Statistik I Februar 2005

Größe: px
Ab Seite anzeigen:

Download "Statistik I Februar 2005"

Transkript

1 Statistik I Februar 2005 Aufgabe 0 Pukte Ei Merkmal X mit de mögliche Auspräguge 0 ud, das im Folgede wie ei kardialskaliertes Merkmal behadelt werde ka, wird a Merkmalsträger beobachtet. Dabei bezeichet h 0 die absolute Häufigkeit der Ausprägug 0 ud h die absolute Häufigkeit der Ausprägug. a) Ma beweise, dass für die mittlere quadratische Abweichug der Beobachtugswerte gilt: s 2 = h 0 h (h 0 + h ) 2 b) Uterstelle Sie für de Aufgabeteil b), dass 00 Beobachtugswerte x,...,x 00 zu obigem Merkmal X vorliege, wobei 80 der x i gleich sid. Wie groß ist da die relative Häufigkeit der Ausprägug 0, das arithmetische Mittel der x i, die Stadardabweichug der x i? c) Auf Basis eier adere als der i b) betrachtete Urliste wurde für das Merkmal X eie mittlere quadratische Abweichug i Höhe vo 0,25 ermittelt. Bestimme Sie das zugehörige arithmetische Mittel. Aufgabe 2 0 Pukte I eiem Küstedorf auf Sardiie lebe Gaetao, ei Fischer, ud Astrid, eie schwedische Ex-Dozeti. Die beide Freude verbrachte scho viele Abede am Strad. Eies Abeds kam Astrid auf das additive Zeitreihemodell zu spreche. Gaetao, der stets ratlos vor de Schwakuge seier Fagmege stad, war sogleich begeistert. De eier alte Traditio sardischer Fischer folged hatte er bereits seit lägerem füfmal im Jahr, d.h. im Rhythmus vo 73 Tage (Schaltjahre seie außer Acht gelasse), die im jeweilige Jahresfüftel gefagee Mege Fisch otiert. Begied im erste Füftel des Jahres 2002 laute die jeweils i Toe gemessee Mege:

2 Jahr Füftel Mege 20, , , ,5 a) Bereche Sie für das dritte Füftel des Jahres 2003 de gleitede Durchschitt der Ordug 2. b) Uterstelle Sie das additive Zeitreihemodell mit kostater Saisofigur ud bereche Sie die zugehörige saisobereiigte Zeitreihe. c) Führe Sie über die 5 Periode hiweg eie lieare Regressio durch mit der Zeit t als uabhägiger Variable ud de beobachtete Fagmege y t als Werte der abhägige Variable. Hiweise: Der Wert 5 ty t = 78,5 ist bereits errechet. t= Bitte rude Sie stets auf 2 Nachkommastelle. Aufgabe 3 0 Pukte A Patiete eier gegebee Populatio wird mittels eies Labortests utersucht, ob eie bestimmte Krakheit vorliegt oder icht. Der Ateil der Krake i der Populatio werde mit p bezeichet. Falls ei Patiet wirklich krak ist, zeigt der Test mit eier Wahrscheilichkeit vo 99 % die Krakheit a (Ergebis positiv); falls er icht krak ist, zeigt der Test mit eier Wahrscheilichkeit vo 2 % die Krakheit a. Der Test werde bei eiem zufällig aus der Populatio ausgewählte Probade durchgeführt. a) Bereche Sie uter Verwedug der Bezeichuge K = Krakheit liegt vor T = Test zeigt Krakheit a die (vo p abhägige) Wahrscheilichkeite P(T) ud P(K T) b) Kläre Sie, ob uter der spezielle Prämisse p = 0,00 die Wahrscheilichkeit, dass ei Probad mit positivem Testergebis wirklich krak ist, uter oder über 5 % liegt. 2

3 Aufgabe 4 0 Pukte Zur Zufallsvariable X bereche ma für jede der folgede Fälle a),..., g) die Wahrscheilichkeit P(X 7). a) X ist gleichverteilt im Itervall [; ] b) X ist gleichverteilt im Itervall [0; b], ud es gilt Var(X) = 3 c) X ist expoetialverteilt, ud es gilt E(X) = 0 d) X ist N(7; )-verteilt e) X ist N(8; )-verteilt f) X ist hypergeometrisch verteilt mit N = 0, M = 7 ud = 8 g) X ist Poisso-verteilt, ud es gilt Var(X) = 0. Aufgabe 5 0 Pukte Studet Eddy Eisam plat eie Theaterbesuch mit seier eue Freudi. Eie Stude vor Begi des Schauspiels begit seie Freudi, verschiedee Bluse ud Hose aus ihrem Schrak azuprobiere ud Eddy ach seier Meiug zu frage. Eddys Aussage sid leider i de Auge seier Freudi meist ziemlich uqualifiziert, so dass sie sich mit 80 % Wahrscheilichkeit über eie Kommetar zu eier Bluse ud mit 70 % Wahrscheilichkeit über eie Kommetar zu eier Hose ärger muss. Dabei ist jede ihrer Etscheiduge (jeweils ärger oder icht ärger ) uabhägig vo der vorherige Etscheidug ud uabhägig davo, welches Kleidugsstück sie aprobiert. Die Freudi verfügt über 8 Bluse ud 7 Hose ud probiert jedes dieser Kleidugsstücke geau eimal a. a) Wie oft wird sie sich voraussichtlich (d.h. im Erwartugswert) a diesem Abed über eie Hosekommetar ärger? b) Wie oft wird sie sich voraussichtlich isgesamt a diesem Abed über Eddy ärger? c) Wie groß ist die Variaz der i b) betrachtete Zufallsvariable? d) Wie groß ist die Wahrscheilichkeit, dass sie sich geau 3 Mal ärger muss? e) Eddy beschließt zu Begi der Kleiderprobe, seier Freudi für jedes Mal Ärger ei Glas Prosecco im Theater zu spediere, welches 4,50 kostet. Wie groß ist die Variaz der Zufallsvariable Proseccokoste im Theater? 3

