Monte Carlo Methoden in Kreditrisiko-Management

Größe: px
Ab Seite anzeigen:

Download "Monte Carlo Methoden in Kreditrisiko-Management"

Transkript

1 Monte Carlo Methoden in Kreditrisiko-Management P Kreditportfolio bestehend aus m Krediten; Verlustfunktion L = n i=1 L i; Die Verluste L i sind unabhängig bedingt durch einen Vektor Z von ökonomischen Einflussfaktoren. Gesucht: VaR α (L) = q α (L), CVaR α = E(L L > q α (L)), CVaR i,α = E(L i L > q α (L)). Bei Anwendung von Monte Carlo (MC) Simulation tritt das Problem der Simulation von seltenen Ereignissen auf ( rare event simulation )! ZB. α = 0,99. Nur etwas 1% der standard MC Simulationen führt zu einem Verlust L, sodass L > q α (L). Standard MC Schätzer: ĈVaR (MC) α (L) = 1 n i=1 I (q α,+ )(L i ) n L i I (qα,+ )(L i ) wobei L i der Verlustwert in der i-ten Simulationslauf ist. (L) ist sehr instabil, d.h. hat eine sehr hohe Varianz, wenn die Anzahl der Simulationen n nicht sehr sehr groß ist. ĈVaR (MC) α i=1 27

2 Grundlagen von Importance Sampling Sei X eine ZV in einem Wahrscheinlichkeitsraum (Ω,F,P) mit absolut stetiger Verteilungsfunktion und Dichtefunktion f. Gesucht: θ = E(h(X)) = h. h(x)f(x)dx für eine bekannte Funktion Berechnung der Wahrscheinlichkeit eines Ereignisses A: h(x) = I A (x). Berechnung von CVaR: h(x) = xi x>c (x) mit c = VaR(X). Algorithmus 1 (Monte Carlo Integration) (1) Generiere X 1,X 2,..., X n unabhängig aus der Dichte f. (2) Berechne den standard MC Schätzer ˆθ (MC) n = 1 n n i=1 h(x i). Aus dem starken Gesetz der großen Zahlen: lim n ˆθ (MC) n = θ. Im Falle von seltenen Ereignissen (h(x) = I A (x), P(A) << 1) ist die Konvergenz sehr langsam. 28

3 Sei g eine Wahrscheinlichkeitsdichte, sodass f(x) > 0 g(x) > 0. { f(x) g(x) > 0 Wir definieren das Likelihood ratio als: r(x) := g(x) 0 g(x) = 0 Es gilt: θ = Algorithmus 2 (Importance Sampling) h(x)r(x)g(x)dx = E g (h(x)r(x)) (8) (1) Generiere X 1,X 2,..., X n unabhängig aus der Dichte g. (2) Berechne den IS Schätzer ˆθ (IS) n = 1 n n i=1 h(x i)r(x i ). g heißt Importance Sampling -Dichte. Ziel: Auswahl einer Importance Sampling -Dichte, sodass die Variance des IS-Schätzers wesentlich kleiner als die Varianz des standard MC Schätzers ist. var g (ˆθ (IS) n var ) (ˆθ (MC) n = (1/n)(E g (h 2 (X)r 2 (X)) θ 2 ) ) = (1/n)(E(h 2 (X)) θ 2 ) 29

4 Theoretisch kann die Varianz des IS-Schätzers auf 0 reduziert werden! Annahme h(x) 0, x. Für g (x) = f(x)h(x)/e(h(x)) gilt: ˆθ (IS) 1 = h(x 1 )r(x 1 ) = E(h(X)). Der IS-Schätzer gibt den richtigen Wert nach einer einzigen Simulation! Sei h(x) = I {X c} (x) wobei c >> E(X) (seltenes Ereignis). Es gilt E(h 2 (X)) = P(X c) und aus (8) folgt: E g (h 2 (X)r 2 (X)) = h 2 (x)r 2 (x)g(x)dx = E g (r 2 (X);X c) = (9) h 2 (x)r(x)f(x)dx = h(x)r(x)f(x)dx = E(r(X);X c) (10) Das Ziel ist g so auszuwählen, dass E g (h 2 (X)r 2 (X)) klein wird, oder sodass r(x) für x c klein und das Ereignis X c unter der Dichte g wahrscheinlicher als unter der Dichte f ist. 30

5 Exponential tilting: Bestimmung des IS-Dichte für light tailed Variablen Sei M x (t):r R die Momentum-generierende Funktion von X: IS-Dichte: g t (x) = etx f(x) M X (t) M X (t) = E(e tx ) = Likelihood Ratio: r t (x) = f(x) g t (x) = M X(t)e tx. Sei µ t = E gt (X) = E(X exp{tx})/m X (t). e tx f(x)dx Wie kann man ein geeignetes t für ein bestimmtes IS Problem ermitteln? Z.B. für die Schätzung der Tail-Wahrscheinlichkeit? Das Ziel ist t so zu wählen, dass E(r(X);X c) = E(I X c M X (t)e tx ) klein wird. e tx e tc, für x c, t 0 E(I X c M X (t)e tx ) M X (t)e tc. Wir setzten t = argmin{m X (t)e tc :t 0}. Daraus folgt t = t(c) wobei t(c) die Lösung der Gleichung µ t = c ist. (Eine eindeutige Lösung existiert für alle relevanten Werte von c - ohne Beweis). 31

