Körpergröße x Häufigkeit in [m]

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Körpergröße x Häufigkeit in [m] 1.50 1.60 1 1.60 1.70 5 1.70 1.80 49 1.80 1.90 53 1.90 2.00 15 2.00 2.10 1"

Transkript

1 8 Kofidezitervalle 1 Kapitel 8: Kofidezitervalle A: Beispiele Beispiel 1: Im WS 2000/01 wurde im Rahme der Statistik Vorlesug 124 Studete u.a. zu ihrer Körpergröße befragt. Ma erhielt folgedes Ergebis: Körpergröße x Häufigkeit i [m] a) Bereche Sie ei Kofidezitervall zum Kofideziveau vo 0.9 für die durchschittliche Körpergröße aller Göttiger Studete des WS 2000/01. b) Für de Ateil der Göttiger Studete des WS 2000/01, die größer als 1.70 m ware, wurde das Kofidezitervall [0.468; 0.644] kostruiert. Bestimme Sie die Kofideziveau dieses Itervalls. Lösug: a) 2 i Körpergröße Häufigkeit Itervallx i mitte xi M i xi M xi M

2 8 Kofidezitervalle 2 x = = S 2 = 1 S2 = S = S 2 = Kofidezitervall für µ: (1.814)2 = α/2 = 0.05 ; 1 = 123 = t 123;0.05 = S [x S ] t 1;α/2 ; x +t 1;α/2 = [ ; ] = [1.803 ; 1.825] b) Kofidezitervall für π (π = Ateil der Studete, die größer als 1.70 ware) [ ] π(1 π) π(1 π) π z α/2 ; π + z α/2 π = = π(1 π) = = π(1 π) π z α/2 = z α/ = z α/2 = 1.96 α/2 = Kofideziveau (1 α) = 0.95

3 8 Kofidezitervalle 3 B: Übugsaufgabe [ 1 ] Ei bayrischer Ladwirt (ohe Rudfuk ud Fersehe) sagt a 80 vo 100 zufällig über eie lägere Zeitraum verteilte Tage das Wetter für de folgede Tag richtig voraus. Gebe Sie die Greze des 95%-Kofidezitervalls für de Ateil richtiger Vorhersage a. Die Greze des Kofidezitervalls sid: [ ; ] [ 2 ] Ei Uterehmer will mit Hilfe eier Stichprobe vom Umfag de Marktateil seies Produktes ermittel. Wie groß muss midestes sei, we der Stichprobeateil vom tatsächliche Marktateil mit eier Wahrscheilichkeit vo midestes 95 % um höchstes 1% abweiche soll? [ 3 ] Aus eier Grudgesamtheit wird eie Zufallsstichprobe vom Umfag =144 gezoge ud für de ubekate Mittelwert µ ei Kofidezitervall [64.2; 66.6] zur Kofideziveau (1 α) = berechet. Wie groß ist die Stadardabweichug i der Stichprobe? S =

4 8 Kofidezitervalle 4 [ 4 ] Das Kofidezitervall für de ubekate Parameter µ eier ormalverteilte Zufallsvariable mit bekater Variaz sei [x z α/2 σ ; x + z α/2 σ ] Welche der folgede Aussage sid WAHR? Kreuze Sie sie a. a) Je größer die agestrebte Sicherheit (1 α), desto gröber (ugeauer) die Itervallschätzug für µ. b) Die Läge des Kofidezitervalls hägt vom Zufall ab. c) Die Lage des Kofidezitervalls hägt vom Zufall ab. d) Da z α/2 mit wachseder Kofidezzahl (1 α) abimmt, immt auch die Läge des Itervalls mit wachseder Kofidezzahl ab. e) Die Läge des Kofidezitervalls ist abhägig vo de beobachtete Werte vo x. [ 5 ] Eie Kaffeemaschie i der Mesa füllt laut Betriebsaleitug durchschittlich 100 ml je Tasse ab. Es ka ageommme werde, dass die Füllmege aäherd ormalverteilt ist. Zur Überprüfug der Geauigkeit der agegebee Abfüllmege wurde eie Stichprobe der Größe 9 gezoge. Dabei ergabe sich folgede Werte (i ml): Die Mesaverwaltug iteressiert, ob das 95% Kofidezitervall de vom Hersteller agegebee Wert überdeckt. Gebe Sie dazu die Greze des 95% Kofidezitervalls a: [ ; ] [ 6 ] Welche der folgede Aussage sid WAHR? Kreuze Sie diese a. a) Die Greze eies Kofidezitervalls sid Zufallsvariable. b) Ist X verteilt wie b(,π), so ist (bei π = X, > 30) ( ) π(1 π) π(1 π) P π z 0.05 π π + z c) Das Kofidezitervall mit Wahrscheilichkeit 0.90 ist immer kürzer als das etsprechede Kofidezitervall mit Wahrscheilichkeit d) Bei größere Stichprobe erwartet ma Kofidezitervalle größerer Läge. e) We bei de verschiedeste (uabhägige) Aweduge Kofidezitervalle mit Wahrscheilichkeit 0.90 berechet werde, ethalte im Durchschitt 90% dieser Itervalle de Wert des zu schätzede Parameters.

5 8 Kofidezitervalle 5 [ 7 ] Ei Teetriker führt bei 16 zufällig ausgewählte 100 g-dose seier Liebligssorte Gewichtskotrolle des Ihaltes durch. Er immt a, dass das Abfüllgewicht X ormalverteilt ist. Als Gesamtgewicht aller Doseihalte ermittelt er 1552g ( x 2 i = g 2 ). a) Bestimme Sie das 95%-Kofidezitervall uter der Aahme, dass die Variaz der Grudgesamtheit bekat ist. (σ 2 = 36g 2 ) [ ; ] Ethält das Kofidezitervall um x de Sollwert vo 100g? b) Ermittel Sie u uter der Voraussetzug, dass σ 2 Ihe ubekat ist, das etsprechede 95%-Kofidezitervall. [ ; ] [ 8 ] Für de ubekate Ateilswert π der vo eier Maschie fehlerfrei produzierte Stücke sei das Kofidezitervall [0.734; 0.866] berechet worde. Die zugrudeliegede Stichprobe bestad aus 100 produzierte Stücke. Der Wert des geschätzte Ateilswertes π ist: Das zugrudeliegede Kofideziveau (1 α) ist: [ 9 ] Eie Molkereigeosseschaft beabsichtigt, Milchtüte doppelte Ihalts eizuführe, die auf der bisherige Maschie abgefüllt werde solle. Aus lagjähriger Erfahrug weiß ma, dass die derzeitige Füllmege aäherd ormalverteilt ist, bei eier Variaz vo σ 2 = 36. Um die eue tatsächliche mittlere Füllmege µ zu bestimme, soll eie Stichprobe gezoge werde. Wie groß muss der Stichprobeumfag midestes gewählt werde, we µ icht mehr als 1.5 vo x bei eier vorgegebee Kofideziveau vo midestes 95.4% abweiche soll? Stichprobeumfag

