Prof. Dr. Roland Füss Statistik II SS 2008

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Prof. Dr. Roland Füss Statistik II SS 2008"

Transkript

1 1. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug ergibt sich aus de Grezwertsätze. Grezwertsätze sid Aussage über eie Zufallsvariable für de Fall, dass die Azahl der Beobachtuge gege Uedlichkeit strebt. Zu de wichtigste Grezwertsätze zähle das Schwache Gesetz der große Zahle ud der zetrale Grezwertsatz. Aahme: X sei eie -dimesioale Zufallsvariable, dere Kompoete X1, X2,, X stochastisch uabhägig ud idetisch verteilt sid. 1

2 Aus der idetische Verteilug folgt, dass alle Kompoete de gleiche 2 Erwartugswert E ( Xi ) = µ ud die gleiche Variaz V( ) = σ habe. X i 1.1 Das Gesetz der Große Zahle Erste Formulierug stammt vo POISSON: la loi des grads ombres (1837). Poisso meite dabei eie große Zahl vo Versuche bei eiem Zufallsexperimet. Zufallsvariable X mit dem Erwartugswert µ ud der Variaz 2 σ sei Realisatio eies Zufallsexperimetes. Das Experimet wird -mal wiederholt: 2

3 E ( X ) = µ ud V σ ( X ) = 2 Aus der letzte Gleichug ist ersichtlich, dass die Variaz des Stichprobemittelwertes umso kleier wird, je größer der Stichprobeumfag ist. We gege uedlich strebt, kovergiert die Variaz gege de Grezwert Null: lim V ( X ) = 0 Je größer ud je kleier damit die Variaz der Verteilug vo äher wird das arithmetische Mittel eier Stichprobe x bei µ liege. Schwaches Gesetz der Große Zahle: X wird, desto 3

4 Seie X 1, X 2,, X uabhägig ud idetisch verteilte Zufallsvariable, dere Erwartugswerte E X ) = µ ud Variaze existiere, ud sei X das ( i arithmetische Mittel aus ihe. Da gilt für jedes beliebig kleie ε > 0 P ( X µ ε ) 0 für Die Wahrscheilichkeit, dass die Abweichug des arithmetische Mittels X vom Erwartugswert µ größer oder gleich eiem vorgegebee Wert ε ist, geht für große gege ull. Mit adere Worte: 4

5 Das Schwache Gesetz der Große Zahle besagt, dass sich eie Folge vo Zufallsvariable (Folge der arithmetische Mittel X Erwartugswert µ ähert (gege de Erwartugswert kovergiert): p lim X = µ Der Wahrscheilichkeitslimes vo X ist gleich µ. ) mit wachsedem dem Dies ist eie stochastische Kovergez oder die Kovergez ach Wahrscheilichkeit. Zu beachte: der Wahrscheilichkeitslimes ist vom gewöhliche Limes zu uterscheide. Im Gesetz der große Zahle wird icht behauptet, dass lim x = µ, also dass die Folge der beobachtete arithmetische Mittel 5

6 x gege µ kovergiere würde, soder die Wahrscheilichkeit für die Abweichug ε wird immer kleier. Das Starke Gesetz der große Zahle behauptet eie stärkere Kovergez (fast sichere Kovergez): P (lim X = µ ) = 1 6

7 Beispiel: historische Lottozahle (Zeitraum: 25 Jahre, Stichprobeumfag: 9114) 7

8 Empirisch: x = ( )/9114= 25,2211 s x = 200,6512 = 14,1651 Theoretisch: µ = ( 49+ 1)/2 = 50/2 = 25 (Erwartugswert eier gleichförmig verteilte Variable) σ (49 2 x = 1)/12 = 200 = 14,1421 (Stadardabweichug bei Gleichverteilug) 8

9 1.2. Beroullis Gesetz (Jacob Beroulli, 1668): Beroullis Gesetz ist ei Spezialfall des allgemeie Gesetzes der große Zahle. Der Begriff der relative Häufigkeit ist mit dem Begriff der Wahrscheilichkeit eg verbude. Die relative Häufigkeit eies Ereigisses aus uabhägige 9

10 Wiederholuge eies Zufallsexperimets wird als eie Näherug für die Wahrscheilichkeit des Ereigisses agesehe. Das Zufallsexperimet sei ei Beroulli-Experimet mit uabhägige Versuche. Bei jedem Versuch tritt das Ereigis A mit der Wahrscheilichkeit p ei. Die Zufallsvariable sei eie Beroulli-Variable, die wie folgt defiiert ist: X i 1, = 0, falls falls A beim i te A beim i te Versuch Versuch eit ritt eit ritt 10

11 Für jede eizele Versuch i gilt: E(X i ) = p ud V(X i ) = pq, wobei q = 1-p Die Azahl der Erfolge i der Versuchsreihe ist biomialverteilt mit de Parameter ud p ud der Variaz pq. Wir iteressiere us jedoch icht für die absolute Azahl, soder für die relative Häufigkeit der Erfolge i der Versuchsreihe: H = X = 1 i= 1 X i relative Häufigkeit des Eitretes vo A 11

12 Die Zufallsvariable H liegt zwische 0 H 1 Für die Zufallsvariable H gilt: E ( H V ( H ) ) = = p pq / H Der Erwartugswert der relative Häufigkeit etspricht der Erfolgswahrscheilichkeit p ud die Variaz der relative Häufigkeit H wird umso kleier, je größer die Azahl der Versuche ist. We gege Uedlichkeit strebt, kovergiert die Variaz gege de Grezwert Null: 12

13 lim V ( ) = H 0 Für sehr große wird die relative Häufigkeit h eier Versuchsreihe ahe bei dem Wert p liege. Je größer wird, umso kleier wird das Itervall um p sei, i das der Ateilswert h eier Versuchsreihe mit großer Wahrscheilichkeit fällt. Ei Beroulli-Experimet mit der Erfolgswahrscheilichkeit p werde -mal uabhägig wiederholt, h sei dabei die relative Häufigkeit der Erfolge. Da gilt für jedes beliebig kleie ε > 0: P( H p ε ) 0 für (Beroullis Gesetz der große Zahle) 13

