Zufallsvariable. Die Wahrscheinlichkeitsverteilung p (probability function) ist definiert durch: p(x i ) := P (X = x i ),

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Zufallsvariable. Die Wahrscheinlichkeitsverteilung p (probability function) ist definiert durch: p(x i ) := P (X = x i ),"

Transkript

1 ETHZ Dr. M. Müller Statistische Methode WS 00/0 Zufallsvariable Zusammehag: Wirklichkeit Modell Wirklichkeit Stichprobe Date diskret stetig rel. Häufigkeit Häufigkeitstabelle Stabdiagramm Histogramm empir. Verteilugsfuktio empir. Kezahle Mittelwert x Variaz s Modell Populatio Zufallsvariable diskret stetig Wahrscheilichkeit Wahrscheilichkeitsverteilug Stabdiagramm Dichte Verteilugsfuktio theoret. Kezahle Erwartugswert E(X) Variaz V ar(x) Eie Zufallsvariable (radom variable) ist eie quatitative Variable, dere Wert durch das zufälllige Ergebis vo Experimete oder Beobachtuge bestimmt wird. Zufallsvariable bilde ei Modell für die beobachtete Grösse, die Date. Es gibt diskrete (discrete) ud stetige (cotiuous) Zufallsvariable. Diskrete Zufallsvariable habe ur eie edliche oder abzählbare Azahl möglicher Werte, stetige Zufallsvariable köe alle Werte ierhalb eies Itervalls der reelle Zahle aehme. Diskrete Zufallsvariable Die Wahrscheilichkeitsverteilug p (probability fuctio) ist defiiert durch: X x x... x k p p(x ) p(x )... p(x k ) p(x i ) := P (X = x i ), p(xi ) =. Die kumulative Verteilugsfuktio F (cumulative distributio fuctio) ist defiiert durch: F (x) = P (X x), < x <. F ist mooto wachsed, lim x F (x) = 0 ud lim x F (x) =. Uiforme Verteilug Eie Verteilug, bei der alle Werte die gleiche Wahrscheilichkeit habe, heisst uiform. X x x... x p / /... /. Beroulli Verteilug Ei Experimet habe zwei mögliche Ausgäge, Erfolg ud Misserfolg, mit de Wahrscheilichkeite p ud p. X = { 0 : Misserfolg : Erfolg X 0 p(x) -p p

2 Biomialverteilug Es werde voeiader uabhägige Versuche gemacht. Jeder eizele Versuch hat zwei mögliche Ausgäge, Erfolg ud Misserfolg. Die Wahrscheilichkeit p für eie Erfolg ist kostat. Die Azahl Erfolge X hat da eie Biomialverteilug B(, p) ud die Wahrscheilichkeit für k Erfolge ist gegebe durch: ( ) P (X = k) = p k ( p) k für k = 0,,...,. k Geometrische Verteilug Es werde uabhägige Versuche durchgeführt. Jeder eizele Versuch hat zwei mögliche Ausgäge, Erfolg ud Misserfolg. Die Wahrscheilichkeit p für eie Erfolg ist kostat. X ist die Azahl Versuche bis ud mit dem erste Erfolg. P (X = k) = ( p) k p für k =,, 3,.... Negative Biomialverteilug Es werde uabhägige Versuche durchgeführt. Jeder eizele Versuch hat zwei mögliche Ausgäge, Erfolg ud Misserfolg. Die Wahrscheilichkeit p für eie Erfolg ist kostat. X ist die Azahl Misserfolge bis r Erfolge eigetrete sid. ( ) k + r P (X = k) = p r ( p) k für k = 0,,,.... k Poissoverteilug Betrachte die absolute Häufigkeit, mit der ei bestimmtes Ereigis eitritt. We die Ereigisse uabhägig voeiader mit eier kostate Rate λ pro Zeiteiheit passiere, da hat die Azahl Ereigisse X eie Poissoverteilug P(λ). Die Wahrscheilichkeit für k Ereigisse pro Zeiteiheit ist: P (X = k) = λk e λ k! k = 0,,,... Für gross ud p klei ist die Poissoverteilug eie Näherug für die Biomialverteilug mit λ = p. Ei Prozess, der ierhalb eies feste zeitliche oder räumliche Itervalls eie Azahl Ereigisse erzeugt, die eier Poissoverteilug folgt, heisst Poissoprozess. 3 Stetige Zufallsvariable Die Dichte f (desity) ist eie stückweise stetige Fuktio mit f(x) 0 ud We X eie stetige Zufallsvariable mit Dichte f ist, da gilt: P (a < X < b) = b a f(x) dx für a < b. f(x) dx. Die kumulative Verteilugsfuktio F (cumulative distributio fuctio) ist defiiert durch: F (x) = P (X x), < x <.

3 Es gilt: F (x) = x f(t) dt Das α Quatil x α ist defiiert durch: F (x α ) = α. Für α = / erhält ma de Media, für α = /4 ud α = 3/4 das. ud das 3. Quartil. Uiforme Verteilug Die Dichte eier uiformverteilte Zufallsvariable ist: f(x) = b a für a x b. Die Verteilugsfuktio ist: 0, x < a x a F (x) = b a, a x b, x > b. Expoetialverteilug Modell für Warte- oder Ueberlebeszeite. Wird i eiem Poissoprozess mit Paramter λ statt der Azahl Ereigisse i eiem bestimmte Zeititervall die Dauer bis zum Eitrete des ächste Ereigisses betrachtet, so ist diese Dauer expoetialverteilt, Exp(λ). Die Expoetialverteilug ist gedächtislos (memoryless). Die Dichte eier expoetialverteilte Zufallsvariable ist: f(x) = λe λx für x 0, λ > 0. Die Verteilugsfuktio ist: { 0, x < 0 F (x) = e λx, x 0. Gammaverteilug Die Dichte eier gammaverteilte Zufallsvariable ist: f(x) = λα Γ(α) xα e λx für x 0, α > 0, λ > 0. Die Gammafuktio Γ(x) ist defiiert durch: Γ(x) = 0 u x e u du x > 0. Es gilt: Γ() =, Γ(α) = (α )Γ(α ) für α >, Γ(α) = (α )!, we α eie gaze Zahl grösser als ist. Normalverteilug Die Normalverteilug ist das weitaus häufigste Modell für Messdate. Etwickelt wurde sie als Modell für Messfehler, sie passt aber oft auch i ader Situatioe recht gut. Das hat sich empirisch gezeigt ud ei mathematisches Resultat, der Zetrale Grezwertsatz, bestätigt das. Ei grosser Teil der statistische Methode setzt Normalverteilug voraus. Die Dichte eier Zufallsvariable mit Normalverteilug N (µ, σ ) ist gegebe durch: f(x) = πσ e (x µ σ ) < x < +, < µ < +, σ > 0. 3