6 Exponential Tilting für die Normalverteilung Sei X N(0,1) mit Dichtefunktion φ(x). g t (x) = etx φ(x) M X (t) = etx φ(x) e t2 /2 = 1 2π exp{ 1 2 (x t)2 } und µ t = D.h. unter der Verteilung g t gilt X N(t,1) Die Gleichung µ t = c lautet t = c. IS im Falle von Wahrscheinlichkeitsmaßen E(X exp{tx}) M X (t) Seien f und g Wahrscheinlichkeitsdichten. Definiere zwei Wahrscheinlichkeitsmasse P und Q: P(A) = f(x)dx und Q(A) = g(x)dx x A x A Die grundelegende Gleichung der IS (8) lautet dann: θ = E P (h(x)) = E Q (h(x)r(x)) Analog: Exponential tilting im Fall von Wahrscheinlichkeitsdichten: Sei X eine ZV in ((Ω,F,P)) sodass M X (t) = E P (exp{tx}) <, t. Sei Q t (A) := E P exp{tx} M X (t) ;A ein Wahrscheinlichkeitsmaß in (Ω, F). Der IS-Algorithmus bleibt gleich: Simuliere unabhängige Realisierungen von X i in (Ω,F,Q t ) und setze ˆθ n (IS) = (1/n) n i=1 X ir t (X i ) wobei r t (X) = M X (t)exp{ tx}. 32 = t

7 Anwendung von IS auf Bernoulli Mischung Modelle (siehe Glasserman und Li (2003)) Sei L = m i=1 e iy i die Verlustfunktion eines Kreditportfolios. Y i sind die Verlustindikatoren mit Default-Wahrscheinlichkeit p i und e i = (1 λ i )L i die positiven deterministischen Exposures (λ i sind recovery rates und L i sind die Kredithöhen), i = 1,2,...,m. Sei Z ein Vektor von ökonomischen Einflussfaktoren, sodass Y i Z unabhängig sind und Y i (Z = z) Bernoulli(p i (z)). Ziel: Schätzung von θ = P(L c) mit Hilfe des IS-Ansatzes, für ein gegebenes c, c >> E(L). Vereinfachter Fall: Y i sind unabhängig, i = 1,2,...,m. Sei Ω = {0,1} m der Raum der Zustände von Y. Das Wahrscheinlichleitsmaß P in Ω: m P({y}) = p y i i (1 p i) 1 y i, y {0,1}m. i=1 Die Momentum-generierende Funktion von L: M L (t) = m i=1 (ete i p i + 1 p i ). 33

8 Das Wahrscheinlichkeitsmaß Q t : n ( ) exp{te i y i } Q t ({y}) = exp{te i } p i +1 p i p y i i (1 p i) 1 y i. i=1 Seien q t,i neue Default-Wahrscheinlichlichkeiten: Somit gilt: q t,i := exp{te i } p i /(exp{te i } p i +1 p i ). Q t ({y}) = m i=1 q y i i (1 q i) 1 y i, y {0,1}m. D.h. nach der exponential tilting sind die Default-Indikatoren unabhängig mit neuen Default-Wahrscheinlichkeiten q t,i. lim t q t,i = 1 und lim t q t,i = 0 E Q t (L) nimmt alle Werte in (0, m i=1 e i) an für t R. Für IS-Anwendungen wähle t, sodass m i=1 e i q t,i = c. Allgemeiner Fall: Y i sind unabhängig bedingt durch Z 1. Schritt: Schätzung der bedingten Überschuss-Wahrscheinlichkeit θ(z) := P(L c Z = z) für eine gegebene Realisierung z der ökonomischen Faktoren Z, mit Hilfe des im vereinfachten Fall beschriebenen IS-Ansatzes. 34

9 Algorithmus 3 (IS für die bedingte Verlustverteilung) (1) Für ein gegebenes z berechne die bedingtenn Default- Wahrscheinlichkeiten p i (z) (wie im einfachen Unabhägigkeitsfall) und löse folgende Gleichung: m exp{te i }p i (z) exp{te i }p i (z)+1 p i (z) = c i=1 Die Lösung t = t(c, z) gibt den richtigen tilting-grad. (2) Erzeuge n 1 bedingte Realisierungen des Vektors der Default- Indikatoren (Y 1,...,Y m ). Die einzelnen Indikatoren Y i, werden unabhängig aus Bernoulli(q i ), i = 1,2,...,m, simuliert, wobei q i = exp{t(c,z)e i }p i (z) exp{t(c,z)e i }p i (z)+1 p i (z) (3) Sei M L (t,z) := [exp{te i }p i (z)+1 p i (z)] die bedingte Momenterzeugende Funktion von L. Seien L (1), L (2),...,L (n 1) die n 1 bedingten Realisierungen von L für die n 1 simulierten Realisierun- 35

10 gen von Y 1,Y 2,...,Y m. Berechne den IS-Schätzer für die Tail- Wahrscheinlichkeit der bedingten Verlustverteilung: ˆθ (IS) n 1 (z) = M L (t(c,z),z) 1 n 1 n 1 j=1 I L (j) cexp{ t(c,z)l (j) }L (j).

