4-1 Elementare Zahlentheorie

Größe: px
Ab Seite anzeigen:

Download "4-1 Elementare Zahlentheorie"

Transkript

1 4-1 Elemetare Zahletheorie 4. Dirichlet s Satz über Primzahle i arithmetische Progressioe. Satz (Dirichlet 1837). Seie a, k atürliche Zahle. Sid die Zahle a, k teilerfremd, so gibt es uedlich viele Primzahle mit a mod k. Also: Sid die Zahle a, k teilerfremd, so ethält die Folge a, a + k, a + 2k, a + 3k,... (ma et dies eie arithmetische Progressio) uedlich viele Primzahle. Die Umkehrug gilt atürlich auch (sogar i verschärfter Form): Gibt es weigstes zwei Primzahle 1 2 mit i a mod k für i = 1, 2, so sid a, k teilerfremd (de i a mod k besagt, dass es x i N gibt mit i = x i k + a; ist d ei gemeisamer Teiler vo a ud k, so ist d auch ei Teiler vo x i k + a = i, also ei gemeisamer Teiler vo 1, 2 ; der eizige gemeisame Teiler vo zwei verschiedee Primzahle ist 1). Es gilt also: Sid a, k atürliche Zahle, so ist die Azahl der Primzahle mit a mod k etweder 0 oder 1 oder. Im Fall a = k = 1 ist dies Euklid s Satz, dass es uedlich viele Primzahle gibt. Für k = 2 ist dies auch icht aufreged: es gibt uedlich viele ugerade Primzahle. Aber für alle k 3 ist dies iteressat. Für k = 10 besagt der Satz: Für jede der Ziffer 1, 3, 7, 9 gibt es uedlich viele Primzahle mit dieser Edziffer i der Dezimaletwicklug vo. Wir werde zeige, dass die Reihe a divergiert. Wir werde sogar eie Art Gleichverteilug der Primzahle auf die zu k teilerfremde Restklasse beweise. l() 4.0. Erierug: Restklasse-Charaktere Defiitio. Sei k N. Ei Restklasse-Charakter modulo k ist eie zahletheoretische Fuktio : N C mit folgede drei Eigeschafte: (i) Geau da ist () = 0, we (, k) > 1 gilt. (ii) Ist mod k, so ist () = ( ). (iii) Die Fuktio ist stark multilikativ Ist ei Restklasse-Charakter modulo k, so ist jeder vo Null verschiedee Wert () eie φ(k)-te Eiheitswurzel Es gibt geau φ(k) Restklasse-Charaktere modulo k Für jedes k gibt es de Restklasse-Charakter (k) 0 mit (k) 0 () = 1 falls (, k) = 1 0 sost ma et ih de Hautcharakter, die übrige Restklasse-Charaktere ehme auch Werte ugleich Null ud Eis a. Ei Restklasse-Charakter, der ur reelle Werte (also 0, 1, 1) aimmt, heißt reeller Charakter.,

2 Leitfade Bielefeld WS 2009/ Orthogoalitätsrelatio I. Sei ei Restklasse-Charakter modulo k. Da gilt: k φ(k) falls = 0 (l) = 0 0, l=1 statt über die Zahle 1 l k zu summiere, ka ma über ei beliebiges Reräsetatesystem modulo k summiere Orthogoalitätsrelatio II. Seie l, l N mit (k, l) = 1. Da gilt: φ(k) falls l 1 mod k, (l) = 0 l 1 mod k, dabei wird über alle Restklasse-Charaktere modulo k summiert. Wir verwede eie allgemeiere Versio: Für l, l N mit (k, l) = 1 gilt: (l ) φ(k) falls l (l) = l mod k, 0 l 1 mod k, (wieder wird über alle Restklasse-Charaktere modulo k summiert) Treug der Restklasse. Vo u a sei k N fest gewählt. So weit ichts aderes otiert ist, sid alle Kogrueze, Restklassebilduge ud Restklasse-Charaktere modulo k. Wie üblich ee wir eie Fuktio f : M C beschräkt (hier ist M eie Mege, ebe der Defiitiosbereich vo f, etwa M = R oder M = N) beschräkt, we es eie reelle Zahl b gibt mit f(x) b für alle x M. Sid f, g: M C Fuktioe, so schreibt ma f(x) = g(x) + O(1), falls f g beschräkt ist ( Ladau-Notatio ). Hier ist eie eidrigliche Warug erforderlich: Die Ladau-Notatio ist ei Missbrauch des Gleichheitszeiches: liks steht eie Fuktio, rechts steht sozusage eie gaze Klasse vo Fuktioe.... Noch eie allgemeie Bemerkug. We wir mit eier Reihe der Form t a t arbeite, müsse wir jeweils Partialsumme betrachte. Sid die Zahle a t icht-egative reelle Zahle, so folgt aus der Beschräktheit der Partialsumme die Kovergez der Reihe. Oft werde aber die Zahle a t beliebige komlexe Zahle sei. Da folgt aus der Beschräktheit der Partialsumme keieswegs die Kovergez. Machmal würde es viel Mühe bereite, die Kovergez zu zeige, währed ma leicht die Beschräktheit sieht. We die Beschräktheit für die jeweilige Argumetatio ausreicht, werde wir auch ur dies zeige. Wir folger i diesem Abschitt die Divergez vo aus eier Voraussetzug ( ). Die weitere Abschitte diee da dazu, diese Voraussetzug zu beweise. l()

3 4-3 Elemetare Zahletheorie Satz. Seie a, k N teilerfremd. Es gelte: ( ) Ist ei vom Hautcharakter verschiedeer Restklasse-Charakter, so ist die Fuktio () l() für x R beschräkt. Da ist die Reihe diverget. x a l() Beweis. Sei N die Mege der Primzahle x, ud für 0 c k 1 sei N(c) die Mege der N mit c mod k. 1 (a) N () l() = N = k 1 c=0 N(c) ( k 1 = c=0 = φ(k) () l() (a) N(a) (c) (a) ) (c) (a) l() l() N(c) l() Als erstes wurde die Reihefolge des Summieres geädert, da wurde N i die Restklasse modulo k zerlegt, dabei gilt da () = (c) für N(c). Drittes wird für jede Restklasse der kostate Faktor (c) (a) vorgezoge; dieser Faktor ist ur für a c vo Null verschiede ud da gleich φ(k), dies ist die zweite Orthogoalitätsrelatio. Es folgt also: N(a) l() = 1 1 φ(k) (a) = 1 φ(k) = 1 φ(k) N N N 0 () l() l() () l() + O(1), φ(k) (a) 0 N () l() dabei habe wir verwedet, dass eierseits 0 (a) = 1 gilt, adererseits, dass es ur edlich viele Primzahle mit 0 () 1 gibt, ud atürlich die Voraussetzug, dass alle Summade mit 0 beschräkt sid.

