Übungen zur Vorlesung Funktionentheorie Sommersemester Musterlösung zu Blatt 11. c n (z a) n,

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n,"

Transkript

1 f : a P UNIVERSIÄ DES SAARLANDES FACHRICHUNG 6. MAHEMAIK Prof. Dr. Rolad Speicher M.Sc. obias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 202 Musterlösug zu Blatt Aufgabe. Zeige Sie durch Abwadlug des Beweises zum Satz vo Mittag-Leffler: Jede Hauptteilverteilug i eier Kreisscheibe ist lösbar, d.h. ist D C eie Kreisscheibe, so gibt es zu jeder Familie {h a a P } vo Fuktioe h a O(D\{a}) der Form h a (z) m c (z a), die durch eie Mege P D idiziert wird, welche keie Häufugspukte i D hat, eie meromorphe Fuktio f auf D, dere Lauretetwicklug i jedem der Pukte a P de Hauptteil h a besitzt. Lösug. Sei D D(z 0, r 0 ) mit z 0 C ud r 0 > 0 eie beliebige Kreisscheibe i C. Wir halte zuächst fest: Die Mege P ist abzählbar. Hierzu betrachte wir die durch D : D(z 0, ( )r 0) gegebee kompakte Ausschöpfug (D ) N vo D. Da P D für alle N edlich ist, ist P N (D P ) als abzählbare Vereiigug edlicher Mege ebefalls abzählbar. Wir müsse daher ur die beide folgede Fälle betrachte: Fall : Die Mege P ist edlich. Da defiiere wir die Fuktio h a. Diese ist als Summe meromorpher Fuktioe ebefalls meromorph ud i jedem Pukt a 0 P hat ihre Lauretetwicklug de Hauptteil h a0, da die Fuktio g a0 : a P \{a 0 } Aderfalls gäbe es ämlich eie Folge vo paarweise verschiedee Pukte i P D, die da ach dem Satz vo Bolzao-Weierstraß eie gege eie Pukt i D D kovergete eilfolge besitze müsste. Die Mege P hätte demach eie Häufugspukt i D, was aber durch die Voraussetzuge der Aufgabestellug ausgeschlosse wird. h a

2 i eier Umgebug vo a 0 holomorph ist. Fall 2: Die Mege P ist abzählbar uedlich. Sei (a ) N0 eie Abzählug vo P mit 0 a 0 z 0 a z 0 a z 0 a + z Isbesodere gilt da a z 0 r 0 für, da aderfalls ei 0 < r < r 0 mit a z 0 < r für alle N existiere würde, weshalb (a ) N im Widerspruch zur Voraussetzug eie Häufugspukt i D(z 0, r) D habe müsste. Wähle wir u eie mooto wachsede Folge (ρ ) N aus (0, ) mit ρ für ud setze so köe wir festhalte, dass gilt D : D ( z 0, ρ a z 0 ) für alle N, D D 2 D D + m N D m D. () Weiter sei (ε ) N eie Folge aus (0, ) mit ε <. Da h a für N auf eier offee Obermege vo D holomorph ist (ma beachte, dass der eizige Pol vo h a im Pukt a ud damit außerhalb vo D liegt), lässt sich die Fuktio h a gleichmäßig auf der kompakte Mege D durch ihre aylorpolyome approximiere. Speziell gibt es also ei aylorpolyom p hireiched große Grades mit Wir setze max h a (z) p (z) ε. z D f : h a0 + (h a p ) ud zeige u, dass diese Reihe auf D\P ormal (ud damit kompakt) kovergiert: Ist K D\P kompakt, so fide wir wege () ei N N mit K D für alle N. Es gilt damit h a p K N h a p K + h a p D N N h a p K + ε <. Die Grezfuktio f ist ach dem Satz vo Weierstraß auf D\P holomorph ud geauer auf D meromorph, wobei ihre Lauretetwicklug um jede Pukt a P de Hauptteil h a hat, de i der at hat f h a für a P i a eie hebbare Sigularität. N Aufgabe 2. Kostruiere Sie uter Verwedug vo Aufgabe eie meromorphe Fuktio f auf der Eiheitskreisscheibe D, die eifache Pole vom Residuum geau i de Pukte aus { N} hat.

3 Lösug. Um dieses Problem i der Sprache vo Aufgabe formuliere zu köe, wähle wir { P : } N sowie h a : D\{a} C, z z a. Zu bestimme ist damit eie auf D meromorphe Fuktio f, die die Hauptteilverteilug {h a a P } löst. Hierzu verwede wir die im Beweis zu Aufgabe beschriebee Kostruktio. Ist a P \{0} gegebe, so köe wir für ρ (0, ) ud alle z ρ a achreche, dass gilt h a (z) z a a z k z a, a k+ ud erhalte damit (uter Beachtug vo a 2 ) h a (z) + m k0 z k a k+ km+ z k a k+ a k0 km+ ρ k 2 ρm+ ρ. Mit der Abzählug (a ) N0 vo P, die durch a : gegebe ist, wähle wir die + durch ρ : bestimmte Folge (ρ + ) N sowie die Polyome (+2) p (z) : k0 ( z k ) k+ für alle N ud sehe damit für D : D(0, ρ a ), dass (( h a p D 2 ρ(+)2 2( + ) ) + ) + 2( + )e (+) : ε. ρ + Wege ε < ist somit die Reihe f(z) : h a0 (z) + ( ha (z) p (z) ) z + ( z ( + ) + (+2) k0 z k ) ( ) k+ + kompakt koverget gege eie auf D meromorphe Fuktio f, die die Hauptteilverteilug {h a a P } löst. Aufgabe 3. (a) Zeige Sie, dass die durch die Vorschrift f (z) : π cot(πz) πi eπiz + e πiz e πiz e πiz gegebee Fuktio f auf C meromorph ist mit eifache Pole vom Residuum geau i de Pukte aus Z.

4 Lösug. Wir wisse, dass durch f (z) π cot(πz) π cos(πz) si(πz) auf C\Z eie holomorphe Fuktio defiiert wird. I Z hat diese wege ( si(πz) si(π) lim (z )f (z) lim π cos(πz) z z z ( d z) π cos(π) dz si(πz) eie Pol erster Ordug mit dem Residuum Res(f ; ). (b) Zeige Sie, dass auch die durch f 2 (z) : z + z 2 2 lim N N z gegebee Fuktio f 2 auf C meromorph ist ud geau i de Pukte aus Z Polstelle erster Ordug mit dem Residuum besitzt. Lösug. Ist K C\Z kompakt, so gibt es ei N N mit der Eigeschaft max z K z 2 N, ) weshalb wir max z K max z 2 2 z K 2 z 2 z 4N für alle N ud damit max z K N z 2 2 max z K 4N + z N 2 < erhalte. Es folgt somit die ormale Kovergez der die Fuktio f 2 darstellede Reihe auf C\Z, d.h. die Fuktio f 2 ist auf C\Z holomorph. Wege f 2 (z) z + lim N z 2 2 lim N N z hat diese i alle Pukte aus Z Polstelle erster Ordug mit dem Residuum. (c) Beweise Sie, dass f ud f 2 periodisch mit der Periode sid, also f (z + ) f (z) ud f 2 (z + ) f 2 (z) erfülle, ud dass ihre Differez f f 2 eie beschräkte gaze Fuktio ist.