4 Die spezielle Normalverteilug N (0, ) heisst Stadardormalverteilug. Für Dichte ud kumulative Verteilugsfuktio verwedet ma i diesem Fall die Bezeichuge φ ud Φ. Chiquadrat-Verteilug Seie Z,..., Z N (0, ), iid. Da hat X = Z +Z + +Z eie Chiquadrat-Verteilug mit Freiheitsgrade, X χ. t-verteilug Seie Z N (0, ) ud X χ uabhägige Zufallsvariable. Da hat T = t-verteilug mit Freiheitsgrade, T t. Z X/ eie F -Verteilug Seie X χ ud X χ m uabhägige Zufallsvariable. Da hat F = X / X /m eie F - Verteilug mit ud m Freiheitsgrade, F F,m. 4 Erwartugswert ud Variaz Sei X eie diskrete Zufallsvariable mit Wahrscheilichkeitsfuktio p. Der Erwartugswert vo X (expected value, mea) ist defiiert als: E(X) = i x i p(x i ), falls die Summe existiert. Oft wird der Erwartugswert mit µ bezeichet. Sei X eie stetige Zufallsvariable mit Dichte f. Der Erwartugswert E(X) vo X ist defiiert als: E(X) = xf(x) dx, falls das Itegral existiert. Sei X eie Zufallsvariable mit Erwartugswert E(X). Da ist die Variaz vo X (variace) gegebe durch: V ar(x) = E{[X E(X)] }, falls der Erwartugswert existiert. Die Stadardabweichug vo X (stadard deviatio) ist die Wurzel aus der Variaz. Oft wird die Variaz mit σ ud die Stadardabweichug mit σ bezeichet. We X diskret ist, gilt mit E(X) = µ : V ar(x) = i (x i µ) p(x i ), für X stetig: V ar(x) = (x µ) f(x) dx. 4

5 Recheregel Seie X ud X Zufallsvariable ud a, b kostate Zahle. Da gilt: E(X + X ) = E(X ) + E(X ) E(a + bx ) = a + be(x ) V ar(x + X ) = V ar(x ) + V ar(x ), falls X ud X uabhägig sid V ar(a + bx ) = b V ar(x ). Zusammestellug der wichtigste Verteiluge Verteilug P (X = k) bzw. f(x) Wertebereich E(X) V ar(x) ( Biomial ) k p k ( p) k k = 0,,..., p p( p) ( Neg. Biomial k+r ) k p r ( p) k k = 0,,... r p p r p p Geometrisch ( p) k p k =,,... Poisso λ k e λ k! k = 0,,... λ λ a+b Uiform b a a < x < b Normal πσ e ( x µ σ ) < x < µ σ λ Gamma α Γ(α) xα e λx α α x > 0 λ λ Expoetial λe λx x > 0 λ λ Chiquadrat f(x) = x Γ( ) e x/ x > 0 t f(x) = + Γ[ ] ( πγ( ) +m Γ[ ] + x ) + p p p (b a) < x < 0 F f(x) = Γ( )Γ( m )( m ) x ( + m x) +m x > 0 5 Kovariaz ud Korrelatio Seie X ud Y gemeisam verteilte Zufallsvariable mit Erwartugswerte µ X ud µ Y. Da ist die Kovariaz vo X ud Y (covariace) gegebe durch: Cov(X, Y ) = E[(X µ X )(Y µ Y )], falls der Erwartugswert existiert. Seie X, X, Y ud Y Zufallsvariable ud a, b, c ud d kostate Zahle, da gilt: Cov(X + X, Y + Y ) = Cov(X, Y ) + Cov(X, Y ) + Cov(X, Y ) + Cov(X, Y ) Cov(a + bx, c + dy ) = bdcov(x, Y ). Daraus folgt: V ar(ax + bx ) = a V ar(x ) + b V ar(x ) + abcov(x, X ). Seie X ud Y gemeisam verteilte Zufallsvariable mit Variaze verschiede vo Null. Da ist die Korrelatio vo X ud Y (correlatio) gegebe durch: ρ = Cov(X, Y ) V ar(x)v ar(y ). Es gilt: ρ ud ρ = ± für Y = a + bx. 5

6 6 Awedugsbereiche vo verschiedee Wahrscheilichkeitsmodelle Verteilug Beispiele Diskret Uiform Würfel, eistellige Zufallszahle Beroulli Spezialfall der Biomial ( = ) Biomial Azahl Uebertragugsfehler i eier Sequez fester Läge, Azahl defekte Stücke uter Eiheite, Azahl Bluter uter Kabe, Azahl Mädche uter Kider, Azahl vo Objekte, die regulär verteilt sid (zeitlich oder räumlich) Geometrisch Azahl gekaufte Lose bis zu eiem Gewi Hypergeometrisch Ziehe ohe Zurücklege, Capture-Recapture Negative Biomial Azahl vo Objekte, die geklumpt verteilt sid (zeitlich oder räumlich), Azahl Cor-Flakes-Käufe Poisso Azahl Todesfälle pro Jahr, Bakterie i 0ml Lösug, Fahrzeuge vor eier Ampel, Telephoarufe pro 5 Mi. Stetig Uiform Zufallszahl zwische 0 ud Expoetial Warte- oder Überlebeszeite zwische Ereigisse, die poissoverteilt sid ( ohe Gedächtis ), Aufahmezeite vo eurologische Rezeptore Gamma Warte- oder Ueberlebeszeite mit Klumpug, Zeit zwische zwei Erdbebe Normal Messfehler, Lägemessuge, Mittelwerte (ZGS) 6

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:

Mehr

Formelsammlung Mathematik

Formelsammlung Mathematik Formelsammlug Mathematik 1 Fiazmathematik 1.1 Reterechug Sei der Zissatz p%, der Zisfaktor q = 1 + p 100. Seie R die regelmäßig zu zahlede Rate, die Laufzeit. Edwert: Barwert: achschüssig R = R q 1 q 1