4 Leitfade Bielefeld WS 2009/ N Wir wisse, dass die Reihe l() l() divergiert. Dies besagt, dass die Fuktio (i Abhägigkeit vo x) ubeschräkt ist. Also sehe wir, dass N(a) (i Abhägigkeit vo x) ubeschräkt ist. Aber dies besagt gerade, dass die Reihe diverget ist. a l() l() 4.2. Verwedug der Magoldt-Fuktio. Wir begie mit eiem gaz allgemeie (ud für viele Überleguge wichtige) Hilfssatz: Lemma Die Reihe ist koverget. m 2 l m Beweis: Es ist t=0 1 = t 1, also t=2 1 = 1 t 2 1 = 1 ( 1). Also m 2 l m = < 2 2 l() ( 1) l() ( 1) 2 l() 2 (die letzte Abschätzug folgt aus 2( 1) 2 für 2). Die letzte Reihe ist bekatlich koverget (de l() 1/2, also wird die Reihe l() durch die 2 Reihe 1/2 2 = 3/2 = ζ( 3 2 ) majorisiert). Die Magoldt-Fuktio Λ ist folgedermaße defiiert: l() falls eie echte Potez vo ist, Λ() = 0 sost Korollar. Kovergiert beschräkt. () l() ()Λ(), so ist die Fuktio () l() x ()Λ() Beweis: Die Fuktioe x ud x uterscheide sich ur durch Terme der Form l() mit Primzahl ud m 2. Es ist also m x () l() = x ()Λ() + O(1).

5 4-5 Elemetare Zahletheorie ()Λ() We also kovergiert, so ist die Fuktio x ist auch die Fuktio x beschräkt. () l() ()Λ() beschräkt, also 4.3. L-Reihe: Kovergez Sei k eie atürliche Zahl ud ei Restklasse-Charakter modulo k Defiitio. Ma et L(s, ) = () s eie (Dirichlet sche) L-Reihe. Für k = 1 gibt es ur de Hautcharakter (1) 0, ud L(s, (1) 0 ) = ζ(s) ist icht aderes als die Riema sche ζ-fuktio. Ei Beisiel für k = 4. Es gibt geau eie icht-triviale Restklassecharakter modulo 4, ämlich 1 1 mod 4, () = 1 für 3 mod 4, 0 0 mod 2 Es ist L(1, ) = , dies ist die sogeate Leibiz-Reihe mit Wert L(1, ) = π 4 ; vor Leibiz (1682) war diese Reihe scho im 14.Jahrhudert dem idische Mathematiker Madhava bekat; der schottische Mathematiker Gregory otierte die Formel Alle L-Reihe sid für s > 1 absolut koverget. Beweis: Es ist () etweder gleich 1 s oder aber Null, also ist 1 s eie Majorate. s Warug. Keie L-Reihe ist für s = 1 absolut koverget. Beweis: Sei ist ei Restklasse-Charakter modulo k. Die folgede Kogrueze sid alle modulo k. Ageomme, L(1, ) ist absolut koverget. Da ist die Teilreihe koverget. Aber es gilt > 1 > > 1, 2 k demach wäre alle diese Reihe ud da auch ihre Summe koverget. Die Summe ist aber die harmoische Reihe. Folgerug. Ist ei Hautcharakter, so ist L(1, ) diverget. Beweis: Hier hadelt es sich ja um eie Reihe mit icht-egative Glieder.

4 Konvergenz von Folgen

4 Konvergenz von Folgen 4 Kovergez vo Folge Defiitio 4.. Sei M eie Mege. Ist 0 Z ud für jedes Z mit 0 ei a M gegebe, so et ma die Abbildug { Z; 0 } M, a eie Folge i M. Abkürzed schreibt ma für eie solche Abbildug auch a ) 0 oder

Mehr

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $ Mathematik für Iformatiker B, SS 202 Doerstag 4.6 $Id: reihe.tex,v.9 202/06/4 3:59:06 hk Exp $ 7 Reihe 7.4 Kovergezkriterie für Reihe 7.4. Alterierede Reihe Wir hatte gesehe das die harmoische Reihe divergiert,

Mehr

Zahlenfolgen und Konvergenzkriterien

Zahlenfolgen und Konvergenzkriterien www.mathematik-etz.de Copyright, Page of 7 Zahlefolge ud Kovergezkriterie Defiitio: (Zahle-Folge, Grezwert) Eie Folge ist eie Abbildug der atürliche Zahle i die Mege A. Es ist also im Fall A: ; f: mit

Mehr

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man:

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man: Gleichmäßige Kovergez Wir betrachte im Folgede Abbilduge f : M N, wobei M eie Mege ud N ei metrischer Raum ist. Isbesodere iteressiere ud Folge f vo solche Abbilduge. Eie solche Folge bestimmt für jedes

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004 Lösuge zu Aufgabeblatt 7

Mehr

Aufgaben und Lösungen Weihnachtsgeschenke zur Vorlesung Analysis I

Aufgaben und Lösungen Weihnachtsgeschenke zur Vorlesung Analysis I Aufgabe ud Lösuge Weihachtsgescheke zur Vorlesug Aalysis I Der Witersemester 008/009 Übug am 4.., 5..008 sowie 0.0.009 Aufgabe. Folge Aufgabe Ma bestimme, ob die Folge (a ) mit a = + 3 + 4 kovergiert ud