5 Lösug. Wir reche für z C\Z ach, dass gilt ud ebeso cos(π(z + )) f (z + ) π si(π(z + )) f 2 (z + ) lim N N lim N N lim N N lim f 2 (z). ( π cos(πz + π) si(πz + π) π cos(πz) si(πz) f (z) (z + ) z ( ) z z + (N + ) z N + N N ) z Die Differezfuktio f f 2 ist damit ebefalls periodisch mit der Periode ud es gilt Res(f f 2 ; ) Res(f ; ) Res(f 2 ; ) 0 für alle Z, weshalb die Fuktio f f 2, die i de Pukte aus Z höchstes Pole erster Ordug habe köte, auf gaz C holomorph sei muss. Um zu beweise, dass f f 2 auf C beschräkt ist, müsse wir aufgrud der Periodizität ur achweise, dass f f 2 auf {z C 0 Re(z) } beschräkt ist. Hierfür reicht es aber zu zeige, dass f ud f 2 auf S R : {z C 0 Re(z), Im(z) R} für ei R > 0 beschräkt sid. Ist u s + it S R gegebe, so reche wir leicht ach, dass gilt f (s + it) π eπis e πt + e πis e πt e πt + e πt π π coth(π t ) π coth(π R ). e πis e πt e πis e πt e πt e πt Also ist f auf S R beschräkt. Ferer gilt, we wir zusätzlich R > forder, f 2 (s + it) s + it + 2(s + it) (s + it) 2 2 s2 + t + 2 s 2 + t 2 2 s 2 t 2 2 s2 + t + 2 s 2 + t t 2 s 2 R R 2 2 t ( ) 2 + t t 2 + t 2,

6 woraus wir mit der Abschätzug aus Aufgabeteil (d) t t τ dτ 2 f 2 (s + it) R erhalte. Demach ist auch f 2 auf S R beschräkt τ dτ 2 (d) Folger Sie, dass f f 2 kostat ist ud dass diese Kostate 0 sei muss. Zeige Sie hierzu zuächst lim f 2(iy) 2i dt πi. y 0 + t2 Lösug. Da die Fuktio h : [0, ) R, t + t 2 ueigetlich Riema-itegrierbar ist, erhalte wir für alle > t dt ud daraus, weil h mooto falled ist, eierseits ud adererseits t dt t dt t 2 dt + t 2 dt + ( ) t 2 dt + ( + ) ( + ) ,

7 so dass sich für ergibt Es gilt also ( lim f 2(it) lim t t it 0 dt lim + t it ) 2i t dt iπ, + t2 wobei wir für das letzte Gleichheitszeiche de bekate Itegralwert 0 + t 2 dt π 2 verwedet habe. (Dieser lässt sich auch mit Hilfe des Residuesatzes bestimme.) Weiter köe wir achreche, dass ud damit lim f (it) lim πi e πt + e πt πi t t e πt eπt lim f (it) f 2 (it) 0 t gilt. Da f f 2 als beschräkte gaze Fuktio ach dem Satz vo Liouville kostat sei muss, folgt damit f f 2 0. (e) Leite Sie aus de voragegagee Aufgabeteile die folgede Partialbruchzerlegug her: π cot(πz) z + z 2 2 Lösug. Für alle z C\Z gilt (f) Folger Sie die Produktdarstellug π cot(πz) f (z) f 2 (z) z + z 2 2. si(πz) πz ( z2 2 ). Nutze Sie dabei aus, dass für die Fuktio gilt. g (z) g(z) π cot(πz) g : C C, z si(πz)

8 kovergiert, kovergiert auch das uedliche Pro- Lösug. Da die Reihe dukt z 2 ( z2 2 ), z C, kompakt gege eie auf C holomorphe Fuktio h mit Nullstelle i de Pukte aus Z. Da die Folge (P m ) m N der Partialprodukte P m (z) : z m ( z2 2 ) auf C kompakt kovergiert, kovergiert ach dem Satz vo Weierstraß auch die Folge ( P m Pm ) m N der logarithmische Ableituge (vgl. Aufgabe (a) vo Blatt 5) P m(z) P m (z) m z + 2 z 2 z2 z + 2 kompakt auf C\Z gege die logarithmische Ableitug vo h. Weil u aber ud damit ( h g m z 2 2 h (z) h(z) z + z 2 π coth(πz) 2 h (z) h(z) π coth(πz) g (z) g(z) für alle z C\Z ) (z) h (z)g(z) h(z)g (z) g(z) 2 0 für alle z C\Z erfüllt ist, muss h g auf C\Z kostat sei, d.h. es gilt ud damit z ( z2 2 ) h(z) cg(z) c si(πz) für alle z C c si(πz) z ( z2 2 ) mit eier Kostate c C. Der Grezübergag z 0 liefert da cπ ud wir erhalte si(πz) ) ( z2. πz 2 Aufgabe 4. Sei f : D D eie holomorphe Fuktio, die f(a) a ud f(b) b für zwei verschiedee Pukte a, b D erfüllt. Zeige Sie, dass da scho f(z) z für alle z D gelte muss. Hiweis: Überlege Sie sich zuächst, dass f ei Automorphismus vo D sei muss.