Mehr

3. Einführung in die Statistik

3. Einführung in die Statistik 3. Eiführug i die Statistik Grudlegedes Modell zu Date: uabhägige Zufallsgröße ; : : : ; mit Verteilugsfuktio F bzw. Eizelwahrscheilichkeite p ; : : : ; p r i de Aweduge: kokrete reale Auspräguge ; : :

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

Wahrscheinlichkeit & Statistik

Wahrscheinlichkeit & Statistik Wahrscheilichkeit & Statistik created by Versio: 3. Jui 005 www.matheachhilfe.ch ifo@matheachhilfe.ch 079 703 7 08 Mege als Sprache der Wahrscheilichkeitsrechug, Begriffe, Grudregel Ereigisraum: Ω Ω Mege

Mehr

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen:

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen: 61 6.2 Grudlage der mathematische Statistik 6.2.1 Eiführug i die mathematische Statistik I der mathematische Statistik behadel wir Masseerscheiuge. Wir habe es deshalb im Regelfall mit eier große Zahl

Mehr

Übungsblatt 1 zur Vorlesung Angewandte Stochastik

Übungsblatt 1 zur Vorlesung Angewandte Stochastik Dr Christoph Luchsiger Übugsblatt 1 zur Vorlesug Agewadte Stochastik Repetitio WT Herausgabe des Übugsblattes: Woche 9, Abgabe der Lösuge: Woche 1 (bis Freitag, 1615 Uhr), Rückgabe ud Besprechug: Woche

Mehr

Monte Carlo-Simulation

Monte Carlo-Simulation Mote Carlo-Simulatio Mote Carlo-Methode Der Begriff Mote Carlo-Methode etstad i de 1940er Jahre, als ma im Zusammehag mit dem Bau der Atombombe die Simulatio vo Zufallsprozesse erstmals i größerem Stil

Mehr

Versuch 1/1 POISSON STATISTIK Blatt 1 POISSON STATISTIK. 1. Vorbemerkung

Versuch 1/1 POISSON STATISTIK Blatt 1 POISSON STATISTIK. 1. Vorbemerkung Versuch 1/1 POISSON STATISTIK Blatt 1 POISSON STATISTIK Physikalische Prozesse, die eier statistische Gesetzmäßigkeit uterworfe sid, lasse sich mit eier Verteilugsfuktio beschreibe. Die Gauß-Verteilug

Mehr

Stochastik für WiWi - Klausurvorbereitung

Stochastik für WiWi - Klausurvorbereitung Dr. Markus Kuze WS 2013/14 Dipl.-Math. Stefa Roth 11.02.2014 Stochastik für WiWi - Klausurvorbereitug Gesetz der totale Wahrscheilichkeit ud Satz vo Bayes (Ω, F, P) Wahrscheilichkeitsraum, E 1,..., E F

Mehr

Kapitel 6: Statistische Qualitätskontrolle

Kapitel 6: Statistische Qualitätskontrolle Kapitel 6: Statistische Qualitätskotrolle 6. Allgemeies Für die Qualitätskotrolle i eiem Uterehme (produzieredes Gewerbe, Diestleistugsuterehme, ) gibt es verschiedee Möglichkeite. Statistische Prozesskotrolle

Mehr

Statistik und Wahrscheinlichkeitslehre

Statistik und Wahrscheinlichkeitslehre Statistik ud Wahrscheilichkeitslehre Zufall ud Mittelwerte Für alle techische Studiegäge Prof. Dr.-Ig. habil. Thomas Adamek Grudlage der Wahrscheilichkeitsrechug. Eiführug Grudlage vo Statistik ud Wahrscheilichkeitsrechug

Mehr

Vereinheitlichung Einheitlicher Maßstab der Risikoeinschätzung. Limitierung / Steuerung Messung und Limitierung ist fundamental für die Steuerung

Vereinheitlichung Einheitlicher Maßstab der Risikoeinschätzung. Limitierung / Steuerung Messung und Limitierung ist fundamental für die Steuerung . Marktpreisrisiko Motivatio der VaR-Ermittlug Vereiheitlichug Eiheitlicher Maßstab der Risikoeischätzug Limitierug / Steuerug Messug ud Limitierug ist fudametal für die Steuerug Kapitaluterlegug Zur Deckug

Mehr

Model CreditRisk + : The Economic Perspective of Portfolio Credit Risk Part I

Model CreditRisk + : The Economic Perspective of Portfolio Credit Risk Part I Model CreditRisk + : The Ecoomic Perspective of Portfolio Credit Risk Part I Semiar: Portfolio Credit Risk Istructor: Rafael Weißbach Speaker: Pablo Kimmig Ageda 1. Asatz ud Ziele Was ist CreditRisk +

Mehr

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S Statistik mit Excel 2013 Peter Wies Theme-Special 1. Ausgabe, Februar 2014 W-EX2013S 3 Statistik mit Excel 2013 - Theme-Special 3 Statistische Maßzahle I diesem Kapitel erfahre Sie wie Sie Date klassifiziere

Mehr

Gliederung. Value-at-Risk

Gliederung. Value-at-Risk Value-at-Risk Dr. Richard Herra Nürberg, 4. Noveber 26 IVS-Foru Gliederug Modell Beispiel aus der betriebliche Altersversorgug Verteilug des Gesatschades Value-at-Risk ud Tail Value-at-Risk Risikobeurteilug

Mehr

Beschreibende Statistik Kenngrößen in der Übersicht (Ac)

Beschreibende Statistik Kenngrößen in der Übersicht (Ac) Beschreibede Statistik Kegröße i der Übersicht (Ac) Im folgede wird die Berechugsweise des TI 83 (sowie vo SPSS, s. ute) verwedet. Diese geht auf eie Festlegug vo Moore ud McCabe (00) zurück. I der Literatur

Mehr

Einführung in die mathematische Statistik

Einführung in die mathematische Statistik Kapitel 7 Eiführug i die mathematische Statistik 7.1 Statistische Modellierug Bei der Modellierug eies Zufallsexperimets besteht oft Usicherheit darüber, welche W-Verteilug auf der Ergebismege adäquat

Mehr

Datenauswertung. Prof. Dr. Josef Brüderl Universität Mannheim. Frühjahrssemester 2007