14 Adere (äquivalete) Schreibweise: p lim H = p Beroullis Gesetz der große Zahle besagt, dass die relative Häufigkeit H stochastisch gege die Wahrscheilichkeit p kovergiert. 14

15 Das Schwache Gesetz der große Zahle bildet eie Brücke zwische dem theoretische Kozept der Wahrscheilichkeitsrechug ud de beobachtbare Ergebisse vo Zufallsexperimete. Im Sie der stochastische Kovergez ist die Wahrscheilichkeit eies Ereigisses gleich dem Grezwert der relative Häufigkeit bei wiederholter uabhägiger Durchführug des Experimets Kovergez der empirische Verteilugsfuktio (Hauptsatz der Statistik) Nicht ur die Kovergez der Mittelwerte, soder auch die Kovergez der gaze Verteilugsfuktioe ka durch die Grezwertsätze beschriebe werde. 15

16 Die empirische Verteilugsfuktio F (x) kovergiert mit zuehmedem Stichprobeumfag gege die Wahrscheilichkeitsverteilugsfuktio : F(x) für p limf ( x) = F( x) Adere Schreibweise: p lim ( F ( x) F( x)) = 0, P(limF ( x) = F( x)) = 1 16

17 Bsp.: auf eiem PC werde Zufallszahle gezoge, gleichförmig verteilt über dem Itervall [0, 10]. Quelle: J. Schira, S Kovergez der empirische Verteilugsfuktio gege die Wahrscheilichkeitsverteilugsfuktio. 17

18 1.4. Der zetrale Grezwertsatz Sei X 1, X 2,, X eie Folge vo uabhägige ud idetisch verteilte 2 Zufallsvariable mit µ = E ( X ) ud σ = V( ). i X i Wir betrachte die Summe dieser Zufallsvariable S = X + X X. 1 2 Der Erwartugswert vo der Summe S ist µ ud die Variaz ist σ 2. Da strebt die Verteilugsfuktio der stadardisierte Größe Z = S µ X µ σ σ / ( X = S ) / mit wachsedem gege die Stadardormalverteilug 18

19 F ( z) FSt ( z) für. Vorteil des zetrale Grezwertsatzes: er stellt keierlei Aforderug a die ursprügliche Verteilug. Die Verteilugsfuktio der Summe bzw. des arithmetische Mittels der idetisch verteilte ud uabhägige Zufallsvariable kovergiert bei gege die Normalverteilug. Dies erklärt die Soderstellug der Normalverteilug, ihre große theoretische ud praktische Bedeutug. 19

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Empirische Wirtschaftsforschug ud Ökoometrie Dr. Rolad Füss Statistik II: Schließede Statistik SS 2007 6. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug

Mehr

Empirische Verteilungsfunktion

Empirische Verteilungsfunktion KAPITEL 3 Empirische Verteilugsfuktio 3.1. Empirische Verteilugsfuktio Seie X 1,..., X uabhägige ud idetisch verteilte Zufallsvariable mit theoretischer Verteilugsfuktio F (t) = P[X i t]. Es sei (x 1,...,

Mehr

6. Grenzwertsätze. 6.1 Tschebyscheffsche Ungleichung

6. Grenzwertsätze. 6.1 Tschebyscheffsche Ungleichung 6. Grezwertsätze 6.1 Tschebyscheffsche Ugleichug Sofer für eie Zufallsvariable X die Verteilug bekat ist, lässt sich die Wahrscheilichkeit dafür bestimme, dass X i eiem bestimmte Itervall liegt. Wie ist

Mehr

Pflichtlektüre: Kapitel 10 Grundlagen der Inferenzstatistik

Pflichtlektüre: Kapitel 10 Grundlagen der Inferenzstatistik Pflichtlektüre: Kapitel 10 Grudlage der Iferezstatistik Überblick der Begriffe Populatio Iferezstatistik Populatiosparameter Stichprobeverteiluge Auch Stichprobekewerteverteiluge Wahrscheilichkeitstheorie

Mehr

Tests statistischer Hypothesen

Tests statistischer Hypothesen KAPITEL 0 Tests statistischer Hypothese I der Statistik muss ma oft Hypothese teste, z.b. muss ma ahad eier Stichprobe etscheide, ob ei ubekater Parameter eie vorgegebee Wert aimmt. Zuerst betrachte wir

Mehr

Klausur zu,,einführung in die Wahrscheinlichkeitstheorie. Musterlösungen

Klausur zu,,einführung in die Wahrscheinlichkeitstheorie. Musterlösungen Istitut für agewadte Mathematik Witersemester 9/ Adreas Eberle, Matthias Erbar, Berhard Hader. (Reelle Zufallsvariable) Klausur zu,,eiführug i die Wahrscheilichkeitstheorie Musterlösuge a) Die Verteilugsfuktio

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik ud Wahrscheilichkeitsrechug Dr. Joche Köhler 9.04.008 Äderug Übugsstude Statistik ud Wahrscheilichkeitsrechug Die Gruppe vo Markus trifft sich am Doerstag statt im HCI D zusamme mit der Gruppe

Mehr

7. Grenzwertsätze Grenzwertsätzen Zentraler Grenzwertsatz Gesetz der großen Zahlen Tschebyscheffsche Ungleichung

7. Grenzwertsätze Grenzwertsätzen Zentraler Grenzwertsatz Gesetz der großen Zahlen Tschebyscheffsche Ungleichung 7. Grezwertsätze Bei de Grezwertsätze geht es um Aussage, die ma sogar da treffe ka, we keierlei Iformatioe über de Verteilugs-Typ der betrachtete Zufallsvariable vorliege. Zetraler Grezwertsatz Aussage

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

Aussage über die Verteilung Summen und Durchschnitte beliebig verteilter Zufallsvariablen

Aussage über die Verteilung Summen und Durchschnitte beliebig verteilter Zufallsvariablen 7. Grezwertsätze Die Grezwertsätze bilde de Abschluss der Wahrscheilichkeitsrechug ud sid vo zetraler Bedeutug vor allem für die iduktive Statistik. Gesetz der große Zahle Aussage über die Geauigkeit der

Mehr

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:

Mehr

Zufallsvariable. Die Wahrscheinlichkeitsverteilung p (probability function) ist definiert durch: p(x i ) := P (X = x i ),

Zufallsvariable. Die Wahrscheinlichkeitsverteilung p (probability function) ist definiert durch: p(x i ) := P (X = x i ), ETHZ 90-683 Dr. M. Müller Statistische Methode WS 00/0 Zufallsvariable Zusammehag: Wirklichkeit Modell Wirklichkeit Stichprobe Date diskret stetig rel. Häufigkeit Häufigkeitstabelle Stabdiagramm Histogramm

Mehr

Übungen mit dem Applet erwartungstreu

Übungen mit dem Applet erwartungstreu Übuge mit dem Applet erwartugstreu Visualisierug vo erwartugstreu Begriffe ud statischer Hitergrud. Visualisieruge mit dem Applet..3. Zufallsstreuug der Eizelwerte...3. Mittelwerte 3.3 Variaz. 4.4 Variaz

Mehr

A = Ereignisraum = σ-algebra (Sigma-Algebra) = Menge aller messbaren Ergebnisse über eine definierte Grundmenge Ω

A = Ereignisraum = σ-algebra (Sigma-Algebra) = Menge aller messbaren Ergebnisse über eine definierte Grundmenge Ω Statistik Theorie Defiitioe Ω = Grudmege = Ergebismege = Mege aller mögliche Ergebisse A = Ereigisraum = σ-algebra (Sigma-Algebra) = Mege aller messbare Ergebisse über eie defiierte Grudmege Ω P(Ω) = Potezmege

Mehr

Kapitel 5: Schließende Statistik

Kapitel 5: Schließende Statistik Kapitel 5: Schließede Statistik Statistik, Prof. Dr. Kari Melzer 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte

Mehr

Zenraler Grenzwertsatz

Zenraler Grenzwertsatz Zeraler Grezwertsatz Ato Klimovsky Zetraler Grezwertsatz. Kovergez i Verteilug. Normalapproximatio. I diesem Abschitt beschäftige wir us mit der folgede Frage. Frage: Wie sieht die Verteilug eier Summe

Mehr

Gesetze der großen Zahlen

Gesetze der großen Zahlen Gesetze der große Zahle Ato Klimovsky Grezwertsätze für die Summe der ZV. Schwaches Gesetz der große Zahle. Kovergez i Wahrscheilichkeit (Stochastische Kovergez). Starkes Gesetz der große Zahle. Fast sichere

Mehr

Seminarausarbeitung: Gegenbeispiele in der Wahrscheinlichkeitstheorie. Unterschiedliche Konvergenzarten von Folgen von Zufallsvariablen

Seminarausarbeitung: Gegenbeispiele in der Wahrscheinlichkeitstheorie. Unterschiedliche Konvergenzarten von Folgen von Zufallsvariablen Semiarausarbeitug: Gegebeispiele i der Wahrscheilichkeitstheorie - Uterschiedliche Kovergezarte vo Folge vo Zufallsvariable Volker Michael Eberle 4. März 203 Eileitug Die vorliegede Arbeit thematisiert

Mehr

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy. Vo der relative Häufigkeit zur Wahrscheilichkeit Es werde 20 Schüler befragt, ob sie ei Hady besitze. Das Ergebis der Umfrage lautet: Vo 20 Schüler besitze 99 ei Hady. Ereigis E: Schüler besitzt ei Hady

Mehr

Diskrete Zufallsvariablen

Diskrete Zufallsvariablen Erste Beispiele diskreter Verteiluge Diskrete Zufallsvariable Beroulli-Verteilug Eie diskrete Zufallsvariable heißt beroulliverteilt mit arameter p, falls sie die Wahrscheilichkeitsfuktio p,, f ( ) ( )

Mehr

Lösungen ausgewählter Übungsaufgaben zum Buch. Elementare Stochastik (Springer Spektrum, 2012) Teil 4: Aufgaben zu den Kapiteln 7 und 8

Lösungen ausgewählter Übungsaufgaben zum Buch. Elementare Stochastik (Springer Spektrum, 2012) Teil 4: Aufgaben zu den Kapiteln 7 und 8 1 Lösuge ausgewählter Übugsaufgabe zum Buch Elemetare Stochastik (Spriger Spektrum, 2012) Teil 4: Aufgabe zu de Kapitel 7 ud 8 Aufgabe zu Kapitel 7 Zu Abschitt 7.1 Ü7.1.1 Ω sei höchstes abzählbar, ud X,

Mehr

Wirksamkeit, Effizienz

Wirksamkeit, Effizienz 3 Parameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische Verteilugsaahme mit Parameterraum Θ. 1 Seie θ ud θ erwartugstreue

Mehr

Kapitel 9: Schätzungen

Kapitel 9: Schätzungen - 73 (Kapitel 9: chätzuge) Kapitel 9: chätzuge Betrachte wir folgedes 9. Beispiel : I eiem Krakehaus wurde Date über Zwilligsgeburte gesammelt. Bei vo 48 Paare hatte die beide Zwillige verschiedees Geschlecht.

Mehr

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5 Vl Statistische Prozess- ud Qualitätskotrolle ud Versuchsplaug Übug 5 Aufgabe ) Sei p = P(A) die Wahrscheilichkeit für ei Ereigis A, dh., es gilt 0 p. Bereche Sie das Maximum der Fuktio f(p) = p(-p). Aufgabe

Mehr

Schätzen von Populationswerten

Schätzen von Populationswerten Schätze vo Populatioswerte SS00 7.Sitzug vom.06.00 Schätze vo Populatioswerte Ziel: Ermöglichug vo Aussage über die Grudgesamtheit ahad vo Stichprobedate Logische Methode: Iduktiosschluß Grudlage des Iduktiosschlusses:

Mehr

Wirksamkeit, Effizienz. Beispiel: Effizienz. Mittlerer quadratischer Fehler (MSE) Konsistenz im quadratischen Mittel

Wirksamkeit, Effizienz. Beispiel: Effizienz. Mittlerer quadratischer Fehler (MSE) Konsistenz im quadratischen Mittel 3 arameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez 3 arameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Beispiel: Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische

Mehr

Statistik. 5. Schließende Statistik: Typische Fragestellung anhand von Beispielen. Kapitel 5: Schließende Statistik

Statistik. 5. Schließende Statistik: Typische Fragestellung anhand von Beispielen. Kapitel 5: Schließende Statistik Statistik Kapitel 5: Schließede Statistik 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel 1» Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte der arithmetische

Mehr

1 Wahrscheilichkeitsrechug 1.1 Elemete der Megelehre Morgasche Formel A \ B = A [ B A [ B = A \ B Kommutativgesetz A \ B = B \ A A [ B = B [ A Assozia

1 Wahrscheilichkeitsrechug 1.1 Elemete der Megelehre Morgasche Formel A \ B = A [ B A [ B = A \ B Kommutativgesetz A \ B = B \ A A [ B = B [ A Assozia Statistik I - Formelsammlug Ihaltsverzeichis 1 Wahrscheilichkeitsrechug 1.1 Elemete der Megelehre................................. 1. Kombiatorik........................................ 1.3 Wahrscheilichkeite....................................

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

Formelsammlung Mathematik

Formelsammlung Mathematik Formelsammlug Mathematik 1 Fiazmathematik 1.1 Reterechug Sei der Zissatz p%, der Zisfaktor q = 1 + p 100. Seie R die regelmäßig zu zahlede Rate, die Laufzeit. Edwert: Barwert: achschüssig R = R q 1 q 1

Mehr

X in einer Grundgesamtheit vollständig beschreiben.

X in einer Grundgesamtheit vollständig beschreiben. Prof. Dr. Rolad Füss Statistik II SS 008. Puktschätzug vo Parameter eier Grudgesamtheit Nur durch eie Totalerhebug ka ma die Verteilug eier Zufallsvariable X i eier Grudgesamtheit vollstädig beschreibe.

Mehr

Schätzen von Populationswerten

Schätzen von Populationswerten Schätze vo Populatioswerte 7.Sitzug 35 Seite, SoSe 003 Schätze vo Populatioswerte Ziel: Ermöglichug vo Aussage über die Grudgesamtheit ahad vo Stichprobedate Logische Methode: Iduktiosschluss Grudlage

Mehr

4 Schwankungsintervalle Schwankungsintervalle 4.2

4 Schwankungsintervalle Schwankungsintervalle 4.2 4 Schwakugsitervalle Schwakugsitervalle 4. Bemerkuge Die bekate Symmetrieeigeschaft Φ(x) = 1 Φ( x) bzw. Φ( x) = 1 Φ(x) für alle x R überträgt sich auf die Quatile N p der Stadardormalverteilug i der Form

Mehr

Maximum Likelihood Version 1.6

Maximum Likelihood Version 1.6 Maximum Likelihood Versio 1.6 Uwe Ziegehage 15. November 2005 Logarithmegesetze log a (b) + log a (c) = log a (b c) (1) log a (b) log a (c) = log a (b/c) (2) log a (b c ) = c log a (b) (3) Ableitugsregel

Mehr

Klausur vom

Klausur vom UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Domiik Faas Stochastik Witersemester 00/0 Klausur vom 7.0.0 Aufgabe 3+.5+.5=6 Pukte Bei eier Umfrage wurde 60 Hotelbesucher ach ihrer Zufriedeheit

Mehr

( ) Formelsammlung. Kombinatorik. Permutation: ohne Wiederholung. n! = n (n - 1) (n - 2)... 3 2 1 n= alle Elemente. Permutation: mit Wiederholung

( ) Formelsammlung. Kombinatorik. Permutation: ohne Wiederholung. n! = n (n - 1) (n - 2)... 3 2 1 n= alle Elemente. Permutation: mit Wiederholung Formelsammlug Kombiatori Permutatio: ohe Wiederholug! = ( - 1) ( - 2).... 3 2 1 = alle Elemete Permutatio: mit Wiederholug!! P, = = usw. = gleiche Elemete! 1! K 2! Stichprobe (SP) = geordete Auswahl Geordete

Mehr

Parameterschätzung. Kapitel Schätzfunktionen

Parameterschätzung. Kapitel Schätzfunktionen Kapitel 8 Parameterschätzug 8.1 Schätzfuktioe Def. 8.1.1: Es seie X 1,X,...,X uabhägige ZV, die alle die gleiche Verteilug besitze. θ sei ei ubekater Parameter dieser Verteilug. X 1,X,...,X ist als eie

Mehr

Stochastisches Integral

Stochastisches Integral Kapitel 11 Stochastisches Itegral Josef Leydold c 26 Mathematische Methode XI Stochastisches Itegral 1 / 2 Lerziele Wieer Prozess ud Browsche Bewegug Stochastisches Itegral Stochastische Differetialgleichug

Mehr

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen:

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen: 61 6.2 Grudlage der mathematische Statistik 6.2.1 Eiführug i die mathematische Statistik I der mathematische Statistik behadel wir Masseerscheiuge. Wir habe es deshalb im Regelfall mit eier große Zahl

Mehr

7.2 Grundlagen der Wahrscheinlichkeitsrechnung

7.2 Grundlagen der Wahrscheinlichkeitsrechnung 7.2 Grudlage der Wahrscheilichkeitsrechug Ei Ereigis heißt i Bezug auf eie Satz vo Bediguge zufällig, we es bei der Realisierug dieses Satzes eitrete ka, aber icht ubedigt eitrete muss. Def. 7.2.: Ei Experimet

Mehr

Fakultät für Wirtschafts- und Rechtswissenschaften

Fakultät für Wirtschafts- und Rechtswissenschaften F A C H H O C H S C H U L E K Ö L N Fakultät für Wirtschafts- ud Rechtswisseschafte F O R M E L S A M M L U N G Deskriptive Statistik Iduktive Statistik Herausgeber: c 2004 Fachgruppe Quatitative Methode

Mehr

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert.