9 Lösug. Wir betrachte de Automorphismus φ a : D D, z a z az, der klarerweise φ a (0) a erfüllt. Wir setze g : φ a gilt ud g(0) φ a (f(φ a (0))) φ (f(a)) φ a (a) 0 g(z 0 ) φ a (f(b)) φ a (b) z 0. a f φ a ud z 0 : φ a (b) 0. Da Das Lemma vo Schwarz besagt u, dass g wege g(0) 0 ei Automorphismus vo D ud geauer eie Drehug sei muss, d.h. es gibt ei ζ D mit g(z) ζz. Weil aber auch g(z 0 ) z 0 erfüllt sei muss, erzwigt dies ζ ud damit g id D. Es folgt schließlich f φ a g φ a id D ud damit die Behauptug. Aufgabe 5. Gibt es eie holomorphe Fuktio f : D D, die die beide Bediguge ( f 2) 3 ( ) ud f erfüllt? Lösug. Wir zeige zuächst die folgede Hilfsaussage: Lemma (Schwarz-Pick). Sei f : D D holomorph. Da gilt für alle z, w D mit z w f(z) f(w) z w. f(z)f(w) zw für alle z D f (z) f(z) 2 z. 2 Beweis. Ist z D gegebe, so liefert g z : φ f(z) f φ z eie holomorphe Fuktio g z : D D, die überdies g z (0) φ f(z) (f(φ z (0))) φ f(z) (f(z)) 0 erfüllt. Nach dem Lemma vo Schwarz gilt somit Isbesodere erhalte wir g z (w) w für alle w D. g z (φ z (w)) φ z (w) für alle w D, weshalb sich wege φ z φ z id D f(z) f(w) z w f(z)f(w) zw für alle w D

10 ud damit die erste Behauptug ergibt. Aus dieser folgt u für z w D ud schließlich für w z f(z) f(w) f(z)f(w) z w f (z) f(z) 2 z 2, d.h. wir habe auch die zweite Behauptug bewiese. zw Direkter ergibt sich die zweite Aussage mit der folgede Überlegug: Für z D erfüllt die obe defiierte Fuktio g z ach dem Lemma vo Schwarz auch die Bedigug g z(0). Da, wie ma leicht achrechet, gilt, ergibt sich mit Hilfe der Ketteregel φ a(w) a 2 ( aw) 2 für alle a, w D g z(0) φ f(z)(f(φ z (0))f (φ z (0))φ z(0) f(z) 2 ( f(z)f(z)) 2 f (z) ( z 2 ) z 2 f(z) 2 f (z) ud damit wieder die zweite der obige Behauptuge. Wir ehme u a, es gäbe eie Fuktio f mit de i der Aufgabestellug geforderte Eigeschafte. Da f da eie holomorphe Abbildug vo D i sich ist, besagt das Lemma vo Schwarz-Pick, dass f (z) f(z) für alle z D (2) 2 z 2 gelte muss. Speziell für z 2 habe wir aber ud was wege 32 f gebe. > f 2 (z) f(z) 3 2 ( ) z 2 ( ) 2 4 3, im Widerspruch zu (2) steht. Es ka also keie solche Fuktio

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Rolad Speicher M.Sc. Tobias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 01 Musterlösug zu Blatt 0 Aufgabe 1. Käpt Schwarzbart,

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004 Lösuge zu Aufgabeblatt 7

Mehr

4 Konvergenz von Folgen

4 Konvergenz von Folgen 4 Kovergez vo Folge Defiitio 4.. Sei M eie Mege. Ist 0 Z ud für jedes Z mit 0 ei a M gegebe, so et ma die Abbildug { Z; 0 } M, a eie Folge i M. Abkürzed schreibt ma für eie solche Abbildug auch a ) 0 oder

Mehr

Aufgaben und Lösungen der Probeklausur zur Analysis I

Aufgaben und Lösungen der Probeklausur zur Analysis I Fachbereich Mathematik AG 5: Fuktioalaalysis Prof. Dr. K.-H. Neeb Dipl.-Math. Rafael Dahme Dipl.-Math. Stefa Wager ATECHNISCHE UNIVERSITÄT DARMSTADT SS 007 19. Jui 007 Aufgabe ud Lösuge der Probeklausur

Mehr

Musterlösung zu Übungsblatt 2

Musterlösung zu Übungsblatt 2 Prof. R. Padharipade J. Schmitt C. Schießl Fuktioetheorie 25. September 15 HS 2015 Musterlösug zu Übugsblatt 2 Aufgabe 1. Reelle Fuktioe g : R R stelle wir us üblicherweise als Graphe {(x, g(x)} R R vor.

Mehr

Aufgaben zur Analysis I

Aufgaben zur Analysis I Aufgabe zur Aalysis I Es werde folgede Theme behadelt:. Logik, Iduktio, Mege, Abbilduge 2. Supremum, Ifimum 3. Folge, Fuktioefolge 4. Reihe, Potezreihe 5. Mootoie ud Stetigkeit 6. Differetialrechug 7.

Mehr

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung 6. Übugsblatt Aufgabe mit Lösuge + Selbsttest-Auflösug Aufgabe 6: Utersuche Sie die Folge, dere Glieder ute für N agegebe sid, auf Beschräktheit, Mootoie ud Kovergez bzw. Beschräktheit, Mootoie ud Kovergez

Mehr

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I Uiversität des Saarlades Fakultät für Mathematik ud Iformatik Witersemester 2003/04 Prof. Dr. Joachim Weickert Dr. Marti Welk Dr. Berhard Burgeth Lösuge der Aufgabe zur Vorbereitug auf die Klausur Mathematik

Mehr

1 Lösungen zu Analysis 1/ 12.Übung

1 Lösungen zu Analysis 1/ 12.Übung Lösuge ausgewählter Beispiele zu Aalysis I, G. Bergauer, Seite Lösuge zu Aalysis / 2.Übug. Eileitug Gleichmäßige Kovergez ist eie starke Eigeschaft eier Fuktioefolge. Formuliert ma sie für Netze, statt

Mehr

6. Die Gamma-Funktion

6. Die Gamma-Funktion 6.. Die Gamma-Futio ist für C mit Re > 0 defiiert durch Γ( := 0 t e t dt (Euler-Itegral. Bemerug. Es ist t e t = t x e t mit x = Re. Beatlich overgiert 0 t x e t dt für x > 0 (das ist die reelle Gamma-Futio.

