Einführung in die induktive Statistik. Inferenzstatistik. Konfidenzintervalle. Friedrich Leisch

Größe: px
Ab Seite anzeigen:

Download "Einführung in die induktive Statistik. Inferenzstatistik. Konfidenzintervalle. Friedrich Leisch"

Transkript

1 Spiel Körpergröße Zahl: Azahl weiblich Eiführug i die iduktive Statistik Friedrich Leisch Istitut für Statistik Ludwig-Maximilias-Uiversität Müche Tafelgruppe SS Eigee.Gruppe Friedrich Leisch, Iduktive Statistik Iferezstatistik Methode, um mit Iformatioe aus Stichprobe auf Charakteristika der Gesamtpopulatio schließe zu köe. Kofidezitervalle Nach Modellierug ud Parameterschätzug ist ma meist a der Überprüfug kokreter Fragestelluge iteressiert (ja/ei- Etscheiduge statt lage Beschreibuge der Date). Mögliche Frageforme: 1. Paßt eie Hypothese zu meiem Modell? 2. Widerspricht mei Modell eier gewisse Hypothese? I der klassische Iferezstatistik werde vor allem Frage der zweite Form behadelt. Friedrich Leisch, Iduktive Statistik

2 Vier Woche vor der österreichische Natioalratswahl 1999 wurde 499 Haushalte die Sotagsfrage gestellt: Falls ächste Sotag Wahle wäre, welche Partei würde Sie wähle? SPÖ ÖVP FPÖ Grüe LIF Sost Umfrage 38% 24% 25% 6% 4% 3% Wahl 33.15% 26.91% 26.91% 7.4% 3.65% 1.98% Frage 1: War das Ergebis für die SPÖ überrasched? Frage 2: Mit welcher Wahrscheilichkeit mußte das LIF damit reche, de Wiedereizug is Parlamet icht zu schaffe? Mit welcher Wahrscheilichkeit die Grüe? Frage 3: War das Gesamtergebis überrasched? SP VP FP G LIF sost Umfrage Wahl Friedrich Leisch, Iduktive Statistik Friedrich Leisch, Iduktive Statistik Kofidezitervall für Mittelwert Kofidezitervall für Mittelwert Schätzug des Mittelwerts: ˆµ = X = 1 x i i=1 Kommt die Stichprobe aus eier Populatio mit Mittelwert µ ud Variaz σ 2, da gilt für ˆµ N(µ, σ 2 /) ud mit 95% Wahrscheilichkeit liegt ˆµ ierhalb des Itervalls µ 1.96σ ˆµ µ σ Mit c = 1.96σ/ habe wir 2 Ugleichuge µ c ˆµ ˆµ µ + c ud wolle eigetlich Aussage über µ treffe. Brige wir die Kostate jeweils auf die adere Seite so erhalte wir oder kürzer i eier Zeile µ ˆµ + c ˆµ c µ ˆµ c µ ˆµ + c Friedrich Leisch, Iduktive Statistik Friedrich Leisch, Iduktive Statistik

3 Kofidezitervall für Mittelwert Setze wir für c wieder 1.96σ/ ei, so erhalte wir, daß mit 95% Wahrscheilichkeit ˆµ 1.96σ µ ˆµ σ gilt, falls die Stichprobe wirklich aus eier Populatio mit Mittelwert µ ud Variaz σ 2 stammt. Die obere ud utere Itervallgreze häge aber icht vo µ ab die Aussage trifft für alle µ aus diesem Itervall gleichermaße zu. Wir schließe also: Mit 95% Wahrscheilichkeit liegt der wahre Mittelwert irgedwo i dem gegebee Itervall. Begie wir mit dem Ergebis der SPÖ (Frage 1): Die Stimme für jede eizele Partei köe wir als biomialverteilt asehe (jeweils gege de Rest). Wir habe also eie geschätzte Erwartugswert vo ˆp s = 0.38 ud eie zugehörige Variaz vo somit erhalte wir ˆσ 2 S = ˆp S(1 ˆp S ) = c = = ud es war zu erwarte, daß das Ergebis der SPÖ mit 95% Wahrscheilichkeit im Itervall [33.7, 42.3] liege würde. Das 99% Itervall ist [32.4, 43.6]. Friedrich Leisch, Iduktive Statistik Friedrich Leisch, Iduktive Statistik SP VP FP G LIF sost Umfrage Wahl Frage 2 betreffed de Verbleib der Grüe ud des LIF köe wir auch so formuliere: Wie groß ist die Wahrscheilichkeit, daß p G 0.04 bzw. p L Es gilt P{p 0.04} = P{ˆp p ˆp 0.04} ˆp N(p, σ 2 /) ˆp p N(0, σ 2 /) (ˆp p) N(0, 1) σ (ˆp p) N(0, 1) ˆp(1 ˆp) Friedrich Leisch, Iduktive Statistik Friedrich Leisch, Iduktive Statistik

4 Grüe: LIF: (ˆp p) P{p 0.04} = P ˆp(1 ˆp) (ˆp 0.04) ˆp(1 ˆp) (ˆp 0.04) ˆp(1 ˆp) = ( ) (1 0.06) Φ( ) 97% (ˆp 0.04) ˆp(1 ˆp) = ( ) (1 0.06) = SP VP FP G LIF sost Umfrage Wahl Φ(0) = 50% Friedrich Leisch, Iduktive Statistik Friedrich Leisch, Iduktive Statistik SP VP FP G LIF sost Die Beatwortug der Frage 3, ob das Gesamtergebis überrasched war, ist icht gaz so eifach: Dürfe wir eifach 95% Kofidezitervalle für alle Parteie bilde ud das Gesamtergebis als icht überrasched klassifiziere, we alle ierhalb der Kofidezitervalle liege? Was passiert, we 20 Parteie atrete? Solle wir da eie Ausreißer akzeptiere? Oder vielleicht gar 2? Sid die Ergebisse der Parteie voeiader uabhägig? darauf komme wir später ochmal zurück. Friedrich Leisch, Iduktive Statistik Friedrich Leisch, Iduktive Statistik