Mehr

1. Zahlenfolgen und Reihen

1. Zahlenfolgen und Reihen . Zahlefolge ud Reihe We ma eie edliche Mege vo Zahle hat, ka ma diese i eier bestimmte Reihefolge durchummeriere: {a,a 2,...,a }. Ma spricht vo eier edliche Zahlefolge. Fügt ma immer mehr Zahle hizu,

Mehr

4. Die Menge der Primzahlen. Bertrands Postulat

4. Die Menge der Primzahlen. Bertrands Postulat O. Forster: Eiführug i die Zahletheorie 4. Die Mege der Primzahle. Bertrads Postulat 4.1. Satz (Euklid. Es gibt uedlich viele Primzahle. Beweis. Wir zeige, dass es zu jeder edliche Mege p 1, p 2,..., p

Mehr

Aufgaben zu Kapitel 8

Aufgaben zu Kapitel 8 Aufgabe zu Kapitel 8 Aufgabe zu Kapitel 8 Verstädisfrage Aufgabe 8. Ist es möglich, eie divergete Reihe der Form a zu kostruiere, wobei alle a > 0 sid ud a 0 gilt. Beispiel oder Gegebeweis agebe. Aufgabe

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgabe ud Lösuge Ausarbeitug der Übugsstude zur Vorlesug Aalysis I Witersemester 2008/2009 Übug am 09.2.2008 Übug 8 Eileitug Es soll och eimal auf die agebotee Sprechstude higewiese werde, sowie auf mögliche

Mehr

Die erste Zeile ("Nummerierung") denkt man sich also dazu. Häufig wird eine Indexschreibweise benutzt um ein Folgenglied zu kennzeichnen.

Die erste Zeile (Nummerierung) denkt man sich also dazu. Häufig wird eine Indexschreibweise benutzt um ein Folgenglied zu kennzeichnen. Folge ud Reihe (Izwische Stoff der Hochschule. ) Stad: 30.03.205. Folge Was sid Zahlefolge? Z.B. oder Das ist die vereifachte Wertetabelle eier Fuktio geschriebe wie üblich bei Fuktioe i eier Wertetabelle.

Mehr

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $ Mathematik für Iformatiker B, SS 0 Diestag 5.6 $Id: folge.tex,v. 0/06/05 ::8 hk Exp $ 6 Folge 6.4 Folge reeller Zahle I der letzte Sitzug habe wir de Begriff des Grezwerts eier Folge i eiem metrische Raum

Mehr

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung 6. Übugsblatt Aufgabe mit Lösuge + Selbsttest-Auflösug Aufgabe 6: Utersuche Sie die Folge, dere Glieder ute für N agegebe sid, auf Beschräktheit, Mootoie ud Kovergez bzw. Beschräktheit, Mootoie ud Kovergez

Mehr

5.3 Wachstum von Folgen

5.3 Wachstum von Folgen 53 Wachstum vo Folge I diesem Abschitt betrachte wir (rekursiv oder aders defiierte) Folge {a } = ud wolle vergleiche, wie schell sie awachse, we wächst Wir orietiere us dabei a W Hochstättler: Algorithmische

Mehr

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 =

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 = Aufgabe 1: (6 Pukte) Zeige Sie für alle N die Formel: 1 2 + 2 3 + 3 4 +... + ( + 1) = ( + 1)( + 2). 3 Lösug: Beweis durch vollstädige Iduktio. Iduktiosafag: Für = 1 gilt: 1 2 = 2 = 1(1 + 1)(1 + 2) 3 Iduktiosschritt:

Mehr

Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln

Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln 6 Kovergete Folge Lerziele: Kozepte: Grezwertbegriff bei Folge, Wachstumsgeschwidigkeit vo Folge Resultat: Mootoe beschräkte Folge sid koverget. Methode: Hero-Verfahre, Erweiterug vo Differeze vo Quadratwurzel

Mehr

Vorkurs Mathematik für Informatiker Folgen

Vorkurs Mathematik für Informatiker Folgen Vorkurs Mathematik ür Iormatiker -- 8 Folge -- 11.10.2015 1 Folge: Deiitio Eie (uedliche) Folge im herkömmliche Sie etsteht durch Hitereiaderschreibe vo Zahle 1,2,3,4,5, Dabei ist die Reiheolge wichtig,

Mehr

Tutorium Mathematik I, M Lösungen

Tutorium Mathematik I, M Lösungen Tutorium Mathematik I, M Lösuge 16. November 2012 *Aufgabe 1. Ma utersuche die folgede Reihe auf Kovergez (a) ( 1) (1 ) (b) ( ) 2 +1 (c) (!) 3 10 (3)! (d) (e) (f) 2 +3 3 2 +1 3 ( 2 +1) 2 + 3 ( 2 +3) (g)

Mehr

Zahlenfolgen, Grenzwerte und Zahlenreihen

Zahlenfolgen, Grenzwerte und Zahlenreihen KAPITEL 5 Zahlefolge, Grezwerte ud Zahlereihe. Folge Defiitio 5.. Uter eier Folge reeller Zahle (oder eier reelle Zahlefolge) versteht ma eie auf N 0 erlarte reellwertige Futio, die jedem N 0 ei a R zuordet:

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

α : { n Z n l } n a n IR

α : { n Z n l } n a n IR 1 KAPITEL VI. ZAHLENFOLGEN UND REIHEN 1) REELLE ZAHLENFOLGEN: i) Jede Abbildug α : IN a IR heiÿt 'reelle Zahlefolge' bzw. 'Folge i IR'. Ma otiert diese i der Form α = a ) IN = a ) =0 = a 0, a 1, a 2,...)

Mehr

Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen. Reihen reeller Zahlen

Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen. Reihen reeller Zahlen Höhere Mathematik für techische Studiegäge Vorereitugsaufgae für die Üuge Reihe reeller Zahle. Utersuche Sie die folgede Reihe mit Hilfe geeigeter Kovergezkriterie otwediges Kovergezkriterium, Quotiete-,

Mehr

Aufgaben zur Analysis I

Aufgaben zur Analysis I Aufgabe zur Aalysis I Es werde folgede Theme behadelt:. Logik, Iduktio, Mege, Abbilduge 2. Supremum, Ifimum 3. Folge, Fuktioefolge 4. Reihe, Potezreihe 5. Mootoie ud Stetigkeit 6. Differetialrechug 7.