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

Kapitel 4: Stationäre Prozesse

Kapitel 4: Stationäre Prozesse Kapitel 4: Statioäre Prozesse M. Scheutzow Jauary 6, 2010 4.1 Maßerhaltede Trasformatioe I diesem Kapitel führe wir zuächst de Begriff der maßerhaltede Trasformatio auf eiem Wahrscheilichkeitsraum ei ud

Mehr

Mathematik für Wirtschaftswissenschaftler Beispiele, Graken, Beweise. c Uwe Jensen

Mathematik für Wirtschaftswissenschaftler Beispiele, Graken, Beweise. c Uwe Jensen Mathematik für Wirtschaftswisseschaftler Beispiele, Grake, Beweise c Uwe Jese 8. Oktober 2007 Ihaltsverzeichis 4 Folge, Reihe, Grezwerte, Stetigkeit 47 4. Folge ud Reihe............................ 47

Mehr

SUCHPROBLEME UND ALPHABETISCHE CODES

SUCHPROBLEME UND ALPHABETISCHE CODES SUCHPROBLEME UND ALPHABETISCHE CODES Der Problematik der alphabetische Codes liege Suchprobleme zugrude, dere Lösug dem iformatiostheoretische Problem der Fidug eies (optimale) alphabetische Codes gleich

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man:

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man: Gleichmäßige Kovergez Wir betrachte im Folgede Abbilduge f : M N, wobei M eie Mege ud N ei metrischer Raum ist. Isbesodere iteressiere ud Folge f vo solche Abbilduge. Eie solche Folge bestimmt für jedes

Mehr

Zahlenfolgen und Konvergenzkriterien

Zahlenfolgen und Konvergenzkriterien www.mathematik-etz.de Copyright, Page of 7 Zahlefolge ud Kovergezkriterie Defiitio: (Zahle-Folge, Grezwert) Eie Folge ist eie Abbildug der atürliche Zahle i die Mege A. Es ist also im Fall A: ; f: mit

Mehr

Nennenswertes zur Stetigkeit

Nennenswertes zur Stetigkeit Neeswertes zur Stetigkeit.) Puktweise Stetigkeit: Vo Floria Modler Defiitio der pukteweise Stetigkeit: Eie Fuktio f : D R ist geau da i x D stetig, we gilt: ε > δ >, so dass f ( x) f ( x ) < ε x D mit

Mehr

Transformator. n Windungen

Transformator. n Windungen echische iversität Dresde stitut für Ker- ud eilchephysik R. Schwierz V/5/29 Grudpraktikum Physik Versuch R rasformator rasformatore werde i viele ereiche der Elektrotechik ud Elektroik eigesetzt. Für

Mehr

Bitte schicken Sie mir eine E-mail, wenn Sie einen Fehler gefunden haben 1. Moritz Kaßmann

Bitte schicken Sie mir eine E-mail, wenn Sie einen Fehler gefunden haben 1. Moritz Kaßmann Das folgede Skript zur Vorlesug Spezielle Aspekte der Aalysis für Studierede des Lehramts a Grud, Haupt ud Realschule wird fortlaufed aktualisiert ud verädert werde. Das Skript ethält bei weitem icht alle

Mehr

1 Funktionen und Flächen

1 Funktionen und Flächen Fuktioe ud Fläche. Fläche Defiitio: Die Ebee R ist defiiert als Mege aller geordete Paare vo reelle Zahle: R = {(,, R} Der erste Eitrag heißt da auch Koordiate ud der zweite Koordiate. Für zwei Pukte (,,

Mehr

1 Grenzwerte und Stetigkeit bei Funktionen mehrerer Variablen

1 Grenzwerte und Stetigkeit bei Funktionen mehrerer Variablen KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffma SS 204 6.04.204 Höhere Mathematik II für die Fachrichtug Iformatik. Saalübug (6.04.204) Grezwerte ud Stetigkeit

Mehr

4. Die Menge der Primzahlen. Bertrands Postulat

4. Die Menge der Primzahlen. Bertrands Postulat O. Forster: Eiführug i die Zahletheorie 4. Die Mege der Primzahle. Bertrads Postulat 4.1. Satz (Euklid. Es gibt uedlich viele Primzahle. Beweis. Wir zeige, dass es zu jeder edliche Mege p 1, p 2,..., p

Mehr

1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig.

1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig. 1.3 Fuktioe Seie M ud N Mege f : M N x M : 1 y N : y fx et ma Fuktio oder Abbildug. Beachte: Zuordug ist eideutig. Bezeichuge: M : Defiitiosbereich N : Bildbereich Zielmege vo f Der Graph eier Fuktio:

Mehr

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable Allgemeie Lösuge der -dimesioale Laplace-Gleichug ud ihre komplexe Variable Dr. rer. at. Kuag-lai Chao Göttige, de 4. Jauar 01 Abstract Geeral solutios of the -dimesioal Laplace equatio ad its complex

Mehr

Angabe Analysis 1 - Beweise, Vollständige Induktion, Folgen

Angabe Analysis 1 - Beweise, Vollständige Induktion, Folgen Agabe Aalysis - Beweise, Vollstädige Idutio, Folge 4. März 0 Aufgabe : Zum Aufwärme i Zeige durch geschictes Umforme, dass + + gilt. +!!!!!! +!! +! + + + + + ii Zeige durch vollstädige Idutio, dass 6 +

Mehr

Musterlösung zu Blatt 8 der Vorlesung Analysis I WS08/09

Musterlösung zu Blatt 8 der Vorlesung Analysis I WS08/09 Musterlösug zu Blatt 8 der Vorlesug Aalysis I WS08/09 Schriftliche Aufgabe Aufgabe. Voraussetzuge: Für alle N setze a : +2 ud b : ( 2. [Amerkug: I der Aufgabestellug heiÿe die Reihe beide gleich. Es steht

Mehr

Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln

Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln 6 Kovergete Folge Lerziele: Kozepte: Grezwertbegriff bei Folge, Wachstumsgeschwidigkeit vo Folge Resultat: Mootoe beschräkte Folge sid koverget. Methode: Hero-Verfahre, Erweiterug vo Differeze vo Quadratwurzel

Mehr

Klausur 1 über Folgen

Klausur 1 über Folgen www.mathe-aufgabe.com Klausur über Folge Hiweis: Der GTR darf für alle Aufgabe eigesetzt werde. Aufgabe : Bestimme eie explizite ud eie rekursive Darstellug! a) für eie arithmetische Folge mit a = 6, ;

Mehr

3.2 Potenzreihen und komplexe Taylorentwicklung

3.2 Potenzreihen und komplexe Taylorentwicklung 40 Kapitel 3. Holomorphe Fuktioe 3.2 Potezreihe ud komplexe Tayloretwicklug Wede wir us u de Reiheetwickluge vo Fuktioe zu. 3.2. Defiitio Uter eier Potezreihe um de Pukt z 0 C versteht ma eie Reihe der

Mehr

Wir weisen die Gültigkeit der 4Axiome der sigma-algebra für die Potenzmenge einer endlichen Menge A nach!