11 2. Schritt: Schätzung der unbedingten Überschuss Wahrscheinlichkeit θ = P(L c). Naive Vorgangsweise: Erzeuge mehrere Realisierungen z der Einflussfaktoren Z und berechne ˆθ n (IS) 1 (z) für jede dieser Realisierungen. Der gesuchte Schätzer ist der Durchschnittswert der Schätzer ˆθ n (IS) 1 (z) über alle Realisierungen z. Das ist nicht die beste Lösung, siehe Glasserman und Li (2003). Bessere Herangehensweise: IS für die Einflussfaktoren. Annahme: Z N p (0,Σ) (zb. probit-normal Bernoulli Mischung) Die IS-Dichte g ist die Dichte von N p (µ,σ) für einen neuen Erwartungswertvektor µ R p. Eine gute Wahl von µ sollte zu häufigen Realisierungen z die zu höheren bedingten Default- Wahrscheinlichkeiten p i (z) führen. Likelihood Ratio: r µ (Z) = exp{ 1 2 Zt Σ 1 Z} exp{ 1 2 (Z µ)t Σ 1 (Z µ)} = exp{ µ Σ 1 Z µ Σ 1 µ} 36

12 Algorithmus 4 (vollständige IS für Bernoulli Mischung Modelle mit Gauss schen Faktoren) (1) Erzeuge z 1,z 2,...,z n N p (µ,σ) (n ist die Anzahl der Simulationsrunden) (2) Für jedes z i berechne ˆθ (IS) n 1 (z i ) wie in Algorithmus 3. (3) Berechne den IS-Schätzer für die unbedingte Überschuss- Wahrscheinlichkeit: ˆθ n (IS) = 1 n r µ (z i )ˆθ n (IS) n 1 (z i ) i=1 37

13 Die Auswahl von µ µ soll so gewählt werden, dass die Varianz des Schätzers klein ist. Idee von Glasserman und Li (2003) (Skizze): ˆθ n (IS) 1 (z) P(L c Z = z) Suche eine gute IS-Dichte für die Funktion z P(L c Z = z). Die optimale IS-Dichte g ist proportional zu P(L c Z = z)exp{ 1 2 zt Σ 1 z}. Vorschlag: Wähle eine IS-Dichte mit demselben Modus wie die optimale Dichte g. Das führt zu folgendem Optimierungsproblem: µ = argmax z {P(L c Z = z)exp{ 1 2 zt Σ 1 z} }. Exakte Lösung ist schwierig weil P(L c Z = z) ist i.a. nicht in analytischer Form verfügbar. Siehe Glasserman und Li (2003) für Lösungsansätze. 38

Credit Metrics. Wird in erster Linie für die Evaluierung von Bond Portfolios verwendet. (Siehe Crouhy et al. (2000), J.P.Morgan Inc.

Credit Metrics. Wird in erster Linie für die Evaluierung von Bond Portfolios verwendet. (Siehe Crouhy et al. (2000), J.P.Morgan Inc. Wurde bei J.P.Morgan entwickelt. Credit Metrics Wird in erster Linie für die Evaluierung von Bond Portfolios verwendet. (Siehe Crouhy et al. (2000), J.P.Morgan Inc. (1997)) Basiert auf ein Bonität-Einstufungssystem

Mehr

Seminar Quantitatives Risikomanagement

Seminar Quantitatives Risikomanagement Seminar Quantitatives Risikomanagement Kreditrisikomanagement II Fabian Wunderlich Mathematisches Institut der Universität zu Köln Sommersemester 2009 Betreuung: Prof. Schmidli, J. Eisenberg Contents 1

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

Beispiel 5 Europäische Call Option (ECO) in einer Aktie S mit Laufzeit T und Ausübungspreis (Strikepreis) K.

Beispiel 5 Europäische Call Option (ECO) in einer Aktie S mit Laufzeit T und Ausübungspreis (Strikepreis) K. Beispiel 5 Europäische Call Option (ECO) in einer Aktie S mit Laufzeit T und Ausübungspreis (Strikepreis) K. Wert der Call Option zum Zeitpunkt T: max{s T K,0} Preis der ECO zum Zeitpunkt t < T: C = C(t,

Mehr

Extremwertverteilungen

Extremwertverteilungen Seminar Statistik Institut für Stochastik 12. Februar 2009 Gliederung 1 Grenzwertwahrscheinlichkeiten 2 3 MDA Fréchet MDA Weibull MDA Gumbel 4 5 6 Darstellung von multivariaten, max-stabilen Verteilungsfunktionen

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Stochastische Eingangsprüfung, 17.05.2008

Stochastische Eingangsprüfung, 17.05.2008 Stochastische Eingangsprüfung, 17.5.8 Wir gehen stets von einem Wahrscheinlichkeitsraum (Ω, A, P) aus. Aufgabe 1 ( Punkte) Sei X : Ω [, ) eine integrierbare Zufallsvariable mit XdP = 1. Sei Q : A R, Q(A)

Mehr

9 Die Normalverteilung

9 Die Normalverteilung 9 Die Normalverteilung Dichte: f(x) = 1 2πσ e (x µ)2 /2σ 2, µ R,σ > 0 9.1 Standard-Normalverteilung µ = 0, σ 2 = 1 ϕ(x) = 1 2π e x2 /2 Dichte Φ(x) = 1 x 2π e t2 /2 dt Verteilungsfunktion 331 W.Kössler,

Mehr

, dt. $+ f(x) = , - + < x < +, " > 0. " 2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) =