Mehr

7. Potenzreihen und Taylor-Reihen

7. Potenzreihen und Taylor-Reihen 7. Potezreihe ud Taylor-Reihe 39 7. Potezreihe ud Taylor-Reihe Mit Hilfe der Cauchysche Itegralformel wolle wir u i diesem Kapitel ei weiteres sehr zetrales Resultat der Fuktioetheorie herleite, ämlich

Mehr

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD.

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD. ZAHLENFOLGEN Eiführede Beispiele Arithmetische Folge Datei Nr. 400 SW Das komplette Mauskript befidet sich auf der Mathematik - CD Friedrich Buckel Februar 00 Iteratsgymasium Schloß Torgelow Ihalt Eiführede

Mehr

Kapitel 4: Stationäre Prozesse

Kapitel 4: Stationäre Prozesse Kapitel 4: Statioäre Prozesse M. Scheutzow Jauary 6, 2010 4.1 Maßerhaltede Trasformatioe I diesem Kapitel führe wir zuächst de Begriff der maßerhaltede Trasformatio auf eiem Wahrscheilichkeitsraum ei ud

Mehr

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel Zahlefolge Teil 3 Reihe Reihe Arithmetische Reihe Geometrische Reihe Datei Nr. 4003 (Neu bearbeitet ud erweitert) Jui 005 Friedrich W. Buckel Iteretbibliothek für Schulmathematik Ihalt Defiitio eier Reihe

Mehr

Musterlösung zu Blatt 8 der Vorlesung Analysis I WS08/09

Musterlösung zu Blatt 8 der Vorlesung Analysis I WS08/09 Musterlösug zu Blatt 8 der Vorlesug Aalysis I WS08/09 Schriftliche Aufgabe Aufgabe. Voraussetzuge: Für alle N setze a : +2 ud b : ( 2. [Amerkug: I der Aufgabestellug heiÿe die Reihe beide gleich. Es steht

Mehr

1 Vollständige Induktion

1 Vollständige Induktion 1 Vollstädige Idutio 1.1 Idutiosbeweise Das Beweisprizip der vollstädige Idutio ist eies der wichtigste Hilfsmittel der Mathemati icht ur der Aalysis. Es fidet Verwedug bei pratische alle Aussage, die

Mehr

Beweistechniken Vollständige Induktion - Beispiele, Erweiterungen und Übungen

Beweistechniken Vollständige Induktion - Beispiele, Erweiterungen und Übungen Beweistechike Vollstädige Iduktio - Beispiele, Erweiteruge ud Übuge Alex Chmelitzki 15. März 005 1 Starke Iduktio Eie etwas abgewadelte Form der Iduktio ist die sogeate starke Iduktio. Bei dieser Spielart

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n,

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n, f : a P UNIVERSIÄ DES SAARLANDES FACHRICHUNG 6. MAHEMAIK Prof. Dr. Rolad Speicher M.Sc. obias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 202 Musterlösug zu Blatt Aufgabe. Zeige Sie durch Abwadlug

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I Uiversität des Saarlades Fakultät für Mathematik ud Iformatik Witersemester 2003/04 Prof. Dr. Joachim Weickert Dr. Marti Welk Dr. Berhard Burgeth Lösuge der Aufgabe zur Vorbereitug auf die Klausur Mathematik

Mehr

6. Folgen und Grenzwerte

6. Folgen und Grenzwerte 56 Adreas Gathma 6. Folge ud Grezwerte Wie scho am Ede des letzte Kapitels ageküdigt wolle wir u zur eigetliche Aalysis, also zur lokale Utersuchug vo Fuktioe komme. Der zetrale Begriff ist dabei der des

Mehr

3.2 Potenzreihen und komplexe Taylorentwicklung

3.2 Potenzreihen und komplexe Taylorentwicklung 40 Kapitel 3. Holomorphe Fuktioe 3.2 Potezreihe ud komplexe Tayloretwicklug Wede wir us u de Reiheetwickluge vo Fuktioe zu. 3.2. Defiitio Uter eier Potezreihe um de Pukt z 0 C versteht ma eie Reihe der

Mehr

Nennenswertes zur Stetigkeit

Nennenswertes zur Stetigkeit Neeswertes zur Stetigkeit.) Puktweise Stetigkeit: Vo Floria Modler Defiitio der pukteweise Stetigkeit: Eie Fuktio f : D R ist geau da i x D stetig, we gilt: ε > δ >, so dass f ( x) f ( x ) < ε x D mit

Mehr

III. Konvergenz von Folgen und Reihen

III. Konvergenz von Folgen und Reihen III.. Die Betragsfuktio metrische Räume 4 III. Kovergez vo Folge ud Reihe Durch die Betragsfuktio erhalte wir auf de reelle Zahle eie Abstadsbegriff ud somit eie metrische Struktur. Wir köe u Kovergez

Mehr

1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig.

1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig. 1.3 Fuktioe Seie M ud N Mege f : M N x M : 1 y N : y fx et ma Fuktio oder Abbildug. Beachte: Zuordug ist eideutig. Bezeichuge: M : Defiitiosbereich N : Bildbereich Zielmege vo f Der Graph eier Fuktio:

Mehr

5.7. Aufgaben zu Folgen

5.7. Aufgaben zu Folgen 5.7. Aufgabe zu Folge Aufgabe : Lieares ud beschräktes Wachstum Aus eiem Quadrat mit der Seiteläge dm gehe auf die rechts agedeutete Weise eue Figure hervor. Die im -te Schritt agefügte Quadrate sid jeweils

Mehr

Einführung in die Grenzwerte

Einführung in die Grenzwerte Eiführug i die Grezwerte Dieser Text folgt hauptsächlich der Notwedigkeit i sehr kurzer Zeit eie Idee ud Teile ihrer Awedug zu präsetiere, so dass relativ schell mit dieser Idee gerechet werde ka. Der