Wir weisen die Gültigkeit der 4Axiome der sigma-algebra für die Potenzmenge einer endlichen Menge A nach! Lösug zu Übug 4 Prof. Dr. B.Grabowski E-Post: grabowski@htw-saarlad.de Zu Aufgabe ) Wir weise die Gültigkeit der 4Axiome der sigma-algebra für die Potezmege eier edliche Mege A ach! ) Die leere Mege ud

Mehr

Aufgaben zu Kapitel 8

Aufgaben zu Kapitel 8 Aufgabe zu Kapitel 8 Aufgabe zu Kapitel 8 Verstädisfrage Aufgabe 8. Ist es möglich, eie divergete Reihe der Form a zu kostruiere, wobei alle a > 0 sid ud a 0 gilt. Beispiel oder Gegebeweis agebe. Aufgabe

Mehr

7. Potenzreihen und Taylor-Reihen

7. Potenzreihen und Taylor-Reihen 7. Potezreihe ud Taylor-Reihe 39 7. Potezreihe ud Taylor-Reihe Mit Hilfe der Cauchysche Itegralformel wolle wir u i diesem Kapitel ei weiteres sehr zetrales Resultat der Fuktioetheorie herleite, ämlich

Mehr

1. Zahlenfolgen und Reihen

1. Zahlenfolgen und Reihen . Zahlefolge ud Reihe We ma eie edliche Mege vo Zahle hat, ka ma diese i eier bestimmte Reihefolge durchummeriere: {a,a 2,...,a }. Ma spricht vo eier edliche Zahlefolge. Fügt ma immer mehr Zahle hizu,

Mehr

α : { n Z n l } n a n IR

α : { n Z n l } n a n IR 1 KAPITEL VI. ZAHLENFOLGEN UND REIHEN 1) REELLE ZAHLENFOLGEN: i) Jede Abbildug α : IN a IR heiÿt 'reelle Zahlefolge' bzw. 'Folge i IR'. Ma otiert diese i der Form α = a ) IN = a ) =0 = a 0, a 1, a 2,...)

Mehr

Übungsblatt 1 zur Vorlesung Angewandte Stochastik

Übungsblatt 1 zur Vorlesung Angewandte Stochastik Dr Christoph Luchsiger Übugsblatt 1 zur Vorlesug Agewadte Stochastik Repetitio WT Herausgabe des Übugsblattes: Woche 9, Abgabe der Lösuge: Woche 1 (bis Freitag, 1615 Uhr), Rückgabe ud Besprechug: Woche

Mehr

Zahlenfolgen, Grenzwerte und Zahlenreihen

Zahlenfolgen, Grenzwerte und Zahlenreihen KAPITEL 5 Zahlefolge, Grezwerte ud Zahlereihe. Folge Defiitio 5.. Uter eier Folge reeller Zahle (oder eier reelle Zahlefolge) versteht ma eie auf N 0 erlarte reellwertige Futio, die jedem N 0 ei a R zuordet:

Mehr

Algebra und Zahlentheorie WS 13/14 Lösungsskizzen zu Zettel 5 PD Dr. Tobias Finis Frederik Garbe, Huy Le Duc

Algebra und Zahlentheorie WS 13/14 Lösungsskizzen zu Zettel 5 PD Dr. Tobias Finis Frederik Garbe, Huy Le Duc Algebra ud Zahletheorie WS 13/14 Lösugsskizze zu Zettel 5 FU Berli Dozet: Tutore: Zetralübug: PD Dr. Tobias Fiis Frederik Garbe, Huy Le Duc David Müßig Bitte beachte: Diese Lösuge sid Lösugsskizze. Es

Mehr

1.2. Taylor-Reihen und endliche Taylorpolynome

1.2. Taylor-Reihen und endliche Taylorpolynome 1.. aylor-reihe ud edliche aylorpolyome 1..1 aylor-reihe Wir köe eie Fuktio f() i eier Umgebug eies Puktes o gut durch ihre agete i o: t o () = f(o) + f (o) (-o) aäher: Wir sehe: Je weiter wir vo o weg

Mehr

Indizieren Sie die folgenden Summen und Produkte gemäß der Vorgabe um und schreiben Sie sie einmal explizit aus: 5

Indizieren Sie die folgenden Summen und Produkte gemäß der Vorgabe um und schreiben Sie sie einmal explizit aus: 5 FU Berli: WiSe 13-14 (Aalysis 1 - Lehr.) Übugsaufgabe Zettel 9 Aufgabe 37 Idiziere Sie die folgede Summe ud Produte gemäß der Vorgabe um ud schreibe Sie sie eimal explizit aus: 5 (a) + 1) 0( Lösug. Die

Mehr

6. Folgen und Grenzwerte

6. Folgen und Grenzwerte 56 Adreas Gathma 6. Folge ud Grezwerte Wie scho am Ede des letzte Kapitels ageküdigt wolle wir u zur eigetliche Aalysis, also zur lokale Utersuchug vo Fuktioe komme. Der zetrale Begriff ist dabei der des

Mehr

Einige wichtige Ungleichungen

Einige wichtige Ungleichungen Eiige wichtige Ugleichuge Has-Gert Gräbe, Leipzig http://www.iformatik.ui-leipzig.de/~graebe 1. Februar 1997 Ziel dieser kurze Note ist es, eiige wichtige Ugleichuge, die i verschiedee Olympiadeaufgabe

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Seminar De Rham Kohomologie und harmonische Differentialformen - 2. Sitzung

Seminar De Rham Kohomologie und harmonische Differentialformen - 2. Sitzung Semiar De Rham Kohomologie ud harmoische Differetialforme - 2. Sitzug Torste Hilgeberg 26. April 24 1 Orietierug Defiitio: Zwei Karte heiße orietiert verbude, we das Differetial des Kartewechsels positive

Mehr

Mathematik Funktionen Grundwissen und Übungen

Mathematik Funktionen Grundwissen und Übungen Mathematik Fuktioe Grudwisse ud Übuge Potezfuktio Hyperbel Epoetialfuktio Umkehrfuktio Stefa Gärter 004 Gr Mathematik Fuktioe Seite Grudwisse Potezfuktio Defiitio Durch die Zuordugsvorschrift f: Æ mit

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

III. Konvergenz von Folgen und Reihen

III. Konvergenz von Folgen und Reihen III.. Die Betragsfuktio metrische Räume 4 III. Kovergez vo Folge ud Reihe Durch die Betragsfuktio erhalte wir auf de reelle Zahle eie Abstadsbegriff ud somit eie metrische Struktur. Wir köe u Kovergez

Mehr

Mathematik Abiturwissen. Script von Michael Telgkamp Vorlesung Dr. Bruder

Mathematik Abiturwissen. Script von Michael Telgkamp Vorlesung Dr. Bruder Mathematik Abiturwisse Script vo Michael Telgkamp Vorlesug Dr. Bruder . Eiführug Abiturwisse Mathematik / 9. Zahlebereiche: N atürliche Zahle Z gaze Zahle Q ratioale Zahle R reelle Zahle C komplee Zahle

Mehr

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $ Mathematik für Iformatiker B, SS 0 Diestag 5.6 $Id: folge.tex,v. 0/06/05 ::8 hk Exp $ 6 Folge 6.4 Folge reeller Zahle I der letzte Sitzug habe wir de Begriff des Grezwerts eier Folge i eiem metrische Raum

Mehr

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD.