4 Lösug zu Aufgabe a) Da ur die Beobachtugswerte 0 ud auftrete köe, gilt x 2 i = x i (i =,...,) ud somit: Ferer gilt s 2 = i=x 2 i x 2 = i= x i x 2 = x x 2 = x( x) x = (0 h 0 + h ) = h Nutzt ma u = h 0 + h, so erhält ma isgesamt s 2 = h ( h ) = h h 0 + h h 0 + h h 0 + h b) = 00, h = 80 h 0 = 20 f 0 = h 0 / = 20/00 = 0,2 x = h / = 80/00 = 0,8 s = 20 80/00 2 = 0,4 c) s 2 = 0,25 = x x 2 x 2 x+0,25 = 0 x = ± 4 0,25 2 h 0 h 0 + h = h 0 h (h 0 + h ) 2 = 0,5 Lösug zu Aufgabe 2 a) 2 ( ) = 2 b) Zu verwede sid gleitede Durchschitte der Ordug 5. Da: y t 20, , , ,5 y t 4,6 4,7 4,7 4,7 4,9 5, 5,3 5,3 5,3 5, 5,3 y t y t 4,6 2,7 0,8 6,3 0, 5, 2,3,2 6,7 0, 5,3 y i j Ŝ j ,5 4,5 4, ,5 5,5 5, ,5 6,5 wobei: S = 6,5; S 2 = 0; S 3 = 5; S 4 = 2,5; S 5 = ; 5 c) Regressio über die Zeit, vgl. Übugsaufgabe 4: ȳ = 5 (20,5+ +7,5) = ,5 2 5 ˆb = = 0,07 2 (53 5) Regressiosgerade: y = 5,56 0,07t â = 5+0, = 5,56 5 S j = 0 Ŝ j = S j, j =,...,5 j= 4

5 Lösug zu Aufgabe 3 a) P(T) = P(T K) P(K)+P(T K) P( K) = 0,99 p+0,02 ( p) = 0,02+0,97 p P(K T) = P(T K) P(K) P(T) = 0,99 p 0,02+0,97 p b) P(K T) = 0,99 0,00 0,02+0,97 0,00 = 0,047 < 0,05 Lösug zu Aufgabe 4 a) P(X 7) = F(7) = 7 = 0,4 b) Var(X) = (b 0)2 2 = 3 b = 6 < 7 P(X 7) = 0 c) E(X) = λ = 0 λ = 0, P(X 7) = F(7) = ( e 7/0 ) = 0,4966 d) E(X) = 7 P(X 7) = 0,5 e) P(X 7) = F(7) = Φ( 7 8 ) = Φ( ) = ( Φ()) = Φ() = 0,843 f) M = 7 P(X 7) = P(X = 7) = f(7) = ( 7 7 )(3 )(0 8 ) = 0,0667 g) Var(X) = λ = 0 P(X 7) = F(6) = 0,30 = 0,8699 Lösug zu Aufgabe 5 X : Azahl ärgerlicher Blusekommetare B(8;0,8) X 2 : Azahl ärgerlicher Hosekommetare B(7;0,7) a) E(X 2 ) = 7 0,7 = 4,9 b) E(X + X 2 ) = E(X )+E(X 2 ) = 8 0,8+7 0,7 =,3 c) Var(X + X 2 ) = Var(X )+Var(X 2 ) = 8 0,8 0,2+7 0,7 0,3 = 2,75 d) P(X + X 2 = 3) = P(X = 8, X 2 = 5)+P(X = 7, X 2 = 6)+P(X = 6, X 2 = 7) = ( 8 8 )0,88 0,2 0 ( 7 5 )0,75 0,3 2 +( 8 7 )0,87 0,2 ( 7 6 )0,76 0,3 +( 8 6 )0,86 0,2 2 ( 7 7 )0,77 0,3 0 = 0,6037 e) Var(4,5 (X + X 2 )) = 4,5 2 Var(X + X 2 ) = 4,5 2 2,75 = 55,6875 5

Musterlösung für die Klausur zur Vorlesung Stochastik I im WiSe 2014/2015

Musterlösung für die Klausur zur Vorlesung Stochastik I im WiSe 2014/2015 Musterlösug für die Klausur zur Vorlesug Stochastik I im WiSe 204/205 Teil I wahr falsch Aussage Gilt E[XY ] = E[X]E[Y ] für zwei Zufallsvariable X ud Y mit edlicher Variaz, so sid X ud Y uabhägig. Für

Mehr

Kapitel VI. Einige spezielle diskrete Verteilungen

Kapitel VI. Einige spezielle diskrete Verteilungen Kapitel VI Eiige spezielle diskrete Verteiluge D 6 (Hypergeometrische Verteilug) Eie Zufallsvariable X heißt hypergeometrisch verteilt, we sie folgede Wahrscheilichkeitsfuktio besitzt: M N M P ( X ) p

Mehr

Einführung in die Stochastik 10. Übungsblatt

Einführung in die Stochastik 10. Übungsblatt Eiführug i die Stochastik. Übugsblatt Fachbereich Mathematik SS M. Kohler.7. A. Fromkorth D. Furer Gruppe ud Hausübug Aufgabe 37 (4 Pukte) Ei Eremit am Südpol hat sich für die eibrechede polare Nacht mit

Mehr

Lösungsvorschlag Probeklausur zur Elementaren Wahrscheinlichkeitsrechnung

Lösungsvorschlag Probeklausur zur Elementaren Wahrscheinlichkeitsrechnung Prof. Dr. V. Schmidt WS 200/20 G. Gaiselma, A. Spettl 7.02.20 Lösugsvorschlag Probeklausur zur Elemetare Wahrscheilichkeitsrechug Hiweis: Der Umfag ud Schwierigkeitsgrad dieser Probeklausur muss icht dem

Mehr

Vl Statistische Prozess und Qualitätskontrolle und Versuchsplanung Übung 3

Vl Statistische Prozess und Qualitätskontrolle und Versuchsplanung Übung 3 Vl Statistische Prozess ud Qualitätskotrolle ud Versuchsplaug Übug 3 Aufgabe ) Die Schichtdicke X bei eier galvaische Beschichtug vo Autoteile sei ormalverteilt N(μ,σ ). 4 Teile werde galvaisch beschichtet.