Datenauswertung. Prof. Dr. Josef Brüderl Universität Mannheim. Frühjahrssemester 2007 Dateauswertug Prof. Dr. Josef Brüderl Uiversität Maheim Frühjahrssemester 007 Methode-Curriculum B.A. Soziologie Basismodul: Methode ud Statistik: VL Dateerhebug (): 5 ÜK (): 3 ----------------------------------------------------------

Mehr

6.1 Grundlagen der Wahrscheinlichkeitsrechnung 6.1.1 Definitionen und Beispiele Beispiel 1 Zufallsexperiment 1,2,3,4,5,6 Elementarereignis

6.1 Grundlagen der Wahrscheinlichkeitsrechnung 6.1.1 Definitionen und Beispiele Beispiel 1 Zufallsexperiment 1,2,3,4,5,6 Elementarereignis 6. Grudlage der Wahrscheilichkeitsrechug 6.. Defiitioe ud Beispiele Spiele aus dem Alltagslebe: Würfel, Müze, Karte,... u.s.w. sid gut geeiget die Grudlage der Wahrscheilichkeitsrechug darzustelle. Wir

Mehr

1 Analysis T1 Übungsblatt 1

1 Analysis T1 Übungsblatt 1 Aalysis T Übugsblatt A eier Weggabelug i der Wüste lebe zwei Brüder, die vollkomme gleich aussehe, zwische dee es aber eie gewaltige Uterschied gibt: Der eie sagt immer die Wahrheit, der adere lügt immer.

Mehr

5 Bernoulli-Kette. 5.1 Bernoulli-Experiment. Jakob Bernoulli 1654-1705 Schweizer Mathematiker und Physiker. 5.1.1 Einleitung

5 Bernoulli-Kette. 5.1 Bernoulli-Experiment. Jakob Bernoulli 1654-1705 Schweizer Mathematiker und Physiker. 5.1.1 Einleitung Seite vo 7 5 Beroulli-Kette Jakob Beroulli 654-705 Schweizer Mathematiker ud Physiker 5. Beroulli-Exerimet 5.. Eileitug Oft iteressiert ma sich bei Zufallsexerimete icht für die eizele Ergebisse, soder

Mehr

Kapitel 1. Einige Begriffe aus der Asymptotik. 1.1 Wiederholung

Kapitel 1. Einige Begriffe aus der Asymptotik. 1.1 Wiederholung Kapitel Eiige Begriffe aus der Asymptotik. Wiederholug Eiwesetlicher Teil der Ökoometrie befasst sichmit der Ermittlug voschätzer ud dere Eigeschafte. Diese werde beötigt, um aus de beobachtbare Date eier

Mehr

Integrationsseminar zur BBL und ABWL Wintersemester 2002/2003

Integrationsseminar zur BBL und ABWL Wintersemester 2002/2003 Credit Risk+ Itegratiossemiar zur BBL ud BWL Witersemester 2002/2003 Oksaa Obukhova lia Sirsikova Credit Risk+ 1 Ihalt. Eiführug i die Thematik B. Ökoomische Grudlage I. Ziele II. wedugsmöglichkeite 1.

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

h i Deskriptive Statistik 1-dimensionale Daten Daten und Häufigkeiten Seite 1 Nominal Ordinal Metrisch (Kardinal) Metrisch - klassiert

h i Deskriptive Statistik 1-dimensionale Daten Daten und Häufigkeiten Seite 1 Nominal Ordinal Metrisch (Kardinal) Metrisch - klassiert Deskriptive Statistik dimesioale Date Date ud Häufigkeite Seite Nomial Ordial Metrisch (Kardial Metrisch klassiert Beschreibug: Date habe keie atürliche Reihefolge. Bsp: Farbe, Religio, Geschlecht, Natioalität...

Mehr

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert.

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert. Prof. Dr. H. Rommelfager: Etscheidugstheorie, Kaitel 3 7 3. Etscheidug bei Risiko (subjektive oder objektive) Eitrittswahrscheilichkeite für das Eitrete der mögliche Umweltzustäde köe vom Etscheidugsträger

Mehr

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen Testumfag für die Ermittlug ud Agabe vo Fehlerrate i biometrische Systeme Peter Uruh SRC Security Research & Cosultig GmbH peter.uruh@src-gmbh.de Eileitug Biometrische Systeme werde durch zwei wichtige

Mehr

elektr. und magnet. Feld A 7 (1)

elektr. und magnet. Feld A 7 (1) FachHochschule Lausitz Physikalisches Praktikum α- ud β-strahlug im elektr. ud maget. Feld A 7 Name: Matrikel: Datum: Ziel des Versuches Das Verhalte vo α- ud β-strahlug im elektrische ud magetische Feld

Mehr

Elementare Wahrscheinlichkeitsrechnung und Statistik

Elementare Wahrscheinlichkeitsrechnung und Statistik CURANDO UNIVERSITÄT ULM SCIENDO DOCENDO Elemetare Wahrscheilichkeitsrechug ud Statistik Uiversität Ulm Istitut für Stochastik Vorlesugsskript Prof. Dr. Volker Schmidt Stad: Witersemester 28/9 Ulm, im Februar

Mehr

Variiert man zusätzlich noch die Saatstärke (z.b. 3 Stärkearten), würde man von einer zweifaktoriellen Varianzanalyse sprechen.

Variiert man zusätzlich noch die Saatstärke (z.b. 3 Stärkearten), würde man von einer zweifaktoriellen Varianzanalyse sprechen. 3. Variazaalyse Die Variazaalyse mit eier quatitative abhägige Variable ud eier oder mehrerer qualitativer uabhägiger Variable wird auch als ANOVA (Aalysis of Variace) bezeichet. Mit eier Variazaalyse

Mehr

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte.