6 8 Kofidezitervalle 6 [ 10 ] Das Kofidezitervall ] [x t 1;α/2 S ; x +t 1;α/2 S sei für de ubekate Parameter µ eier Grudgesamtheit berechet worde. Welche der folgede Aussage sid WAHR? Kreuze Sie sie a. a) Das Kofidezitervall ist umso läger, je größer der Stichprobeumfag ist. b) Die Lage des Itervalls hägt vom Zufall ab. c) Die Läge des Itervalls hägt vom Zufall ab. d) Das agegebee Kofidezitervall überdeckt µ mit der Wahrscheilichkeit α. e) Das Kofidezitervall ist umso läger, je größer das gewählte Kofideziveau 1 α ist. [ 11 ] Eie Zufallsvariable sei ormalverteilt. Es wurde eie Stichprobe der Größe = 10 gezoge. Als Stichprobevariaz ergab sich S 2 = 5. Bereche Sie u ei 90%-Kofidezitervall für σ 2. HINWEISE: Es geügt, die Uter- ud Obergreze des Itervalls als ugekürzte Bruch azugebe! Für das 100(1 α)% Kofidezitervall für σ 2 gilt: [ ] S 2 S 2 ; χ 2 ( 1;α/2) Für das 90% Kofidezitervall für σ 2 gilt: χ 2 ( 1;1 α/2) [ ; ] Welche der folgede Aussage sid im Zusammehag mit obigem Kofidezitervall für σ 2 WAHR? Kreuze Sie sie a. a) Das Kofidezitervall ist symmetrisch um S 2. b) Die Läge des Itervalls hägt vom Zufall ab. c) Die Lage des Itervalls hägt vom Zufall ab. d) Je höher das Kofideziveau 100(1 α)% gewählt wird, desto breiter wird das Kofidezitervall. e) Das agegebee Kofidezitervall überdeckt σ 2 mit der Wahrscheilichkeit 1 α.

7 8 Kofidezitervalle 7 [ 12 ] Welche Aussage im Zusammehag mit Kofidezitervalle sid WAHR? Kreuze Sie sie a. a) Der Stichprobeumfag hat wesetliche Eifluss auf die Breite eies Kofidezitervalls. b) Kofidezitervalle werde i Ergäzug zu de Puktschätzer eigesetzt, um Aussage über die Geauigkeit der Puktschätzer mache zu köe. c) Kofidezitervalle sid immer symmetrisch um de zu schätzede Parameter. d) Der zu schätzede Parameter wird ie vo dem berechete Kofidezitervall überdeckt. e) Zumidest die Lage vo Kofidezitervalle ist zufällig, da es möglich ist, je ach Stichprobe verschiedee Puktschätzer zu erhalte, ud diese die Grudlage für die Berechug der Itervalle darstelle.

8 8 Kofidezitervalle 8 C: Klausuraufgabe [ 13 ] II07S1 Eie Milchabfüllalage füllt laut Herstelleragabe durchschittlich 1 Liter Milch pro Packug ab. Eie Stichprobe der Größe = 10 ergab die folgede Werte (i ml), die i R uter dem Name milch gespeichert wurde. 994,998,1005,998,1002,991,1004,1001,996,1003 var(milch) [1] > sum(milch) [1] 9992 > sum(milch^2) [1] Bereche Sie ei Kofidezitervall für µ zum Niveau 0.90: Kofidezitervall: [ 14 ] IV07S Sie solle im Folgede eie Utersuchug zu de Erteerträge vo Gerste auf eiem bestimmte Feld i eiem bestimmte Zeitraum durchführe. Dazu steht Ihe eie Stichprobe der Größe =10 zur Verfügug: > gerste [1] > sum(gerste) [1] 1517 > sum(gerste^2) [1] > var(gerste) [1] Bereche Sie ei Kofidezitervall für µ zum Kofideziveau Kofidezitervall:

9 8 Kofidezitervalle 9 [ 15 ] II07S Bei der Produktio vo Streichhölzer solle diese auf Ihre Fuktiosfähigkeit überprüft werde. Dazu wurde 100 Streichhölzer der laufede Produktio etomme. 80 Streichhölzer ware brauchbar, die verbleibede 20 kote etweder icht etzüdet werde oder kickte ab. Kostruiere Sie ei Kofidezitervall zum Niveau 1 α = 0.95 für de wahre Ateilswert fuktioiereder Streichhölzer. Gebe Sie jeweils vier Stelle ach dem Dezimalpukt a. Als Alterative köe Sie auch de R-Befehl zur Berechug der obere Greze des Kofidezitervalls agebe. Kofidezitervall:

10 8 Kofidezitervalle 10 D: Lösuge 1) [0.722; 0.878] 2) ) 8 4) a, c 5) [ ; ] 6) a, b, c, e 7) [94.06;99.94] ; ei ; [93.15;100.85] 8) 0.8 ; ) ) b, c, e [ ] 50 11) ; 50 ; b, c, d, e ) a, b, e 13) [ ; ] 14) [ ; ] 15) [0.7216; ]

Übungen zu QM III Mindeststichprobenumfang

Übungen zu QM III Mindeststichprobenumfang Techische Hochschule Köl Fakultät für Wirtschafts- ud Rechtswisseschafte Prof. Dr. Arreberg Raum 221, Tel. 39 14 jutta.arreberg@th-koel.de Übuge zu QM III Mideststichprobeumfag Aufgabe 12.1 Sie arbeite

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

8. Intervallschätzung

8. Intervallschätzung 8. Itervallschätzug 8.1 Begriff des Kofidezitervalls Mit uterschiedliche Stichprobe lasse sich verschiedee Puktschätzer θ für de Parameter der Grudgesamtheit erziele. We m Stichprobe aus der Grudgesamtheit

Mehr

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5 Vl Statistische Prozess- ud Qualitätskotrolle ud Versuchsplaug Übug 5 Aufgabe ) Sei p = P(A) die Wahrscheilichkeit für ei Ereigis A, dh., es gilt 0 p. Bereche Sie das Maximum der Fuktio f(p) = p(-p). Aufgabe