Mehr

Kapitel XI - Korrelationsrechnung

Kapitel XI - Korrelationsrechnung Istitut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökoometrie ud Statistik Kapitel XI - Korrelatiosrechug Deskriptive Statistik Prof. Dr. W.-D. Heller Hartwig Seska Carlo Siebeschuh Aufgabe der Korrelatiosrechug

Mehr

Kapitel 6 : Punkt und Intervallschätzer

Kapitel 6 : Punkt und Intervallschätzer 7 Kapitel 6 : Pukt ud Itervallschätzer Puktschätzuge. I der Statistik wolle wir Rückschlüsse auf das Wahrscheilichkeitsgesetz ziehe, ach dem ei vo us beobachtetes Zufallsexperimet abläuft. Hierzu beobachte

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungen zum Wiederholungsblatt

Einführung in die Wahrscheinlichkeitstheorie Lösungen zum Wiederholungsblatt TUM, Zetrum Mathematik Lehrstuhl für Mathematische Physik WS 23/4 Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weider Eiführug i die Wahrscheilichkeitstheorie Lösuge zum Wiederholugsblatt Aufgabe

Mehr

1. Wahrscheinlichkeitsrechnung. 2. Diskrete Zufallsvariable. 3. Stetige Zufallsvariable. 4. Grenzwertsätze. 5. Mehrdimensionale Zufallsvariable

1. Wahrscheinlichkeitsrechnung. 2. Diskrete Zufallsvariable. 3. Stetige Zufallsvariable. 4. Grenzwertsätze. 5. Mehrdimensionale Zufallsvariable 1. Wahrscheilichkeitsrechug. Diskrete Zufallsvariable 3. Stetige Zufallsvariable 4. Grezwertsätze 5. Mehrdimesioale Zufallsvariable Stetige Zufallsvariable Eie Zufallsvariable X : Ω R heißt stetig, we

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR MATHEMATISCHE STOCHASTIK WS 005/06 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Klausur Wahrscheilichkeitstheorie ud Statistik vom 9..006 Musterlösuge Aufgabe A: Gegebe sei eie Urliste

Mehr

Wirksamkeit, Effizienz

Wirksamkeit, Effizienz 3 Parameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische Verteilugsaahme mit Parameterraum Θ. 1 Seie θ ud θ erwartugstreue

Mehr

Diskrete Wahrscheinlichkeitstheorie Wiederholungsklausur

Diskrete Wahrscheinlichkeitstheorie Wiederholungsklausur Techische Uiversität Müche Sommersemester 007 Istitut für Iformatik Prof. Dr. Javier Esparza Diskrete Wahrscheilichkeitstheorie Wiederholugsklausur LÖSUNG Hiweis: Bei alle Aufgabe wird ebe dem gefragte

Mehr

(a) Richtig, die Varianz ist eine Summe quadratischer Größen.

(a) Richtig, die Varianz ist eine Summe quadratischer Größen. Aufgabe 1 (10 Pukte) Welche der folgede Aussage sid richtig? (a) Richtig, die Variaz ist eie Summe quadratischer Größe. (b) Falsch, die Abweichug ordialer Merkmale vom Media ist icht defiiert - also auch

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik ud Wahrscheilichkeitsrechug Statistik ud Wahrscheilichkeitsrechug Übug 6 3.03.20 Ihalt der heutige Übug Aufgabe D.7: Reche mit Zufallsvariable Erwartugswert- ud Variazoperator Statistik ud Wahrscheilichkeitsrechug

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

Teilaufgabe 1.1 (3 BE) Berechnen Sie die Wahrscheinlichkeit dafür, dass ein im Flughafen zufällig herausgegriffener Pauschalreisender ( ) =

Teilaufgabe 1.1 (3 BE) Berechnen Sie die Wahrscheinlichkeit dafür, dass ein im Flughafen zufällig herausgegriffener Pauschalreisender ( ) = Abiturprüfug Berufliche Oberschule 004 Mathematik 3 Techik - B I - Lösug Teilaufgabe.0 A eiem Flughafe sid 0% der Reisede Ferreisede. Uter de Ferreisede befide sich 5% Nicht-Pauschalreisede. Der Ateil

Mehr

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5 Vl Statistische Prozess- ud Qualitätskotrolle ud Versuchsplaug Übug 5 Aufgabe ) Sei p = P(A) die Wahrscheilichkeit für ei Ereigis A, dh., es gilt 0 p. Bereche Sie das Maximum der Fuktio f(p) = p(-p). Aufgabe

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

Tests statistischer Hypothesen

Tests statistischer Hypothesen KAPITEL 0 Tests statistischer Hypothese I der Statistik muss ma oft Hypothese teste, z.b. muss ma ahad eier Stichprobe etscheide, ob ei ubekater Parameter eie vorgegebee Wert aimmt. Zuerst betrachte wir

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 5

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 5 TUM, Zetrum Mathematik Lehrstuhl für Mathematische Physik WS 13/14 Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weider Tutoraufgabe: Eiführug i die Wahrscheilichkeitstheorie Lösugsvorschläge zu Übugsblatt

Mehr

6 Vergleich mehrerer unverbundener Stichproben

6 Vergleich mehrerer unverbundener Stichproben 6 Vergleich mehrerer uverbudeer Stichprobe 6.1 Die eifaktorielle Variazaalyse Die eifaktorielle Variazaalyse diet der Utersuchug des Eiflusses eier kategorieller (bzw. ichtmetrischer) Variable, die die

Mehr

Zentraler Grenzwert Satz

Zentraler Grenzwert Satz Zetraler Grezwert Satz Aufgabe Aufgabe 1 Um ihr Studium zu fiaziere jobbe Sie ebebei als Iterviewer ud befrage bei eier ihrer Missioe zufällig Wahlberechtigte um das Wahlergebis eier bestimmte Partei vorherzusage.

Mehr

2. Schätzverfahren 2.1 Punktschätzung wirtschaftlicher Kennzahlen. Allgemein: Punktschätzung eines Parameters:

2. Schätzverfahren 2.1 Punktschätzung wirtschaftlicher Kennzahlen. Allgemein: Punktschätzung eines Parameters: . Schätzverfahre. Puktschätzug wirtschaftlicher Kezahle Allgemei: Puktschätzug eies Parameters: Ermittlug eies Schätzwertes für eie ubekate Parameter eier Zufallsvariable i der Grudgesamtheit mit Hilfe

Mehr

Stochastik - Lösung (BSc D-MAVT / BSc D-MATH / BSc D-MATL)

Stochastik - Lösung (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Prof. Dr. M. Schweizer ETH Zürich Witer 28 Stochastik - Lösug (BSc D-MAVT / BSc D-MATH / BSc D-MATL). (6 Pukte) a) (2 Pukte) Wir defiiere die Ereigisse K {die Perso ist krak} ud T {der Test ist positiv}.