5 (1 α) Kofidezitervall Symmetrisches KI Das vo de Schätzstatistike G u = g u (X 1,..., X ) G o = g o (X 1,..., X ) defiierte Itervall [G u, G o ] heißt (1 α) Kofidezitervall für θ, falls für jede vorgegebeer Irrtumswahrscheilichkeit α [0, 1] P{G u θ G o } = 1 α Vo eiem symmetrische Kofidezitervall spricht ma, falls θ mit gleicher Wahrscheilichkeit liks oder rechts außerhalb des Itervalles liegt: P{θ < G u } = P{θ > G o } = α 2 gilt. Achtug: G u ud G o sid Statistike der Stichprobe, ud damit Zufallsvariable. Falls die Verteilug vo θ bekat ist, liefer die Quatile zu de Werte α/2 ud 1 α/2 die Itervallgreze. Realisiertes Kofidezitervall: [g u, g o ]; g u = g u (x 1,..., x ), g o = g o (x 1,..., x ) Friedrich Leisch, Iduktive Statistik Friedrich Leisch, Iduktive Statistik Eiseitige KI KI für Mittelwert Falls ur eie utere oder obere Schrake für θ vo Iteresse ist, wird G o oder G u auf gesetzt: P{θ G o } = P{ θ G o } = 1 α P{G u θ} = P{G u θ } = 1 α Bei bekater Verteilug vo θ liefer die Quatile zu de Werte 1 α bzw. α die Schrake. Gegebe sei eie ormalverteilte Stichprobe mit bekater Variaz σ 2. Da ist z = X µ σ/ N(0, 1) stadardormalverteilt, die Schrake des Kofidezitervalls sid G u = X z 1 α/2 σ G o = X + z 1 α/2 σ wobei z α das α-quatil der N(0, 1) ist. Friedrich Leisch, Iduktive Statistik Friedrich Leisch, Iduktive Statistik

6 KI für Mittelwert KI für Mittelwert Gegebe sei eie ormalverteilte Stichprobe mit ubekater Variaz σ 2. Da ist t = X µ ˆσ/ t 1 t-verteilt mit 1 Freiheitsgrade, die Schrake des Kofidezitervalls sid G u = X t 1 α/2 ( 1) ˆσ G o = X + t 1 α/2 ( 1) ˆσ wobei t α ( 1) das α-quatil der t-verteilug mit 1 Freiheitsgrade ist. Gegebe sei eie beliebig verteilte Stichprobe mit bekater Variaz σ 2. Da ist z = X µ σ/ N(0, 1) approximativ stadardormalverteilt, die Schrake des etsprechede approximative Kofidezitervalls sid G u = X z 1 α/2 σ G o = X + z 1 α/2 σ wobei z α das α-quatil der N(0, 1) ist. Bei ubekater Variaz wird diese wieder durch ˆσ 2 ersetzt, das KI sollte da aber erst für größere verwedet werde (ud damit i jedem Fall die Normalverteilugsquatile). Friedrich Leisch, Iduktive Statistik Friedrich Leisch, Iduktive Statistik KI für Variaz KI für Ateilswert Gegebe sei eie ormalverteilte Stichprobe mit ubekater Variaz σ 2. Da ist q = 1 σ 2 ˆσ2 χ 2 1 χ 2 -verteilt mit 1 Freiheitsgrade, die Schrake des Kofidezitervalls für die Variaz sid G u = 1 q 1 α/2ˆσ 2 G o = 1 q α/2 ˆσ 2 wobei q α das α-quatil der χ 2 -Verteilug mit 1 Freiheitsgrade ist. Gegebe sei eie dichotome Stichprobe mit de Auspräguge 0 ud 1 ud P(X = 1) = π. Da ist X i B(, π) i=1 X π N(0, 1) π(1 π)/ Die Schrake des Kofidezitervalls für π sid G u = ˆπ z 1 α 2 ˆπ(1 ˆπ) G o = ˆπ + z 1 α 2 ˆπ(1 ˆπ) Friedrich Leisch, Iduktive Statistik Friedrich Leisch, Iduktive Statistik

7 Breite vo Kofidezitervalle Beispiel Kofidezitervall für µ: Breite b: G u = X z 1 α/2 σ G o = X + z 1 α/2 σ σ b = 2 z 1 α 2 Überprüfug vo Verteilugsaahme 1 α größer (kleier) z 1 α 2 größer (kleier) KI breiter (schmaler) größer (kleier) KI schmaler (breiter) c Breite verädert sich um Faktor c Friedrich Leisch, Iduktive Statistik Beispiel GBÖ: Ausgabe Beispiel GBÖ: Ausgabe Histogram of ALTER1 Histogram of ALTER2 Histogram of KOPFAUSG Frequecy Frequecy Frequecy Media & IQR Mea & StdDev ALTER ALTER KOPFAUSG Friedrich Leisch, Iduktive Statistik Friedrich Leisch, Iduktive Statistik

8 Beispiel GBÖ: log2(ausgabe) Beispiel GBÖ: Welche Verteilug? Histogram of log2(kopfausg) Frequecy Wie gut passe eie Normalverteilug zum Alter bzw. eie Log- Normalverteilug zu de Augabe? Optisch ach Histogramm scheibar recht gut, aber was ist gut? Stichprobe extrem groß, daher sollte es hier eigetlich sehr leicht sei log2(kopfausg) Friedrich Leisch, Iduktive Statistik Friedrich Leisch, Iduktive Statistik Empirische Dichte ud Verteilug Empirische Dichte ud Verteilug Als eifache Visualisierug der Wahrscheilichkeite eier diskrete Verteilug bzw. Dichte eier stetige Verteilug verwede wir Balkediagramme ud Histogramme. Verteilug F ud empirische Verteilug ˆF : F (x) = P{X x} ˆF (x) = {#i : x i x} = güstige mögliche ist uverzerrter Schätzer für die ubekate wahre Verteilug Echte Dichteschätzug sehr komplexes Thema, es gibt Bücher die sich ausschließlich mit diesem Problem befasse, aive Schätzer wie Histogramm sid meist icht glatt geug (i Abhägigkeit vo Breite der Klasse). Desity Histogram, N= F(x) ecdf(x) Verteilugsschätzer viel glatter (für echte Dichteschätzer muß Histogramm geglättet werde). x Friedrich Leisch, Iduktive Statistik Friedrich Leisch, Iduktive Statistik

9 Empirische Dichte ud Verteilug Empirische Dichte ud Verteilug We Verteilugsschätzer viel eifacher sid, warum beschäftigt ma sich da überhaupt mit dem Problem der Dichteschätzug? Vergleich Gleichverteilug mit Normalverteilug: ecdf(x) Normal P P Plot Dichte ist für Mesche viel ituitiver zu lese. Warum mache Verteilugsschätzer deoch Si? Nützlich zum Vergleich vo Verteiluge. F(x) emp.vt(z) x porm(z, sd = sd(x)) Friedrich Leisch, Iduktive Statistik Friedrich Leisch, Iduktive Statistik Quatile Quatile Eie duale Sichtweise: statt der Verteilugsfuktio F (x) verwede wir die Quatilsfuktio F 1 (α) QQ (Quatil-Quatil) Diagramme. Normal Q Q Plot Uiform Q Q Plot Verwedug sowohl zum Vergleich zweier Stichprobe als auch zum Vergleich eier Stichprobe mit de theoretische Quatile eier Verteilug. Ersetzt die atiquierte Methode der Wahrscheilichkeitspapiere. Vorteile: F 1 lebt für alle Verteiluge auf dem Itervall [0, 1]. Sample Quatiles Sample Quatiles Für mehrere Familie vo Verteiluge, ikl. Gleichverteilug ud Normalverteilug gilt, daß QQ Diagramme gerade Liie ergebe, auch we ma falsche Parameter wählt. Theoretical Quatiles Theoretical Quatiles Friedrich Leisch, Iduktive Statistik Friedrich Leisch, Iduktive Statistik