Mehr

X X Schätzen von Vertrauensintervallen Schwankungsintervall

X X Schätzen von Vertrauensintervallen Schwankungsintervall .. Schätze vo Vertrauesitervalle..1. Schwakugsitervall Beispiel: X = Betrag vo Geldüberweisuge, ormalverteilt, µ = 5000, = 1000 Zufallsstichprobe mit = 100, Schätzer für µ: X X Gesucht: Itervall, i dem

Mehr

4 Schwankungsintervalle Schwankungsintervalle 4.2

4 Schwankungsintervalle Schwankungsintervalle 4.2 4 Schwakugsitervalle Schwakugsitervalle 4. Bemerkuge Die bekate Symmetrieeigeschaft Φ(x) = 1 Φ( x) bzw. Φ( x) = 1 Φ(x) für alle x R überträgt sich auf die Quatile N p der Stadardormalverteilug i der Form

Mehr

Kapitel 5: Schließende Statistik

Kapitel 5: Schließende Statistik Kapitel 5: Schließede Statistik Statistik, Prof. Dr. Kari Melzer 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte

Mehr

4. Übung Konfidenzintervalle für Anteile und Mittelwerte

4. Übung Konfidenzintervalle für Anteile und Mittelwerte Querschittsbereich 1: Epidemiologie, Mediziische Biometrie ud Mediziische Iformatik - Übugsmaterial - Erstellt vo Mitarbeiter des IMISE ud des ZKS Leipzig 4. Übug Kofidezitervalle für Ateile ud Mittelwerte

Mehr

Prof. Dr. Roland Füss Statistik II SS 2008

Prof. Dr. Roland Füss Statistik II SS 2008 1. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug ergibt sich aus de Grezwertsätze. Grezwertsätze sid Aussage über eie Zufallsvariable für de Fall, dass die Azahl

Mehr

Intervallschätzung II 2

Intervallschätzung II 2 Itervallschätzug Kofidezitervall für die Variaz Kofidezitervall für de Ateilswerte Kofidezitervall für die Differez zweier Ateile Bestimmug des Stichrobeumfags Itervallschätzug II Bibliografie Bleymüller

Mehr

Schätzen von Populationswerten

Schätzen von Populationswerten Schätze vo Populatioswerte 7.Sitzug 35 Seite, SoSe 003 Schätze vo Populatioswerte Ziel: Ermöglichug vo Aussage über die Grudgesamtheit ahad vo Stichprobedate Logische Methode: Iduktiosschluss Grudlage

Mehr

Statistik. 5. Schließende Statistik: Typische Fragestellung anhand von Beispielen. Kapitel 5: Schließende Statistik

Statistik. 5. Schließende Statistik: Typische Fragestellung anhand von Beispielen. Kapitel 5: Schließende Statistik Statistik Kapitel 5: Schließede Statistik 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel 1» Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte der arithmetische

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren Dr. Jürge Seger INDUKTIVE STATISTIK Wahrscheilichkeitstheorie, Schätz- ud Testverfahre ÜBUNG. - LÖSUNGEN. ypothesetest für die Dicke vo Plättche Die Dicke X vo Plättche, die auf eier bestimmte Maschie

Mehr

Schätzen von Populationswerten

Schätzen von Populationswerten Schätze vo Populatioswerte SS00 7.Sitzug vom.06.00 Schätze vo Populatioswerte Ziel: Ermöglichug vo Aussage über die Grudgesamtheit ahad vo Stichprobedate Logische Methode: Iduktiosschluß Grudlage des Iduktiosschlusses:

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt 2.4.5 Gauss-Test ud t-test für verbudee Stichprobe 2.4.5.8 Zum Begriff der verbudee Stichprobe Verbudee Stichprobe: Vergleich zweier Merkmale X ud Y, die jetzt a deselbe Persoe erhobe werde. Vorsicht:

Mehr

Tests statistischer Hypothesen

Tests statistischer Hypothesen KAPITEL 0 Tests statistischer Hypothese I der Statistik muss ma oft Hypothese teste, z.b. muss ma ahad eier Stichprobe etscheide, ob ei ubekater Parameter eie vorgegebee Wert aimmt. Zuerst betrachte wir

Mehr

Wirksamkeit, Effizienz. Beispiel: Effizienz. Mittlerer quadratischer Fehler (MSE) Konsistenz im quadratischen Mittel

Wirksamkeit, Effizienz. Beispiel: Effizienz. Mittlerer quadratischer Fehler (MSE) Konsistenz im quadratischen Mittel 3 arameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez 3 arameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Beispiel: Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische

Mehr

Wirksamkeit, Effizienz

Wirksamkeit, Effizienz 3 Parameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische Verteilugsaahme mit Parameterraum Θ. 1 Seie θ ud θ erwartugstreue

Mehr

Grundzüge der Stichprobentheorie. Statistisches Bundesamt

Grundzüge der Stichprobentheorie. Statistisches Bundesamt Grudzüge der Stichprobetheorie Grüde für Stichprobeerhebug - deutlich gerigere Koste - größere Awedugsbreite - kürzere Erhebugs- ud Auswertugszeite - i der Regel größere Geauigkeit der Ergebisse Begriffsbestimmug

Mehr

Pflichtlektüre: Kapitel 10 Grundlagen der Inferenzstatistik

Pflichtlektüre: Kapitel 10 Grundlagen der Inferenzstatistik Pflichtlektüre: Kapitel 10 Grudlage der Iferezstatistik Überblick der Begriffe Populatio Iferezstatistik Populatiosparameter Stichprobeverteiluge Auch Stichprobekewerteverteiluge Wahrscheilichkeitstheorie

Mehr

Demo für www.mathe-cd.de

Demo für www.mathe-cd.de Wahrscheilichkeitsrechug Hypergeometrische Verteilug Themeheft ud Traiigsheft Datei r. 4211 Stad 17. April 2010 Friedrich W. Buckel Demo für ITERETBIBLIOTHEK FÜR SCHULMATHEMATIK 4211 Hypergeometrische

Mehr

Gütefunktion und Fehlerwahrscheinlichkeiten Rechtsseitiger Test (µ 0 = 500) zum Signifikanzniveau α = Interpretation von Testergebnissen I

Gütefunktion und Fehlerwahrscheinlichkeiten Rechtsseitiger Test (µ 0 = 500) zum Signifikanzniveau α = Interpretation von Testergebnissen I 6 Hypothesetests Gauß-Test für de Mittelwert bei bekater Variaz 6.3 Gütefuktio ud Fehlerwahrscheilichkeite Rechtsseitiger Test (µ 0 = 500) zum Sigifikaziveau α = 0.30 6 Hypothesetests Gauß-Test für de

Mehr

Bei 95%iger Konfidenz wäre der Mittelwert der GG zwischen 1421,17DM und 1778,83DM zu erwarten.