Mehr

Klausur vom

Klausur vom UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Domiik Faas Stochastik Witersemester 00/0 Klausur vom 7.0.0 Aufgabe 3+.5+.5=6 Pukte Bei eier Umfrage wurde 60 Hotelbesucher ach ihrer Zufriedeheit

Mehr

Wahrscheinlichkeit & Statistik Musterlösung Serie 13

Wahrscheinlichkeit & Statistik Musterlösung Serie 13 ETH Zürich FS 2013 D-MATH Has Rudolf Küsch Koordiator Blaka Horvath Wahrscheilichkeit & Statistik Musterlösug Serie 13 1. a) Die Nullhypothese lautet dass das echte Medikamet höchstes gleich gut ist wie

Mehr

s xy x i x y i y s xy = 1 n i=1 y 2 i=1 x 2 s 1 n x n i Streudiagramme empirische Kovarianz x=5,5 y=7,5

s xy x i x y i y s xy = 1 n i=1 y 2 i=1 x 2 s 1 n x n i Streudiagramme empirische Kovarianz x=5,5 y=7,5 Streudiagramme für metrisch skalierte Variable paarweise Messwerte (x,y) x 5 7 y 7 5 7 5 5 7 Aussage zu Zusammehäge. empirische Kovariaz Stadardabweichug der WertPAARE x i x y Wert x Mittelwert aller x

Mehr

Stochastik. Bernoulli-Experimente und Binomialverteilung. Allg. Gymnasien: ab J1 / Q1 Berufl. Gymnasien: ab Klasse 12.

Stochastik. Bernoulli-Experimente und Binomialverteilung. Allg. Gymnasien: ab J1 / Q1 Berufl. Gymnasien: ab Klasse 12. Stochastik Allg. Gymasie: ab J / Q Berufl. Gymasie: ab Klasse 2 Alexader Schwarz www.mathe-aufgabe.com August 208 Aufgabe : Ist der Zufallsversuch eie Beroulli-Kette? We ja, gib die Läge ud die Trefferwahrscheilichkeit

Mehr

So lösen Sie die Gleichung für den Korrelationskoeffizienten

So lösen Sie die Gleichung für den Korrelationskoeffizienten 8. Lieare Regressio 8.1. Die Methode der kleiste Quadrate Regressiosgerade bzw. Ausgleichsgerade sid eie Auswertug vo statistische Messdate. Dabei sid Datepukte ( x 1, y 1 ),( x 2, y 2 ), ( x, y ) gegebe.

Mehr

Stochastik: Binomialverteilung Stochastik Bernoulli-Experimente, binomialverteilte Zufallsvariablen Gymnasium ab Klasse 10

Stochastik: Binomialverteilung Stochastik Bernoulli-Experimente, binomialverteilte Zufallsvariablen Gymnasium ab Klasse 10 Stochastik Beroulli-Experimete, biomialverteilte Zufallsvariable Gymasium ab Klasse 0 Alexader Schwarz www.mathe-aufgabe.com November 203 Hiweis: Für die Aufgabe darf der GTR beutzt werde. Aufgabe : Ei

Mehr

10. Testen von Hypothesen Seite 1 von 6

10. Testen von Hypothesen Seite 1 von 6 10. Teste vo Hypothese Seite 1 vo 6 10.1 Eiführug i das Teste vo Hypothese Eie Hypothese ist eie Vermutug bzw. Behauptug über die Wahrscheilichkeit eies Ereigisses. Mit Hilfe eies geeigete Tests (=Testverfahre)

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren Dr. Jürge Seger INDUKTIVE STATISTIK Wahrscheilichkeitstheorie, Schätz- ud Testverfahre ÜBUNG 9 - LÖSUNGEN. Ziehug vo Kugel aus eier Ure a. Die Zahl der Permutatio der Kugel, die aus Klasse utereiader gleicher

Mehr

( ), der genau auf der Geraden ( ) 2 ( ) #( ) 8. Lineare Regression. = f i. Nach der Summe der kleinsten. mx i

( ), der genau auf der Geraden ( ) 2 ( ) #( ) 8. Lineare Regression. = f i. Nach der Summe der kleinsten. mx i 8. Lieare Regressio 8.1. Die Methode der kleiste Quadrate Regressiosgerade bzw. Ausgleichsgerade sid eie Auswertug vo statistische Messdate. Ziel dieses Verfahres ist es, Beziehuge zwische zwei Merkmale

Mehr

Eingangsprüfung Stochastik,

Eingangsprüfung Stochastik, Eigagsprüfug Stochastik, 5.5. Wir gehe stets vo eiem Wahrscheilichkeitsraum (Ω, A, P aus. Die Borel σ-algebra auf wird mit B bezeichet, das Lebesgue Maß auf wird mit λ bezeichet. Aufgabe ( Pukte Sei x

Mehr

4 Schwankungsintervalle Schwankungsintervalle 4.2

4 Schwankungsintervalle Schwankungsintervalle 4.2 4 Schwakugsitervalle Schwakugsitervalle 4. Bemerkuge Die bekate Symmetrieeigeschaft Φ(x) = 1 Φ( x) bzw. Φ( x) = 1 Φ(x) für alle x R überträgt sich auf die Quatile N p der Stadardormalverteilug i der Form

Mehr

Das kollektive Risikomodell. 12. Mai 2009

Das kollektive Risikomodell. 12. Mai 2009 Kirill Rudik Das kollektive Risikomodell 12. Mai 2009 4.1 Eileitug Wir betrachte i diesem Kapitel die Gesamtforderuge im Laufe eies Jahres. Beim Abschluss eies Versicherugsvertrages weiß der Versicherer

Mehr

3. Grundbegrie der Schätztheorie

3. Grundbegrie der Schätztheorie Statistik, Abschitt 3. 3. Grudbegrie der Schätztheorie I der kormatorische Statistik will ma uter aderem auf Grud eier Stichprobe vom Umfag Iformatioe über ubekate Parameter θ der Verteilug F der zugrudeliegede