10 Quatile QQ-Plot: ALTER1 ud ALTER2 Vergleich der QQ Diagramme eier N(0,1) mit eier N(3,0.25): Normal Q Q Plot Normal Q Q Plot Sample Quatiles Sample Quatiles Theoretical Quatiles Theoretical Quatiles Gerade wird durch 1. ud 3. Quartil der Stichprobe gelegt. Achseabschitt etspricht Mittelwert, Steigug der Stadardabweichug. Ab ca. 30 Jahre greift die Normalapproximatio recht gut. Friedrich Leisch, Iduktive Statistik Friedrich Leisch, Iduktive Statistik QQ-Plot: KOPFAUSG Friedrich Leisch, Iduktive Statistik

Kapitel 6 : Punkt und Intervallschätzer

Kapitel 6 : Punkt und Intervallschätzer 7 Kapitel 6 : Pukt ud Itervallschätzer Puktschätzuge. I der Statistik wolle wir Rückschlüsse auf das Wahrscheilichkeitsgesetz ziehe, ach dem ei vo us beobachtetes Zufallsexperimet abläuft. Hierzu beobachte

Mehr

4 Schwankungsintervalle Schwankungsintervalle 4.2

4 Schwankungsintervalle Schwankungsintervalle 4.2 4 Schwakugsitervalle Schwakugsitervalle 4. Bemerkuge Die bekate Symmetrieeigeschaft Φ(x) = 1 Φ( x) bzw. Φ( x) = 1 Φ(x) für alle x R überträgt sich auf die Quatile N p der Stadardormalverteilug i der Form

Mehr

Kapitel 5: Schließende Statistik

Kapitel 5: Schließende Statistik Kapitel 5: Schließede Statistik Statistik, Prof. Dr. Kari Melzer 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte

Mehr

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5 Vl Statistische Prozess- ud Qualitätskotrolle ud Versuchsplaug Übug 5 Aufgabe ) Sei p = P(A) die Wahrscheilichkeit für ei Ereigis A, dh., es gilt 0 p. Bereche Sie das Maximum der Fuktio f(p) = p(-p). Aufgabe

Mehr

,,, xn. 3. Intervallschätzungen Zufallsstichproben und Stichprobenfunktionen Zufallsstichproben. Zufallsvariablen mit

,,, xn. 3. Intervallschätzungen Zufallsstichproben und Stichprobenfunktionen Zufallsstichproben. Zufallsvariablen mit 3. Itervallschätzuge 3.1. Zufallsstichprobe ud Stichprobefuktioe 3.1.1 Zufallsstichprobe 1 Sei eie Zufallsvariable ud seie gemeisamer Verteilug,,,, Zufallsvariable mit - da heiße 1,,, Zufallsstichprobe

Mehr

Wirksamkeit, Effizienz

Wirksamkeit, Effizienz 3 Parameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische Verteilugsaahme mit Parameterraum Θ. 1 Seie θ ud θ erwartugstreue

Mehr

Tests statistischer Hypothesen

Tests statistischer Hypothesen KAPITEL 0 Tests statistischer Hypothese I der Statistik muss ma oft Hypothese teste, z.b. muss ma ahad eier Stichprobe etscheide, ob ei ubekater Parameter eie vorgegebee Wert aimmt. Zuerst betrachte wir

Mehr

Statistik. 5. Schließende Statistik: Typische Fragestellung anhand von Beispielen. Kapitel 5: Schließende Statistik

Statistik. 5. Schließende Statistik: Typische Fragestellung anhand von Beispielen. Kapitel 5: Schließende Statistik Statistik Kapitel 5: Schließede Statistik 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel 1» Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte der arithmetische

Mehr

Vl Statistische Prozess und Qualitätskontrolle und Versuchsplanung Übung 3

Vl Statistische Prozess und Qualitätskontrolle und Versuchsplanung Übung 3 Vl Statistische Prozess ud Qualitätskotrolle ud Versuchsplaug Übug 3 Aufgabe ) Die Schichtdicke X bei eier galvaische Beschichtug vo Autoteile sei ormalverteilt N(μ,σ ). 4 Teile werde galvaisch beschichtet.

Mehr

Die notwendigen Verteilungstabellen finden Sie z.b. hier:

Die notwendigen Verteilungstabellen finden Sie z.b. hier: Fakultät für Mathematik Istitute IAG ud IMO Prof. Dr. G. Kyureghya/Dr. M. Hödig Schätz- ud Prüfverfahre Die otwedige Verteilugstabelle fide Sie z.b. hier: http://www.ivwl.ui-kassel.de/kosfeld/lehre/zeitreihe/verteilugstabelle.pdf

Mehr

Musterlösung für die Klausur zur Vorlesung Stochastik I im WiSe 2014/2015

Musterlösung für die Klausur zur Vorlesung Stochastik I im WiSe 2014/2015 Musterlösug für die Klausur zur Vorlesug Stochastik I im WiSe 204/205 Teil I wahr falsch Aussage Gilt E[XY ] = E[X]E[Y ] für zwei Zufallsvariable X ud Y mit edlicher Variaz, so sid X ud Y uabhägig. Für

Mehr

1. Wahrscheinlichkeitsrechnung. 2. Diskrete Zufallsvariable. 3. Stetige Zufallsvariable. 4. Grenzwertsätze. 5. Mehrdimensionale Zufallsvariable

1. Wahrscheinlichkeitsrechnung. 2. Diskrete Zufallsvariable. 3. Stetige Zufallsvariable. 4. Grenzwertsätze. 5. Mehrdimensionale Zufallsvariable 1. Wahrscheilichkeitsrechug. Diskrete Zufallsvariable 3. Stetige Zufallsvariable 4. Grezwertsätze 5. Mehrdimesioale Zufallsvariable Stetige Zufallsvariable Eie Zufallsvariable X : Ω R heißt stetig, we

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Empirische Wirtschaftsforschug ud Ökoometrie Dr. Rolad Füss Statistik II: Schließede Statistik SS 2007 6. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug

Mehr

Parameterschätzung. Kapitel Schätzfunktionen

Parameterschätzung. Kapitel Schätzfunktionen Kapitel 8 Parameterschätzug 8.1 Schätzfuktioe Def. 8.1.1: Es seie X 1,X,...,X uabhägige ZV, die alle die gleiche Verteilug besitze. θ sei ei ubekater Parameter dieser Verteilug. X 1,X,...,X ist als eie