Bei 95%iger Konfidenz wäre der Mittelwert der GG zwischen 1421,17DM und 1778,83DM zu erwarten. Aufgabe 36 (S. 346: Schätzverfahre für Mittelwert ud Stadardabweichug a Puktschätzuge für µ aufgrud der Werte der kleie Stichprobe aus Aufgabe 3 Bei eier Puktschätzug wird für de zu schätzede Parameter

Mehr

Übungen mit dem Applet erwartungstreu

Übungen mit dem Applet erwartungstreu Übuge mit dem Applet erwartugstreu Visualisierug vo erwartugstreu Begriffe ud statischer Hitergrud. Visualisieruge mit dem Applet..3. Zufallsstreuug der Eizelwerte...3. Mittelwerte 3.3 Variaz. 4.4 Variaz

Mehr

Konfidenzintervall_fuer_pi.doc Seite 1 von 6. Konfidenzintervall für den Anteilswert π am Beispiel einer Meinungsumfrage

Konfidenzintervall_fuer_pi.doc Seite 1 von 6. Konfidenzintervall für den Anteilswert π am Beispiel einer Meinungsumfrage Kofidezitervall_fuer_pi.doc Seite 1 vo 6 Kofidezitervall für de Ateilswert π am Beispiel eier Meiugsumfrage Nach eier Meiugsumfrage der Wochezeitug Bezirksblatt vom März 005, ei halbes Jahr vor de Ladtagswahle

Mehr

10. Intervallschätzung 10.1 Begriff des Konfidenzintervalls

10. Intervallschätzung 10.1 Begriff des Konfidenzintervalls 10. Itervallschätzug 10.1 Begriff des Kofidezitervalls Mit uterschiedliche Stichprobe werde verschiedee Puktschätzer für de Parameter der Grudgesamtheit erzielt. We m Stichprobe aus der Grudgesamtheit

Mehr

Kapitel 6: Statistische Qualitätskontrolle

Kapitel 6: Statistische Qualitätskontrolle Kapitel 6: Statistische Qualitätskotrolle 6. Allgemeies Für die Qualitätskotrolle i eiem Uterehme (produzieredes Gewerbe, Diestleistugsuterehme, ) gibt es verschiedee Möglichkeite. Statistische Prozesskotrolle

Mehr

http://www.statistik.lmu.de/~kraemer/kw10/index.html Aufgabe 1 (Punkt- und Intervallschätzung für ein metrisches Merkmal)

http://www.statistik.lmu.de/~kraemer/kw10/index.html Aufgabe 1 (Punkt- und Intervallschätzung für ein metrisches Merkmal) tatistik für Kouikatioswisseschaftler Witerseester 010/011 Vorlesug Prof. Dr. Nicole Kräer Übug Nicole Kräer, Corelia Oberhauser, Moia Mahlig Lösug Thea Hoepage zur Verastaltug: http://www.statistik.lu.de/~kraeer/kw10/idex.htl

Mehr

Einstichprobentests für das arithmetische Mittel

Einstichprobentests für das arithmetische Mittel Eistichprobetests für das arithmetische Mittel H 0 : = 0 bzw. H 0 : 0 H 1 : 0 zweiseitiger Test) H 1 : 0 zweiseitiger Test) Uter Gültigkeit vo H 0 ist die achfolgede Teststatistik stadardormalverteilt.

Mehr

Übungen Abgabetermin: Freitag, , 10 Uhr THEMEN: Testtheorie

Übungen Abgabetermin: Freitag, , 10 Uhr THEMEN: Testtheorie Uiversität Müster Istitut für Mathematische Statistik Stochastik WS 203/204, Blatt Löwe/Heusel Aufgabe (4 Pukte) Übuge Abgabetermi: Freitag, 24.0.204, 0 Uhr THEMEN: Testtheorie Die Sollstärke der Rohrwäde

Mehr

Lösungsvorschlag Probeklausur zur Elementaren Wahrscheinlichkeitsrechnung

Lösungsvorschlag Probeklausur zur Elementaren Wahrscheinlichkeitsrechnung Prof. Dr. V. Schmidt WS 200/20 G. Gaiselma, A. Spettl 7.02.20 Lösugsvorschlag Probeklausur zur Elemetare Wahrscheilichkeitsrechug Hiweis: Der Umfag ud Schwierigkeitsgrad dieser Probeklausur muss icht dem

Mehr

Der χ 2 Test. Bei Verteilungen Beantwortung der Frage, ob eine gemessene Verteilung Gauß- oder Poisson-verteilt ist oder nicht?

Der χ 2 Test. Bei Verteilungen Beantwortung der Frage, ob eine gemessene Verteilung Gauß- oder Poisson-verteilt ist oder nicht? Der χ Test Es gibt verschiedee Arte vo Sigifikaztests Nebe Sigifikaztests, die sich mit dem Mittelwert beschäftige, gibt es auch Testverfahre für Verteiluge Bei Verteiluge Beatwortug der Frage, ob eie

Mehr

2. Schätzverfahren 2.1 Punktschätzung wirtschaftlicher Kennzahlen. Allgemein: Punktschätzung eines Parameters:

2. Schätzverfahren 2.1 Punktschätzung wirtschaftlicher Kennzahlen. Allgemein: Punktschätzung eines Parameters: . Schätzverfahre. Puktschätzug wirtschaftlicher Kezahle Allgemei: Puktschätzug eies Parameters: Ermittlug eies Schätzwertes für eie ubekate Parameter eier Zufallsvariable i der Grudgesamtheit mit Hilfe

Mehr

Klausur vom

Klausur vom UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Domiik Faas Stochastik Witersemester 00/0 Klausur vom 7.0.0 Aufgabe 3+.5+.5=6 Pukte Bei eier Umfrage wurde 60 Hotelbesucher ach ihrer Zufriedeheit

Mehr

Evaluation & Forschungsstrategien

Evaluation & Forschungsstrategien Evaluatio & Forschugsstrategie WS2/2 Prof. Dr. G. Meihardt Johaes Guteberg Uiversität Maiz Prizipie des statistische Schliesses Samplig - Modellvorstellug Populatio Samplig Stichprobe Kewerte x Theoretische

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Empirische Wirtschaftsforschug ud Ökoometrie Dr. Rolad Füss Statistik II: Schließede Statistik SS 2007 6. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug

Mehr

6. Grenzwertsätze. 6.1 Tschebyscheffsche Ungleichung

6. Grenzwertsätze. 6.1 Tschebyscheffsche Ungleichung 6. Grezwertsätze 6.1 Tschebyscheffsche Ugleichug Sofer für eie Zufallsvariable X die Verteilug bekat ist, lässt sich die Wahrscheilichkeit dafür bestimme, dass X i eiem bestimmte Itervall liegt. Wie ist

Mehr

Beispiel: p-wert bei Chi-Quadrat-Anpassungstest (Grafik) Auftragseingangsbeispiel, realisierte Teststatistik χ 2 = , p-wert: 0.