, dt. $+ f(x) = , - + < x < +,  > 0.  2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) = 38 6..7.4 Normalverteilung Die Gauß-Verteilung oder Normal-Verteilung ist eine stetige Verteilung, d.h. ihre Zufallsvariablen können beliebige reelle Zahlenwerte annehmen. Wir definieren sie durch die

Mehr

P( X µ c) Var(X) c 2. mit. In der Übung wurde eine alternative, äquivalente Formulierung verwendet: P( X µ < c) 1 Var(X)

P( X µ c) Var(X) c 2. mit. In der Übung wurde eine alternative, äquivalente Formulierung verwendet: P( X µ < c) 1 Var(X) Ich habe eine Frage zur Tschebyschew Ungleichung. In der Aufgabe 4 des Übungsblattes 3 benötigt man ja die Ungleichung. In diesem Falle war der Bereich (0, 20) symmetrisch um den Erwartungswert µ = 5.

Mehr

Von den Grundlagen der Monte-Carlo-Methode zur Simulation von Teilchenreaktionen und Teilchendetektoren

Von den Grundlagen der Monte-Carlo-Methode zur Simulation von Teilchenreaktionen und Teilchendetektoren Von den Grundlagen der Monte-Carlo-Methode zur Simulation von Teilchenreaktionen und Teilchendetektoren Michael Unrau HS WS 08/09 14 November 2008 HS 08/09 Monte-Carlo Methoden 14 November 2008 1 / 24

Mehr

Commercial Banking. Kreditgeschäft 2. Bedingte marginale und kumulative Ausfallwahrscheinlichkeit

Commercial Banking. Kreditgeschäft 2. Bedingte marginale und kumulative Ausfallwahrscheinlichkeit Commercial Banking Kreditgeschäft Bedingte marginale und kumulative Ausfallwahrscheinlichkeit Bedingte Marginale Ausfallwahrscheinlichkeit (BMAW t ) (Saunders: MMR ) prob (Ausfall in Periode t kein Ausfall

Mehr

Die latenten Variablen Y = (Y 1,Y 2,...,Y n ) T hängen mit dem Wert der Aktien der jeweiligen Firmen folgendermaßen zusammen.

Die latenten Variablen Y = (Y 1,Y 2,...,Y n ) T hängen mit dem Wert der Aktien der jeweiligen Firmen folgendermaßen zusammen. Das KMV Modell (siehe auch www.moodyskmv.com) Die Status Variablen S = (S 1,S 2,...,S n ) können nur zwei Werte 0 und 1 annehmen, d.h. m = 1. Die latenten Variablen Y = (Y 1,Y 2,...,Y n ) T hängen mit

Mehr

Übungsblatt 9. f(x) = e x, für 0 x

Übungsblatt 9. f(x) = e x, für 0 x Aufgabe 1: Übungsblatt 9 Basketball. Ein Profi wirft beim Training aus einer Entfernung von sieben Metern auf den Korb. Er trifft bei jedem Wurf mit einer Wahrscheinlichkeit von p = 1/2. Die Zufallsvariable

Mehr

1 Stochastische Prozesse in stetiger Zeit

1 Stochastische Prozesse in stetiger Zeit 1 Stochastische Prozesse in stetiger Zeit 1.1 Grundlagen Wir betrachten zufällige Prozesse, definiert auf einem Wahrscheinlichkeitsraum (Ω, F, P), welche Werte in einen fest gewählten Zustandsraum annehmen.

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

Weihnachtszettel zur Vorlesung. Stochastik I. Wintersemester 2011/2012

Weihnachtszettel zur Vorlesung. Stochastik I. Wintersemester 2011/2012 Weihnachtszettel zur Vorlesung Stochastik I Wintersemester 0/0 Aufgabe. Der Weihnachtsmann hat vergessen die Weihnachtsgeschenke mit Namen zu beschriften und muss sie daher zufällig verteilen. Dabei enthält

Mehr

Kapitel 4: Binäre Regression

Kapitel 4: Binäre Regression Kapitel 4: Binäre Regression Steffen Unkel (basierend auf Folien von Nora Fenske) Statistik III für Nebenfachstudierende WS 2013/2014 4.1 Motivation Ausgangssituation Gegeben sind Daten (y i, x i1,...,

Mehr

Monte-Carlo Simulation

Monte-Carlo Simulation Monte-Carlo Simulation Sehr häufig hängen wichtige Ergebnisse von unbekannten Werten wesentlich ab, für die man allerhöchstens statistische Daten hat oder für die man ein Modell der Wahrscheinlichkeitsrechnung

Mehr

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Dozent: Volker Krätschmer Fakultät für Mathematik, Universität Duisburg-Essen, WS 2012/13 1. Präsenzübung Aufgabe T 1 Sei (Z 1,...,

Mehr

Value at Risk Einführung

Value at Risk Einführung Value at Risk Einführung Veranstaltung Risk Management & Computational Finance Dipl.-Ök. Hans-Jörg von Mettenheim mettenheim@iwi.uni-hannover.de Institut für Wirtschaftsinformatik Leibniz Universität Hannover

Mehr

Übungsrunde 9, Gruppe 2 LVA 107.369, Übungsrunde 8, Gruppe 2, 12.12. Markus Nemetz, TU Wien, 12/2006