Mehr

Konfidenzintervalle. Praktische Übung Stochastik SS 2017 Lektion 10 1

Konfidenzintervalle. Praktische Übung Stochastik SS 2017 Lektion 10 1 Kofidezitervalle Praktische Übug Stochastik SS 017 Lektio 10 1 Kofidezitervalle Geerelle Aahme: Parametrisches Modell (P ϑ ) ϑ Θ Beobachtuge X 1,..., X u.i.v. ach P ϑ mit ubekatem ϑ Θ Grudidee: Schätzer

Mehr

Wirksamkeit, Effizienz

Wirksamkeit, Effizienz 3 Parameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische Verteilugsaahme mit Parameterraum Θ. 1 Seie θ ud θ erwartugstreue

Mehr

Übungen mit dem Applet erwartungstreu

Übungen mit dem Applet erwartungstreu Übuge mit dem Applet erwartugstreu Visualisierug vo erwartugstreu Begriffe ud statischer Hitergrud. Visualisieruge mit dem Applet..3. Zufallsstreuug der Eizelwerte...3. Mittelwerte 3.3 Variaz. 4.4 Variaz

Mehr

Eingangsprüfung Stochastik,

Eingangsprüfung Stochastik, Eigagsprüfug Stochastik, 5.5. Wir gehe stets vo eiem Wahrscheilichkeitsraum (Ω, A, P aus. Die Borel σ-algebra auf wird mit B bezeichet, das Lebesgue Maß auf wird mit λ bezeichet. Aufgabe ( Pukte Sei x

Mehr

Schätzen von Populationswerten

Schätzen von Populationswerten Schätze vo Populatioswerte SS00 7.Sitzug vom.06.00 Schätze vo Populatioswerte Ziel: Ermöglichug vo Aussage über die Grudgesamtheit ahad vo Stichprobedate Logische Methode: Iduktiosschluß Grudlage des Iduktiosschlusses:

Mehr

Wirksamkeit, Effizienz. Beispiel: Effizienz. Mittlerer quadratischer Fehler (MSE) Konsistenz im quadratischen Mittel

Wirksamkeit, Effizienz. Beispiel: Effizienz. Mittlerer quadratischer Fehler (MSE) Konsistenz im quadratischen Mittel 3 arameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez 3 arameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Beispiel: Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische

Mehr

Formelsammlung Statistik 29. Januar 2019

Formelsammlung Statistik 29. Januar 2019 Formelsammlug Statistik Seite 1 Formelsammlug Statistik 9. Jauar 019 Witersemester 018/19 Adreas Löpker, HTW Dresde 1. Deskriptive Statistik (F1) Stichprobe x vom Umfag, Stichprobe y vom Umfag m x = (x

Mehr

Schätzen von Populationswerten

Schätzen von Populationswerten Schätze vo Populatioswerte 7.Sitzug 35 Seite, SoSe 003 Schätze vo Populatioswerte Ziel: Ermöglichug vo Aussage über die Grudgesamtheit ahad vo Stichprobedate Logische Methode: Iduktiosschluss Grudlage

Mehr

Formelsammlung. PD Dr. C. Heumann

Formelsammlung. PD Dr. C. Heumann Formelsammlug zur Vorlesug Statistik II PD Dr C Heuma Formelsammlug Statistik II Iduktive Statistik Regel der Kombiatorik ohe Wiederholug mit Wiederholug! Permutatioe! 1! s! ( ) ( ) + m 1 ohe Reihefolge

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik ud Wahrscheilichkeitsrechug Statistik ud Wahrscheilichkeitsrechug Übug 6 3.03.20 Ihalt der heutige Übug Aufgabe D.7: Reche mit Zufallsvariable Erwartugswert- ud Variazoperator Statistik ud Wahrscheilichkeitsrechug

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Ihaltsverzeichis 1 Vorbemerkuge 1 Zufallsexperimete - grudlegede Begriffe ud Eigeschafte 3 Wahrscheilichkeitsaxiome 4 4 Laplace-Experimete 6 5 Hilfsmittel aus der Kombiatorik 7 6 Bedigte Wahrscheilichkeite

Mehr

Praktikum Vorbereitung Fertigungsmesstechnik Statistische Qualitätskontrolle

Praktikum Vorbereitung Fertigungsmesstechnik Statistische Qualitätskontrolle Praktikum Vorbereitug Fertigugsmesstechik Statistische Qualitätskotrolle Bei viele Erzeugisse ist es icht möglich jedes Werkstück zu prüfe, z.b.: bei Massefertigug. Hier ist es aus ökoomische Grüde icht

Mehr

Empirische Verteilungsfunktion

Empirische Verteilungsfunktion KAPITEL 3 Empirische Verteilugsfuktio 3.1. Empirische Verteilugsfuktio Seie X 1,..., X uabhägige ud idetisch verteilte Zufallsvariable mit theoretischer Verteilugsfuktio F (t) = P[X i t]. Es sei (x 1,...,

Mehr

3. Grundbegrie der Schätztheorie

3. Grundbegrie der Schätztheorie Statistik, Abschitt 3. 3. Grudbegrie der Schätztheorie I der kormatorische Statistik will ma uter aderem auf Grud eier Stichprobe vom Umfag Iformatioe über ubekate Parameter θ der Verteilug F der zugrudeliegede

Mehr

Zufallsvariable. Die Wahrscheinlichkeitsverteilung p (probability function) ist definiert durch: p(x i ) := P (X = x i ),

Zufallsvariable. Die Wahrscheinlichkeitsverteilung p (probability function) ist definiert durch: p(x i ) := P (X = x i ), ETHZ 90-683 Dr. M. Müller Statistische Methode WS 00/0 Zufallsvariable Zusammehag: Wirklichkeit Modell Wirklichkeit Stichprobe Date diskret stetig rel. Häufigkeit Häufigkeitstabelle Stabdiagramm Histogramm

Mehr

X X Schätzen von Vertrauensintervallen Schwankungsintervall

X X Schätzen von Vertrauensintervallen Schwankungsintervall .. Schätze vo Vertrauesitervalle..1. Schwakugsitervall Beispiel: X = Betrag vo Geldüberweisuge, ormalverteilt, µ = 5000, = 1000 Zufallsstichprobe mit = 100, Schätzer für µ: X X Gesucht: Itervall, i dem

Mehr

Statistische Tests zu ausgewählten Problemen

Statistische Tests zu ausgewählten Problemen Eiführug i die statistische Testtheorie Statistische Tests zu ausgewählte Probleme Teil : Tests für Erwartugswerte Statistische Testtheorie I Eiführug Beschräkug auf parametrische Testverfahre Beschräkug

Mehr

Einführung in die Stochastik 10. Übungsblatt

Einführung in die Stochastik 10. Übungsblatt Eiführug i die Stochastik. Übugsblatt Fachbereich Mathematik SS M. Kohler.7. A. Fromkorth D. Furer Gruppe ud Hausübug Aufgabe 37 (4 Pukte) Ei Eremit am Südpol hat sich für die eibrechede polare Nacht mit

Mehr

Stochastik - Lösung (BSc D-MAVT / BSc D-MATH / BSc D-MATL)

Stochastik - Lösung (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Prof. Dr. M. Schweizer ETH Zürich Witer 28 Stochastik - Lösug (BSc D-MAVT / BSc D-MATH / BSc D-MATL). (6 Pukte) a) (2 Pukte) Wir defiiere die Ereigisse K {die Perso ist krak} ud T {der Test ist positiv}.