Mehr

Kapitel 5: Schließende Statistik

Kapitel 5: Schließende Statistik Kapitel 5: Schließede Statistik Statistik, Prof. Dr. Kari Melzer 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brikma http://brikma-du.de Seite 1.0.014 Lösuge zur Biomialverteilug I Ergebisse: E1 E E E4 E E E7 Ergebis Ei Beroulli-Experimet ist ei Zufallsexperimet, das ur zwei Ergebisse hat. Die Ergebisse werde

Mehr

Empirische Verteilungsfunktion

Empirische Verteilungsfunktion KAPITEL 3 Empirische Verteilugsfuktio 3.1. Empirische Verteilugsfuktio Seie X 1,..., X uabhägige ud idetisch verteilte Zufallsvariable mit theoretischer Verteilugsfuktio F (t) = P[X i t]. Es sei (x 1,...,

Mehr

3 Vergleich zweier unverbundener Stichproben

3 Vergleich zweier unverbundener Stichproben 3 Vergleich zweier uverbudeer Stichprobe 3. Der Zweistichprobe t-test Es wird vorausgesetzt, dass die beide Teilstichprobe x, x,..., x ud y, y,..., y jeweils aus (voeiader uabhägige) ormalverteilte Grudgesamtheite

Mehr

Herleitung der Parameter-Gleichungen für die einfache lineare Regression

Herleitung der Parameter-Gleichungen für die einfache lineare Regression Herleitug der Parameter-Gleichuge für die eifache lieare Regressio Uwe Ziegehage. März 03 Historie v.0 6.03.009, erste Versio hochgelade v.0 0.03.03, eie Vorzeichefehler beseitigt, diverse Gleichuge ud

Mehr

Formelsammlung. Deskriptive Statistik und Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen

Formelsammlung. Deskriptive Statistik und Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen Formelsammlug Deskriptive Statistik ud Elemetare Wahrscheilichkeitsrechug Prof. Dr. Ralf Rude Statistik ud Ökoometrie, Uiversität Siege Prof. Dr. Ralf Rude - Uiversität Siege I Statistische Grudbegriffe

Mehr

Übungen zu QM III Mindeststichprobenumfang

Übungen zu QM III Mindeststichprobenumfang Techische Hochschule Köl Fakultät für Wirtschafts- ud Rechtswisseschafte Prof. Dr. Arreberg Raum 221, Tel. 39 14 jutta.arreberg@th-koel.de Übuge zu QM III Mideststichprobeumfag Aufgabe 12.1 Sie arbeite

Mehr

Diskrete Zufallsvariablen

Diskrete Zufallsvariablen Erste Beispiele diskreter Verteiluge Diskrete Zufallsvariable Beroulli-Verteilug Eie diskrete Zufallsvariable heißt beroulliverteilt mit arameter p, falls sie die Wahrscheilichkeitsfuktio p,, f ( ) ( )

Mehr

10. Übungsblatt zur Einführung in die Stochastik

10. Übungsblatt zur Einführung in die Stochastik Fachbereich Mathematik rof. Dr. Michael Kohler Dipl.-Math. Adreas Fromkorth Dipl.-If. Jes Mehert SS 09 6.7.2009 0. Übugsblatt zur Eiführug i die Stochastik Aufgabe 38 (3 ukte Die Zufallsvariable X,...,

Mehr

Diesen Grenzwert nennt man partielle Ableitung von f nach x i und

Diesen Grenzwert nennt man partielle Ableitung von f nach x i und Bevor wir zum ächste Kapitel übergehe, werde wir de Begri eier Fuktio i mehrere Variable eiführe. Eie Fuktio vo Variable ist eie Vorschrift, die jedem Pukt (x 1,x,...,x ) eier Teilmege D des IR eie bestimmte

Mehr

Anwendungen der Wahrscheinlichkeit II. Markovketten

Anwendungen der Wahrscheinlichkeit II. Markovketten Aweduge der Wahrscheilichkeit II 1. Fragestelluge Markovkette Markovkette sid ei häufig verwedetes Modell zur Beschreibug vo Systeme, dere Verhalte durch eie zufällige Übergag vo eiem Systemzustad zu eiem

Mehr

Umrechnung einer tatsächlichen Häufigkeitsverteilung in eine prozentuale Häufigkeitsverteilung

Umrechnung einer tatsächlichen Häufigkeitsverteilung in eine prozentuale Häufigkeitsverteilung .3. Prozetuale Häufigkeitsverteilug (HV) Die prozetuale Häufigkeitsverteilug erlaubt de Vergleich vo Auswertuge, dee uterschiedliche Stichprobegröße zugrude liege. Es köe auch uterschiedliche Stichprobegröße

Mehr

Lineare Transformationen

Lineare Transformationen STAT 4 FK Herleituge Lieare Trasformatioe Sei eie lieare Trasformatio vo, so gilt Allgemei: a b, () Lieare Trasformatio des arithmetische Mittels y a+b x i () Da a eie additiv verküpfte Kostate ist, ka

Mehr

Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME

Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME Fassug vom 13. Februar 2006 Mathematik für Humabiologe ud Biologe 129 9.1 Stichprobe-Raum 9.1 Stichprobe-Raum Die bisher behadelte Beispiele vo Naturvorgäge oder Experimete

Mehr

Lösungen ausgewählter Übungsaufgaben zum Buch. Elementare Stochastik (Springer Spektrum, 2012) Teil 4: Aufgaben zu den Kapiteln 7 und 8

Lösungen ausgewählter Übungsaufgaben zum Buch. Elementare Stochastik (Springer Spektrum, 2012) Teil 4: Aufgaben zu den Kapiteln 7 und 8 1 Lösuge ausgewählter Übugsaufgabe zum Buch Elemetare Stochastik (Spriger Spektrum, 2012) Teil 4: Aufgabe zu de Kapitel 7 ud 8 Aufgabe zu Kapitel 7 Zu Abschitt 7.1 Ü7.1.1 Ω sei höchstes abzählbar, ud X,