Beispiel: p-wert bei Chi-Quadrat-Anpassungstest (Grafik) Auftragseingangsbeispiel, realisierte Teststatistik χ 2 = , p-wert: 0. 8 Apassugs- ud Uabhägigkeitstests Chi-Quadrat-Apassugstest 8.1 Beispiel: p-wert bei Chi-Quadrat-Apassugstest (Grafik) Auftragseigagsbeispiel, realisierte Teststatistik χ 2 = 12.075, p-wert: 0.0168 f χ

Mehr

Zufallsstreubereiche und Vertrauensbereiche

Zufallsstreubereiche und Vertrauensbereiche HTL Saalfelde Zufallsstreu- ud Vertrauesbereiche Seite 1 vo 1 Wilfried Rohm, HTL Saalfelde wilfried.rohm@schule.at Zufallsstreubereiche ud Vertrauesbereiche Mathematische / Fachliche Ihalte i Stichworte:

Mehr

Kapitel XI - Korrelationsrechnung

Kapitel XI - Korrelationsrechnung Istitut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökoometrie ud Statistik Kapitel XI - Korrelatiosrechug Deskriptive Statistik Prof. Dr. W.-D. Heller Hartwig Seska Carlo Siebeschuh Aufgabe der Korrelatiosrechug

Mehr

Normalverteilung. Standardnormalverteilung. Intervallwahrscheinlichkeiten. Verteilungsfunktion

Normalverteilung. Standardnormalverteilung. Intervallwahrscheinlichkeiten. Verteilungsfunktion Normalverteilug Stadardormalverteilug Normalverteilug N(μ, ) mit ichte : Gaußche Glockekurve μ μ μ+ μ >, f ( ) = ( μ) WS 6/7 Prof. r. J. Schütze, FB GW NV π Eigechafte der ichte: - Maimum i μ - mmetrich

Mehr

( ) Formelsammlung. Kombinatorik. Permutation: ohne Wiederholung. n! = n (n - 1) (n - 2)... 3 2 1 n= alle Elemente. Permutation: mit Wiederholung

( ) Formelsammlung. Kombinatorik. Permutation: ohne Wiederholung. n! = n (n - 1) (n - 2)... 3 2 1 n= alle Elemente. Permutation: mit Wiederholung Formelsammlug Kombiatori Permutatio: ohe Wiederholug! = ( - 1) ( - 2).... 3 2 1 = alle Elemete Permutatio: mit Wiederholug!! P, = = usw. = gleiche Elemete! 1! K 2! Stichprobe (SP) = geordete Auswahl Geordete

Mehr

Statistische Tests zu ausgewählten Problemen

Statistische Tests zu ausgewählten Problemen Eiführug i die statistische Testtheorie Statistische Tests zu ausgewählte Probleme Teil : Tests für Erwartugswerte Statistische Testtheorie I Eiführug Beschräkug auf parametrische Testverfahre Beschräkug

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik ud Wahrscheilichkeitsrechug Dr. Joche Köhler 9.04.008 Äderug Übugsstude Statistik ud Wahrscheilichkeitsrechug Die Gruppe vo Markus trifft sich am Doerstag statt im HCI D zusamme mit der Gruppe

Mehr

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S Statistik mit Excel 2013 Peter Wies Theme-Special 1. Ausgabe, Februar 2014 W-EX2013S 3 Statistik mit Excel 2013 - Theme-Special 3 Statistische Maßzahle I diesem Kapitel erfahre Sie wie Sie Date klassifiziere

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR MATHEMATISCHE STOCHASTIK WS 005/06 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Klausur Wahrscheilichkeitstheorie ud Statistik vom 9..006 Musterlösuge Aufgabe A: Gegebe sei eie Urliste

Mehr

Parameterschätzung. Kapitel Schätzfunktionen

Parameterschätzung. Kapitel Schätzfunktionen Kapitel 8 Parameterschätzug 8.1 Schätzfuktioe Def. 8.1.1: Es seie X 1,X,...,X uabhägige ZV, die alle die gleiche Verteilug besitze. θ sei ei ubekater Parameter dieser Verteilug. X 1,X,...,X ist als eie

Mehr

Lerneinheit 2: Grundlagen der Investition und Finanzierung

Lerneinheit 2: Grundlagen der Investition und Finanzierung Lereiheit 2: Grudlage der Ivestitio ud Fiazierug 1 Abgrezug zu de statische Verfahre Durchschittsbetrachtug wird aufgegebe Zeitpukt der Zahlugsmittelbewegug explizit berücksichtigt exakte Erfassug der

Mehr

Grundproblem der Inferenzstatistik

Grundproblem der Inferenzstatistik Grudproblem der Iferezstatistik Grudgesamtheit Stichprobeziehug Zufalls- Stichprobe... "wahre", ubekate Ateil icht zufällig p... beobachtete Ateil zufällig? Statistik für SoziologIe 1 Iferezschluss Kofidezitervall

Mehr

Übungsaufgaben zur Investitionsrechnung

Übungsaufgaben zur Investitionsrechnung Übugsaufgabe zur Ivestitiosrechug Übugsaufgabe (Statische Ivestitiosrechug): Ihre Uterehmug plat die Aschaffug eier eue Maschie. Zur Wahl stehe die beide Alterative A ud B. Folgede Date sid für die beide

Mehr

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen Testumfag für die Ermittlug ud Agabe vo Fehlerrate i biometrische Systeme Peter Uruh SRC Security Research & Cosultig GmbH peter.uruh@src-gmbh.de Eileitug Biometrische Systeme werde durch zwei wichtige

Mehr

Umrechnung einer tatsächlichen Häufigkeitsverteilung in eine prozentuale Häufigkeitsverteilung

Umrechnung einer tatsächlichen Häufigkeitsverteilung in eine prozentuale Häufigkeitsverteilung .3. Prozetuale Häufigkeitsverteilug (HV) Die prozetuale Häufigkeitsverteilug erlaubt de Vergleich vo Auswertuge, dee uterschiedliche Stichprobegröße zugrude liege. Es köe auch uterschiedliche Stichprobegröße

Mehr

2 ISO/BIPM-Leitfaden Guide to the Expression of Uncertainty in Measurement, GUM (2008 überarbeitet, die deutsche Fassung ist [3])