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert. Prof. Dr. H. Rommelfager: Etscheidugstheorie, Kaitel 3 7 3. Etscheidug bei Risiko (subjektive oder objektive) Eitrittswahrscheilichkeite für das Eitrete der mögliche Umweltzustäde köe vom Etscheidugsträger

Mehr

Praktikum Vorbereitung Fertigungsmesstechnik Statistische Qualitätskontrolle

Praktikum Vorbereitung Fertigungsmesstechnik Statistische Qualitätskontrolle Praktikum Vorbereitug Fertigugsmesstechik Statistische Qualitätskotrolle Bei viele Erzeugisse ist es icht möglich jedes Werkstück zu prüfe, z.b.: bei Massefertigug. Hier ist es aus ökoomische Grüde icht

Mehr

Bernoulli-Experiment und Binomialverteilung

Bernoulli-Experiment und Binomialverteilung IV Beroulli-Exerimet ud Biomialverteilug Beroulli-Exerimet ud Beroulliette Defiitio: Zufallsexerimete, bei dee ma sich ur für das Eitrete ( Treffer, Symbol ) oder das Nichteitrete ( Niete, Symbol 0 ) eies

Mehr

Teil II Zählstatistik

Teil II Zählstatistik Teil II Zählstatistik. Aufgabestellug. Vergleiche Sie experimetelle Zählverteiluge mit statistische Modelle (POISSON-Verteilug ud Normalverteilug) 2. Theoretische Grudlage Stichworte zur Vorbereitug: Impulszahl,

Mehr

Evaluation & Forschungsstrategien

Evaluation & Forschungsstrategien Evaluatio & Forschugsstrategie WS2/2 Prof. Dr. G. Meihardt Johaes Guteberg Uiversität Maiz Prizipie des statistische Schliesses Samplig - Modellvorstellug Populatio Samplig Stichprobe Kewerte x Theoretische

Mehr

KAPITEL 11. Ungleichungen. g(x) g(x 0 ) + K 0 (x x 0 ).

KAPITEL 11. Ungleichungen. g(x) g(x 0 ) + K 0 (x x 0 ). KAPITEL 11 Ugleichuge 111 Jese-Ugleichug Defiitio 1111 Eie Fuktio g : R R heißt kovex, we ma für jedes x R ei K = K (x ) R fide ka, so dass für alle x R gilt: g(x) g(x ) + K (x x ) Bemerkug 111 Eie Fuktio

Mehr

10. Übungsblatt zur Einführung in die Stochastik

10. Übungsblatt zur Einführung in die Stochastik Fachbereich Mathematik rof. Dr. Michael Kohler Dipl.-Math. Adreas Fromkorth Dipl.-If. Jes Mehert SS 09 6.7.2009 0. Übugsblatt zur Eiführug i die Stochastik Aufgabe 38 (3 ukte Die Zufallsvariable X,...,

Mehr

4 Konvergenz von Folgen

4 Konvergenz von Folgen 4 Kovergez vo Folge Defiitio 4.. Sei M eie Mege. Ist 0 Z ud für jedes Z mit 0 ei a M gegebe, so et ma die Abbildug { Z; 0 } M, a eie Folge i M. Abkürzed schreibt ma für eie solche Abbildug auch a ) 0 oder

Mehr

Das kollektive Risikomodell. 12. Mai 2009

Das kollektive Risikomodell. 12. Mai 2009 Kirill Rudik Das kollektive Risikomodell 12. Mai 2009 4.1 Eileitug Wir betrachte i diesem Kapitel die Gesamtforderuge im Laufe eies Jahres. Beim Abschluss eies Versicherugsvertrages weiß der Versicherer

Mehr

Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten

Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten Kapitel 2 Stochastische Uabhägigkeit, bedigte Wahrscheilichkeite 2.1 Stochastische Uabhägigkeit vo Ereigisse Im Folgede gehe wir vo eiem W-Raum (Ω, A, P aus. Der Begriff der stochastische Uabhägigkeit

Mehr

Vereinheitlichung Einheitlicher Maßstab der Risikoeinschätzung. Limitierung / Steuerung Messung und Limitierung ist fundamental für die Steuerung

Vereinheitlichung Einheitlicher Maßstab der Risikoeinschätzung. Limitierung / Steuerung Messung und Limitierung ist fundamental für die Steuerung . Marktpreisrisiko Motivatio der VaR-Ermittlug Vereiheitlichug Eiheitlicher Maßstab der Risikoeischätzug Limitierug / Steuerug Messug ud Limitierug ist fudametal für die Steuerug Kapitaluterlegug Zur Deckug

Mehr

74 3. GRENZWERTSÄTZE. k=1 IIE[X k] = µ, und, wegen der Unkorreliertheit,

74 3. GRENZWERTSÄTZE. k=1 IIE[X k] = µ, und, wegen der Unkorreliertheit, 74 3. GRENZWERTSÄTZE 3. Grezwertsätze Sei u {X 1, X 2,...} eie Folge vo Zufallsvariable auf eiem Wahrscheilichkeitsraum (Ω, F, IIP). Wir iteressiere us u für die Summe S = X 1 + + X, ud vor allem für die

Mehr

2 ISO/BIPM-Leitfaden Guide to the Expression of Uncertainty in Measurement, GUM (2008 überarbeitet, die deutsche Fassung ist [3])

2 ISO/BIPM-Leitfaden Guide to the Expression of Uncertainty in Measurement, GUM (2008 überarbeitet, die deutsche Fassung ist [3]) I- Messusicherheite: Lit.: Prof. Dr. Gerz Wahrscheilichkeitsrechug ud Usicherheitsberechug IO/BIPM-Leitfade Guide to the Epressio of Ucertaity i Measuremet, GUM (008 überarbeitet, die deutsche Fassug ist

Mehr

Körpergröße x Häufigkeit in [m] 1.50 1.60 1 1.60 1.70 5 1.70 1.80 49 1.80 1.90 53 1.90 2.00 15 2.00 2.10 1

Körpergröße x Häufigkeit in [m] 1.50 1.60 1 1.60 1.70 5 1.70 1.80 49 1.80 1.90 53 1.90 2.00 15 2.00 2.10 1 8 Kofidezitervalle 1 Kapitel 8: Kofidezitervalle A: Beispiele Beispiel 1: Im WS 2000/01 wurde im Rahme der Statistik Vorlesug 124 Studete u.a. zu ihrer Körpergröße befragt. Ma erhielt folgedes Ergebis:

Mehr

Übungsblatt 1 zur Vorlesung Angewandte Stochastik

Übungsblatt 1 zur Vorlesung Angewandte Stochastik Dr Christoph Luchsiger Übugsblatt 1 zur Vorlesug Agewadte Stochastik Repetitio WT Herausgabe des Übugsblattes: Woche 9, Abgabe der Lösuge: Woche 1 (bis Freitag, 1615 Uhr), Rückgabe ud Besprechug: Woche

Mehr

2. Schätzverfahren 2.1 Punktschätzung wirtschaftlicher Kennzahlen. Allgemein: Punktschätzung eines Parameters:

2. Schätzverfahren 2.1 Punktschätzung wirtschaftlicher Kennzahlen. Allgemein: Punktschätzung eines Parameters: . Schätzverfahre. Puktschätzug wirtschaftlicher Kezahle Allgemei: Puktschätzug eies Parameters: Ermittlug eies Schätzwertes für eie ubekate Parameter eier Zufallsvariable i der Grudgesamtheit mit Hilfe

Mehr

Klassifizierung der Verteilungen. Streuung der diskreten Verteilung

Klassifizierung der Verteilungen. Streuung der diskreten Verteilung Wichtigste Verteiluge der Biostatisti Disrete Zur Erierug Klassifizierug der Verteiluge Kotiuierliche Disrete Gleichverteilug Kotiuierliche Gleichverteilug Biomialverteilug Normalverteilug Poisso Verteilug

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

Konvergenz von Folgen von Zufallsvariablen

Konvergenz von Folgen von Zufallsvariablen Kapitel 5 Kovergez vo Folge vo Zufallsvariable 5.1 Fa-sichere ud ochaische Kovergez Seie Ω, A, P ei W-Raum, X N eie Folge R k -wertiger Zufallsvariable auf Ω ud X eie R k -wertige Zufallsvariable auf Ω

Mehr

Induktive Statistik. Formelsammlung. Prof. Dr. W. Assenmacher. Stichprobenraum: Ω = {ω 1, ω 2,...,ω m }

Induktive Statistik. Formelsammlung. Prof. Dr. W. Assenmacher. Stichprobenraum: Ω = {ω 1, ω 2,...,ω m } Prof. Dr. W. Assemacher Statistik ud Ökoometrie Uiversität Duisburg-Esse Campus Esse Iduktive Statistik Formelsammlug Stichproberaum: Ω = {ω 1, ω,...,ω m } Vollstädiges System vo Ereigisse {A 1,..., A

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR MATHEMATISCHE STOCHASTIK WS 005/06 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Klausur Wahrscheilichkeitstheorie ud Statistik vom 9..006 Musterlösuge Aufgabe A: Gegebe sei eie Urliste

Mehr

Lösungsvorschlag Probeklausur zur Elementaren Wahrscheinlichkeitsrechnung

Lösungsvorschlag Probeklausur zur Elementaren Wahrscheinlichkeitsrechnung Prof. Dr. V. Schmidt WS 200/20 G. Gaiselma, A. Spettl 7.02.20 Lösugsvorschlag Probeklausur zur Elemetare Wahrscheilichkeitsrechug Hiweis: Der Umfag ud Schwierigkeitsgrad dieser Probeklausur muss icht dem

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren Dr. Jürge Seger INDUKTIVE STATISTIK Wahrscheilichkeitstheorie, Schätz- ud Testverfahre ÜBUNG. - LÖSUNGEN. ypothesetest für die Dicke vo Plättche Die Dicke X vo Plättche, die auf eier bestimmte Maschie

Mehr

Einführung in die Stochastik 10. Übungsblatt

Einführung in die Stochastik 10. Übungsblatt Eiführug i die Stochastik. Übugsblatt Fachbereich Mathematik SS M. Kohler.7. A. Fromkorth D. Furer Gruppe ud Hausübug Aufgabe 37 (4 Pukte) Ei Eremit am Südpol hat sich für die eibrechede polare Nacht mit

Mehr

9. Diskrete Zufallsvariable, Wahrscheinlichkeitsverteilung, Erwartungswert, Varianz

9. Diskrete Zufallsvariable, Wahrscheinlichkeitsverteilung, Erwartungswert, Varianz 44 9. Diskrete Zufallsvariable, Wahrscheilichkeitsverteilug, Erwartugswert, Variaz Bei Zufallsversuche iteressiere oft icht die Ergebisse selbst, soder Zahle, die de mögliche Ergebisse des Zufallsversuchs

Mehr

Wahrscheinlichkeit & Statistik

Wahrscheinlichkeit & Statistik Wahrscheilichkeit & Statistik created by Versio: 3. Jui 005 www.matheachhilfe.ch ifo@matheachhilfe.ch 079 703 7 08 Mege als Sprache der Wahrscheilichkeitsrechug, Begriffe, Grudregel Ereigisraum: Ω Ω Mege

Mehr

Vorkurs Mathematik für Informatiker Folgen

Vorkurs Mathematik für Informatiker Folgen Vorkurs Mathematik ür Iormatiker -- 8 Folge -- 11.10.2015 1 Folge: Deiitio Eie (uedliche) Folge im herkömmliche Sie etsteht durch Hitereiaderschreibe vo Zahle 1,2,3,4,5, Dabei ist die Reiheolge wichtig,

Mehr

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen . Der Grezwert vo mootoe, beschräkte Folge Der Grezwert vo mootoe, beschräkte Folge ist eifacher verstädlich als der allgemeie Fall. Deshalb utersuche wir zuerst diese Spezialfall ud verallgemeier aschliessed.