Mehr

Folgen, Reihen und Grenzwert. Vorlesung zur Didaktik der Analysis

Folgen, Reihen und Grenzwert. Vorlesung zur Didaktik der Analysis Folge, Reihe ud Grezwert Vorlesug zur Didktik der Alysis Ihlt Motivtio Folge Spezielle Folge Grezwertdefiitio Wichtige Zusmmehäge ud Strtegie der Kovergezutersuchug Fuktioegrezwert Reihe Prdoxie ud Zusmmefssug

Mehr

Übungsaufgaben zur Vorlesung ANALYSIS I (WS 12/13) Serie 10

Übungsaufgaben zur Vorlesung ANALYSIS I (WS 12/13) Serie 10 Humboldt-Uiversität zu Berli Istitut für Mathematik Prof. A. Griewak Ph.D.; Dr. A. Hoffkamp; Dipl.Math. T.Bosse; Dipl.Math. L. Jase Übugsaufgabe zur Vorlesug ANALYSIS I (WS 2/3) Serie 0 Musterlösug S.

Mehr

3 Konvergenz, Folgen und Reihen

3 Konvergenz, Folgen und Reihen 3 Kovergez, Folge ud Reihe Für die Eiführug der reelle Zahle ware Cauchy-Folge vo ratioale Zahle vo großer Bedeutug. Gaz Allgemei lasse sich Folge vo Elemete i eier beliebige Mege A betrachte. Defiitio

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathemati PROF DRDR JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathemati für Iformatier I Witersemester 2003/2004 Aufgabeblatt 8 12 Dezember

Mehr

i=0 a it i das erzeugende Polynome von (a 0,..., a j ).

i=0 a it i das erzeugende Polynome von (a 0,..., a j ). 4 Erzeugede Fuktioe ud Polyome Defiitio 4 Sei a = (a 0, a, eie Folge vo atürliche Zahle, da heißt die formale Potezreihe f a (t := i 0 a it i die erzeugede Fuktio vo a Gilt a i = 0 für i > j, so heißt

Mehr

Übungen mit dem Applet Taylor-Entwickung von Funktionen

Übungen mit dem Applet Taylor-Entwickung von Funktionen Taylor-Etwickug vo Fuktioe Übuge mit dem Applet Taylor-Etwickug vo Fuktioe Ziele des Applets... Mathematischer Hitergrud... 3 Vorschläge für Übuge... 3 3. Siusfuktio si(...3 3. Cosiusfuktio cos(...4 3.3

Mehr

= a n: Wurzelexponent x: Radikand oder Wurzelbasis a: Wurzelwert Bei der ersten Wurzel wird einfach das Wurzelzeichen weggelassen.

= a n: Wurzelexponent x: Radikand oder Wurzelbasis a: Wurzelwert Bei der ersten Wurzel wird einfach das Wurzelzeichen weggelassen. Wurzelgesetze Gesetzmäßigkeite Grudlage Das Wurzelziehe (oder Radiziere) ist die Umkehrug des Potezieres. Daher sid die Wurzelgesetze de Potezgesetze sehr ählich. Die Wurzel aus eier positive Zahl ergibt

Mehr

1 Lösungen zu Analysis 1/ 12.Übung

1 Lösungen zu Analysis 1/ 12.Übung Lösuge ausgewählter Beispiele zu Aalysis I, G. Bergauer, Seite Lösuge zu Aalysis / 2.Übug. Eileitug Gleichmäßige Kovergez ist eie starke Eigeschaft eier Fuktioefolge. Formuliert ma sie für Netze, statt

Mehr

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen:

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen: 61 6.2 Grudlage der mathematische Statistik 6.2.1 Eiführug i die mathematische Statistik I der mathematische Statistik behadel wir Masseerscheiuge. Wir habe es deshalb im Regelfall mit eier große Zahl

Mehr

1 Funktionen und Flächen

1 Funktionen und Flächen Fuktioe ud Fläche. Fläche Defiitio: Die Ebee R ist defiiert als Mege aller geordete Paare vo reelle Zahle: R = {(,, R} Der erste Eitrag heißt da auch Koordiate ud der zweite Koordiate. Für zwei Pukte (,,

Mehr

Thema 8 Konvergenz von Funktionen-Folgen und - Reihen

Thema 8 Konvergenz von Funktionen-Folgen und - Reihen Them 8 Kovergez vo Fuktioe-Folge ud - Reihe Defiitio Sei (f ) eie Folge vo Fuktioe vo D R i R. Wir sge, dß f puktweise gege eie Fuktio f kovergiert, flls gilt: f () f() für jedes D. Dies ist der türliche

Mehr

Zahlenfolgen und Reihen

Zahlenfolgen und Reihen Zahlefolge ud Reihe Was ist eie Zahlefolge Bildugsgesetz We wir z. B. vo der Mege N der atürliche Zahle spreche, so sehe wir sozusage eie Sack voller Zahle, es besteht keie Ordug. Wir wede us u dem Fall

Mehr

Indizieren Sie die folgenden Summen und Produkte gemäß der Vorgabe um und schreiben Sie sie einmal explizit aus: 5

Indizieren Sie die folgenden Summen und Produkte gemäß der Vorgabe um und schreiben Sie sie einmal explizit aus: 5 FU Berli: WiSe 13-14 (Aalysis 1 - Lehr.) Übugsaufgabe Zettel 9 Aufgabe 37 Idiziere Sie die folgede Summe ud Produte gemäß der Vorgabe um ud schreibe Sie sie eimal explizit aus: 5 (a) + 1) 0( Lösug. Die

Mehr

Aufgaben und Lösungen der Probeklausur zur Analysis I

Aufgaben und Lösungen der Probeklausur zur Analysis I Fachbereich Mathematik AG 5: Fuktioalaalysis Prof. Dr. K.-H. Neeb Dipl.-Math. Rafael Dahme Dipl.-Math. Stefa Wager ATECHNISCHE UNIVERSITÄT DARMSTADT SS 007 19. Jui 007 Aufgabe ud Lösuge der Probeklausur

Mehr

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008 Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe

Mehr

Folgen und Reihen Glege 03/01

Folgen und Reihen Glege 03/01 Folge ud Reihe Glege 03/0 I diesem Script werde folgede Theme behadelt: Folge (Eiführug)... Arithmetische Folge... Geometrische Folge...3 Mootoie...4 Kovergez...5 Grezwert...6 Schrake...7 Arithmetische

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

Inhaltsverzeichnis. 3 Stetigkeit. 3.1 Reelle und komplexe Funktionen

Inhaltsverzeichnis. 3 Stetigkeit. 3.1 Reelle und komplexe Funktionen Ihaltsverzeichis 3 Stetigkeit 1 3.1 Reelle ud komplexe Fuktioe........................ 1 3. Grezwerte vo Fuktioe.......................... 3.3 Eiseitige oder ueigetliche Grezwerte................... 3

Mehr

Beobachtung über Reihen, deren Terme nach den Sinus oder Kosinus vielfacher Winkel fortschreiten

Beobachtung über Reihen, deren Terme nach den Sinus oder Kosinus vielfacher Winkel fortschreiten Beobachtug über Reihe, dere Terme ach de Sius oder Kosius vielfacher Wikel fortschreite arxiv:0.000v [math.ho] 3 Ja 0 Leohard Euler We also die Summatio dieser Reihe A+ Bx+Cxx+Dx 3 + etc bekat war, sodass,

Mehr

Einige wichtige Ungleichungen

Einige wichtige Ungleichungen Eiige wichtige Ugleichuge Has-Gert Gräbe, Leipzig http://www.iformatik.ui-leipzig.de/~graebe 1. Februar 1997 Ziel dieser kurze Note ist es, eiige wichtige Ugleichuge, die i verschiedee Olympiadeaufgabe

Mehr

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy. Vo der relative Häufigkeit zur Wahrscheilichkeit Es werde 20 Schüler befragt, ob sie ei Hady besitze. Das Ergebis der Umfrage lautet: Vo 20 Schüler besitze 99 ei Hady. Ereigis E: Schüler besitzt ei Hady

Mehr

Musterlösungen für die Übungsaufgaben zur Vorlesung Mathematik 2 für Informationswirtschaft. Markus Richter

Musterlösungen für die Übungsaufgaben zur Vorlesung Mathematik 2 für Informationswirtschaft. Markus Richter Musterlösuge für die Übugsaufgabe zur Vorlesug Mathematik für Iformatioswirtschaft Markus Richter 4. September 0 Ihaltsverzeichis Norme ud Skalarprodukte. Norme....................................... Skalarprodukte..................................

Mehr

Aufgaben zur vollständigen Induktion

Aufgaben zur vollständigen Induktion c 7 by Raier Müller - Aufgabe zur vollstädige Idutio We ichts aderes agegebe ist, da gelte die Behauptuge für IN {; ; ;...}. A) Teilbareit: ) ist gerade (d.h. durch teilbar). ) ist durch teilbar. ) ist

Mehr

Ü b u n g s b l a t t 1

Ü b u n g s b l a t t 1 Mathe für Physier I Witersemester 03/04 Walter Oevel 16 10 003 Ü b u g s b l a t t 1 Abgabe vo Aufgabe am 310003 i der Übug Aufgabe 1*: (Aussagelogi 5 Bouspute) Vo de folgede drei Aussage ist geau eie

Mehr

Seminar De Rham Kohomologie und harmonische Differentialformen - 2. Sitzung

Seminar De Rham Kohomologie und harmonische Differentialformen - 2. Sitzung Semiar De Rham Kohomologie ud harmoische Differetialforme - 2. Sitzug Torste Hilgeberg 26. April 24 1 Orietierug Defiitio: Zwei Karte heiße orietiert verbude, we das Differetial des Kartewechsels positive

Mehr

Skript zur Analysis 1. Kapitel 2 - Konvergenz

Skript zur Analysis 1. Kapitel 2 - Konvergenz Skript zur Aalysis Kapitel 2 - Kovergez vo Prof. Dr. J. Cleve Fachhochschule Dortmud Fachbereich Iformatik September 2003 2 Ihaltsverzeichis 2 Folge ud Reihe 5 2. Folge.................................

Mehr

2 Differentialrechnung und Anwendungen

2 Differentialrechnung und Anwendungen Differetialrechug ud Aweduge Differetialrechug ud Aweduge Der Begriff des Differetialquotiete hat sich i zahlreiche Aweduge ierhalb ud außerhalb der Mathematik als äußerst fruchtbar erwiese. Bestimmug

Mehr

VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA

VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA Motag: Zahle, Variable, Algebraische Maipulatio Zahlemege. Die atürliche Zahle hat der liebe Gott gemacht. Alles adere ist

Mehr

x 2 + 2 m c Φ( r, t) = n q n (t) φ n ( r) (5) ( + k 2 n ) φ n ( r) = 0 (6a)

x 2 + 2 m c Φ( r, t) = n q n (t) φ n ( r) (5) ( + k 2 n ) φ n ( r) = 0 (6a) Quatisierug eies skalare Feldes Das Ziel ist eigetlich das elektromagetische Feld zu quatisiere, aber wie ma scho a de MAXWELLsche Gleichuge sehe ka, ist es zu kompliziert, um damit zu begie. Außerdem

Mehr

Wahrscheinlichkeit und Statistik

Wahrscheinlichkeit und Statistik ETH Zürich HS 2015 Prof. Dr. P. Embrechts Wahrscheilichkeit ud Statistik D-INFK Lösuge Serie 2 Lösug 2-1. (a Wir bereche P [W c B] auf zwei Arte: (a Wir betrachte folgede Tabelle: Azahl W W c B 14 6 B

Mehr

Wir weisen die Gültigkeit der 4Axiome der sigma-algebra für die Potenzmenge einer endlichen Menge A nach!