Mehr

h i :=h a i f i = h a i n Absolute Häufigkeit: Relative Häufigkeit: h 2 h 4 h 6 :=h der Elemente mit der Ausprägung i=6 zu der Anzahl n aller Werte

h i :=h a i f i = h a i n Absolute Häufigkeit: Relative Häufigkeit: h 2 h 4 h 6 :=h der Elemente mit der Ausprägung i=6 zu der Anzahl n aller Werte . Wer Rechtschreibfehler fidet, darf sie behalte. Rechefehler werde zurückgeomme. Absolute Häufigkeit: h Wie viele Elemete weise diese bestimmte Wert (= diese bestimmte Ausprägug) auf? > Azahl h der Elemete

Mehr

Zufallsvariable. Die Wahrscheinlichkeitsverteilung p (probability function) ist definiert durch: p(x i ) := P (X = x i ),

Zufallsvariable. Die Wahrscheinlichkeitsverteilung p (probability function) ist definiert durch: p(x i ) := P (X = x i ), ETHZ 90-683 Dr. M. Müller Statistische Methode WS 00/0 Zufallsvariable Zusammehag: Wirklichkeit Modell Wirklichkeit Stichprobe Date diskret stetig rel. Häufigkeit Häufigkeitstabelle Stabdiagramm Histogramm

Mehr

Bernoulli-Experiment und Binomialverteilung

Bernoulli-Experiment und Binomialverteilung IV Beroulli-Exerimet ud Biomialverteilug Beroulli-Exerimet ud Beroulliette Defiitio: Zufallsexerimete, bei dee ma sich ur für das Eitrete ( Treffer, Symbol ) oder das Nichteitrete ( Niete, Symbol 0 ) eies

Mehr

2.2.1 Lagemaße. Exkurs: Quantile. und n. p n

2.2.1 Lagemaße. Exkurs: Quantile. und n. p n Ekurs: Quatile Ausgagspukt : Geordete Urliste Jeder Wert p, mit 0 < p

Mehr

Eigenschaften von Texten

Eigenschaften von Texten Worthäufigkeite Eigeschafte vo Texte Eiige Wörter sid sehr gebräuchlich. 2 der häufigste Wörter (z.b. the, of ) köe ca. 0 % der Wortvorkomme ausmache. Die meiste Wörter sid sehr selte. Die Hälfte der Wörter

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Empirische Wirtschaftsforschug ud Ökoometrie Dr. Rolad Füss Statistik II: Schließede Statistik SS 2007 6. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug

Mehr

mathphys-online Abiturprüfung Berufliche Oberschule 2010 Mathematik 13 Technik - B I - Lösung

mathphys-online Abiturprüfung Berufliche Oberschule 2010 Mathematik 13 Technik - B I - Lösung Abiturprüfug Berufliche Oberschule 2010 Mathematik 13 Techik - B I - Lösug Teilaufgabe 1.0 Die Firma Sparlux stellt Eergiesparlampe i großer Azahl her, die, je achdem, wie geau sie die Neleistug eihalte,

Mehr

Anwendung für Mittelwerte

Anwendung für Mittelwerte Awedug für Mittelwerte Grudgesamtheit Stichprobeziehug Zufalls- Stichprobe... "wahre", ubekate Mittelwert der Grudgesamtheit icht zufällig?... beobachtete Mittelwert zufällig Statistik für SoziologIe 1

Mehr

Teilaufgabe 1.0 Bei der Firma Kohl kommen morgens alle im Büro Beschäftigten nacheinander ins Großraumbüro.

Teilaufgabe 1.0 Bei der Firma Kohl kommen morgens alle im Büro Beschäftigten nacheinander ins Großraumbüro. mathphys-olie Abiturprüfug Berufliche Oberschule 014 Mathematik 13 Techik - B I - Lösug Teilaufgabe 1.0 Bei der Firma Kohl komme morges alle im Büro Beschäftigte acheiader is Großraumbüro. Teilaufgabe

Mehr

Kapitel 10 VERTEILUNGEN

Kapitel 10 VERTEILUNGEN Kapitel 0 VERTEILUNGEN Fassug vo 3. Februar 2006 Prof. Dr. C. Porteier Prof. Dr. W. Groes Matheati für Huabiologe ud Biologe 39 0. Zufallsvariable 0. Zufallsvariable Häu g wird statt des Ergebisses! 2

Mehr

Statistische Modelle und Parameterschätzung

Statistische Modelle und Parameterschätzung Kapitel 2 Statistische Modelle ud Parameterschätzug 2. Statistisches Modell Die bisher betrachtete Modellierug eies Zufallsexperimetes erforderte isbesodere die Festlegug eier W-Verteilug. Oft besteht

Mehr

Statistik. 5. Schließende Statistik: Typische Fragestellung anhand von Beispielen. Kapitel 5: Schließende Statistik

Statistik. 5. Schließende Statistik: Typische Fragestellung anhand von Beispielen. Kapitel 5: Schließende Statistik Statistik Kapitel 5: Schließede Statistik 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel 1» Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte der arithmetische

Mehr

Probeklausur. (b) Was geschieht, wenn man ein Quantenbit in einem solchen Zustand misst?

Probeklausur. (b) Was geschieht, wenn man ein Quantenbit in einem solchen Zustand misst? Quaterecher Witersemester 5/6 Theoretische Iformatik Uiversität Haover Dr. Matthias Homeister Dipl.-Math. Heig Schoor Probeklausur Hiweis: Diese Probeklausur ist kürzer als die tatsächliche Klausur.. a

Mehr

Parameterschätzung. Kapitel Schätzfunktionen

Parameterschätzung. Kapitel Schätzfunktionen Kapitel 8 Parameterschätzug 8.1 Schätzfuktioe Def. 8.1.1: Es seie X 1,X,...,X uabhägige ZV, die alle die gleiche Verteilug besitze. θ sei ei ubekater Parameter dieser Verteilug. X 1,X,...,X ist als eie

Mehr

Wirksamkeit, Effizienz

Wirksamkeit, Effizienz 3 Parameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische Verteilugsaahme mit Parameterraum Θ. 1 Seie θ ud θ erwartugstreue

Mehr

Wirksamkeit, Effizienz. Beispiel: Effizienz. Mittlerer quadratischer Fehler (MSE) Konsistenz im quadratischen Mittel

Wirksamkeit, Effizienz. Beispiel: Effizienz. Mittlerer quadratischer Fehler (MSE) Konsistenz im quadratischen Mittel 3 arameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez 3 arameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Beispiel: Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische

Mehr

Aufgabe 5: Grundlagen Wahr keit, Satz von Bayes und Binomialverteilung

Aufgabe 5: Grundlagen Wahr keit, Satz von Bayes und Binomialverteilung Klausur: Statistik Jürge Meisel Zugelassee Hilfsmittel: icht progr. Tascherecher Bearbeitugszeit: 60 Miute Amerkug zur Bearbeitug: Die Klausur besteht aus isgesamt 6 Aufgabe. Sie müsse ur 5 davo bearbeite.