Mehr

3. Einführung in die Statistik

3. Einführung in die Statistik 3. Eiführug i die Statistik Grudlegedes Modell zu Date: uabhägige Zufallsgröße ; : : : ; mit Verteilugsfuktio F bzw. Eizelwahrscheilichkeite p ; : : : ; p r i de Aweduge: kokrete reale Auspräguge ; : :

Mehr

Konvergenz von Folgen reeller Zufallsvariablen

Konvergenz von Folgen reeller Zufallsvariablen Kapitel 4 Kovergez vo Folge reeller Zufallsvariable 4. Fa-sichere ud ochaische Kovergez Seie (Ω, C, ) ei W-Raum, X ( N) eie Folge reeller Zufallsvariable auf Ω ud X eie reelle Zufallsvariable auf Ω. Defiitio

Mehr

Kapitel 11 DIE NORMAL-VERTEILUNG

Kapitel 11 DIE NORMAL-VERTEILUNG Kapitel DIE NORMAL-VERTEILUNG Fassug vom 7. Februar 006 Prof. Dr. C. Porteier Mathematik für Humabiologe ud Biologe 49 . De itio der Normal-Verteilug. De itio der Normal-Verteilug Bisher habe wir ur diskret

Mehr

Eingangsprüfung Stochastik,

Eingangsprüfung Stochastik, Eigagsprüfug Stochastik, 5.5. Wir gehe stets vo eiem Wahrscheilichkeitsraum (Ω, A, P aus. Die Borel σ-algebra auf wird mit B bezeichet, das Lebesgue Maß auf wird mit λ bezeichet. Aufgabe ( Pukte Sei x

Mehr

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk,

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk, Musterlo suge zu Blatt 0 Kleigruppe zur Service-Verastaltug Mathematik I fu r Igeieure bei Prof. Dr. G. Herbort im WS/3 Dipl.-Math. T. Pawlaschyk, 9.. Theme: Kovergez vo Folge Aufgabe P (i) Sei a : k kk.

Mehr

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt 2.4.5 Gauss-Test ud t-test für verbudee Stichprobe 2.4.5.8 Zum Begriff der verbudee Stichprobe Verbudee Stichprobe: Vergleich zweier Merkmale X ud Y, die jetzt a deselbe Persoe erhobe werde. Vorsicht:

Mehr

Kapitel 6: Statistische Qualitätskontrolle

Kapitel 6: Statistische Qualitätskontrolle Kapitel 6: Statistische Qualitätskotrolle 6. Allgemeies Für die Qualitätskotrolle i eiem Uterehme (produzieredes Gewerbe, Diestleistugsuterehme, ) gibt es verschiedee Möglichkeite. Statistische Prozesskotrolle

Mehr

Kovarianz und Korrelation

Kovarianz und Korrelation Kapitel 2 Kovariaz ud Korrelatio Josef Leydold c 2006 Mathematische Methode II Kovariaz ud Korrelatio 1 / 41 Lerziele Mathematische ud statistische Grudlage der Portfoliotheorie Kovariaz ud Korrelatio

Mehr

Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit

Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit - 18 - (Kapitel 3 : Bedigte Wahrscheilichkeite ud Uabhägigkeit) Kapitel 3: Bedigte Wahrscheilichkeite ud Uabhägigkeit Wird bei der Durchführug eies stochastische Experimets bekat, daß ei Ereigis A eigetrete

Mehr

Einführung in die induktive Statistik. Inferenzstatistik. Konfidenzintervalle. Friedrich Leisch

Einführung in die induktive Statistik. Inferenzstatistik. Konfidenzintervalle. Friedrich Leisch Spiel Körpergröße Zahl: Azahl weiblich Eiführug i die iduktive Statistik Friedrich Leisch Istitut für Statistik Ludwig-Maximilias-Uiversität Müche Tafelgruppe 8.5 8.6 8.7 8.8 8.9 9.0 9.1 4 5 3 2 1 0 1

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brikma http://brikma-du.de Seite 1.0.014 Lösuge zur Biomialverteilug I Ergebisse: E1 E E E4 E E E7 Ergebis Ei Beroulli-Experimet ist ei Zufallsexperimet, das ur zwei Ergebisse hat. Die Ergebisse werde

Mehr

3 Wichtige Wahrscheinlichkeitsverteilungen

3 Wichtige Wahrscheinlichkeitsverteilungen 26 3 Wichtige Wahrscheilicheitsverteiluge Wir betrachte zuächst eiige Verteilugsfutioe für Produtexperimete 31 Die Biomialverteilug Wir betrachte ei Zufallsexperimet zum Beispiel das Werfe eier Müze, bei

Mehr

Grenzwertsätze, Gesetze der Großen Zahl(en)

Grenzwertsätze, Gesetze der Großen Zahl(en) Prof. Dr. Peter Michael vo der Lippe Grezwertsätze, Gesetze der Große Zahl(e) Der folgede Text ist gedacht als Begleitlektüre zu meier Vorlesug "Iduktive Statistik" i eiem Pukt, ämlich dem Kapitel 7 der

Mehr

Statistische Tests zu ausgewählten Problemen

Statistische Tests zu ausgewählten Problemen Eiführug i die statistische Testtheorie Statistische Tests zu ausgewählte Probleme Teil : Tests für Erwartugswerte Statistische Testtheorie I Eiführug Beschräkug auf parametrische Testverfahre Beschräkug

Mehr

Michael Buhlmann Mathematik > Analysis > Newtonverfahren

Michael Buhlmann Mathematik > Analysis > Newtonverfahren Michael Buhlma Mathematik > Aalysis > Newtoverfahre Eie Abbildug {a }: N -> R, die jeder atürliche Zahl eie reelle Zahl a zuordet, heißt (uedliche (Zahle- Folge: -> a oder {a } εn, a das -te Folgeglied.