Wir weisen die Gültigkeit der 4Axiome der sigma-algebra für die Potenzmenge einer endlichen Menge A nach! Lösug zu Übug 4 Prof. Dr. B.Grabowski E-Post: grabowski@htw-saarlad.de Zu Aufgabe ) Wir weise die Gültigkeit der 4Axiome der sigma-algebra für die Potezmege eier edliche Mege A ach! ) Die leere Mege ud

Mehr

Konvergenz von Folgen reeller Zufallsvariablen

Konvergenz von Folgen reeller Zufallsvariablen Kapitel 4 Kovergez vo Folge reeller Zufallsvariable 4. Fa-sichere ud ochaische Kovergez Seie (Ω, C, ) ei W-Raum, X ( N) eie Folge reeller Zufallsvariable auf Ω ud X eie reelle Zufallsvariable auf Ω. Defiitio

Mehr

Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr

Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr ZAHLENFOLGEN Teil Geometrische Folge Auch Wachstumsfolge Viele Aufgabe Lösuge ur auf der Mathe-CD Hier ur Ausschitte Datei Nr. 00 Friedrich Buckel März 00 Iteretbibliothek für Schulmathematik 00 Geometrische

Mehr

Computer-Graphik II Verallgemeinerte Baryzentrische Koordinaten

Computer-Graphik II Verallgemeinerte Baryzentrische Koordinaten 4/22/10 lausthal omputer-raphik II Verallgemeierte Baryzetrische Koordiate. Zachma lausthal Uiversity, ermay zach@i.tu-clausthal.de Verallgemeieruge der baryzetr. Koord. 1. Was macht ma im 2D bei (kovexe)

Mehr

1 = 1. 6 Induktionsannahme: Die Formal gelte für n = k. Induktionsschritt: Gültigkeit der Formel für k+1: 1 2 + 2 2 +... + k 2 + (k + 1) 2 = 2 = 6 = 6

1 = 1. 6 Induktionsannahme: Die Formal gelte für n = k. Induktionsschritt: Gültigkeit der Formel für k+1: 1 2 + 2 2 +... + k 2 + (k + 1) 2 = 2 = 6 = 6 65 Eric Müller Vollstädige Iduktio Nach GIUSEPPE PEANO (858-93) ka ma die Mege N der atürliche Zahle durch folgede Axiome defiiere []:. ist eie atürliche Zahl.. Zu jeder atürliche Zahl gibt es geau eie

Mehr

Lösungsskizzen Mathematik für Informatiker 5. Aufl. Kapitel 3 Peter Hartmann

Lösungsskizzen Mathematik für Informatiker 5. Aufl. Kapitel 3 Peter Hartmann Lösugsskizze Mathematik für Iformatiker 5. Aufl. Kapitel 3 Peter Hartma Verstädisfrage. Ka ma ei Axiom beweise? Nei!. Ka ei Beweis eier Aussage richtig sei, we im Iduktiosschluss die Iduktiosaahme icht

Mehr

KAPITEL 1. Komplexe Zahlen. 1.1 Lernziele im Abschnitt: Komplexe Zahlen Was sind komplexe Zahlen? Komplexe Zahlenebene...

KAPITEL 1. Komplexe Zahlen. 1.1 Lernziele im Abschnitt: Komplexe Zahlen Was sind komplexe Zahlen? Komplexe Zahlenebene... KAPITEL 1 Komplexe Zahle 1.1 Lerziele im Abschitt: Komplexe Zahle...................... 1. Was sid komplexe Zahle?............................. 1. Komplexe Zahleebee............................... 1. Grudrechearte

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 2 Vollstädige Iduktio 22 2 Vollstädige Iduktio Die vollstädige Iduktio ist ei Beweisverfahre der Mathematik, das sich vom allgemeie Beweisverfahre abhebt. Prizipiell ka ma beim Beweise zwei Situatioe uterscheide.

Mehr

-LERNZENTRUM, ETH ZÜRICH

-LERNZENTRUM, ETH ZÜRICH SEQUENZ, LESETEXT. Eie löchrige Gerade Eis ist gaz klar: Es gibt uedlich viele ratioale Zahle, ud es wird icht möglich sei, auf der Zahlgerade irgedei Itervall zu fide, i dem sich keie eizige ratioale

Mehr

Klausur 1 über Folgen

Klausur 1 über Folgen www.mathe-aufgabe.com Klausur über Folge Hiweis: Der GTR darf für alle Aufgabe eigesetzt werde. Aufgabe : Bestimme eie explizite ud eie rekursive Darstellug! a) für eie arithmetische Folge mit a = 6, ;

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

Kovarianz und Korrelation

Kovarianz und Korrelation Kapitel 2 Kovariaz ud Korrelatio Josef Leydold c 2006 Mathematische Methode II Kovariaz ud Korrelatio 1 / 41 Lerziele Mathematische ud statistische Grudlage der Portfoliotheorie Kovariaz ud Korrelatio

Mehr

Sinus- + Cosinus-Funktion und komplexe Wurzel

Sinus- + Cosinus-Funktion und komplexe Wurzel Dr. Siegfried Echterhoff Aalysis 1 Vorlesug WS 08 09 6 Polarkoordiate Sius- + Cosius-Fuktio ud komplexe Wurzel 6.1 Im folgede seik 1 1 := {z C z = 1} der Kreis i C mit Radius 1 ud Mittelpukt 0. Wir defiiere

Mehr

1. Goldener Schnitt Pascalsches Dreieck

1. Goldener Schnitt Pascalsches Dreieck 1 Goldeer Schitt Pascalsches Dreieck 1 1 Goldeer Schitt Pascalsches Dreieck 11 Fiboacci-Zahle Fiboacci 1 oder mit richtigem Name Leoardo vo Pisa war ei bedeuteder Mathematiker Er lebte im 12 Jahrhudert

Mehr

SUCHPROBLEME UND ALPHABETISCHE CODES

SUCHPROBLEME UND ALPHABETISCHE CODES SUCHPROBLEME UND ALPHABETISCHE CODES Der Problematik der alphabetische Codes liege Suchprobleme zugrude, dere Lösug dem iformatiostheoretische Problem der Fidug eies (optimale) alphabetische Codes gleich