Übungsrunde 9, Gruppe 2 LVA 107.369, Übungsrunde 8, Gruppe 2, 12.12. Markus Nemetz, TU Wien, 12/2006 3.75. Angabe Übungsrunde 9, Gruppe 2 LVA 07.369, Übungsrunde 8, Gruppe 2, 2.2. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 2/2006 X sei eine stetige sg mit Dichte f(x), x R. Ermitteln Sie einen

Mehr

$ % + 0 sonst. " p für X =1 $

$ % + 0 sonst.  p für X =1 $ 31 617 Spezielle Verteilungen 6171 Bernoulli Verteilung Wir beschreiben zunächst drei diskrete Verteilungen und beginnen mit einem Zufallsexperiment, indem wir uns für das Eintreffen eines bestimmten Ereignisses

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg : Gliederung 1 Einführung 2 Deskriptive Statistik

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006

Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006 1 3.34 1.1 Angabe Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006 U sei auf dem Intervall (0, 1) uniform verteilt. Zeigen

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Dr. C.J. Luchsinger 2 Zufallsgrössen Literatur Kapitel 2 * Statistik in Cartoons: Kapitel 4 * Krengel: 3.1 und 3.2 in 3 und (Honours Program) 10 sowie 11.1, 11.2 und 11.3 in

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko

Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko Jan Jescow Stoehr Gliederung 1. Einführung / Grundlagen 1.1 Ziel 1.2 CreditRisk+ und CreditMetrics 2. Kreditportfolio 2.1 Konstruktion

Mehr

Was ist Kreditrisiko? Zitat von McNeil, Frey und Embrechts (2005):

Was ist Kreditrisiko? Zitat von McNeil, Frey und Embrechts (2005): Was ist Kreditrisiko? Zitat von McNeil, Frey und Embrechts (2005): Credit risk is the risk that the value of a portfolio changes due to unexpected changes in the credit quality of issuers or trading partners.

Mehr

TEILWEISE ASYNCHRONE ALGORITHMEN

TEILWEISE ASYNCHRONE ALGORITHMEN TEILWEISE ASYNCHRONE ALGORITHMEN FRANK LANGBEIN Literatur: D. Berseas, J. Tsitsilis: Parallel and distributed computatoin, pp. 48 489 URI: http://www.langbein.org/research/parallel/ Modell teilweiser asynchroner

Mehr

Solvency II und die Standardformel

Solvency II und die Standardformel Fakultät Mathematik und Naturwissenschaften Institut für Mathematische Stochastik Solvency II und die Standardformel Festkolloquium 20 Jahre (neue) Versicherungsmathematik an der TU Dresden Sebastian Fuchs

Mehr

Delta-Gamma-Verfahren als Standard- Risikomodell für Lebensversicherer

Delta-Gamma-Verfahren als Standard- Risikomodell für Lebensversicherer Delta-Gamma-Verfahren als Standard- Risikomodell für Lebensversicherer 1 Einleitung Im Rahmen des SST wird teilweise vereinfachend angenommen, dass der Zusammenhang zwischen der Veränderung des risikotragenden

Mehr

ε heteroskedastisch BINARY CHOICE MODELS Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS?

ε heteroskedastisch BINARY CHOICE MODELS Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS? BINARY CHOICE MODELS 1 mit Pr( Y = 1) = P Y = 0 mit Pr( Y = 0) = 1 P Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS? Y i = X i β + ε i Probleme: Nonsense Predictions

Mehr

Multivariate Statistik

Multivariate Statistik Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)

Mehr

Statistics, Data Analysis, and Simulation SS 2015

Statistics, Data Analysis, and Simulation SS 2015 Mainz, May 12, 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen 6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Bisher: Diskrete Zufallsvariablen,

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

Monte Carlo Simulation (Grundlagen)

Monte Carlo Simulation (Grundlagen) Der Titel des vorliegenden Beitrages wird bei den meisten Lesern vermutlich Assoziationen mit Roulette oder Black Jack hervorrufen. Allerdings haben das heutige Thema und die Spieltische nur den Namen

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

Mathematik des Hybriden Monte-Carlo. Marcus Weber. Zuse Institute Berlin

Mathematik des Hybriden Monte-Carlo. Marcus Weber. Zuse Institute Berlin Mathematik des Hybriden Monte-Carlo Marcus Weber Zuse Institute Berlin Statistische Thermodynamik Ziel: Am Computer ein Ensemble samplen. Messung im Gleichgewicht (zeitunabhängige Verteilung π der Systemzustände

Mehr

Vorlesung. Informationsökonomik und die Theorie der Firma

Vorlesung. Informationsökonomik und die Theorie der Firma Vorlesung Informationsökonomik und die Theorie der Firma Ulrich Schwalbe Universität Hohenheim 5. Vorlesung 28.11.2007 Ulrich Schwalbe (Universität Hohenheim) Informationsökonomik 5. Vorlesung 28.11.2007

Mehr

Markov-Ketten-Monte-Carlo-Verfahren

Markov-Ketten-Monte-Carlo-Verfahren Markov-Ketten-Monte-Carlo-Verfahren Anton Klimovsky 21. Juli 2014 Strichprobenerzeugung aus einer Verteilung (das Samplen). Markov- Ketten-Monte-Carlo-Verfahren. Metropolis-Hastings-Algorithmus. Gibbs-Sampler.