Mehr

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa 20 I. Zahle, Kovergez ud Stetigkeit 4 Kovergete Folge 4. Dezimalzahle ud Itervallschachteluge. a) Reelle Zahle werde meist als Dezimalzahle dargestellt, etwa 7,304 = 0+7 +3 0 +0 00 +4 000. Edliche Dezimalzahle

Mehr

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen Testumfag für die Ermittlug ud Agabe vo Fehlerrate i biometrische Systeme Peter Uruh SRC Security Research & Cosultig GmbH peter.uruh@src-gmbh.de Eileitug Biometrische Systeme werde durch zwei wichtige

Mehr

P{k Fehlschläge vor dem ersten Erfolg} P(X=k) = p k = f(k) = p(1-p) k, k= 0, 1, 2,..., 0< p <1, F(k) = 1 - q k+1, q:=1-p, E(X) = q p, var(x) = q p 2

P{k Fehlschläge vor dem ersten Erfolg} P(X=k) = p k = f(k) = p(1-p) k, k= 0, 1, 2,..., 0< p <1, F(k) = 1 - q k+1, q:=1-p, E(X) = q p, var(x) = q p 2 GEOMETRIC geometrische Verteilug (Pascalverteilug mit r)/geometric distributio (df)/ la loi geometrique/distribució geométrica/distribuzioe geometrica P{k Fehlschläge vor dem erste Erfolg} P(Xk) k f(k)

Mehr

6 Grenzwerte von Zahlenfolgen

6 Grenzwerte von Zahlenfolgen 6 Grezwerte vo Zahlefolge Ei zetraler Begriff der Aalysis ist der des Grezwertes. Wir begie mit der Betrachtug vo Grezwerte vo Zahlefolge. 6. Zahlefolge 6.. Grudbegriffe Defiitio 6... Eie Fuktio f : Z

Mehr

Gliederung. Value-at-Risk

Gliederung. Value-at-Risk Value-at-Risk Dr. Richard Herra Nürberg, 4. Noveber 26 IVS-Foru Gliederug Modell Beispiel aus der betriebliche Altersversorgug Verteilug des Gesatschades Value-at-Risk ud Tail Value-at-Risk Risikobeurteilug

Mehr

Hilfsmittel aus der Kombinatorik, Vollständige Induktion, Reelle Zahlenfolgen

Hilfsmittel aus der Kombinatorik, Vollständige Induktion, Reelle Zahlenfolgen 7. Vorlesug im Brückekurs Mathematik 2017 Hilfsmittel aus der Kombiatorik, Vollstädige Iduktio, Reelle Zahlefolge Dr. Markus Herrich Markus Herrich Kombiatorik, Vollstädige Iduktio, Zahlefolge 1 Hilfsmittel

Mehr

Der χ 2 Test. Bei Verteilungen Beantwortung der Frage, ob eine gemessene Verteilung Gauß- oder Poisson-verteilt ist oder nicht?

Der χ 2 Test. Bei Verteilungen Beantwortung der Frage, ob eine gemessene Verteilung Gauß- oder Poisson-verteilt ist oder nicht? Der χ Test Es gibt verschiedee Arte vo Sigifikaztests Nebe Sigifikaztests, die sich mit dem Mittelwert beschäftige, gibt es auch Testverfahre für Verteiluge Bei Verteiluge Beatwortug der Frage, ob eie

Mehr

TESTEN VON HYPOTHESEN

TESTEN VON HYPOTHESEN TESTEN VON HYPOTHESEN 1. Grudlage Oft hat ma Vermutuge zu Sachverhalte ud möchte diese gere durch Experimete bestätige. Dabei ka es sich i der Praxis zum Beispiel um Verteiluge vo gewisse Zufallsgröße

Mehr

X n = 10 j Y j. i.w. i.w. i.v.

X n = 10 j Y j. i.w. i.w. i.v. 3 Grezwertsätze 3.1 Kovergez vo Zufallsvariable Betrachte wir als Beispiel die Zahle y [0, 1) i Dezimalform y =0,y 1 y 2 y 3 = y j 10 j.esseiy j die diskrete Zufallsvariable Y j :[0, 1) y j {0, 1,...,9},

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VMa Schuljahr 6/7 Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 5 Für Experte 7 Defiitioe ud Beispiele

Mehr

SBP Mathe Aufbaukurs 1. Absolute und relative Häufigkeit. Das arithmetische Mittel und seine Eigenschaften. Das arithmetische Mittel und Häufigkeit

SBP Mathe Aufbaukurs 1. Absolute und relative Häufigkeit. Das arithmetische Mittel und seine Eigenschaften. Das arithmetische Mittel und Häufigkeit SBP Mathe Aufbaukurs 1 # 0 by Clifford Wolf # 0 Atwort Diese Lerkarte sid sorgfältig erstellt worde, erhebe aber weder Aspruch auf Richtigkeit och auf Vollstädigkeit. Das Lere mit Lerkarte fuktioiert ur

Mehr

3. Taylorformel und Taylorreihen

3. Taylorformel und Taylorreihen Prof Dr Siegfried Echterhoff Aalysis Vorlesug SS 9 3 Taylorformel ud Taylorreihe Sei I R ei Itervall ud sei f : I R eie Fuktio Ziel: Wolle utersuche, wa sich die Fuktio f i eier Umgebug vo eiem Pukt I

Mehr

5.4.2 Die empirische Verteilungsfunktion als Ausgangspunkt

5.4.2 Die empirische Verteilungsfunktion als Ausgangspunkt Tests 9 5.4 Der Kolmogorov Smirov Test Grudlage für de Kolmogorov Smirov Apassugs Test ist ei Satz vo Kolmogorov, die asymptotische Verteilug eier Statistik Δ betreffed. Aus Δ ergibt sich durch Modifikatio

Mehr

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Kapitel 15 Wahrscheilichkeitstheorie ud Statistik Verstädisfrage Sachfrage 1. Erläuter Sie de Begriff der absolute ud relative Häufigkeit eier Stichprobe! 2. Erläuter Sie de Begriff der Klassehäufigkeit

Mehr

Strukturelle Modelle in der Bildverarbeitung Markovsche Ketten II

Strukturelle Modelle in der Bildverarbeitung Markovsche Ketten II Strukturelle Modelle i der Bildverarbeitug Markovsche Kette II D. Schlesiger TUD/INF/KI/IS Statioäre Verteilug Verborgee Markovsche Kette (HMM) Erkeug stochastisches Automate D. Schlesiger SMBV: Markovsche

Mehr

Grundlagen der Biostatistik und Informatik

Grundlagen der Biostatistik und Informatik Vergleich vo mehrere Stichprobe Grudlage der Biostatisti ud Iformati Hypotheseprüfuge III., Nichtparametrische Methode dr László Smeller Semmelweis Uiversität 0 Vergleich vo mehrere Stichprobe Boferroi

Mehr