parameter der Grudgesamtheit erzielt. We m Stichprobe aus der Grudgesamtheit

Mehr

4. Übung Konfidenzintervalle für Anteile und Mittelwerte

4. Übung Konfidenzintervalle für Anteile und Mittelwerte Querschittsbereich 1: Epidemiologie, Mediziische Biometrie ud Mediziische Iformatik - Übugsmaterial - Erstellt vo Mitarbeiter des IMISE ud des ZKS Leipzig 4. Übug Kofidezitervalle für Ateile ud Mittelwerte

Mehr

Übungsrunde 12, Gruppe 2 LVA , Übungsrunde 12, Gruppe 2, Markus Nemetz, TU Wien,

Übungsrunde 12, Gruppe 2 LVA , Übungsrunde 12, Gruppe 2, Markus Nemetz, TU Wien, 1 5.11 Übugsrude 12, Gruppe 2 LVA 107.369, Übugsrude 12, Gruppe 2, 23.01.2007 Markus Nemetz, markus.emetz@tuwie.ac.at, TU Wie, 16.01.2007 1.1 Agabe Währed eier 6-moatige Periode wurde die Zeite (Stude)

Mehr

1. Einführung. 1 A (T (x 1,..., x n )) P θ (dx 1 )... P θ (dx n ) X. P θ {T n (X 1,..., X n ) A} =

1. Einführung. 1 A (T (x 1,..., x n )) P θ (dx 1 )... P θ (dx n ) X. P θ {T n (X 1,..., X n ) A} = . Eiführug Bezeichuge: Der durch die Zufallsgröße X defiierte Wahrscheilichkeitsraum [X, B, P X ] heißt auch die Grudgesamtheit X. B ist die σ-algebra der Borelmege aus X. Vielfach wird die Grudgesamtheit

Mehr

3. Einführung in die Statistik

3. Einführung in die Statistik 3. Eiführug i die Statistik Grudlegedes Modell zu Date: uabhägige Zufallsgröße ; : : : ; mit Verteilugsfuktio F bzw. Eizelwahrscheilichkeite p ; : : : ; p r i de Aweduge: kokrete reale Auspräguge ; : :

Mehr

Kapitel 11 DIE NORMAL-VERTEILUNG

Kapitel 11 DIE NORMAL-VERTEILUNG Kapitel DIE NORMAL-VERTEILUNG Fassug vom 7. Februar 006 Prof. Dr. C. Porteier Mathematik für Humabiologe ud Biologe 49 . De itio der Normal-Verteilug. De itio der Normal-Verteilug Bisher habe wir ur diskret

Mehr

Bayessches Lernen (II)

Bayessches Lernen (II) Uiversität Potsdam Istitut für Iformatik Lehrstuhl Maschielles Lere Bayessches Lere (II) Christoph Sawade/Niels Ladwehr Jules Rasetahariso Tobias Scheffer Überblick Wahrscheilichkeite, Erwartugswerte,

Mehr

Kovarianz und Korrelation

Kovarianz und Korrelation Kapitel 2 Kovariaz ud Korrelatio Josef Leydold c 2006 Mathematische Methode II Kovariaz ud Korrelatio 1 / 41 Lerziele Mathematische ud statistische Grudlage der Portfoliotheorie Kovariaz ud Korrelatio

Mehr

Zinsratenmodelle in stetiger Zeit: Teil II

Zinsratenmodelle in stetiger Zeit: Teil II Zisratemodelle i stetiger Zeit: Teil II Simoe Folty 1.11.006 1. Vasicek Modell (1977) 1.1 Eiführug Vasicek schlug das folgede Modell für die risikofreie Zisrate r(t) vor, basiered auf der SDGL d r t α

Mehr

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:

Mehr

Statistische Schätzungen

Statistische Schätzungen Statitiche Schätzuge Statitiche Schätzuge, Ei Wiechaftler mu geau mee, icht chätze! Da it aber eie wiechaftliche Schätzug! Lázló Smeller? (8,5±1,5) cm Aalytiche Statitik (iduktive o. chließede Statitik)