Mehr

2. Repetition relevanter Teilbereiche der Statistik

2. Repetition relevanter Teilbereiche der Statistik . Repetitio Statistik Ökoometrie I - Peter Stalder. Repetitio relevater Teilbereiche der Statistik (Maddala Kapitel ) Zufallsvariable ud Wahrscheilichkeitsverteiluge Zufallsvariable X (stochastische Variable)

Mehr

Stochastik - Lösung (BSc D-MAVT / BSc D-MATH / BSc D-MATL)

Stochastik - Lösung (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Prof. Dr. M. Schweizer ETH Zürich Sommer 8 Stochastik - Lösug (BSc D-MAVT / BSc D-MATH / BSc D-MATL). (6 Pukte) a) (.5 Pukte) Wir defiiere die Ereigisse D = die ähmaschie bekommt eie kleie Defekt} ud U

Mehr

Konfidenzbereiche die auf Runden Normaldaten Basiert Sind

Konfidenzbereiche die auf Runden Normaldaten Basiert Sind Kofidezbereiche die auf Rude Normaldate Basiert Sid Steve Vardema C-S (Johso) Lee (JQT 001, Comm Stat 00, (003)) Iliaa Vaca (M.S. laufed) 1 Gerudete/Digitale Date Kei eues Problem z. B. gibt es: Sheppard,

Mehr

Anwendung für Mittelwerte

Anwendung für Mittelwerte Awedug für Mittelwerte Grudgesamtheit Stichprobeziehug Zufalls- Stichprobe... "wahre", ubekate Mittelwert der Grudgesamtheit icht zufällig?... beobachtete Mittelwert zufällig Statistik für SoziologIe 1

Mehr

Konfidenzintervall_fuer_pi.doc Seite 1 von 6. Konfidenzintervall für den Anteilswert π am Beispiel einer Meinungsumfrage

Konfidenzintervall_fuer_pi.doc Seite 1 von 6. Konfidenzintervall für den Anteilswert π am Beispiel einer Meinungsumfrage Kofidezitervall_fuer_pi.doc Seite 1 vo 6 Kofidezitervall für de Ateilswert π am Beispiel eier Meiugsumfrage Nach eier Meiugsumfrage der Wochezeitug Bezirksblatt vom März 005, ei halbes Jahr vor de Ladtagswahle

Mehr

Prof. Dr. Roland Füss Statistik II SS 2008

Prof. Dr. Roland Füss Statistik II SS 2008 1. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug ergibt sich aus de Grezwertsätze. Grezwertsätze sid Aussage über eie Zufallsvariable für de Fall, dass die Azahl

Mehr

Evaluation & Forschungsstrategien

Evaluation & Forschungsstrategien Evaluatio & Forschugsstrategie WS2/2 Prof. Dr. G. Meihardt Johaes Guteberg Uiversität Maiz Prizipie des statistische Schliesses Samplig - Modellvorstellug Populatio Samplig Stichprobe Kewerte x Theoretische

Mehr

Statistik, Abschnitt (1) Gegeben sei der Stichprobenvektor (X 1,..., X n ). Die Stichprobenfunktion. ˆµ k := 1 n. Xi k (1) i=1.

Statistik, Abschnitt (1) Gegeben sei der Stichprobenvektor (X 1,..., X n ). Die Stichprobenfunktion. ˆµ k := 1 n. Xi k (1) i=1. Statistik, Abschitt.. Schätzmethode.. Mometemethode Für Parameter, die sich i bekater Weise aus de Momete zusammesetze, erhält ma Schätzuge, idem ma die theoretische Momete durch die sogeate empirische

Mehr

Parameterschätzung. Numero, pondere et mensura Deus omnia condidit

Parameterschätzung. Numero, pondere et mensura Deus omnia condidit Parameterschätzug Numero, podere et mesura Deus omia codidit Populatio, Zufallsvariable, Stichprobe Populatio Zufallsvariable X Stichprobe x eie"realisierug vo X (Beobachtug) alle mäliche Rekrute der US

Mehr

Musterlösung. Prüfung Statistik Herbstsemester 2011

Musterlösung. Prüfung Statistik Herbstsemester 2011 Prüfug Statistik Herbstsemester 2011 Musterlösug 1. 9 Pukte Lukas ud Markus habe bisher immer Feiste Mii-Brezel 100g des Herstellers Gammelbrot ud Söhe zum Züi gegesse. Vom städige Hugerklage vo Markus

Mehr

Statistik. 2. Semester. Begleitendes Skriptum zur Vorlesung. im FH-Masterstudiengang. Technisches Management. von. Günther Karigl

Statistik. 2. Semester. Begleitendes Skriptum zur Vorlesung. im FH-Masterstudiengang. Technisches Management. von. Günther Karigl Statistik. Semester Begleitedes Skriptum zur Vorlesug im FH-Masterstudiegag Techisches Maagemet vo Güther Karigl FH Campus Wie 06/7 Statistische Schätzverfahre Statistische Schätzverfahre Währed die deskriptive

Mehr

3. Einführung in die Statistik

3. Einführung in die Statistik 3. Eiführug i die Statistik Grudlegedes Modell zu Date: uabhägige Zufallsgröße ; : : : ; mit Verteilugsfuktio F bzw. Eizelwahrscheilichkeite p ; : : : ; p r i de Aweduge: kokrete reale Auspräguge ; : :

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren Dr. Jürge Seger INDUKTIVE STATISTIK Wahrscheilichkeitstheorie, Schätz- ud Testverfahre ÜBUNG. - LÖSUNGEN. ypothesetest für die Dicke vo Plättche Die Dicke X vo Plättche, die auf eier bestimmte Maschie

Mehr

Statistische Modelle und Parameterschätzung

Statistische Modelle und Parameterschätzung Kapitel 2 Statistische Modelle ud Parameterschätzug 2. Statistisches Modell Die bisher betrachtete Modellierug eies Zufallsexperimetes erforderte isbesodere die Festlegug eier W-Verteilug. Oft besteht

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik ud Wahrscheilichkeitsrechug Statistik ud Wahrscheilichkeitsrechug Dr. Joche Köhler Statistik ud Wahrscheilichkeitsrechug Testatprüfug am Doerstag 5.Mai Wa? Doerstag, 5. Mai, 8:00 Uhr Dauer der

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik ud Wahrscheilichkeitsrechug Dr. Joche Köhler 9.04.008 Äderug Übugsstude Statistik ud Wahrscheilichkeitsrechug Die Gruppe vo Markus trifft sich am Doerstag statt im HCI D zusamme mit der Gruppe

Mehr

3 Vergleich zweier unverbundener Stichproben

3 Vergleich zweier unverbundener Stichproben 3 Vergleich zweier uverbudeer Stichprobe 3. Der Zweistichprobe t-test Es wird vorausgesetzt, dass die beide Teilstichprobe x, x,..., x ud y, y,..., y jeweils aus (voeiader uabhägige) ormalverteilte Grudgesamtheite

Mehr

Grundsätzlich sollen Varianz bzw. Standardabweichung Maße dafür sein, wie stark eine Verteilung um ihren Erwartungswert streut.