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD. ZAHLENFOLGEN Eiführede Beispiele Arithmetische Folge Datei Nr. 400 SW Das komplette Mauskript befidet sich auf der Mathematik - CD Friedrich Buckel Februar 00 Iteratsgymasium Schloß Torgelow Ihalt Eiführede

Mehr

Ein kleines Einmaleins über Mittelwertbildungen

Ein kleines Einmaleins über Mittelwertbildungen Vorlesugsergäzug zur Igeieurmathematik R.Brigola Ei kleies Eimaleis über Mittelwertbilduge Grudlage über arithmetische Mittel, geometrische Mittel, harmoische Mittel, quadratische Mittel ud das arithmetisch-geometrische

Mehr

Wintersemester 2006/2007, Universität Rostock Abgabetermin: spätestens 24.10.2006, 09:00 Uhr. Aufgabe 1.1: (5 P)

Wintersemester 2006/2007, Universität Rostock Abgabetermin: spätestens 24.10.2006, 09:00 Uhr. Aufgabe 1.1: (5 P) Serie Abgabetermi: spätestes 24.0.2006, 09:00 Uhr Aufgabe.: 5 P Zeige Sie, dass das geometrische Mittel icht größer ist als das arithmetische Mittel, d.h., dass für alle Zahle a, b R mit a, b 0 gilt ab

Mehr

5.7. Aufgaben zu Folgen

5.7. Aufgaben zu Folgen 5.7. Aufgabe zu Folge Aufgabe : Lieares ud beschräktes Wachstum Aus eiem Quadrat mit der Seiteläge dm gehe auf die rechts agedeutete Weise eue Figure hervor. Die im -te Schritt agefügte Quadrate sid jeweils

Mehr

Einführung in die Grenzwerte

Einführung in die Grenzwerte Eiführug i die Grezwerte Dieser Text folgt hauptsächlich der Notwedigkeit i sehr kurzer Zeit eie Idee ud Teile ihrer Awedug zu präsetiere, so dass relativ schell mit dieser Idee gerechet werde ka. Der

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3

Mehr

Computer-Graphik II Verallgemeinerte Baryzentrische Koordinaten

Computer-Graphik II Verallgemeinerte Baryzentrische Koordinaten 4/22/10 lausthal omputer-raphik II Verallgemeierte Baryzetrische Koordiate. Zachma lausthal Uiversity, ermay zach@i.tu-clausthal.de Verallgemeieruge der baryzetr. Koord. 1. Was macht ma im 2D bei (kovexe)

Mehr

Statistik I Februar 2005

Statistik I Februar 2005 Statistik I Februar 2005 Aufgabe 0 Pukte Ei Merkmal X mit de mögliche Auspräguge 0 ud, das im Folgede wie ei kardialskaliertes Merkmal behadelt werde ka, wird a Merkmalsträger beobachtet. Dabei bezeichet

Mehr

1 Analysis T1 Übungsblatt 1

1 Analysis T1 Übungsblatt 1 Aalysis T Übugsblatt A eier Weggabelug i der Wüste lebe zwei Brüder, die vollkomme gleich aussehe, zwische dee es aber eie gewaltige Uterschied gibt: Der eie sagt immer die Wahrheit, der adere lügt immer.

Mehr

Kapitel II Der Galton-Watson-Prozeß mit Immigration

Kapitel II Der Galton-Watson-Prozeß mit Immigration Kapitel II Der Galto-Watso-Prozeß mit Immigratio I diesem Kapitel werde wir das Modell des eifache GWP s um die Kompoete der Immigratio erweiter, was bedeutet, daß sich die Geeratioe der betrachtete Populatio

Mehr

1 Vollständige Induktion

1 Vollständige Induktion 1 Vollstädige Idutio 1.1 Idutiosbeweise Das Beweisprizip der vollstädige Idutio ist eies der wichtigste Hilfsmittel der Mathemati icht ur der Aalysis. Es fidet Verwedug bei pratische alle Aussage, die

Mehr

Kapitel 6: Statistische Qualitätskontrolle

Kapitel 6: Statistische Qualitätskontrolle Kapitel 6: Statistische Qualitätskotrolle 6. Allgemeies Für die Qualitätskotrolle i eiem Uterehme (produzieredes Gewerbe, Diestleistugsuterehme, ) gibt es verschiedee Möglichkeite. Statistische Prozesskotrolle

Mehr

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3 INHALTSVERZEICHNIS AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2 Datefluß ud Programmablauf 2 Vorbedigug 3 Nachbedigug 3 Schleifeivariate 3 KONSTRUKTION 4 ALTERNATIVE ENTWURFSMÖGLICHKEITEN 5 EFFEKTIVE

Mehr

Die erste Zeile ("Nummerierung") denkt man sich also dazu. Häufig wird eine Indexschreibweise benutzt um ein Folgenglied zu kennzeichnen.

Die erste Zeile (Nummerierung) denkt man sich also dazu. Häufig wird eine Indexschreibweise benutzt um ein Folgenglied zu kennzeichnen. Folge ud Reihe (Izwische Stoff der Hochschule. ) Stad: 30.03.205. Folge Was sid Zahlefolge? Z.B. oder Das ist die vereifachte Wertetabelle eier Fuktio geschriebe wie üblich bei Fuktioe i eier Wertetabelle.

Mehr

Übungsaufgaben zur Vorlesung ANALYSIS I (WS 12/13) Serie 10

Übungsaufgaben zur Vorlesung ANALYSIS I (WS 12/13) Serie 10 Humboldt-Uiversität zu Berli Istitut für Mathematik Prof. A. Griewak Ph.D.; Dr. A. Hoffkamp; Dipl.Math. T.Bosse; Dipl.Math. L. Jase Übugsaufgabe zur Vorlesug ANALYSIS I (WS 2/3) Serie 0 Musterlösug S.