Mehr

= 3. = 14,38... = x neu x = 0, = 97,87...%. Wie verändert sich der arithmetische Mittelwert von 20 Zahlen, wenn...

= 3. = 14,38... = x neu x = 0, = 97,87...%. Wie verändert sich der arithmetische Mittelwert von 20 Zahlen, wenn... Mathemati macht Freu()de AB Statistische Kegröße ud Boxplot Arithmetischer Mittelwert x 1, x,..., x ist eie Liste vo reelle Zahle. Das arithmetische Mittel x der Zahle ist x = x 1 + x + + x. Arithmetischer

Mehr

Formelsammlung zur Statistik

Formelsammlung zur Statistik Darstellug uivariater Date Formelsammlug zur Statistik Urliste x i : x 1,... x, aufsteiged geordete Urliste x (i) Die k (verschiedee) Auspräguge: a 1

Mehr

Der χ 2 Test. Bei Verteilungen Beantwortung der Frage, ob eine gemessene Verteilung Gauß- oder Poisson-verteilt ist oder nicht?

Der χ 2 Test. Bei Verteilungen Beantwortung der Frage, ob eine gemessene Verteilung Gauß- oder Poisson-verteilt ist oder nicht? Der χ Test Es gibt verschiedee Arte vo Sigifikaztests Nebe Sigifikaztests, die sich mit dem Mittelwert beschäftige, gibt es auch Testverfahre für Verteiluge Bei Verteiluge Beatwortug der Frage, ob eie

Mehr

1.2. Taylor-Reihen und endliche Taylorpolynome

1.2. Taylor-Reihen und endliche Taylorpolynome 1.. aylor-reihe ud edliche aylorpolyome 1..1 aylor-reihe Wir köe eie Fuktio f() i eier Umgebug eies Puktes o gut durch ihre agete i o: t o () = f(o) + f (o) (-o) aäher: Wir sehe: Je weiter wir vo o weg

Mehr

AngStat1(Ue13-21).doc 23

AngStat1(Ue13-21).doc 23 3. Ereigisse Versuchsausgäge ud Wahrscheilicheite: a) Wie wird die Wahrscheilicheit des Auftretes eies Elemetarereigisses A geschätzt? A Ω heißt Elemetarereigis we es ur eie Versuchsausgag ethält also

Mehr

Stochastik - Lösung (BSc D-MAVT / BSc D-MATH / BSc D-MATL)

Stochastik - Lösung (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Prof. Dr. M. Schweizer ETH Zürich Sommer 8 Stochastik - Lösug (BSc D-MAVT / BSc D-MATH / BSc D-MATL). (6 Pukte) a) (.5 Pukte) Wir defiiere die Ereigisse D = die ähmaschie bekommt eie kleie Defekt} ud U

Mehr

Streuungsmaße. Prof. Dr. Paul Reuber. Institut für Geographie. Seminar Methoden der empirischen Humangeographie

Streuungsmaße. Prof. Dr. Paul Reuber. Institut für Geographie. Seminar Methoden der empirischen Humangeographie Streuugsmaße Istitut für Geographie Streuugswerte (Streuugsmaße) Die Diskussio um die Mittelwerte hat die Vorteile dieser statistische Kewerte gezeigt, aber bereits, isbesodere beim arithmetische Mittel,

Mehr

Abiturprüfung Mathematik 13 Technik B I - Lösung mit CAS

Abiturprüfung Mathematik 13 Technik B I - Lösung mit CAS GS 04.06.2016 - m16_13t-b1_lsg_cas_gs.pdf Abiturprüfug 2016 - Mathematik 13 Techik I - Lösug mit CAS Teilaufgabe 1.0 Eiem Eishockey-Traier stehe isgesamt 15 Spieler zur Verfügug, wobei es sich um zwölf

Mehr

7.2 Grundlagen der Wahrscheinlichkeitsrechnung

7.2 Grundlagen der Wahrscheinlichkeitsrechnung 7.2 Grudlage der Wahrscheilichkeitsrechug Ei Ereigis heißt i Bezug auf eie Satz vo Bediguge zufällig, we es bei der Realisierug dieses Satzes eitrete ka, aber icht ubedigt eitrete muss. Def. 7.2.: Ei Experimet

Mehr

Übungen mit dem Applet erwartungstreu

Übungen mit dem Applet erwartungstreu Übuge mit dem Applet erwartugstreu Visualisierug vo erwartugstreu Begriffe ud statischer Hitergrud. Visualisieruge mit dem Applet..3. Zufallsstreuug der Eizelwerte...3. Mittelwerte 3.3 Variaz. 4.4 Variaz

Mehr

Fakultät für Wirtschafts- und Rechtswissenschaften

Fakultät für Wirtschafts- und Rechtswissenschaften F A C H H O C H S C H U L E K Ö L N Fakultät für Wirtschafts- ud Rechtswisseschafte F O R M E L S A M M L U N G Deskriptive Statistik Iduktive Statistik Herausgeber: c 2004 Fachgruppe Quatitative Methode

Mehr

n 2(a + bx i y i ) = 0 und i=1 n 2(a + bx i y i )x i = 0 i=1 gilt. Aus diesen beiden Gleichungen erhalten wir nach wenigen einfachen Umformungen

n 2(a + bx i y i ) = 0 und i=1 n 2(a + bx i y i )x i = 0 i=1 gilt. Aus diesen beiden Gleichungen erhalten wir nach wenigen einfachen Umformungen Regressio Dieser Text rekapituliert die i der Aalsis ud Statistik wohlbekate Methode der kleiste Quadrate, auch Regressio geat, zur Bestimmug vo Ausgleichsgerade Regressiosgerade ud allgemei Ausgleichpolome.