Mehr

Übungen zu QM III Mindeststichprobenumfang

Übungen zu QM III Mindeststichprobenumfang Techische Hochschule Köl Fakultät für Wirtschafts- ud Rechtswisseschafte Prof. Dr. Arreberg Raum 221, Tel. 39 14 jutta.arreberg@th-koel.de Übuge zu QM III Mideststichprobeumfag Aufgabe 12.1 Sie arbeite

Mehr

Körpergröße x Häufigkeit in [m] 1.50 1.60 1 1.60 1.70 5 1.70 1.80 49 1.80 1.90 53 1.90 2.00 15 2.00 2.10 1

Körpergröße x Häufigkeit in [m] 1.50 1.60 1 1.60 1.70 5 1.70 1.80 49 1.80 1.90 53 1.90 2.00 15 2.00 2.10 1 8 Kofidezitervalle 1 Kapitel 8: Kofidezitervalle A: Beispiele Beispiel 1: Im WS 2000/01 wurde im Rahme der Statistik Vorlesug 124 Studete u.a. zu ihrer Körpergröße befragt. Ma erhielt folgedes Ergebis:

Mehr

Teil II Zählstatistik

Teil II Zählstatistik Teil II Zählstatistik. Aufgabestellug. Vergleiche Sie experimetelle Zählverteiluge mit statistische Modelle (POISSON-Verteilug ud Normalverteilug) 2. Theoretische Grudlage Stichworte zur Vorbereitug: Impulszahl,

Mehr

2 ISO/BIPM-Leitfaden Guide to the Expression of Uncertainty in Measurement, GUM (2008 überarbeitet, die deutsche Fassung ist [3])

2 ISO/BIPM-Leitfaden Guide to the Expression of Uncertainty in Measurement, GUM (2008 überarbeitet, die deutsche Fassung ist [3]) I- Messusicherheite: Lit.: Prof. Dr. Gerz Wahrscheilichkeitsrechug ud Usicherheitsberechug IO/BIPM-Leitfade Guide to the Epressio of Ucertaity i Measuremet, GUM (008 überarbeitet, die deutsche Fassug ist

Mehr

Der χ 2 Test. Bei Verteilungen Beantwortung der Frage, ob eine gemessene Verteilung Gauß- oder Poisson-verteilt ist oder nicht?

Der χ 2 Test. Bei Verteilungen Beantwortung der Frage, ob eine gemessene Verteilung Gauß- oder Poisson-verteilt ist oder nicht? Der χ Test Es gibt verschiedee Arte vo Sigifikaztests Nebe Sigifikaztests, die sich mit dem Mittelwert beschäftige, gibt es auch Testverfahre für Verteiluge Bei Verteiluge Beatwortug der Frage, ob eie

Mehr

Fakultät für Wirtschafts- und Rechtswissenschaften

Fakultät für Wirtschafts- und Rechtswissenschaften F A C H H O C H S C H U L E K Ö L N Fakultät für Wirtschafts- ud Rechtswisseschafte F O R M E L S A M M L U N G Deskriptive Statistik Iduktive Statistik Herausgeber: c 2004 Fachgruppe Quatitative Methode

Mehr

Gütefunktion und Fehlerwahrscheinlichkeiten Rechtsseitiger Test (µ 0 = 500) zum Signifikanzniveau α = Interpretation von Testergebnissen I

Gütefunktion und Fehlerwahrscheinlichkeiten Rechtsseitiger Test (µ 0 = 500) zum Signifikanzniveau α = Interpretation von Testergebnissen I 6 Hypothesetests Gauß-Test für de Mittelwert bei bekater Variaz 6.3 Gütefuktio ud Fehlerwahrscheilichkeite Rechtsseitiger Test (µ 0 = 500) zum Sigifikaziveau α = 0.30 6 Hypothesetests Gauß-Test für de

Mehr

11 Likelihoodquotiententests

11 Likelihoodquotiententests 11 Likelihoodquotietetests I de Paragraphe 7-10 wurde beste Tests UMP-Tests oder UMPU-Tests i spezielle Verteilugssituatioe hergeleitet Hier soll u ei allgemeies Kostruktiosprizip für Tests vo zusammegesetzte