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte. Statistik Vorlesug,. ärz, Statistische aßzahle Iformatio zu verdichte, Besoderheite hervorzuhebe ittelwerte Aufgabe: die Lage der Verteilug auf der Abszisse zu zeige. Der odus: derjeige Wert, der im Häufigste

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

LV "Grundlagen der Informatik" Programmierung in C (Teil 2)

LV Grundlagen der Informatik Programmierung in C (Teil 2) Aufgabekomplex: Programmiere i C (Teil vo ) (Strukturierte Datetype: Felder, Strukture, Zeiger; Fuktioe mit Parameterübergabe; Dateiarbeit) Hiweis: Alle mit * gekezeichete Aufgabe sid zum zusätzliche Übe

Mehr

3. Tilgungsrechnung. 3.1. Tilgungsarten

3. Tilgungsrechnung. 3.1. Tilgungsarten schreier@math.tu-freiberg.de 03731) 39 2261 3. Tilgugsrechug Die Tilgugsrechug beschäftigt sich mit der Rückzahlug vo Kredite, Darlehe ud Hypotheke. Dabei erwartet der Gläubiger, daß der Schulder seie

Mehr

Empirische Methoden I

Empirische Methoden I Hochschule für Wirtschaft ud 2012 Umwelt Nürtige-Geislige Fakultät Betriebswirtschaft ud Iteratioale Fiaze Prof. Dr. Max C. Wewel Prof. Dr. Corelia Niederdrek-Felger Aufgabe zum Tutorium Empirische Methode

Mehr

Stichproben im Rechnungswesen, Stichprobeninventur

Stichproben im Rechnungswesen, Stichprobeninventur Stichprobe im Rechugswese, Stichprobeivetur Prof Dr Iree Rößler ud Prof Dr Albrecht Ugerer Duale Hochschule Bade-Württemberg Maheim Im eifachste Fall des Dollar-Uit oder Moetary-Uit Samplig (DUS oder MUS-

Mehr

Zahlenfolgen, Grenzwerte und Zahlenreihen

Zahlenfolgen, Grenzwerte und Zahlenreihen KAPITEL 5 Zahlefolge, Grezwerte ud Zahlereihe. Folge Defiitio 5.. Uter eier Folge reeller Zahle (oder eier reelle Zahlefolge) versteht ma eie auf N 0 erlarte reellwertige Futio, die jedem N 0 ei a R zuordet:

Mehr

Erwartungswert und Varianz bei Verteilungen und Glücksspielen

Erwartungswert und Varianz bei Verteilungen und Glücksspielen HL Saalfelde Erwartugswert / Variaz Seite vo 7 Wilfried Rohm Erwartugswert ud Variaz bei Verteiluge ud Glücksspiele Mathematische / Fachliche Ihalte i Stichworte: Erwartugswerte ud Variaz (Stadardabweichug)

Mehr

Grundkompetenz-Aufgaben

Grundkompetenz-Aufgaben Durch starte Mathematik übugsbuch bis Grudkompetez-Aufgabe Aufgrud der eue schriftliche Reifeprüfug i Mathematik ist es otwedig, sich mit de eue Grudkompetez-Aufgabe auseiaderzusetze. Die Olie-Ergäzug

Mehr

Vorlesung Experimentalphysik I am 16.10.2000 und 17.10.2000 J. Ihringer

Vorlesung Experimentalphysik I am 16.10.2000 und 17.10.2000 J. Ihringer V1_1Messe.DOC 1 Vorlesug Experimetalphysik I am 16.10.2000 ud 17.10.2000 J. Ihriger 1 Mechaik Die Mechaik ist die Lehre vo der Bewegug ud Verformug vo Körper uter dem Eifluß vo Kräfte. I der Mechaik der

Mehr

Kapitel 4: Stationäre Prozesse

Kapitel 4: Stationäre Prozesse Kapitel 4: Statioäre Prozesse M. Scheutzow Jauary 6, 2010 4.1 Maßerhaltede Trasformatioe I diesem Kapitel führe wir zuächst de Begriff der maßerhaltede Trasformatio auf eiem Wahrscheilichkeitsraum ei ud

Mehr

1 Wahrscheinlichkeitslehre

1 Wahrscheinlichkeitslehre Wahrscheilichkeitslehre. Grudlage der Wahrscheilichkeitsrechug Die Wahrscheilichkeitslehre ist ei elemetarer Bestadteil der Statistik. Die mathematische Wahrscheilichkeitslehre umfasst ei kompliziertes

Mehr

Inhaltsverzeichnis Office Excel 2003 - Themen-Special: Statistik I

Inhaltsverzeichnis Office Excel 2003 - Themen-Special: Statistik I W-EX2003S Autor: Christia Müster Ihaltliches Lektorat: Peter Wies Überarbeitete Ausgabe vom 23. Mai 2007 by HERDT-Verlag für Bildugsmedie GmbH, Bodeheim Microsoft Office Excel 2003 für Widows Theme-Special:

Mehr

SUCHPROBLEME UND ALPHABETISCHE CODES

SUCHPROBLEME UND ALPHABETISCHE CODES SUCHPROBLEME UND ALPHABETISCHE CODES Der Problematik der alphabetische Codes liege Suchprobleme zugrude, dere Lösug dem iformatiostheoretische Problem der Fidug eies (optimale) alphabetische Codes gleich

Mehr

Qualitätskennzahlen für IT-Verfahren in der öffentlichen Verwaltung Lösungsansätze zur Beschreibung von Metriken nach V-Modell XT

Qualitätskennzahlen für IT-Verfahren in der öffentlichen Verwaltung Lösungsansätze zur Beschreibung von Metriken nach V-Modell XT Qualitätskezahle für IT-Verfahre i der öffetliche Verwaltug Lösugsasätze zur Vo Stefa Bregezer Der Autor arbeitet im Bereich Softwaretest ud beschäftigt sich als Qualitätsbeauftragter mit Theme zu Qualitätssicherug

Mehr

Statistik I Vorlesungsskript

Statistik I Vorlesungsskript Statistik I Vorlesugsskript Prof. Dr. Evgey Spodarev Ulm 2008 Vorwort Dieses Skript etstad aus dem Zyklus der Vorlesuge über Statistik, die ich i de Jahre 2005 2008 a der Uiversität Ulm gehalte habe. Dabei

Mehr

Robuste Asset Allocation in der Praxis

Robuste Asset Allocation in der Praxis Fiazmarkt Sachgerechter Umgag mit Progosefehler Robuste Asset Allocatio i der Praxis Pesiosfods ud adere istitutioelle Aleger sid i aller Regel a ei bestimmtes Rediteziel (Rechugszis) gebude, das Jahr

Mehr

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable Allgemeie Lösuge der -dimesioale Laplace-Gleichug ud ihre komplexe Variable Dr. rer. at. Kuag-lai Chao Göttige, de 4. Jauar 01 Abstract Geeral solutios of the -dimesioal Laplace equatio ad its complex