2 ISO/BIPM-Leitfaden Guide to the Expression of Uncertainty in Measurement, GUM (2008 überarbeitet, die deutsche Fassung ist [3]) I- Messusicherheite: Lit.: Prof. Dr. Gerz Wahrscheilichkeitsrechug ud Usicherheitsberechug IO/BIPM-Leitfade Guide to the Epressio of Ucertaity i Measuremet, GUM (008 überarbeitet, die deutsche Fassug ist

Mehr

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:

Mehr

Testverfahren zur Prüfung von Hypothesen über Parameter oder Verteilungen. Einstichprobentest für die Varianz einer Normalverteilung

Testverfahren zur Prüfung von Hypothesen über Parameter oder Verteilungen. Einstichprobentest für die Varianz einer Normalverteilung Testverfahre zur Prüfug vo Hypothese über Parameter oder Verteiluge Eistichprobetest für die Variaz eier Normalverteilug Eistichprobetest für de Ateilswert Zweistichprobetests zum Vergleich zweier arithmetischer

Mehr

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222 Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme

Mehr

Grundproblem der Inferenzstatistik

Grundproblem der Inferenzstatistik Grudproblem der Iferezstatistik Grudgesamtheit Stichprobeziehug Zufalls- Stichprobe... "wahre", ubekate Ateil icht zufällig p... beobachtete Ateil zufällig Statistik für SoziologIe 1 Iferez für Ateile?

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren Dr. Jürge Seger INDUKTIVE STATISTIK Wahrheilihkeittheorie, Shätz- ud Tetverfahre ÜBUNG 0 - LÖSUNGEN. Kofidezitervall für de Mittelwert eier ormalverteilte Grudgeamtheit bei gegebeer Variaz a. Gegebe id

Mehr

Statistik I Februar 2005

Statistik I Februar 2005 Statistik I Februar 2005 Aufgabe 0 Pukte Ei Merkmal X mit de mögliche Auspräguge 0 ud, das im Folgede wie ei kardialskaliertes Merkmal behadelt werde ka, wird a Merkmalsträger beobachtet. Dabei bezeichet

Mehr

Beispiel: p-wert bei Chi-Quadrat-Anpassungstest (Grafik) Auftragseingangsbeispiel, realisierte Teststatistik χ 2 = , p-wert: 0.

Beispiel: p-wert bei Chi-Quadrat-Anpassungstest (Grafik) Auftragseingangsbeispiel, realisierte Teststatistik χ 2 = , p-wert: 0. 8 Apassugs- ud Uabhägigkeitstests Chi-Quadrat-Apassugstest 81 Beispiel: p-wert bei Chi-Quadrat-Apassugstest (Grafik) Auftragseigagsbeispiel, realisierte Teststatistik χ 2 = 12075, p-wert: 00168 f χ 2 (4)

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren Dr. Jürge Seger INDUKTIVE STATISTIK Wahrcheilichkeittheorie, Schät- ud Tetverfahre ÜBUNG. - LÖSUNGEN. Differetet für de Mittelwert (abhägige Stichprobe) Zwei Verfahre um Nachwei eie hormoale Dopigmittel

Mehr

Einführung in die Stochastik 10. Übungsblatt

Einführung in die Stochastik 10. Übungsblatt Eiführug i die Stochastik. Übugsblatt Fachbereich Mathematik SS M. Kohler.7. A. Fromkorth D. Furer Gruppe ud Hausübug Aufgabe 37 (4 Pukte) Ei Eremit am Südpol hat sich für die eibrechede polare Nacht mit

Mehr

Standard Normalverteilung Dichtefunktion von Standard Normal Verteilung. Grenzwertsatz. Normalverteilung. Andere wichtige Verteilungen: Anwendungen

Standard Normalverteilung Dichtefunktion von Standard Normal Verteilung. Grenzwertsatz. Normalverteilung. Andere wichtige Verteilungen: Anwendungen Statistik. Vorlesug, September, 00 f() 0.0 0. 0. 0.3 0.4 Stadard Normalverteilug Dichtefuktio vo Stadard Normal Verteilug -4-0 4 Der Erwartugswert: mittlere Wert E ( = f( ) d=0 für die Stadard Normal Verteilug

Mehr

Induktive Schlussweise. Schätzfunktionen und Schätzverfahren. Bibliografie

Induktive Schlussweise. Schätzfunktionen und Schätzverfahren. Bibliografie Auswertug uivariater Datemege -iduktiv - Iduktive Schlussweise Schätzfuktioe ud Schätzverfahre Schätzug I Bibliografie Prof. Dr. Kück Uiversität Rostock Statistik, Vorlesugsskript Abschitt 7..; 7.. Bleymüller

Mehr

II. Grundzüge der Stichprobentheorie

II. Grundzüge der Stichprobentheorie II. Grudzüge der Stichprobetheorie Grüde für Stichprobeerhebug - deutlich gerigere Koste - größere Awedugsbreite - kürzere Erhebugs- ud Auswertugszeite - i der Regel größere Geauigkeit der Ergebisse Begriffsbestimmug

Mehr

Vordiplomprüfung 2014 Mathematik Seite 1 von 3

Vordiplomprüfung 2014 Mathematik Seite 1 von 3 Vordiplomprüfug 14 Mathematik Seite 1 vo 1. Aufgabe Has hat eie Uhr bekomme. Er beobachtet, dass der Miutezeiger vo Zeit zu Zeit de Studezeiger überholt. a) Um welche Zeit zwische 9 ud 1 Uhr stehe die

Mehr

3 Kritischer Bereich zum Niveau α = 0.10: K = (χ 2 k 1;1 α, + ) = (χ2 5;0.90, + ) = (9.236, + ) 4 Berechnung der realisierten Teststatistik:

3 Kritischer Bereich zum Niveau α = 0.10: K = (χ 2 k 1;1 α, + ) = (χ2 5;0.90, + ) = (9.236, + ) 4 Berechnung der realisierten Teststatistik: 8 Apassugs- ud Uabhägigkeitstests Chi-Quadrat-Apassugstest 81 Beispiel: p-wert bei Chi-Quadrat-Apassugstest (Grafik) Auftragseigagsbeispiel, realisierte Teststatistik χ 2 1275, p-wert: 168 8 Apassugs-

Mehr

Folgen und Reihen Glege 03/01

Folgen und Reihen Glege 03/01 Folge ud Reihe Glege 03/0 I diesem Script werde folgede Theme behadelt: Folge (Eiführug)... Arithmetische Folge... Geometrische Folge...3 Mootoie...4 Kovergez...5 Grezwert...6 Schrake...7 Arithmetische