Mehr

Stochastik für WiWi - Klausurvorbereitung

Stochastik für WiWi - Klausurvorbereitung Dr. Markus Kuze WS 2013/14 Dipl.-Math. Stefa Roth 11.02.2014 Stochastik für WiWi - Klausurvorbereitug Gesetz der totale Wahrscheilichkeit ud Satz vo Bayes (Ω, F, P) Wahrscheilichkeitsraum, E 1,..., E F

Mehr

Korrekturliste zum Studienbuch Statistik

Korrekturliste zum Studienbuch Statistik Korrekturlite zum Studiebuch Statitik I der aktuelle Auflage wurde durch ei Kovertierugproblem i de Kapitel 0 (S. 3 3 ud de etprechede Abchitte i de Löuge (S. 39 07 teilweie die Zeiche µ durch ud π durch

Mehr

Aussage über die Verteilung Summen und Durchschnitte beliebig verteilter Zufallsvariablen

Aussage über die Verteilung Summen und Durchschnitte beliebig verteilter Zufallsvariablen 7. Grezwertsätze Die Grezwertsätze bilde de Abschluss der Wahrscheilichkeitsrechug ud sid vo zetraler Bedeutug vor allem für die iduktive Statistik. Gesetz der große Zahle Aussage über die Geauigkeit der

Mehr

Angewandte Stochastik II

Angewandte Stochastik II Vorlesugsskript Agewadte Stochastik II Dr. Katharia Best Witersemester 2010/2011 Ihaltsverzeichis 1 Grudidee der statistische Dateaalyse 5 1.1 Stichprobe..............................................

Mehr

Kapitel 12. Schätzung von Parametern

Kapitel 12. Schätzung von Parametern Kapitel 12 Schätzug vo Parameter Die Verteilug eier Zufallsvariable hägt i der Regel vo eiem oder mehrere Parameter ab. Bei der Poissoverteilug ist dies der Parameter λ, währed es bei der Normalverteilug

Mehr

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen:

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen: 61 6.2 Grudlage der mathematische Statistik 6.2.1 Eiführug i die mathematische Statistik I der mathematische Statistik behadel wir Masseerscheiuge. Wir habe es deshalb im Regelfall mit eier große Zahl

Mehr

Wörterbuchmethoden und Lempel-Ziv-Codierung

Wörterbuchmethoden und Lempel-Ziv-Codierung Kapitel 3 Wörterbuchmethode ud Lempel-Ziv-Codierug I diesem Abschitt lere wir allgemei Wörterbuchmethode zur Kompressio ud isbesodere die Lempel-Ziv (LZ))-Codierug kee. Wörterbuchmethode sid ei eifaches

Mehr

Gliederung. Value-at-Risk

Gliederung. Value-at-Risk Value-at-Risk Dr. Richard Herra Nürberg, 4. Noveber 26 IVS-Foru Gliederug Modell Beispiel aus der betriebliche Altersversorgug Verteilug des Gesatschades Value-at-Risk ud Tail Value-at-Risk Risikobeurteilug

Mehr

Michael Buhlmann Mathematik > Analysis > Newtonverfahren

Michael Buhlmann Mathematik > Analysis > Newtonverfahren Michael Buhlma Mathematik > Aalysis > Newtoverfahre Eie Abbildug {a }: N -> R, die jeder atürliche Zahl eie reelle Zahl a zuordet, heißt (uedliche (Zahle- Folge: -> a oder {a } εn, a das -te Folgeglied.

Mehr

Güteeigenschaften von Schätzern

Güteeigenschaften von Schätzern KAPITEL 6 Güteeigeschafte vo Schätzer Wir erier a ie Defiitio es parametrische Moells Sei {h θ : θ Θ}, wobei Θ R m, eie Familie vo Dichte oer Zählichte Seie X 1,, X uabhägige u ietisch verteilte Zufallsvariable

Mehr

Mathematische Statistik

Mathematische Statistik Mathematische Statistik Skript Prof. Dr. Zakhar Kabluchko Uiversität Müster Istitut für Mathematische Statistik Ihaltsverzeichis Vorwort 1 Literatur 1 Kapitel 1. Stichprobe ud Stichprobefuktio 1.1. Wahrscheilichkeitstheorie