Mehr

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I Uiversität des Saarlades Fakultät für Mathematik ud Iformatik Witersemester 2003/04 Prof. Dr. Joachim Weickert Dr. Marti Welk Dr. Berhard Burgeth Lösuge der Aufgabe zur Vorbereitug auf die Klausur Mathematik

Mehr

Innerbetriebliche Leistungsverrechnung

Innerbetriebliche Leistungsverrechnung Ierbetriebliche Leistugsverrechug I der Kostestellerechug bzw. im Betriebsabrechugsboge (BAB ist ach der Erfassug der primäre Kostestellekoste das Ziel, die sekudäre Kostestellekoste, also die Koste der

Mehr

Der natürliche Werkstoff Holz - Statistische Betrachtungen zum uniaxialen Zugversuch am Beispiel von Furnier

Der natürliche Werkstoff Holz - Statistische Betrachtungen zum uniaxialen Zugversuch am Beispiel von Furnier Der atürliche Werkstoff Holz - Statistische Betrachtuge zum uiaxiale Zugversuch am Beispiel vo Furier B. Bellair, A. Dietzel, M. Zimmerma, Prof. Dr.-Ig. H. Raßbach Zusammefassug FH Schmalkalde, 98574 Schmalkalde,

Mehr

Daten und Zufall in der Jahrgangsstufe 9 Seite 1

Daten und Zufall in der Jahrgangsstufe 9 Seite 1 Date ud uall i der Jahrgagsstue Seite usammegesetzte uallsexperimete, Padregel Aubaued au de Erahruge aus de vorhergehede Jahrgagsstue beschätige sich die Schüler systematisch mit zusammegesetzte uallsexperimete

Mehr

"Ich glaube nur die Statistik, die ich selbst gefälscht habe."

Ich glaube nur die Statistik, die ich selbst gefälscht habe. THEORETISCHE GRUNDLAGEN I der Biophysik versuche wir biologische Vorgäge mit physikalische Methode zu utersuche ud zu verstehe. Wir setze dabei voraus, dass biologische Größe quatitativ gemesse ud mit

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12 Mthemtisches Istitut der Uiversität Müche Prof. Dr. Peter Otte WiSe 203/4 Lösug 2 2.0.204 Aufgbe 2. [8 Pute] Übuge zur Alysis für Iformtier ud Sttistier Lösug zu Bltt 2 Für eie Teilmege Ω R, sei {, flls

Mehr

Löslichkeitsdiagramm. Grundlagen

Löslichkeitsdiagramm. Grundlagen Grudlage Löslichkeitsdiagramm Grudlage Zur etrachtug des Mischugsverhaltes icht vollstädig mischbarer Flüssigkeite, das heißt Flüssigkeite, die sich icht bei jeder Temperatur i alle Megeverhältisse miteiader

Mehr

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008 Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe

Mehr

Statistik. Deskriptive Statistik. Deskriptive Statistik. Deskriptive Statistik

Statistik. Deskriptive Statistik. Deskriptive Statistik. Deskriptive Statistik AGAH Aual Meetig 004, Berli Grudlage der Biometrie Beschreibede ud schließede Statistik i kliische Studie Jede mathematische Formel reduziert die Azahl der Zuhörer um 50% PD Dr. Thomas Sudhop & Dr. med.

Mehr

6.6 Grundzüge der Fehler- und Ausgleichsrechnung 6.6.1 Fehlerarten- Aufgaben der Fehler- und Ausgleichsrechnung physikalisch-technische Experiment

6.6 Grundzüge der Fehler- und Ausgleichsrechnung 6.6.1 Fehlerarten- Aufgaben der Fehler- und Ausgleichsrechnung physikalisch-technische Experiment 103 66 Grudzüge der Fehler- ud Ausgleichsrechug 661 Fehlerarte- Aufgabe der Fehler- ud Ausgleichsrechug Jedes physikalisch-techische Experimet liefert gewisse gemessee Werte x Bei dem Messvorgag verwede

Mehr

2.4.1 Grundprinzipien statistischer Hypothesentests

2.4.1 Grundprinzipien statistischer Hypothesentests 86 2.4. Hypothesetests 2.4 Hypothesetests 2.4.1 Grudprizipie statistischer Hypothesetests Hypothese: Behauptug eier Tatsache, dere Überprüfug och aussteht (Leuter i: Edruweit, Trommsdorff: Wörterbuch der

Mehr

Linsengesetze und optische Instrumente

Linsengesetze und optische Instrumente Lisegesetze ud optische Istrumete Gruppe X Xxxx Xxxxxxxxx Xxxxxxx Xxxxxx Mat.-Nr.: XXXXX Mat.-Nr.: XXXXX XX.XX.XX Theorie Im olgede werde wir eie kurze Überblick über die Fuktio, de Aubau ud die Arte vo

Mehr

Investitionsentscheidungsrechnung Annuitäten Methode

Investitionsentscheidungsrechnung Annuitäten Methode Mit Hilfe der köe folgede Ivestitioe beurteilt werde: eizele Ivestitioe alterative Ivestitiosobjekte optimale Ersatzzeitpukte Seite 1 Folgeder Zusammehag besteht zwische der Kapitalbarwertmethode ud der

Mehr

Lerneinheit 2: Grundlagen der Investition und Finanzierung

Lerneinheit 2: Grundlagen der Investition und Finanzierung Lereiheit 2: Grudlage der Ivestitio ud Fiazierug 1 Abgrezug zu de statische Verfahre Durchschittsbetrachtug wird aufgegebe Zeitpukt der Zahlugsmittelbewegug explizit berücksichtigt exakte Erfassug der

Mehr

Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield

Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield Augabeblatt 4 Lösuge A. Deiitioe Zis = Rate Ziskurve = Zisstruktur Redite = Yield A. Deiitioe Zerobod = Nullkupoaleihe = Zero coupo bod Aleihe, die vor Ede der Lauzeit keie Zahluge leistet ud am Ede der

Mehr

PrivatKredit. Direkt ans Ziel Ihrer Wünsche

PrivatKredit. Direkt ans Ziel Ihrer Wünsche PrivatKredit Direkt as Ziel Ihrer Wüsche Erlebe Sie eue Freiräume. Leiste Sie sich, was Ihe wichtig ist. Sie träume scho seit lagem vo eier eue Aschaffug, wie z. B.: eiem eue Auto eue Möbel Oder es stehe