Mehr

1 Einführende Worte 2

1 Einführende Worte 2 Sara Adams Semiarvortrag Rekursive Fuktioe - WS 2004/05 1 Sara Adams Semiarvortrag Rekursive Fuktioe - WS 2004/05 2 1 Eiführede Worte Semiar Grudlegede Algorithme Auflösug vo Rekursioe 1.1 Beispiele Bevor

Mehr

Gegebenenfalls heisst die Zahl s. der Reihe, und man schreibt

Gegebenenfalls heisst die Zahl s. der Reihe, und man schreibt Prof. Dr. Berd Dreseler 6 Reihe 6.1 Kovergez vo Reihe Gegebe sei eie Folge s 1 1, 2 1 2 3 1 2 3... s s, s..., 1 2 1, wird der Folge eie weitere Folge omplexer Zhle. Durch s zugeordet. www.berd-dreseler.de

Mehr

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable Allgemeie Lösuge der -dimesioale Laplace-Gleichug ud ihre komplexe Variable Dr. rer. at. Kuag-lai Chao Göttige, de 4. Jauar 01 Abstract Geeral solutios of the -dimesioal Laplace equatio ad its complex

Mehr

Lösung: Die Zahl ist die größte Zahl mit der in der Aufgabenstellung genannten Eigenschaft.

Lösung: Die Zahl ist die größte Zahl mit der in der Aufgabenstellung genannten Eigenschaft. Ladeswettbewerb Mathematik ade-württemberg 005 Rude ufgabe Eie atürliche Zahl besteht aus paarweise verschiedee Ziffer, vo dee keie Null ist. Streicht ma i dieser Zahl eie beliebige Ziffer k, so ist die

Mehr

1.2. Taylor-Reihen und endliche Taylorpolynome

1.2. Taylor-Reihen und endliche Taylorpolynome 1.. aylor-reihe ud edliche aylorpolyome 1..1 aylor-reihe Wir köe eie Fuktio f() i eier Umgebug eies Puktes o gut durch ihre agete i o: t o () = f(o) + f (o) (-o) aäher: Wir sehe: Je weiter wir vo o weg

Mehr

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S Statistik mit Excel 2013 Peter Wies Theme-Special 1. Ausgabe, Februar 2014 W-EX2013S 3 Statistik mit Excel 2013 - Theme-Special 3 Statistische Maßzahle I diesem Kapitel erfahre Sie wie Sie Date klassifiziere

Mehr

Carmichaelzahlen und andere Pseudoprimzahlen

Carmichaelzahlen und andere Pseudoprimzahlen Crmichelzhle ud dere Pseudoprimzhle Christi Glus 26.05.2008 1 Der fermtsche Primzhltest Erierug 1 (Kleier Stz vo Fermt). Für p prim, Z, ggt(, p) 1 gilt: p 1 1 (mod p) Algorithmus 2 (Fermtscher Primzhltest).

Mehr

2. Diophantische Gleichungen

2. Diophantische Gleichungen 2. Diophatische Gleichuge [Teschl05, S. 91f] 2.1. Was ist eie diophatische Gleichug ud wozu braucht ma sie? Def D2-1: Eie diophatische Gleichug ist eie Polyomfuktio i x,y,z,, bei der als Lösuge ur gaze

Mehr

6. Reihen. 6. Reihen 63

6. Reihen. 6. Reihen 63 6. Reihe 63 6. Reihe Wir wolle us u mit eiem spezielle Typ vo Folge beschäftige, der i der Praxis sehr häufig vorkommt: ämlich Folge, die i der Form (a 0, a 0 + a, a 0 + a + a 2,... für gewisse a K gegebe

Mehr

Mathematik Funktionen Grundwissen und Übungen

Mathematik Funktionen Grundwissen und Übungen Mathematik Fuktioe Grudwisse ud Übuge Potezfuktio Hyperbel Epoetialfuktio Umkehrfuktio Stefa Gärter 004 Gr Mathematik Fuktioe Seite Grudwisse Potezfuktio Defiitio Durch die Zuordugsvorschrift f: Æ mit

Mehr

Elementare Beweismethoden - Direkter Beweis, Widerspruchsbeweis, Vollständige Induktion -

Elementare Beweismethoden - Direkter Beweis, Widerspruchsbeweis, Vollständige Induktion - Th. Kuschel Prosemiar SS 06 Elemetare Beweismethode Seite vo 7 7.04.06 Elemetare Beweismethode - Direter Beweis, Widerspruchsbeweis, Vollstädige Idutio - 0. Vorbemerug zum Begriff des (allgemeie) Beweises

Mehr

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE Versuch 3/ NEWTONSCHE INTERFERENZRINGE Blatt NEWTONSCHE INTERFERENZRINGE Die Oberfläche vo Lise hat im allgemeie Kugelgestalt. Zur Messug des Krümmugsradius diet das Sphärometer. Bei sehr flacher Krümmug

Mehr

1 Analysis T1 Übungsblatt 1

1 Analysis T1 Übungsblatt 1 Aalysis T Übugsblatt A eier Weggabelug i der Wüste lebe zwei Brüder, die vollkomme gleich aussehe, zwische dee es aber eie gewaltige Uterschied gibt: Der eie sagt immer die Wahrheit, der adere lügt immer.

Mehr

8.3. Komplexe Zahlen

8.3. Komplexe Zahlen 8.. Komplee Zhle Wie bereits i 8.. drgestellt, wurde die fortlufede Erweiterug der Zhlbereiche durch die Eiführug immer kompleerer Recheopertioe otwedig:. Auf de türliche Zhle führte der Wusch ch iverse

Mehr

Wintersemester 2006/2007, Universität Rostock Abgabetermin: spätestens 24.10.2006, 09:00 Uhr. Aufgabe 1.1: (5 P)

Wintersemester 2006/2007, Universität Rostock Abgabetermin: spätestens 24.10.2006, 09:00 Uhr. Aufgabe 1.1: (5 P) Serie Abgabetermi: spätestes 24.0.2006, 09:00 Uhr Aufgabe.: 5 P Zeige Sie, dass das geometrische Mittel icht größer ist als das arithmetische Mittel, d.h., dass für alle Zahle a, b R mit a, b 0 gilt ab

Mehr