Grundsätzlich sollen Varianz bzw. Standardabweichung Maße dafür sein, wie stark eine Verteilung um ihren Erwartungswert streut. Eie Iterpretatiosfrage habe ich zu eiem Beispiel das i der der letzte Vorlesug behadelt wurde: Auf Folie.7 zur Variaz. Dort wird ei Beispiel eier stetige Zufallsvariable geat (Warte a eier S-Bah-Haltestelle).

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR MATHEMATISCHE STOCHASTIK WS 005/06 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Klausur Wahrscheilichkeitstheorie ud Statistik vom 9..006 Musterlösuge Aufgabe A: Gegebe sei eie Urliste

Mehr

6. Grenzwertsätze. 6.1 Tschebyscheffsche Ungleichung

6. Grenzwertsätze. 6.1 Tschebyscheffsche Ungleichung 6. Grezwertsätze 6.1 Tschebyscheffsche Ugleichug Sofer für eie Zufallsvariable X die Verteilug bekat ist, lässt sich die Wahrscheilichkeit dafür bestimme, dass X i eiem bestimmte Itervall liegt. Wie ist

Mehr

Übungen Abgabetermin: Freitag, , 10 Uhr THEMEN: Testtheorie

Übungen Abgabetermin: Freitag, , 10 Uhr THEMEN: Testtheorie Uiversität Müster Istitut für Mathematische Statistik Stochastik WS 203/204, Blatt Löwe/Heusel Aufgabe (4 Pukte) Übuge Abgabetermi: Freitag, 24.0.204, 0 Uhr THEMEN: Testtheorie Die Sollstärke der Rohrwäde

Mehr

Diskrete Wahrscheinlichkeitstheorie Wiederholungsklausur

Diskrete Wahrscheinlichkeitstheorie Wiederholungsklausur Techische Uiversität Müche Sommersemester 007 Istitut für Iformatik Prof. Dr. Javier Esparza Diskrete Wahrscheilichkeitstheorie Wiederholugsklausur LÖSUNG Hiweis: Bei alle Aufgabe wird ebe dem gefragte

Mehr

TESTEN VON HYPOTHESEN

TESTEN VON HYPOTHESEN TESTEN VON HYPOTHESEN 1. Grudlage Oft hat ma Vermutuge zu Sachverhalte ud möchte diese gere durch Experimete bestätige. Dabei ka es sich i der Praxis zum Beispiel um Verteiluge vo gewisse Zufallsgröße

Mehr

Gütefunktion und Fehlerwahrscheinlichkeiten Rechtsseitiger Test (µ 0 = 500) zum Signifikanzniveau α = Interpretation von Testergebnissen I

Gütefunktion und Fehlerwahrscheinlichkeiten Rechtsseitiger Test (µ 0 = 500) zum Signifikanzniveau α = Interpretation von Testergebnissen I 6 Hypothesetests Gauß-Test für de Mittelwert bei bekater Variaz 6.3 Gütefuktio ud Fehlerwahrscheilichkeite Rechtsseitiger Test (µ 0 = 500) zum Sigifikaziveau α = 0.30 6 Hypothesetests Gauß-Test für de

Mehr

Reader Teil 1: Beschreibende Statistik

Reader Teil 1: Beschreibende Statistik Dr. Katharia Best Sommersemester 2011 14. April 2011 Reader Teil 1: Beschreibede Statistik WiMa-Praktikum Um Date darzustelle ud eie Übersicht über die Struktur der Date zu erstelle, stellt die beschreibede

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meihardt 6. Stock, Taubertsberg R. 06-06 (Persike) R. 06-31 (Meihardt) Sprechstude jederzeit ach Vereibarug Forschugsstatistik I Dr. Malte Persike persike@ui-maiz.de http://psymet03.sowi.ui-maiz.de/

Mehr

Der χ 2 Test. Bei Verteilungen Beantwortung der Frage, ob eine gemessene Verteilung Gauß- oder Poisson-verteilt ist oder nicht?

Der χ 2 Test. Bei Verteilungen Beantwortung der Frage, ob eine gemessene Verteilung Gauß- oder Poisson-verteilt ist oder nicht? Der χ Test Es gibt verschiedee Arte vo Sigifikaztests Nebe Sigifikaztests, die sich mit dem Mittelwert beschäftige, gibt es auch Testverfahre für Verteiluge Bei Verteiluge Beatwortug der Frage, ob eie

Mehr

Beispiel: p-wert bei Chi-Quadrat-Anpassungstest (Grafik) Auftragseingangsbeispiel, realisierte Teststatistik χ 2 = , p-wert: 0.

Beispiel: p-wert bei Chi-Quadrat-Anpassungstest (Grafik) Auftragseingangsbeispiel, realisierte Teststatistik χ 2 = , p-wert: 0. 8 Apassugs- ud Uabhägigkeitstests Chi-Quadrat-Apassugstest 8.1 Beispiel: p-wert bei Chi-Quadrat-Apassugstest (Grafik) Auftragseigagsbeispiel, realisierte Teststatistik χ 2 = 12.075, p-wert: 0.0168 f χ

Mehr

2 Einführung in die mathematische Statistik

2 Einführung in die mathematische Statistik 2 Eiführug i die mathematische Statistik Die Hauptaufgabe der mathematische Statistik ist es, ahad der Eigeschafte eies Teils eier Mege vo Objekte auf die Eigeschafte aller Objekte i dieser Mege zu schließe.