Mehr

Zur Definition. der wirksamen. Wärmespeicherkapazität

Zur Definition. der wirksamen. Wärmespeicherkapazität Ao. Uiv. Prof. Dipl.-Ig. Dr. tech. Klaus Kreč, Büro für Bauphysik, Schöberg a Kap, Österreich Zur Defiitio der wirksae Wärespeicherkapazität vo Ao. Uiv. Prof. Dipl.-Ig. Dr. tech. Klaus Kreč Büro für Bauphysik

Mehr

Gruppe 108: Janina Bär Christian Hörr Robert Rex

Gruppe 108: Janina Bär Christian Hörr Robert Rex TEHNIHE UNIVEITÄT HEMNITZ FAULTÄT FÜ INFOMATI Hardwarepraktikum im W /3 Versuch 3 equetielle ysteme I Gruppe 8: aia Bär hristia Hörr obert ex hemitz, 7. November Hardwarepraktikum equetielle ysteme I Aufgabe

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Studiegag Betriebswirtschaft Fach Wirtschaftsmathematik Art der Leistug Studieleistug Klausur-Kz. BW-WMT-S1 040508 Datum 08.05.004 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich: Verwede

Mehr

Mathematik. Vorlesung im Bachelor-Studiengang Business Administration (Modul BWL 1A) an der FH Düsseldorf im Wintersemester 2008/09

Mathematik. Vorlesung im Bachelor-Studiengang Business Administration (Modul BWL 1A) an der FH Düsseldorf im Wintersemester 2008/09 Mathematik Vorlesug im Bachelor-Studiegag Busiess Admiistratio (Modul BWL A) a der FH Düsseldorf im Witersemester 2008/09 Dozet: Dr. Christia Kölle Teil I Fiazmathematik, Lieare Algebra, Lieare Optimierug

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung www.s.schule.de/~matheabi 1 Wahrscheilichkeitsrechug Eileitug Dieser Text ist etstade, um Schülerie ud Schüler der Jahrgagsstufe 12 die Wiederholug des Stoffs voragegageer Jahre zu erleichter. Nebe viele

Mehr

Versuch D3: Energiebilanz einer Verbrennung

Versuch D3: Energiebilanz einer Verbrennung Versuch D: Eergiebilaz eier Verbreug 1. Eiführug ud Grudlage 1.1 Eergiebilaz eier Verbreug Die Eergiebilaz eier Verbreug wird am eispiel eier kleie rekammer utersucht, i welcher die bei der Verbreug vo

Mehr

Mathematischer Vorkurs zum Studium der Physik

Mathematischer Vorkurs zum Studium der Physik Uiversität Heidelberg Mathematischer Vorkurs zum Studium der Physik Übuge Aufgabe zu Kapitel 1 (aus: K. Hefft Mathematischer Vorkurs zum Studium der Physik, sowie Ergäzuge) Aufgabe 1.1: SI-Eiheite: a)

Mehr

Aufgaben und Lösungen der Probeklausur zur Analysis I

Aufgaben und Lösungen der Probeklausur zur Analysis I Fachbereich Mathematik AG 5: Fuktioalaalysis Prof. Dr. K.-H. Neeb Dipl.-Math. Rafael Dahme Dipl.-Math. Stefa Wager ATECHNISCHE UNIVERSITÄT DARMSTADT SS 007 19. Jui 007 Aufgabe ud Lösuge der Probeklausur

Mehr

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110 Name, Vorame Matrikel-Nr. Studiezetrum Studiegag Fach Art der Leistug Klausur-Kz. Betriebswirtschaft Wirtschaftsmathematik Studieleistug Datum 10.11.2001 BW-WMT-S12 011110 Verwede Sie ausschließlich das

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

cubus EV als Erweiterung für Oracle Business Intelligence

cubus EV als Erweiterung für Oracle Business Intelligence cubus EV als Erweiterug für Oracle Busiess Itelligece... oder wie Oracle-BI-Aweder mit Essbase-Date vo cubus outperform EV Aalytics (cubus EV) profitiere INHALT 01 cubus EV als Erweiterug für die Oracle

Mehr

Analysis I Probeklausur 2

Analysis I Probeklausur 2 WS /2 Mriescu/ Ert Alysis I Probeklusur 2. Aufgbe Die Folge (x ) N sei rekursiv defiiert durch x =, x + = 2+x. () Beweise, dss die Folge (x ) N streg mooto wchsed ist. (b) Beweise, dss (x ) N durch 2 ch

Mehr

Statistische Datenanalyse und Versuchsplanung

Statistische Datenanalyse und Versuchsplanung Statistische Dateaalyse ud Versuchsplaug Wahlpflicht für Studete der Biotechologie SWS IV (VL/Ü/PR) Abschluss: Übugsote U. Römisch http:// www.lmtc.tu-berli.de/agewadte_statistik_ud_cosultig LITERATUR

Mehr

Vorlesung Einführung in die mathematische Statistik

Vorlesung Einführung in die mathematische Statistik Vorlesug Eiführug i die mathematische Statistik Prof. A. Atille Sommersemester 2004 Literatur P.J. Bickel K.A. Doksum, Mathematical Statistics: Basic Ideas ad Selected Topics Holde-Day, 1977. L. Breima,

Mehr

Kerncurriculum Berufliche Gymnasien Niedersachsen Stochastik

Kerncurriculum Berufliche Gymnasien Niedersachsen Stochastik Jes Hellig Herausgeber: Klaus Schillig Kercurriculum Berufliche Gymasie Niedersachse Stochastik Darstelle Auswerte Beurteile 2. Auflage Bestellummer 03330 Habe Sie Areguge oder Kritikpukte zu diesem Produkt?

Mehr

Mathematische Statistik

Mathematische Statistik Skript Mathematische Statistik Max v. Reesse Aufgezeichet vo Tobias Weihrauch Sommersemester 202 Uiversität Leipzig INHALTSVERZEICHNIS Ihaltsverzeichis Eiführug 3. Statistik als Teil der Stochastik........................