Mehr

5.3 Wachstum von Folgen

5.3 Wachstum von Folgen 53 Wachstum vo Folge I diesem Abschitt betrachte wir (rekursiv oder aders defiierte) Folge {a } = ud wolle vergleiche, wie schell sie awachse, we wächst Wir orietiere us dabei a W Hochstättler: Algorithmische

Mehr

Bei 95%iger Konfidenz wäre der Mittelwert der GG zwischen 1421,17DM und 1778,83DM zu erwarten.

Bei 95%iger Konfidenz wäre der Mittelwert der GG zwischen 1421,17DM und 1778,83DM zu erwarten. Aufgabe 36 (S. 346: Schätzverfahre für Mittelwert ud Stadardabweichug a Puktschätzuge für µ aufgrud der Werte der kleie Stichprobe aus Aufgabe 3 Bei eier Puktschätzug wird für de zu schätzede Parameter

Mehr

7. Grenzwertsätze Grenzwertsätzen Zentraler Grenzwertsatz Gesetz der großen Zahlen Tschebyscheffsche Ungleichung

7. Grenzwertsätze Grenzwertsätzen Zentraler Grenzwertsatz Gesetz der großen Zahlen Tschebyscheffsche Ungleichung 7. Grezwertsätze Bei de Grezwertsätze geht es um Aussage, die ma sogar da treffe ka, we keierlei Iformatioe über de Verteilugs-Typ der betrachtete Zufallsvariable vorliege. Zetraler Grezwertsatz Aussage

Mehr

Umrechnung einer tatsächlichen Häufigkeitsverteilung in eine prozentuale Häufigkeitsverteilung

Umrechnung einer tatsächlichen Häufigkeitsverteilung in eine prozentuale Häufigkeitsverteilung .3. Prozetuale Häufigkeitsverteilug (HV) Die prozetuale Häufigkeitsverteilug erlaubt de Vergleich vo Auswertuge, dee uterschiedliche Stichprobegröße zugrude liege. Es köe auch uterschiedliche Stichprobegröße

Mehr

1 Wahrscheilichkeitsrechug 1.1 Elemete der Megelehre Morgasche Formel A \ B = A [ B A [ B = A \ B Kommutativgesetz A \ B = B \ A A [ B = B [ A Assozia

1 Wahrscheilichkeitsrechug 1.1 Elemete der Megelehre Morgasche Formel A \ B = A [ B A [ B = A \ B Kommutativgesetz A \ B = B \ A A [ B = B [ A Assozia Statistik I - Formelsammlug Ihaltsverzeichis 1 Wahrscheilichkeitsrechug 1.1 Elemete der Megelehre................................. 1. Kombiatorik........................................ 1.3 Wahrscheilichkeite....................................

Mehr

Zenraler Grenzwertsatz

Zenraler Grenzwertsatz Zeraler Grezwertsatz Ato Klimovsky Zetraler Grezwertsatz. Kovergez i Verteilug. Normalapproximatio. I diesem Abschitt beschäftige wir us mit der folgede Frage. Frage: Wie sieht die Verteilug eier Summe

Mehr

Einstichprobentests für das arithmetische Mittel

Einstichprobentests für das arithmetische Mittel Eistichprobetests für das arithmetische Mittel H 0 : = 0 bzw. H 0 : 0 H 1 : 0 zweiseitiger Test) H 1 : 0 zweiseitiger Test) Uter Gültigkeit vo H 0 ist die achfolgede Teststatistik stadardormalverteilt.