Mehr

Inhaltsverzeichnis. Wirtschaftswissenschaftliches Zentrum 11 Universität Basel. Mathematik 2

Inhaltsverzeichnis. Wirtschaftswissenschaftliches Zentrum 11 Universität Basel. Mathematik 2 Wirtschaftswisseschaftliches Zetrum 11 Uiversität Basel Mathematik Dr. Thomas Zehrt Schätze Beötigtes Vorwisse: Der Stoff der Vorlesug,,Statistik wird als bekat vorausgesetzt, isbesodere Kapitel 11,,(Pukt)schätze

Mehr

Maximum Likelihood Version 1.6

Maximum Likelihood Version 1.6 Maximum Likelihood Versio 1.6 Uwe Ziegehage 15. November 2005 Logarithmegesetze log a (b) + log a (c) = log a (b c) (1) log a (b) log a (c) = log a (b/c) (2) log a (b c ) = c log a (b) (3) Ableitugsregel

Mehr

Testen statistischer Hypothesen

Testen statistischer Hypothesen Kapitel 9 Teste statistischer Hypothese 9.1 Eiführug, Sigifiaztests Sigifiaztest für µ bei der ormalverteilug bei beatem σ = : X i seie uabhägig ud µ, ) verteilt, µ sei ubeat. Stelle eie Hypothese über

Mehr

Diplomvorprüfung Stochastik

Diplomvorprüfung Stochastik Uiversität Karlsruhe TH Istitut für Stochastik Prof. Dr. N. Bäuerle Name: Vorame: Matr.-Nr.: Diplomvorprüfug Stochastik 10. Oktober 2006 Diese Klausur hat bestade, wer midestes 16 Pukte erreicht. Als Hilfsmittel

Mehr

Kapitel VI. Einige spezielle diskrete Verteilungen

Kapitel VI. Einige spezielle diskrete Verteilungen Kapitel VI Eiige spezielle diskrete Verteiluge D 6 (Hypergeometrische Verteilug) Eie Zufallsvariable X heißt hypergeometrisch verteilt, we sie folgede Wahrscheilichkeitsfuktio besitzt: M N M P ( X ) p

Mehr

Teil II Zählstatistik

Teil II Zählstatistik Teil II Zählstatistik. Aufgabestellug. Vergleiche Sie experimetelle Zählverteiluge mit statistische Modelle (POISSON-Verteilug ud Normalverteilug) 2. Theoretische Grudlage Stichworte zur Vorbereitug: Impulszahl,

Mehr

Stochastisches Integral

Stochastisches Integral Kapitel 11 Stochastisches Itegral Josef Leydold c 26 Mathematische Methode XI Stochastisches Itegral 1 / 2 Lerziele Wieer Prozess ud Browsche Bewegug Stochastisches Itegral Stochastische Differetialgleichug

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungen zum Wiederholungsblatt

Einführung in die Wahrscheinlichkeitstheorie Lösungen zum Wiederholungsblatt TUM, Zetrum Mathematik Lehrstuhl für Mathematische Physik WS 23/4 Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weider Eiführug i die Wahrscheilichkeitstheorie Lösuge zum Wiederholugsblatt Aufgabe

Mehr

Wahrscheinlichkeitsrechnung & Statistik - Ergänzung zum Skript

Wahrscheinlichkeitsrechnung & Statistik - Ergänzung zum Skript Wahrscheilichkeitsrechug & Statistik - Ergäzug zum Skript Prof. Schweizer 9. Oktober 008 Mitschrift: Adreas Steiger Warug: Wir sid sicher dass diese Notize eie Mege Fehler ethalte. Betrete der Baustelle

Mehr

2 Induktive Statistik

2 Induktive Statistik Kapitel 2 Iduktive Statistik Seite 19 2 Iduktive Statistik 2.1 Grudprizipie der iduktive Statistik 2.2 Puktschätzug 2.2.1 Schätzfuktioe Defiitio 2.1 Sei X 1,...,X i.i.d. Stichprobe. Eie Fuktio heißt Schätzer

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren Dr. Jürge Seger INDUKTIVE STATISTIK Wahrscheilichkeitstheorie, Schätz- ud Testverfahre ÜBUNG 9 - LÖSUNGEN. Ziehug vo Kugel aus eier Ure a. Die Zahl der Permutatio der Kugel, die aus Klasse utereiader gleicher

Mehr

Normalverteilung. Standardnormalverteilung. Intervallwahrscheinlichkeiten. Verteilungsfunktion

Normalverteilung. Standardnormalverteilung. Intervallwahrscheinlichkeiten. Verteilungsfunktion Normalverteilug Stadardormalverteilug Normalverteilug N(μ, ) mit ichte : Gaußche Glockekurve μ μ μ+ μ >, f ( ) = ( μ) WS 6/7 Prof. r. J. Schütze, FB GW NV π Eigechafte der ichte: - Maimum i μ - mmetrich

Mehr

Multivariate Analysemethoden und Multivariates Testen

Multivariate Analysemethoden und Multivariates Testen Multivariate Aalysemethode ud Multivariates Teste Stude im Mai Güter Meihardt Johaes Guteberg Uiversität Maiz Priziie des statistische Schliesses Samlig - Modellvorstellug Poulatio Samlig Stichrobe Kewerte

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

Bayessches Lernen (II)

Bayessches Lernen (II) Uiversität Potsdam Istitut für Iformatik Lehrstuhl Maschielles Lere Bayessches Lere (II) Christoph Sawade/Niels Ladwehr Jules Rasetahariso Tobias Scheffer Überblick Wahrscheilichkeite, Erwartugswerte,

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Has Walser Mathematik 2 für Naturwisseschafte 2 3 3 4 6 4 5 0 0 5 6 5 20 5 6 Modul 209 Tabelle Has Walser: Modul 209, Tabelle ii Ihalt Fakultäte... 2 Biomialkoeffiziete... 2 3 Biomische Verteilug... 3

Mehr

II. Grundzüge der Stichprobentheorie

II. Grundzüge der Stichprobentheorie II. Grudzüge der Stichprobetheorie Grüde für Stichprobeerhebug - deutlich gerigere Koste - größere Awedugsbreite - kürzere Erhebugs- ud Auswertugszeite - i der Regel größere Geauigkeit der Ergebisse Begriffsbestimmug

Mehr

Statistik I Februar 2005

Statistik I Februar 2005 Statistik I Februar 2005 Aufgabe 0 Pukte Ei Merkmal X mit de mögliche Auspräguge 0 ud, das im Folgede wie ei kardialskaliertes Merkmal behadelt werde ka, wird a Merkmalsträger beobachtet. Dabei bezeichet

Mehr

6 Vergleich mehrerer unverbundener Stichproben

6 Vergleich mehrerer unverbundener Stichproben 6 Vergleich mehrerer uverbudeer Stichprobe 6.1 Die eifaktorielle Variazaalyse Die eifaktorielle Variazaalyse diet der Utersuchug des Eiflusses eier kategorieller (bzw. ichtmetrischer) Variable, die die

Mehr

Beispiel: p-wert bei Chi-Quadrat-Anpassungstest (Grafik) Auftragseingangsbeispiel, realisierte Teststatistik χ 2 = , p-wert: 0.