Mehr

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222 Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

Plädoyer für das harmonische Mittel

Plädoyer für das harmonische Mittel Bulleti Plädoyer für das harmoishe Mittel Beat Jaggi, beat.jaggi@phber.h Eileitug Das Bilde vo Mittelwerte ist ei zetrales Kozept i der Mathematik (siehe z.b. [], [], [7] oder [8]). Im Mathematikuterriht

Mehr

Die Gasgesetze. Die Beziehung zwischen Volumen und Temperatur (Gesetz von J.-L. und J. Charles): Gay-Lussac

Die Gasgesetze. Die Beziehung zwischen Volumen und Temperatur (Gesetz von J.-L. und J. Charles): Gay-Lussac Die Gasgesetze Die Beziehug zwische olume ud Temeratur (Gesetz vo J.-L. Gay-Lussac ud J. Charles): cost. T oder /T cost. cost.. hägt h vo ud Gasmege ab. Die extraolierte Liie scheidet die Temeratur- skala

Mehr

Diplomarbeit. Stochastische Modelle für Schadenabwicklungsschemata unter Berücksichtigung von Reservenbildung

Diplomarbeit. Stochastische Modelle für Schadenabwicklungsschemata unter Berücksichtigung von Reservenbildung - - Prof. Dr. Dietmar Pfeifer Uiversität Hamburg Fachbereich Mathematik Istitut für Mathematische Stochastik Diplomarbeit Stochastische Modelle für Schadeabwicklugsschemata uter Berücksichtigug vo Reservebildug

Mehr

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst.

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst. Krytologie: Krytograhie ud Krytoaalyse Krytologie ist die Wisseschaft, die sich mit dem Ver- ud Etschlüssel vo Iformatioe befasst. Beisiel Iteretkommuikatio: Versiegel (Itegrität der Nachricht) Sigiere

Mehr

8.3. Komplexe Zahlen

8.3. Komplexe Zahlen 8.. Komplee Zhle Wie bereits i 8.. drgestellt, wurde die fortlufede Erweiterug der Zhlbereiche durch die Eiführug immer kompleerer Recheopertioe otwedig:. Auf de türliche Zhle führte der Wusch ch iverse

Mehr

15. WAHRSCHEINLICHKEITSRECHNUNG

15. WAHRSCHEINLICHKEITSRECHNUNG 5. WAHRSCHEINLICHKEITSRECHNUNG 5.. Eiführug Ereigisse sid oft icht geau vorhersagbar. Ma weiß vorher icht sicher, ob sie eitrete werde. Solche Ereigisse et ma zufällig. Beispiele: Müzwurf (Kopf oder Zahl)

Mehr

1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren

1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren Forelsalug zur Fiazatheatik 1. Eifache Zisrechug (lieare Verzisug) 1.1 Berechug des Edwerts eier Eialalage bei liearer gazjähriger Verzisug ach Verzisugsjahre p = 1 + = ( 1+ i ) 1 1.2 Berechug des Gegewartswerts

Mehr

Wintersemester 2006/2007, Universität Rostock Abgabetermin: spätestens 24.10.2006, 09:00 Uhr. Aufgabe 1.1: (5 P)

Wintersemester 2006/2007, Universität Rostock Abgabetermin: spätestens 24.10.2006, 09:00 Uhr. Aufgabe 1.1: (5 P) Serie Abgabetermi: spätestes 24.0.2006, 09:00 Uhr Aufgabe.: 5 P Zeige Sie, dass das geometrische Mittel icht größer ist als das arithmetische Mittel, d.h., dass für alle Zahle a, b R mit a, b 0 gilt ab

Mehr

Mathematik für Wirtschaftswissenschaftler Beispiele, Graken, Beweise. c Uwe Jensen

Mathematik für Wirtschaftswissenschaftler Beispiele, Graken, Beweise. c Uwe Jensen Mathematik für Wirtschaftswisseschaftler Beispiele, Grake, Beweise c Uwe Jese 8. Oktober 2007 Ihaltsverzeichis 4 Folge, Reihe, Grezwerte, Stetigkeit 47 4. Folge ud Reihe............................ 47

Mehr

Geometrische Wahrscheinlichkeiten für nichtkonvexe Testelemente

Geometrische Wahrscheinlichkeiten für nichtkonvexe Testelemente Geometrische Wahrscheilichkeite für ichtkovexe Testelemete Dissertatio zur Erlagug des akademische Grades Dr. rer. at. FerUiversität i Hage Fakultät für Mathematik ud Iformatik vorgelegt vo Dr.-Ig. Uwe

Mehr

x mit Hilfe eines linearen, zeitinvarianten

x mit Hilfe eines linearen, zeitinvarianten Übug &Prktiku zu Digitle Sigle ud Systee The: Fltug Diskrete Fltug Wird ei zeitdiskretes Sigl ( T ) x it Hile eies liere, zeitivrite Siglverrbeitugssystes verrbeitet, so lässt sich ds Verhlte des verrbeitede

Mehr

x 2 + 2 m c Φ( r, t) = n q n (t) φ n ( r) (5) ( + k 2 n ) φ n ( r) = 0 (6a)

x 2 + 2 m c Φ( r, t) = n q n (t) φ n ( r) (5) ( + k 2 n ) φ n ( r) = 0 (6a) Quatisierug eies skalare Feldes Das Ziel ist eigetlich das elektromagetische Feld zu quatisiere, aber wie ma scho a de MAXWELLsche Gleichuge sehe ka, ist es zu kompliziert, um damit zu begie. Außerdem

Mehr

Kapitel 6: Quadratisches Wachstum

Kapitel 6: Quadratisches Wachstum Kapitel 6: Quadratisches Wachstum Dr. Dakwart Vogel Ui Esse WS 009/10 1 Drei Beispiele Beispiel 1 Bremsweg eies PKW Bremsweg Auto.xls Ui Esse WS 009/10 Für user Modell des Bremsweges gilt a = a + d a =

Mehr

1 Einführung in die Fehlerrechnung

1 Einführung in die Fehlerrechnung Physik für Biologie ud Zwei-Fächer-Bachelor Chemie Kap.: Eiführug i die Fehlerrechug Eiführug i die Fehlerrechug Tiefemessschiee Abbildug: Messschieber. Theoretische Grudlage Bei jeder physikalische Messug

Mehr

Ein kleines Einmaleins über Mittelwertbildungen

Ein kleines Einmaleins über Mittelwertbildungen Vorlesugsergäzug zur Igeieurmathematik R.Brigola Ei kleies Eimaleis über Mittelwertbilduge Grudlage über arithmetische Mittel, geometrische Mittel, harmoische Mittel, quadratische Mittel ud das arithmetisch-geometrische

Mehr