Mehr

4.3 Auswertung von Reaktionsgleichungen

4.3 Auswertung von Reaktionsgleichungen 76 Stoffmegerelatioe. Auswertug vo eaktiosgleichuge Durch eie chemische eaktio werde eaktate (Ausgagsstoffe i bestimmte eaktiosprodukte umgewadelt. Dieser Umsatz wird durch die betreffede eaktiosgleichug

Mehr

Konfidenzintervalle. Praktische Übung Stochastik SS 2017 Lektion 10 1

Konfidenzintervalle. Praktische Übung Stochastik SS 2017 Lektion 10 1 Kofidezitervalle Praktische Übug Stochastik SS 017 Lektio 10 1 Kofidezitervalle Geerelle Aahme: Parametrisches Modell (P ϑ ) ϑ Θ Beobachtuge X 1,..., X u.i.v. ach P ϑ mit ubekatem ϑ Θ Grudidee: Schätzer

Mehr

Vereinheitlichung Einheitlicher Maßstab der Risikoeinschätzung. Limitierung / Steuerung Messung und Limitierung ist fundamental für die Steuerung

Vereinheitlichung Einheitlicher Maßstab der Risikoeinschätzung. Limitierung / Steuerung Messung und Limitierung ist fundamental für die Steuerung . Marktpreisrisiko Motivatio der VaR-Ermittlug Vereiheitlichug Eiheitlicher Maßstab der Risikoeischätzug Limitierug / Steuerug Messug ud Limitierug ist fudametal für die Steuerug Kapitaluterlegug Zur Deckug

Mehr

Grundproblem der Inferenzstatistik

Grundproblem der Inferenzstatistik Grudproblem der Iferezstatistik Grudgesamtheit Stichprobeziehug Zufalls- Stichprobe π... "wahre", ubekate Ateil icht zufällig p... beobachtete Ateil zufällig? Statistik für SoziologIe 1 Iferezschluss Kofidezitervall

Mehr

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I Uiversität des Saarlades Fakultät für Mathematik ud Iformatik Witersemester 2003/04 Prof. Dr. Joachim Weickert Dr. Marti Welk Dr. Berhard Burgeth Lösuge der Aufgabe zur Vorbereitug auf die Klausur Mathematik

Mehr

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008 Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe

Mehr

Wahrscheinlichkeit und Statistik

Wahrscheinlichkeit und Statistik ETH Zürich HS 2015 Prof. Dr. P. Embrechts Wahrscheilichkeit ud Statistik D-INFK Lösuge Serie 2 Lösug 2-1. (a Wir bereche P [W c B] auf zwei Arte: (a Wir betrachte folgede Tabelle: Azahl W W c B 14 6 B

Mehr

Der Geschäftsführer hat zwei Handlungsalternativen (Entscheidungsknoten gelbe Kästchen):

Der Geschäftsführer hat zwei Handlungsalternativen (Entscheidungsknoten gelbe Kästchen): MODUL G Lösuge Aufgabe G.1 Lösug a. A Priori Aalyse Der Geschäftsführer hat zwei Hadlugsalterative (Etscheidugskote gelbe Kästche): A 1: Bohre eies Brues vor Ort 10 Mio. A : Bau eier Pipelie zur Wasserversorgug

Mehr

Formelsammlung Mathematik

Formelsammlung Mathematik Formelsammlug Mathematik 1 Fiazmathematik 1.1 Reterechug Sei der Zissatz p%, der Zisfaktor q = 1 + p 100. Seie R die regelmäßig zu zahlede Rate, die Laufzeit. Edwert: Barwert: achschüssig R = R q 1 q 1

Mehr

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy. Vo der relative Häufigkeit zur Wahrscheilichkeit Es werde 20 Schüler befragt, ob sie ei Hady besitze. Das Ergebis der Umfrage lautet: Vo 20 Schüler besitze 99 ei Hady. Ereigis E: Schüler besitzt ei Hady

Mehr

Investitionsentscheidungsrechnung Annuitäten Methode

Investitionsentscheidungsrechnung Annuitäten Methode Mit Hilfe der köe folgede Ivestitioe beurteilt werde: eizele Ivestitioe alterative Ivestitiosobjekte optimale Ersatzzeitpukte Seite 1 Folgeder Zusammehag besteht zwische der Kapitalbarwertmethode ud der

Mehr

Ausarbeitung. Wirtschaftliche Losgröße nach Andler

Ausarbeitung. Wirtschaftliche Losgröße nach Andler Berufskolleg Werther Brücke - Fachschule für Techik - Ausarbeitug Wirtschaftliche Losgröße ach Adler Fach: Fachlehrer: Produktiosplaug ud Steuerug Herr Schuljahr: 00 / 00 Datum: 03.07.00 lasse: FTA-90

Mehr

X in einer Grundgesamtheit vollständig beschreiben.

X in einer Grundgesamtheit vollständig beschreiben. Prof. Dr. Rolad Füss Statistik II SS 008. Puktschätzug vo Parameter eier Grudgesamtheit Nur durch eie Totalerhebug ka ma die Verteilug eier Zufallsvariable X i eier Grudgesamtheit vollstädig beschreibe.

Mehr

Praktikum Vorbereitung Fertigungsmesstechnik Statistische Qualitätskontrolle

Praktikum Vorbereitung Fertigungsmesstechnik Statistische Qualitätskontrolle Praktikum Vorbereitug Fertigugsmesstechik Statistische Qualitätskotrolle Bei viele Erzeugisse ist es icht möglich jedes Werkstück zu prüfe, z.b.: bei Massefertigug. Hier ist es aus ökoomische Grüde icht

Mehr

14 Statistische Beziehungen zwischen nomi nalen Merkmalen

14 Statistische Beziehungen zwischen nomi nalen Merkmalen 14 Statistische Beziehuge zwische omi ale Merkmale 14.1 Der Chi Quadrat Test auf Uabhägigkeit für Vier Feldertafel 14.2 Der Chi Quadrat Test auf Uabhägigkeit für r s Kotigeztafel 14.3 Zusammmehagsmaße

Mehr

5 Bernoulli-Kette. 5.1 Bernoulli-Experiment. Jakob Bernoulli 1654-1705 Schweizer Mathematiker und Physiker. 5.1.1 Einleitung

5 Bernoulli-Kette. 5.1 Bernoulli-Experiment. Jakob Bernoulli 1654-1705 Schweizer Mathematiker und Physiker. 5.1.1 Einleitung Seite vo 7 5 Beroulli-Kette Jakob Beroulli 654-705 Schweizer Mathematiker ud Physiker 5. Beroulli-Exerimet 5.. Eileitug Oft iteressiert ma sich bei Zufallsexerimete icht für die eizele Ergebisse, soder