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

3.4 Asymptotische Evaluierung von Sch atzer Konsistenz Konsistenz Definition 3.4.1: konsistente Folge von Sch atzer

3.4 Asymptotische Evaluierung von Sch atzer Konsistenz Konsistenz Definition 3.4.1: konsistente Folge von Sch atzer 3.4 Asymptotische Evaluierung von Schätzer 3.4.1 Konsistenz Bis jetzt haben wir Kriterien basierend auf endlichen Stichproben betrachtet. Konsistenz ist ein asymptotisches Kriterium (n ) und bezieht sich

Mehr

Quantilsschätzung als Werkzeug zur VaR-Berechnung

Quantilsschätzung als Werkzeug zur VaR-Berechnung Quantilsschätzung als Werkzeug zur VaR-Berechnung Ralf Lister, Aktuar, lister@actuarial-files.com Zusammenfassung: Zwei Fälle werden betrachtet und die jeweiligen VaR-Werte errechnet. Im ersten Fall wird

Mehr

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Künstliche Intelligenz Unsicherheit Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Rückblick Agent in der Wumpuswelt konnte Entscheidungen

Mehr

Credit Risk+: Eine Einführung

Credit Risk+: Eine Einführung Credit Risk+: Eine Einführung Volkert Paulsen December 9, 2004 Abstract Credit Risk+ ist neben Credit Metrics ein verbreitetes Kreditrisikomodell, dessen Ursprung in der klassischen Risikotheorie liegt.

Mehr

W-Rechnung und Statistik für Ingenieure Übung 11

W-Rechnung und Statistik für Ingenieure Übung 11 W-Rechnung und Statistik für Ingenieure Übung 11 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) Mathematikgebäude Raum 715 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) W-Rechnung und Statistik

Mehr

Commercial Banking. Kreditportfoliosteuerung

Commercial Banking. Kreditportfoliosteuerung Commercial Banking Kreditportfoliosteuerung Dimensionen des Portfoliorisikos Risikomessung: Was ist Kreditrisiko? Marking to Market Veränderungen des Kreditportfolios: - Rating-Veränderung bzw. Spreadveränderung

Mehr

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme Newton-Verfahren zur gleichungsbeschränkten Optimierung Armin Farmani Anosheh (afarmani@mail.uni-mannheim.de) 3.Mai 2016 1 Gleichungsbeschränkte Optimierungsprobleme Einleitung In diesem Vortrag geht es

Mehr

ARBEITSUNTERLAGEN ZUR VORLESUNG UND ÜBUNG AN DER UNIVERSITÄT DES SAARLANDES DERIVATIVE FINANZINSTRUMENTE

ARBEITSUNTERLAGEN ZUR VORLESUNG UND ÜBUNG AN DER UNIVERSITÄT DES SAARLANDES DERIVATIVE FINANZINSTRUMENTE ARBEITSUNTERLAGEN ZUR VORLESUNG UND ÜBUNG AN DER UNIVERSITÄT DES SAARLANDES DERIVATIVE FINANZINSTRUMENTE im SS 215 Aufgabe 1 (Innerer Wert, Zeitwert, Basiskurs, Aufgeld) Am 13.4.2 kostete eine Kaufoption

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8 . Aufgabe: Für zwei verschiedene Aktien wurde der relative Kurszuwachs (in % beobachtet. Aus den jeweils 20 Quartaldaten ergaben sich die folgenden Box-Plots. Box-and-Whisker Plot Aktie Aktie 2-0,2 0,8,8

Mehr

(Lineare) stochastische Optimierung

(Lineare) stochastische Optimierung (Lineare) stochastische Optimierung Bsp: Aus zwei Sorten Rohöl wird Benzin und Heizöl erzeugt. Die Produktivität sowie der Mindestbedarf (pro Woche) und die Kosten sind in folgender Tabelle angegeben:

Mehr

Risikomessung und Value at Risk Wintersemester 2013/14

Risikomessung und Value at Risk Wintersemester 2013/14 Risikomessung und Value at Risk Wintersemester 2013/14 Walter Sanddorf-Köhle Statistik und Ökonometrie Foliensatz Nr. 11 Version vom 24. Januar 2014 1 / 45 6.5.1 Bisherige Vorgehensweise zur Berechnung

Mehr

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n Folgen und Reihen. Beweisen Sie die Beschränktheit der Folge (a n ) n N mit 2. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := ( ) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 3. Untersuchen

Mehr

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses.

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses. XI. Binomialverteilung ================================================================== 11.1 Definitionen -----------------------------------------------------------------------------------------------------------------

Mehr

Auswahl von Schätzfunktionen

Auswahl von Schätzfunktionen Auswahl von Schätzfunktionen Worum geht es in diesem Modul? Überblick zur Punktschätzung Vorüberlegung zur Effizienz Vergleich unserer Schätzer für My unter Normalverteilung Relative Effizienz Einführung

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 ische Ergänzung der für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 Ministerium für ildung und Wissenschaft des Landes Juni 2013 1 für Aufgabenpool 1 Analysis

Mehr

MA Projekt: Langfristige Kapitalmarktsimulation

MA Projekt: Langfristige Kapitalmarktsimulation MA Projekt: Langfristige Kapitalmarktsimulation Einführung in die Simulation Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring

Mehr

Analytische Methoden und die Black-Scholes Modelle

Analytische Methoden und die Black-Scholes Modelle Analytische Methoden und die Black-Scholes Modelle Diplomverteidigung Universität Rostock Institut für Mathematik 20.01.2011 Agenda 1 Das Ornstein-Uhlenbeck Volatilitätsmodell 2 in L 2 (R 2 ) 3 4 Problem

Mehr

Tutorübung 5. Analysis 2 für Lehramt TU Dortmund, Sommersemester 2014

Tutorübung 5. Analysis 2 für Lehramt TU Dortmund, Sommersemester 2014 Tutorübung 5 Analysis 2 für Lehramt TU Dortmund, Sommersemester 24 Aufgabe T Bestimme die Taylorreihen von (a) cos(x) um a. (b) ln(x) um a. (c) um a 2. +x Bestimme in allen Fällen das Taylorpolynom T n,a

Mehr

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen

Mehr

Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011

Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011 Kevin Schellkes und Christian Hendricks 29.08.2011 Inhalt Der herkömmliche Ansatz zur Simulation logarithmischer Renditen Ansatz zur Simulation mit Copulas Test und Vergleich der beiden Verfahren Fazit

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

Lösungen zu Aufgabenblatt 7P

Lösungen zu Aufgabenblatt 7P Analysis Prof. Dr. Peter Becker Fachbereich Informatik Sommersemester 205 9. Mai 205 Lösungen zu Aufgabenblatt 7P Aufgabe (Stetigkeit) (a) Für welche a, b R sind die folgenden Funktionen stetig in x 0

Mehr

Einführung in die Geostatistik (7) Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam.

Einführung in die Geostatistik (7) Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam. Einführung in die Geostatistik (7) Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam.de 1 Gliederung 7 Weitere Krigingverfahren 7.1 Simple-Kriging 7.2 Indikator-Kriging

Mehr

Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind:

Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind: Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Inhalte Themen dieses Kapitels sind: Das Konzept stetiger Zufallsvariablen Die

Mehr

8. Stetige Zufallsvariablen

8. Stetige Zufallsvariablen 8. Stetige Zufallsvariablen Idee: Eine Zufallsvariable X ist stetig, falls ihr Träger eine überabzählbare Teilmenge der reellen Zahlen R ist. Beispiel: Glücksrad mit stetigem Wertebereich [0, 2π] Von Interesse

Mehr

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK)

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) für Studierende des Maschinenbaus vom 7. Juli (Dauer: 8 Minuten) Übersicht über die

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 04 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 04 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Quantitatives Risikomanagement

Quantitatives Risikomanagement Quantitatives Risikomanagement Korrelation und Abhängigkeit im Risikomanagement: Eigenschaften und Irrtümer von Jan Hahne und Wolfgang Tischer -Korrelation und Abhängigkeit im Risikomanagement: Eigenschaften

Mehr

Irrfahrten und Phänomene des Zufalls

Irrfahrten und Phänomene des Zufalls Irrfahrten und Phänomene des Zufalls von Dipl.-math. oec. Bruno Ebner Inhaltsverzeichnis 1 Einführung 3 1.1 Zufallsexperiment, Ergebnismenge und Wahrscheinlichkeit.......... 3 1.2 Irrfahrten 1....................................

Mehr

Statistiktraining im Qualitätsmanagement

Statistiktraining im Qualitätsmanagement Gerhard Linß Statistiktraining im Qualitätsmanagement ISBN-0: -446-75- ISBN-: 978--446-75-4 Leserobe Weitere Informationen oder Bestellungen unter htt://www.hanser.de/978--446-75-4 sowie im Buchhandel

Mehr

Grundlagen der Monte Carlo Simulation

Grundlagen der Monte Carlo Simulation Grundlagen der Monte Carlo Simulation 10. Dezember 2003 Peter Hofmann Inhaltsverzeichnis 1 Monte Carlo Simulation.................... 2 1.1 Problemstellung.................... 2 1.2 Lösung durch Monte

Mehr

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch 6 Stetige Verteilungen 1 Kapitel 6: Stetige Verteilungen A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch dargestellt. 0.2 6

Mehr

Exkurs: Polnische Räume

Exkurs: Polnische Räume Ein normaler Hausdorff-Raum mit abzählbarer Basis kann auf viele Weisen metrisiert werden; man kann insbesondere eine einmal gewonnene Metrik in vielerlei Weise abändern, ohne die von ihr erzeugte Topologie

Mehr

Mathematik II für Inf und WInf

Mathematik II für Inf und WInf Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell

Mehr

Name:... Matrikel-Nr.:... 3 Aufgabe Handyklingeln in der Vorlesung (9 Punkte) Angenommen, ein Student führt ein Handy mit sich, das mit einer Wahrscheinlichkeit von p während einer Vorlesung zumindest

Mehr

Modellbildung und Simulation

Modellbildung und Simulation Modellbildung und Simulation 5. Vorlesung Wintersemester 2007/2008 Klaus Kasper Value at Risk (VaR) Glossar Portfolio: In der Ökonomie bezeichnet der Begriff Portfolio ein Bündel von Investitionen, das

Mehr

Monte Carlo Simulationen

Monte Carlo Simulationen Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt Stefan Wunsch 31. Mai 2014 INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK (IEKP) KIT Universität des Landes Baden-Württemberg und