Beispiel: p-wert bei Chi-Quadrat-Anpassungstest (Grafik) Auftragseingangsbeispiel, realisierte Teststatistik χ 2 = , p-wert: 0. 8 Apassugs- ud Uabhägigkeitstests Chi-Quadrat-Apassugstest 81 Beispiel: p-wert bei Chi-Quadrat-Apassugstest (Grafik) Auftragseigagsbeispiel, realisierte Teststatistik χ 2 = 12075, p-wert: 00168 f χ 2 (4)

Mehr

3 Kritischer Bereich zum Niveau α = 0.10: K = (χ 2 k 1;1 α, + ) = (χ2 5;0.90, + ) = (9.236, + ) 4 Berechnung der realisierten Teststatistik:

3 Kritischer Bereich zum Niveau α = 0.10: K = (χ 2 k 1;1 α, + ) = (χ2 5;0.90, + ) = (9.236, + ) 4 Berechnung der realisierten Teststatistik: 8 Apassugs- ud Uabhägigkeitstests Chi-Quadrat-Apassugstest 81 Beispiel: p-wert bei Chi-Quadrat-Apassugstest (Grafik) Auftragseigagsbeispiel, realisierte Teststatistik χ 2 1275, p-wert: 168 8 Apassugs-

Mehr

Prof. Dr. Holger Dette Musterlösung Statistik I Sommersemester 2009 Dr. Melanie Birke Blatt 5

Prof. Dr. Holger Dette Musterlösung Statistik I Sommersemester 2009 Dr. Melanie Birke Blatt 5 Prof. Dr. Holger Dette Musterlösug Statistik I Sommersemester 009 Dr. Melaie Birke Blatt 5 Aufgabe : 4 Pukte Sei X eie Poissoλ verteilte Zufallsvariable mit λ > 0, ud die Verlustfuktio L sei defiiert durch

Mehr

X in einer Grundgesamtheit vollständig beschreiben.

X in einer Grundgesamtheit vollständig beschreiben. Prof. Dr. Rolad Füss Statistik II SS 008. Puktschätzug vo Parameter eier Grudgesamtheit Nur durch eie Totalerhebug ka ma die Verteilug eier Zufallsvariable X i eier Grudgesamtheit vollstädig beschreibe.

Mehr

2 ISO/BIPM-Leitfaden Guide to the Expression of Uncertainty in Measurement, GUM (2008 überarbeitet, die deutsche Fassung ist [3])

2 ISO/BIPM-Leitfaden Guide to the Expression of Uncertainty in Measurement, GUM (2008 überarbeitet, die deutsche Fassung ist [3]) I- Messusicherheite: Lit.: Prof. Dr. Gerz Wahrscheilichkeitsrechug ud Usicherheitsberechug IO/BIPM-Leitfade Guide to the Epressio of Ucertaity i Measuremet, GUM (008 überarbeitet, die deutsche Fassug ist

Mehr

Diskrete Zufallsvariablen

Diskrete Zufallsvariablen Erste Beispiele diskreter Verteiluge Diskrete Zufallsvariable Beroulli-Verteilug Eie diskrete Zufallsvariable heißt beroulliverteilt mit arameter p, falls sie die Wahrscheilichkeitsfuktio p,, f ( ) ( )

Mehr

Korrekturliste zum Studienbuch Statistik

Korrekturliste zum Studienbuch Statistik Korrekturlite zum Studiebuch Statitik I der aktuelle Auflage wurde durch ei Kovertierugproblem i de Kapitel 0 (S. 3 3 ud de etprechede Abchitte i de Löuge (S. 39 07 teilweie die Zeiche µ durch ud π durch

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2015/2016. Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2015/2016. Aufgabe 1 Lehrstuhl für Statistik ud Ökoometrie der Otto-Friedrich-Uiversität Bamberg Prof. Dr. Susae Rässler Klausur zu Methode der Statistik II (mit Kurzlösug) Witersemester 2015/2016 Aufgabe 1 Die leideschaftliche

Mehr

Streukreisberechnungen bei ballistischen Versuchen unter der zweidimensionalen Normalverteilungsannahme

Streukreisberechnungen bei ballistischen Versuchen unter der zweidimensionalen Normalverteilungsannahme Streukreisberechuge bei ballistische Versuche uter der zweidimesioale Normalverteilugsaahme Prof. Dr. Adreas Rudolph Uiversität der Budeswehr Müche WE Mathematik ud Iformatik FB BW Werer-Heiseberg-Weg

Mehr

10. Übungsblatt zur Einführung in die Stochastik

10. Übungsblatt zur Einführung in die Stochastik Fachbereich Mathematik rof. Dr. Michael Kohler Dipl.-Math. Adreas Fromkorth Dipl.-If. Jes Mehert SS 09 6.7.2009 0. Übugsblatt zur Eiführug i die Stochastik Aufgabe 38 (3 ukte Die Zufallsvariable X,...,

Mehr

2. Schätzverfahren 2.1 Punktschätzung wirtschaftlicher Kennzahlen. Allgemein: Punktschätzung eines Parameters:

2. Schätzverfahren 2.1 Punktschätzung wirtschaftlicher Kennzahlen. Allgemein: Punktschätzung eines Parameters: . Schätzverfahre. Puktschätzug wirtschaftlicher Kezahle Allgemei: Puktschätzug eies Parameters: Ermittlug eies Schätzwertes für eie ubekate Parameter eier Zufallsvariable i der Grudgesamtheit mit Hilfe

Mehr

Kleine Formelsammlung Beschreibende Statistik

Kleine Formelsammlung Beschreibende Statistik Kleie Formelsammlug Beschreibede Statistik Prof. Dr. Philipp Sibbertse Wirtschaftswisseschaftliche Fakultät Leibiz Uiversität Haover Ihaltsverzeichis 1 Lage- ud Streuugsmaße 2 1.1 Der Media...................................

Mehr

Wahrscheinlichkeit & Statistik Musterlösung Serie 13

Wahrscheinlichkeit & Statistik Musterlösung Serie 13 ETH Zürich FS 2013 D-MATH Has Rudolf Küsch Koordiator Blaka Horvath Wahrscheilichkeit & Statistik Musterlösug Serie 13 1. a) Die Nullhypothese lautet dass das echte Medikamet höchstes gleich gut ist wie

Mehr

Formelsammlung zur Statistik

Formelsammlung zur Statistik Darstellug uivariater Date Formelsammlug zur Statistik Urliste x i : x 1,... x, aufsteiged geordete Urliste x (i) Die k (verschiedee) Auspräguge: a 1

Mehr

10. Testen von Hypothesen Seite 1 von 6

10. Testen von Hypothesen Seite 1 von 6 10. Teste vo Hypothese Seite 1 vo 6 10.1 Eiführug i das Teste vo Hypothese Eie Hypothese ist eie Vermutug bzw. Behauptug über die Wahrscheilichkeit eies Ereigisses. Mit Hilfe eies geeigete Tests (=Testverfahre)

Mehr