Mehr

Zusammenfassung Wirtschaftsinformatik Stefan Käßmann

Zusammenfassung Wirtschaftsinformatik Stefan Käßmann I. Iformatio ud Nachricht 1. Iformatio ud Nachricht - Nachricht (Sytax), Sigale, Zeiche - Iformatio (Sematik), bit - Rausche 2. digitale Nachrichte - digitale Sigale (Sigalparameter aus edlicher Zeichevorrat)

Mehr

Aufgaben zur vollständigen Induktion

Aufgaben zur vollständigen Induktion c 7 by Raier Müller - Aufgabe zur vollstädige Idutio We ichts aderes agegebe ist, da gelte die Behauptuge für IN {; ; ;...}. A) Teilbareit: ) ist gerade (d.h. durch teilbar). ) ist durch teilbar. ) ist

Mehr

Die Gammafunktion. 1 Motivation und Definition der Gammafunktion

Die Gammafunktion. 1 Motivation und Definition der Gammafunktion Vortrag zum Semiar zur Futioetheorie, 4..8 Miriam Tamm I diesem Vortrag werde wir us mit der Gammafutio beschäftige. Sie ist eie der wichtigste mathematische Futioe ud eie der eifachste vo de ichtelemetare

Mehr

Streifzug durch die Welt der Binome und darüber hinaus

Streifzug durch die Welt der Binome und darüber hinaus www.mathemati-etz.de Copyright, Page 1 of 6 Streifzug durch die Welt der Biome ud darüber hiaus Die biomische Formel sid ützliche Istrumete, welche i viele Gebiete der Mathemati gewibriged eigesetzt werde

Mehr

Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen. Reihen reeller Zahlen

Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen. Reihen reeller Zahlen Höhere Mathematik für techische Studiegäge Vorereitugsaufgae für die Üuge Reihe reeller Zahle. Utersuche Sie die folgede Reihe mit Hilfe geeigeter Kovergezkriterie otwediges Kovergezkriterium, Quotiete-,

Mehr

2. Diophantische Gleichungen

2. Diophantische Gleichungen 2. Diophatische Gleichuge [Teschl05, S. 91f] 2.1. Was ist eie diophatische Gleichug ud wozu braucht ma sie? Def D2-1: Eie diophatische Gleichug ist eie Polyomfuktio i x,y,z,, bei der als Lösuge ur gaze

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12 Mthemtisches Istitut der Uiversität Müche Prof. Dr. Peter Otte WiSe 203/4 Lösug 2 2.0.204 Aufgbe 2. [8 Pute] Übuge zur Alysis für Iformtier ud Sttistier Lösug zu Bltt 2 Für eie Teilmege Ω R, sei {, flls

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 2 Vollstädige Iduktio 22 2 Vollstädige Iduktio Die vollstädige Iduktio ist ei Beweisverfahre der Mathematik, das sich vom allgemeie Beweisverfahre abhebt. Prizipiell ka ma beim Beweise zwei Situatioe uterscheide.

Mehr

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer vo Prof. Dr. Ig. Dirk Rbe FH Emde/Leer Überblick: Folge ud Reihe Folge: Zhlefolge ( ) ; ; ; ist eie geordete Liste vo Zhle ( IN) : Glieder der Folge f(): Bildugsgesetz (eplizit i oder rekursiv) z.b.: (

Mehr

Prof. Dr. Holger Dette Musterlösung Statistik I Sommersemester 2009 Dr. Melanie Birke Blatt 5

Prof. Dr. Holger Dette Musterlösung Statistik I Sommersemester 2009 Dr. Melanie Birke Blatt 5 Prof. Dr. Holger Dette Musterlösug Statistik I Sommersemester 009 Dr. Melaie Birke Blatt 5 Aufgabe : 4 Pukte Sei X eie Poissoλ verteilte Zufallsvariable mit λ > 0, ud die Verlustfuktio L sei defiiert durch

Mehr

Logarithmus - Übungsaufgaben. I. Allgemeines

Logarithmus - Übungsaufgaben. I. Allgemeines Eie Gleichug höhere Grdes wie z. B. Gymsium / Relschule Logrithmus - Üugsufge Klsse 0 I. Allgemeies k ch ufgelöst werde, idem m die Wurzel zieht. Tritt die Uekte jedoch im Epoete eier Potez uf, spricht

Mehr

Übungen mit dem Applet Taylor-Entwickung von Funktionen

Übungen mit dem Applet Taylor-Entwickung von Funktionen Taylor-Etwickug vo Fuktioe Übuge mit dem Applet Taylor-Etwickug vo Fuktioe Ziele des Applets... Mathematischer Hitergrud... 3 Vorschläge für Übuge... 3 3. Siusfuktio si(...3 3. Cosiusfuktio cos(...4 3.3

Mehr

Lösungsskizzen Mathematik für Informatiker 5. Aufl. Kapitel 3 Peter Hartmann

Lösungsskizzen Mathematik für Informatiker 5. Aufl. Kapitel 3 Peter Hartmann Lösugsskizze Mathematik für Iformatiker 5. Aufl. Kapitel 3 Peter Hartma Verstädisfrage. Ka ma ei Axiom beweise? Nei!. Ka ei Beweis eier Aussage richtig sei, we im Iduktiosschluss die Iduktiosaahme icht

Mehr

Solutions Übungsblatt 12

Solutions Übungsblatt 12 Futioetheorie, SS 204 Solutios Übugsblatt 2 Aufgabe : Es sei g eie meromorphe Futio auf C mit höchstes eifache Pole. Wir ehme a, dass das Residuum a jedem Pol vo g eie gae Zahl ist. Zeige Sie: a) Es existiert

Mehr

Übungen mit dem Applet Fourier-Reihen

Übungen mit dem Applet Fourier-Reihen Fourier-Reihe 1 Übuge mit dem Applet Fourier-Reihe 1 Mathematischer Hitergrud... Übuge mit dem Applet... 3.1 Eifluss der Azahl ud der Sprugstelle...3. Eifluss vo y-verschiebug ud Amplitude...4.3 Eifluss

Mehr

Beschreibende Statistik Kenngrößen in der Übersicht (Ac)

Beschreibende Statistik Kenngrößen in der Übersicht (Ac) Beschreibede Statistik Kegröße i der Übersicht (Ac) Im folgede wird die Berechugsweise des TI 83 (sowie vo SPSS, s. ute) verwedet. Diese geht auf eie Festlegug vo Moore ud McCabe (00) zurück. I der Literatur

Mehr

186.813 Algorithmen und Datenstrukturen 1 VU 6.0 1. Übungstest SS 2012 26. April 2012

186.813 Algorithmen und Datenstrukturen 1 VU 6.0 1. Übungstest SS 2012 26. April 2012 Techische Uiversität Wie Istitut für Computergraphik ud Algorithme Arbeitsbereich für Algorithme ud Datestrukture 186.813 Algorithme ud Datestrukture 1 VU 6.0 1. Übugstest SS 2012 26. April 2012 Mache

Mehr

Grundkompetenz-Aufgaben

Grundkompetenz-Aufgaben Durch starte Mathematik übugsbuch bis Grudkompetez-Aufgabe Aufgrud der eue schriftliche Reifeprüfug i Mathematik ist es otwedig, sich mit de eue Grudkompetez-Aufgabe auseiaderzusetze. Die Olie-Ergäzug

Mehr

Die eindeutige Duplizierung und Replizierung mit speziellen Supplementsystemen. Rudolf Pleier

Die eindeutige Duplizierung und Replizierung mit speziellen Supplementsystemen. Rudolf Pleier Die eideutige Duplizierug ud Replizierug mit spezielle Supplemetsysteme Rudolf Pleier D-92694 tzerict, Mai 2015 Ialtsverzeicis 1 1 Die xistez ud izigeit der Duplizierug ud der Replizierug mit Termigescäfte...