Mehr

74 3. GRENZWERTSÄTZE. k=1 IIE[X k] = µ, und, wegen der Unkorreliertheit,

74 3. GRENZWERTSÄTZE. k=1 IIE[X k] = µ, und, wegen der Unkorreliertheit, 74 3. GRENZWERTSÄTZE 3. Grezwertsätze Sei u {X 1, X 2,...} eie Folge vo Zufallsvariable auf eiem Wahrscheilichkeitsraum (Ω, F, IIP). Wir iteressiere us u für die Summe S = X 1 + + X, ud vor allem für die

Mehr

f X1 X 2 Momente: Eigenschaften: Var(aX + b) = a 2 Var(X) a, b R

f X1 X 2 Momente: Eigenschaften: Var(aX + b) = a 2 Var(X) a, b R Siebformel vo Poicare-Sylvester: k P A k = k+ P A ij k= k= = k= P A k k= i

Mehr

3 Exponentielle Familien

3 Exponentielle Familien 3 Expoetielle Familie I diesem Kapitel wolle wir spezielle Klasse vo Verteilugsfamilie utersuche, bei dee u.a. i der Cramér-Rao-Ugleichug das Gleichheitszeiche gelte muss. Dazu betrachte wir die Situatio

Mehr

Standard Normalverteilung Dichtefunktion von Standard Normal Verteilung. Grenzwertsatz. Normalverteilung. Andere wichtige Verteilungen: Anwendungen

Standard Normalverteilung Dichtefunktion von Standard Normal Verteilung. Grenzwertsatz. Normalverteilung. Andere wichtige Verteilungen: Anwendungen Statistik. Vorlesug, September, 00 f() 0.0 0. 0. 0.3 0.4 Stadard Normalverteilug Dichtefuktio vo Stadard Normal Verteilug -4-0 4 Der Erwartugswert: mittlere Wert E ( = f( ) d=0 für die Stadard Normal Verteilug

Mehr

Konvergenz von Folgen von Zufallsvariablen

Konvergenz von Folgen von Zufallsvariablen Kapitel 5 Kovergez vo Folge vo Zufallsvariable 5.1 Fa-sichere ud ochaische Kovergez Seie Ω, A, P ei W-Raum, X N eie Folge R k -wertiger Zufallsvariable auf Ω ud X eie R k -wertige Zufallsvariable auf Ω

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Kapitel 15 Wahrscheilichkeitstheorie ud Statistik Verstädisfrage Sachfrage 1. Erläuter Sie de Begriff der absolute ud relative Häufigkeit eier Stichprobe! 2. Erläuter Sie de Begriff der Klassehäufigkeit

Mehr

Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit

Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit - 18 - (Kapitel 3 : Bedigte Wahrscheilichkeite ud Uabhägigkeit) Kapitel 3: Bedigte Wahrscheilichkeite ud Uabhägigkeit Wird bei der Durchführug eies stochastische Experimets bekat, daß ei Ereigis A eigetrete

Mehr

3 Wichtige Wahrscheinlichkeitsverteilungen

3 Wichtige Wahrscheinlichkeitsverteilungen 26 3 Wichtige Wahrscheilicheitsverteiluge Wir betrachte zuächst eiige Verteilugsfutioe für Produtexperimete 31 Die Biomialverteilug Wir betrachte ei Zufallsexperimet zum Beispiel das Werfe eier Müze, bei

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meihardt 6. Stock, Taubertsberg R. 06-06 (Persike) R. 06-31 (Meihardt) Sprechstude jederzeit ach Vereibarug Forschugsstatistik I Dr. Malte Persike persike@ui-maiz.de http://psymet03.sowi.ui-maiz.de/

Mehr

Das kollektive Risikomodell. 12. Mai 2009

Das kollektive Risikomodell. 12. Mai 2009 Kirill Rudik Das kollektive Risikomodell 12. Mai 2009 4.1 Eileitug Wir betrachte i diesem Kapitel die Gesamtforderuge im Laufe eies Jahres. Beim Abschluss eies Versicherugsvertrages weiß der Versicherer

Mehr

Wir wiederholen zunächst das Majorantenkriterium aus Satz des Vorlesungsskripts Analysis von W. Kimmerle und M. Stroppel.

Wir wiederholen zunächst das Majorantenkriterium aus Satz des Vorlesungsskripts Analysis von W. Kimmerle und M. Stroppel. Uiversität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dr. D. Zimmerma MSc. J. Köller MSc. R. Marczizik FDSA 4 Höhere Mathematik II 30.04.2014 el, kyb, mecha, phys 1 Kovergezkriterie

Mehr