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

Probabilistisches Tracking mit dem Condensation Algorithmus

Probabilistisches Tracking mit dem Condensation Algorithmus Probabilistisches Tracking mit dem Condensation Algorithmus Seminar Medizinische Bildverarbeitung Axel Janßen Condensation - Conditional Density Propagation for Visual Tracking Michael Isard, Andrew Blake

Mehr

Monte-Carlo-Simulation

Monte-Carlo-Simulation Modellierung und Simulation Monte-Carlo-Simulation Universität Hamburg Johannes Schlundt 7. Januar 2013 Monte-Carlo-Simulation Johannes S. 1/31 Inhalt Motivation Geschichtliche Entwicklung Monte-Carlo-Simulation

Mehr

0, t 0,5

0, t 0,5 XIII. Die Normalverteilung ==================================================================. Der lokale Grenzwertsatz --------------------------------------------------------------------------------------------------------------

Mehr

3 Monte-Carlo-Simulationen

3 Monte-Carlo-Simulationen 3 Monte-Carlo-Simulationen In diesem Kapitel soll mit der so genannten Monte-Carlo-Methode ein wichtiges Anwendungsgebiet des in Kapitel 2 erarbeiteten Begriffs- und Methodenapparats detaillierter beleuchtet

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 07. Mai 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 5 1 Klassische Wahrscheinlichkeitsdefinition

Mehr

Grundlagen der Monte-Carlo-Simulation. Dr. Sebastian Lück 7. Februar 2012

Grundlagen der Monte-Carlo-Simulation. Dr. Sebastian Lück 7. Februar 2012 Grundlagen der Monte-Carlo-Simulation Dr. Sebastian Lück 7. Februar 2012 page 2 Contents Motivation Erzeugung von SPZZ Software Transformation von SPZZ Akzeptanz- und Verwerfungsmethode Monte-Carlo-Integration

Mehr

Kursthemen 12. Sitzung. Spezielle Verteilungen: Warteprozesse. Spezielle Verteilungen: Warteprozesse

Kursthemen 12. Sitzung. Spezielle Verteilungen: Warteprozesse. Spezielle Verteilungen: Warteprozesse Kursthemen 12. Sitzung Folie I - 12-1 Spezielle Verteilungen: Warteprozesse Spezielle Verteilungen: Warteprozesse A) Die Geometrische Verteilung (Folien 2 bis 7) A) Die Geometrische Verteilung (Folien

Mehr

Ausarbeitung des Seminarvortrags zum Thema

Ausarbeitung des Seminarvortrags zum Thema Ausarbeitung des Seminarvortrags zum Thema Anlagepreisbewegung zum Seminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn von Imke Meyer im W9/10 Anlagepreisbewegung

Mehr

Einführung in die Statistik

Einführung in die Statistik Meteorologisches Institut der Universität Bonn Skript zur Vorlesung Einführung in die Statistik Wintersemester 2004/2005 Andreas Hense Thomas Burkhardt Petra Friederichs Version: 31. Oktober 2005 1 Inhaltsverzeichnis

Mehr

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt:

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt: Aufgabe 1 1.1. Bestimmung von D max : 1. Bedingung: x >0 ; da ln(x) nur für x > 0 definiert ist. 2. Bedingung: Somit ist die Funktion f a nur für x > 0 definiert und sie besitzt eine Definitionslücke an

Mehr

Schleswig-Holstein 2011. Kernfach Mathematik

Schleswig-Holstein 2011. Kernfach Mathematik Aufgabe 6: Stochastik Vorbemerkung: Führen Sie stets geeignete Zufallsvariablen und Namen für Ereignisse ein. Machen Sie auch Angaben über die Verteilung der jeweiligen Zufallsvariablen. Eine repräsentative

Mehr

MafI I: Logik & Diskrete Mathematik (Autor: Gerrit (-Arthur) Gruben)

MafI I: Logik & Diskrete Mathematik (Autor: Gerrit (-Arthur) Gruben) Musterlösung zum. Aufgabenblatt zur Vorlesung MafI I: Logik & Diskrete Mathematik (Autor: Gerrit (-Arthur Gruben. Wahrscheinlichkeiten I ( Punkte Die Seiten von zwei Würfeln sind mit den folgenden Zahlen

Mehr

Risiko und Symmetrie. Prof. Dr. Andrea Wirth

Risiko und Symmetrie. Prof. Dr. Andrea Wirth Risiko und Symmetrie Prof. Dr. Andrea Wirth Gliederung 1. Einleitung Was ist eigentlich Risiko? 2. Risiko Mathematische Grundlagen 3. Anwendungsbeispiele Wo genau liegt der Schmerz des Risikos? 4. Sie

Mehr

G 59071. TM bewertet. Im Kundengeschäft hingegen

G 59071. TM bewertet. Im Kundengeschäft hingegen G 59071 n vielen Fällen wird die Kreditrisikomessung mit unterschiedlichen Portfoliomodellen für das Eigen- und das Kundengeschäft durchgeführt. Das durch geringe Stückzahlen und hohe Volumina charakterisierte

Mehr

Statistische Analyse von Ereigniszeiten

Statistische Analyse von Ereigniszeiten Statistische Analyse von Survival Analysis VO Biostatistik im WS 2006/2007 1 2 3 : Leukemiedaten (unzensiert) 33 Patienten mit Leukemie; Zielvariable Überlebenszeit. Alle Patienten verstorben und Überlebenszeit

Mehr