Mehr

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222 Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Istitut für tochastik Prof. Dr. N. Bäuerle Dipl.-Math.. Urba Lösugsvorschlag 9. Übugsblatt zur Vorlesug Fiazmathematik I Aufgabe Ei euartiges Derivat) Wir sid i eiem edliche, arbitragefreie Fiazmarkt,

Mehr

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares 4 6 Fachgebiet Regelugstechik Leiter: Prof. Dr.-Ig. Joha Reger Kleies Matrix-ABC 1 Eleetares Eie ( )-Matrix ist eie rechteckige Aordug vo reelle oder koplexe Zahle a ij (auch Skalare geat) ud besteht aus

Mehr

Eingangsprüfung Stochastik,

Eingangsprüfung Stochastik, Eigagsprüfug Stochastik, 5.5. Wir gehe stets vo eiem Wahrscheilichkeitsraum (Ω, A, P aus. Die Borel σ-algebra auf wird mit B bezeichet, das Lebesgue Maß auf wird mit λ bezeichet. Aufgabe ( Pukte Sei x

Mehr

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE Versuch 3/ NEWTONSCHE INTERFERENZRINGE Blatt NEWTONSCHE INTERFERENZRINGE Die Oberfläche vo Lise hat im allgemeie Kugelgestalt. Zur Messug des Krümmugsradius diet das Sphärometer. Bei sehr flacher Krümmug

Mehr

25. Extremwertberechnung und Taylor-Entwicklung

25. Extremwertberechnung und Taylor-Entwicklung 25. Extremwertberechug ud Taylor-Etwicklug 329 25. Extremwertberechug ud Taylor-Etwicklug Im letzte Kapitel habe wir gesehe, wie ma für Abbilduge zwische mehrdimesioale Räume das Kozept der Differezierbarkeit

Mehr

C. Eicher Analysis Study Center ETH Zürich HS Summen. k=1

C. Eicher Analysis Study Center ETH Zürich HS Summen. k=1 C Eicher Aaysis Study Ceter ETH Zürich HS 015 Summe Die Summe vo mehrere Zahe a 1, a,, a a mit Hife des Summezeiches geschriebe werde a 1 + a + + a a Hier heisst Laufvariabe oder Summatiosidex ud 1 bzw

Mehr

Stochastik für WiWi - Klausurvorbereitung

Stochastik für WiWi - Klausurvorbereitung Dr. Markus Kuze WS 2013/14 Dipl.-Math. Stefa Roth 11.02.2014 Stochastik für WiWi - Klausurvorbereitug Gesetz der totale Wahrscheilichkeit ud Satz vo Bayes (Ω, F, P) Wahrscheilichkeitsraum, E 1,..., E F

Mehr

Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr

Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr ZAHLENFOLGEN Teil Geometrische Folge Auch Wachstumsfolge Viele Aufgabe Lösuge ur auf der Mathe-CD Hier ur Ausschitte Datei Nr. 00 Friedrich Buckel März 00 Iteretbibliothek für Schulmathematik 00 Geometrische

Mehr

Computer-Graphik 2 SS 10

Computer-Graphik 2 SS 10 5/3/10 lausthal omputer-raphik I. Zachma lausthal Uiversity, ermay zach@i.tu-clausthal.de Frühe Beispiele / Motivatio Beispiele für : Parameter t auf der erade Kotevektor bei B-Splies u,v-parameter bei

Mehr

Folgen und Reihen Glege 03/01

Folgen und Reihen Glege 03/01 Folge ud Reihe Glege 03/0 I diesem Script werde folgede Theme behadelt: Folge (Eiführug)... Arithmetische Folge... Geometrische Folge...3 Mootoie...4 Kovergez...5 Grezwert...6 Schrake...7 Arithmetische

Mehr

Ü b u n g s b l a t t 1

Ü b u n g s b l a t t 1 Mathe für Physier I Witersemester 03/04 Walter Oevel 16 10 003 Ü b u g s b l a t t 1 Abgabe vo Aufgabe am 310003 i der Übug Aufgabe 1*: (Aussagelogi 5 Bouspute) Vo de folgede drei Aussage ist geau eie

Mehr

... a ik) i=1...m, k=1...n A = = ( a mn

... a ik) i=1...m, k=1...n A = = ( a mn Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,

Mehr

Mathematischer Vorkurs zum Studium der Physik

Mathematischer Vorkurs zum Studium der Physik Uiversität Heidelberg Mathematischer Vorkurs zum Studium der Physik Übuge Aufgabe zu Kapitel 1 (aus: K. Hefft Mathematischer Vorkurs zum Studium der Physik, sowie Ergäzuge) Aufgabe 1.1: SI-Eiheite: a)

Mehr

A D A E B D D E D E D C C D E

A D A E B D D E D E D C C D E ie Kombiatori beschäftigt sich mit der Zusammestellug vo lemete eier Mege. s werde 2 Kugel ohe Zurüclege aus zwei Ure gezoge. ie erste Ure ethält 3 Kugel ; ; ud die zweite Ure 2 Kugel ;. ie erste Kugel

Mehr

Aufgabe 1: Funktionale Modellierungen

Aufgabe 1: Funktionale Modellierungen Didaktik des Sachreches (Sek. I) Übugsblatt 4 Dr. Astrid Brikma Name, Vorame: Matrikelummer: Doppelte Lösuge führe zum Verlust aller Pukte beider Persoe-Gruppe. Die Lösuge sid hadschriftlich abzugebe.

Mehr

1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren

1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren Forelsalug zur Fiazatheatik 1. Eifache Zisrechug (lieare Verzisug) 1.1 Berechug des Edwerts eier Eialalage bei liearer gazjähriger Verzisug ach Verzisugsjahre p = 1 + = ( 1+ i ) 1 1.2 Berechug des Gegewartswerts

Mehr