Mehr

1. Konfidenzintervall. 2. Weg zur Definition. 3. Konfidenzintervall, genähert Erarbeitung. 4. Konfidenzintervall, genauer Wald/Wilson

1. Konfidenzintervall. 2. Weg zur Definition. 3. Konfidenzintervall, genähert Erarbeitung. 4. Konfidenzintervall, genauer Wald/Wilson 1. Kofidezitervall 2. Weg zur Defiitio 3. Kofidezitervall, geähert Erarbeitug 4. Kofidezitervall, geauer Wald/Wilso 5. Wurmstichige Äpfel, 2σ-Umgebug, Wilso 6. Kofidezitervall, geähert, Wald 7. Kofidezitervall,

Mehr

Wahrscheinlichkeit & Statistik

Wahrscheinlichkeit & Statistik Wahrscheilichkeit & Statistik created by Versio: 3. Jui 005 www.matheachhilfe.ch ifo@matheachhilfe.ch 079 703 7 08 Mege als Sprache der Wahrscheilichkeitsrechug, Begriffe, Grudregel Ereigisraum: Ω Ω Mege

Mehr

SBP Mathe Aufbaukurs 1. Absolute und relative Häufigkeit. Das arithmetische Mittel und seine Eigenschaften. Das arithmetische Mittel und Häufigkeit

SBP Mathe Aufbaukurs 1. Absolute und relative Häufigkeit. Das arithmetische Mittel und seine Eigenschaften. Das arithmetische Mittel und Häufigkeit SBP Mathe Aufbaukurs 1 # 0 by Clifford Wolf # 0 Atwort Diese Lerkarte sid sorgfältig erstellt worde, erhebe aber weder Aspruch auf Richtigkeit och auf Vollstädigkeit. Das Lere mit Lerkarte fuktioiert ur

Mehr

Ticket-Produkte. 1. Welche Ticket-Arten stehen für die Allgemeinheit zur Verfügung?

Ticket-Produkte. 1. Welche Ticket-Arten stehen für die Allgemeinheit zur Verfügung? 1. Welche Ticket-Arte stehe für die Allgemeiheit zur Verfügug? Für die FIFA Fussball-Weltmeisterschaft 201 werde drei verschiedee Ticket-Produkte agebote: Eizeltickets: Dies sid Tickets für ei bestimmtes

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2015/2016. Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2015/2016. Aufgabe 1 Lehrstuhl für Statistik ud Ökoometrie der Otto-Friedrich-Uiversität Bamberg Prof. Dr. Susae Rässler Klausur zu Methode der Statistik II (mit Kurzlösug) Witersemester 2015/2016 Aufgabe 1 Die leideschaftliche

Mehr

Testen statistischer Hypothesen

Testen statistischer Hypothesen Kapitel 9 Teste statistischer Hypothese 9.1 Eiführug, Sigifiaztests Sigifiaztest für µ bei der ormalverteilug bei beatem σ = : X i seie uabhägig ud µ, ) verteilt, µ sei ubeat. Stelle eie Hypothese über

Mehr

Variiert man zusätzlich noch die Saatstärke (z.b. 3 Stärkearten), würde man von einer zweifaktoriellen Varianzanalyse sprechen.

Variiert man zusätzlich noch die Saatstärke (z.b. 3 Stärkearten), würde man von einer zweifaktoriellen Varianzanalyse sprechen. 3. Variazaalyse Die Variazaalyse mit eier quatitative abhägige Variable ud eier oder mehrerer qualitativer uabhägiger Variable wird auch als ANOVA (Aalysis of Variace) bezeichet. Mit eier Variazaalyse

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Methodelehre e e Prof. Dr. G. Meihardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstude jederzeit ach Vereibarug ud ach der Vorlesug. Mathematische ud statistische Methode I Dr. Malte Persike persike@ui-maiz.de

Mehr

Übung zur Vorlesung Statistik I WS Übungsblatt 8

Übung zur Vorlesung Statistik I WS Übungsblatt 8 Übug zur Vorlesug Statistik I WS 2013-2014 Übugsblatt 8 9. Dezember 2013 Aufgabe 25 (4 Pukte): Sei X B(, p) eie biomial verteilte Zufallsvariable. Schreibe Sie i R eie Fuktio PWert, die für jedes Ergebis

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meihardt 6. Stock, Taubertsberg R. 06-06 (Persike) R. 06-31 (Meihardt) Sprechstude jederzeit ach Vereibarug Forschugsstatistik I Dr. Malte Persike persike@ui-maiz.de http://psymet03.sowi.ui-maiz.de/

Mehr

WS 2000/2001. zeitanteiliger nomineller Jahreszinssatz für eine unterjährige Verzinsungsperiode bei einfachen Zinsen

WS 2000/2001. zeitanteiliger nomineller Jahreszinssatz für eine unterjährige Verzinsungsperiode bei einfachen Zinsen Aufgabe 1: WS 2000/2001 Aufgabe 1: (4 P (4 Pukte) Gebe Sie die Formel zur Bestimmug des relative sowie des koforme Zissatzes a ud erläuter Sie die Uterschiede bzw. Gemeisamkeite der beide Zisfüße. Lösug:

Mehr

Korrekturliste zum Studienbuch Statistik

Korrekturliste zum Studienbuch Statistik Korrekturlite zum Studiebuch Statitik I der aktuelle Auflage wurde durch ei Kovertierugproblem i de Kapitel 0 (S. 3 3 ud de etprechede Abchitte i de Löuge (S. 39 07 teilweie die Zeiche µ durch ud π durch

Mehr

Aufgaben Konfidenzintervalle

Aufgaben Konfidenzintervalle Aufgabe Kofidezitervalle Grudaufgabe I eier Umfrage uter 1000 zufällig ausgesuchte Persoe vertrate 620 eie bestimmte Meiug. a) Nee Beispiele vo Erfolgswahrscheilichkeite, die mit dem Stichprobeergebis

Mehr

Kurs P = Preis für den Ankauf von Zahlungsverpflichtungen (z.b. Wertpapiere/Anleihen), wird auch als Marktwert bezeichnet

Kurs P = Preis für den Ankauf von Zahlungsverpflichtungen (z.b. Wertpapiere/Anleihen), wird auch als Marktwert bezeichnet . Zusammehag zwische Kurs ud Redite Kurs P = Preis für de Akauf vo Zahlugsverpflichtuge (z.b. Wertpapiere/Aleihe), wird auch als Marktwert bezeichet Nomialwert NW = Newert (oder Rückzahlugsbetrag) der

Mehr