Mehr

Maximum Likelihood Version 1.6

Maximum Likelihood Version 1.6 Maximum Likelihood Versio 1.6 Uwe Ziegehage 15. November 2005 Logarithmegesetze log a (b) + log a (c) = log a (b c) (1) log a (b) log a (c) = log a (b/c) (2) log a (b c ) = c log a (b) (3) Ableitugsregel

Mehr

Tutorium Mathematik ITB1(B), WI1(B)

Tutorium Mathematik ITB1(B), WI1(B) Tutorium Mathematik ITB(B), WI(B) Aufgabeblatt F Aufgabe zum Kapitel Fuktioe Prof Dr Peter Plappert Fachbereich Grudlage Aufgabe : Bestimme Sie jeweils de maimal mögliche Defiitiosbereich D ma a) f ( =

Mehr

Tests für beliebige Zufallsvariable

Tests für beliebige Zufallsvariable Kapitel 10 Tests für beliebige Zufallsvariable 10.1 Der Chi-Quadrat-Apassugstest Sei x eie gaz beliebige Zufallsvariable, dere Dichtefuktio icht oder icht geau bekat ist. Beispiel: Es seie z.b. mittels

Mehr

x 1, x 2,..., x n ist eine Liste von n reellen Zahlen. Das arithmetische Mittel x der Zahlen ist x = x 1 + x x n n

x 1, x 2,..., x n ist eine Liste von n reellen Zahlen. Das arithmetische Mittel x der Zahlen ist x = x 1 + x x n n Mathemati macht Freu()de AB Statistische Kegröße ud Boxplot x 1, x,..., x ist eie Liste vo reelle Zahle. Das arithmetische Mittel x der Zahle ist x = x 1 + x + + x. Arithmetischer Mittelwert Arithmetischer

Mehr

2. Repetition relevanter Teilbereiche der Statistik

2. Repetition relevanter Teilbereiche der Statistik . Repetitio Statistik Ökoometrie I - Peter Stalder. Repetitio relevater Teilbereiche der Statistik (Maddala Kapitel ) Zufallsvariable ud Wahrscheilichkeitsverteiluge Zufallsvariable X (stochastische Variable)

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Multiple-Choice-Tests Mathematik (Klasse 7/8)

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Multiple-Choice-Tests Mathematik (Klasse 7/8) Uterrichtsmaterialie i digitaler ud i gedruckter Form Auszug aus: Multiple-Choice-Tests Mathematik (Klasse 7/8) Das komplette Material fide Sie hier: School-Scout.de Reihe 54 S 1 Verlauf Material LEK Glossar

Mehr

Positiv denken! Lösungen

Positiv denken! Lösungen Schülerzirkel Mathematik Fakultät für Mathematik. Uiversität Regesburg Positiv deke! Lösuge Aufgabe 1 (GMAMQM (ur für die Klasse 7/8) [ Pukte]). Seie a, b reelle Zahle. 1. Sei a 0 ud b 0. Zeige, dass a

Mehr

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Kapitel 15 Wahrscheilichkeitstheorie ud Statistik Verstädisfrage Sachfrage 1. Erläuter Sie de Begriff der absolute ud relative Häufigkeit eier Stichprobe! 2. Erläuter Sie de Begriff der Klassehäufigkeit

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n,

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n, f : a P UNIVERSIÄ DES SAARLANDES FACHRICHUNG 6. MAHEMAIK Prof. Dr. Rolad Speicher M.Sc. obias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 202 Musterlösug zu Blatt Aufgabe. Zeige Sie durch Abwadlug

Mehr

1. Probabilistisches Sprachmodell - Verständnisfragen

1. Probabilistisches Sprachmodell - Verständnisfragen . Probabilistisches Sprachmodell - Verstädisfrage (a) Defiiere Sie de Begriff eies probabilistische Sprachmodells für eie Sprache. (b) Beerte Sie die folgede Aussage als richtig oder falsch: I eiem probabilistische

Mehr

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 =

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 = Aufgabe 1: (6 Pukte) Zeige Sie für alle N die Formel: 1 2 + 2 3 + 3 4 +... + ( + 1) = ( + 1)( + 2). 3 Lösug: Beweis durch vollstädige Iduktio. Iduktiosafag: Für = 1 gilt: 1 2 = 2 = 1(1 + 1)(1 + 2) 3 Iduktiosschritt:

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik ud Wahrscheilichkeitsrechug Statistik ud Wahrscheilichkeitsrechug Übug 9 1 Ihalt der heutige Übug Statistik ud Wahrscheilichkeitsrechug Iformatioe zur Testatprüfug Besprechug der der Hausübug

Mehr

Übungen Abgabetermin: Freitag, , 10 Uhr THEMEN: Testtheorie

Übungen Abgabetermin: Freitag, , 10 Uhr THEMEN: Testtheorie Uiversität Müster Istitut für Mathematische Statistik Stochastik WS 203/204, Blatt Löwe/Heusel Aufgabe (4 Pukte) Übuge Abgabetermi: Freitag, 24.0.204, 0 Uhr THEMEN: Testtheorie Die Sollstärke der Rohrwäde

Mehr

Aufgabe 1. d) Berechnen Sie die Wahrscheinlichkeit dafür, dass Axel 1,5 Stunden warten muss.

Aufgabe 1. d) Berechnen Sie die Wahrscheinlichkeit dafür, dass Axel 1,5 Stunden warten muss. Lehrstuhl für Statistik ud Ökoometrie Otto-Friedrich-Uiversität Bamberg Prof. Dr. Susae Rässler Aufgabe 1 Aufgrud eier Sommergrippe muss Studet Axel seie Hausarzt aufsuche. Um die Wartezeit besser abschätze

Mehr

Statistik, Abschnitt (1) Gegeben sei der Stichprobenvektor (X 1,..., X n ). Die Stichprobenfunktion. ˆµ k := 1 n. Xi k (1) i=1.

Statistik, Abschnitt (1) Gegeben sei der Stichprobenvektor (X 1,..., X n ). Die Stichprobenfunktion. ˆµ k := 1 n. Xi k (1) i=1. Statistik, Abschitt.. Schätzmethode.. Mometemethode Für Parameter, die sich i bekater Weise aus de Momete zusammesetze, erhält ma Schätzuge, idem ma die theoretische Momete durch die sogeate empirische

Mehr