ε heteroskedastisch BINARY CHOICE MODELS Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS?

Größe: px
Ab Seite anzeigen:

Download "ε heteroskedastisch BINARY CHOICE MODELS Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS?"

Transkript

1 BINARY CHOICE MODELS 1 mit Pr( Y = 1) = P Y = 0 mit Pr( Y = 0) = 1 P Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS? Y i = X i β + ε i Probleme: Nonsense Predictions ( < 0, > 1) Funktionale Form: lineare Parameter haben immer gleichen Effekt ε heteroskedastisch 1

2 2

3 Binäre Variable E( y) = μ Var( y) = μ(1 μ) weil: Var( y): E ( y μ) = E( y 2 yμ+ μ ) = 2 2 E( y ) 2 μe( y) + μ 2 da y = 1 oder Var(y) = μ 2 μ + μ = μ(1 μ ) E( y ) = E( y) = μ Heteroskedastie Varianz steigt mit... ( ) xβ μ 3

4 LATENTE VARIABLE Bsp.: Beschäftigungsentscheidung 0 oder 1 Dahinter muss stehen: Latent Propensity to Work Y i *: (basiert auf Arbeitsangebot) Y = X β + ε Y i * i i i 1 wenn Y * > 0 = i 0 wenn Y * 0 i auch anderer Wert als Schwelle denkbar. 4

5 ( ) ( ) P = Pr Y = 1 = F Xβ mit F als symmetrischer kumulativer Wahrscheinlichkeitsdichte. F( Xβ ) X β + F( Xβ ) Also: lim = 1 lim = 0 X β Y = 1 wenny* > 0 X β + ε > 0 X β > ε ε > Xβ i i i i Pr ( Y = 1) = Pr ( ε > Xβ) = F( Xβ) Pr ( Y = 0) = 1 F( Xβ ) 5

6 6

7 SCHÄTZUNG - MAXIMUM LIKELIHOOD Die Mutmaßlichkeit, bestimmte Ergebnisse in der Stichprobe zu erzielen, wird durch die Wahl geeigneter Parameter β maximiert. N i = 1 i = 1 Y i ( ) L = Pr Y = y, Y = y,, Y = y = ( β ) ( β ) = 1 F X F X i = i Y = 0 Y = 1 i N = 1 i 1 yi ( β ) ( β ) F X i F X {( i) ( iβ ) i ( iβ )} ln L = 1 y ln 1 F X + y ln F X MAX β Log-likelihood function is globally concave ==> unique global maximum N i N y i 7

8 Form von F ( i ) Probit-Modell Normalverteilung X β 2 1 t F( Xβ) =Φ ( Xβ) = exp dt 2π 2 Logit-Modell Standard Logistische Verteilung ( β ) F X exp = 1 + exp ( X β ) ( X β ) Beide geben sehr ähnliche Ergebnisse 8

9 GOODNESS OF FIT 2 ln L Pseudo R :1, ln L0 ln L Wert der Log-Likelihood im Modell ohne Kovariate 0 + Variationen (McFadden, etc.) Problem: Pseudo 2 R nur 1 wenn X β ± Observed/Predicted Tabelle Anzahl der Right Predictions : Y ˆ i = 1 wenn mit Y i Problem: Naive Regel ist manchmal besser: ˆ 1 ( ) o i Y = wenn Pr 1 im Sample > 0,5 Pˆi * > P (meist 0,5) Vergleich Yˆi 9

10 SCHÄTZPROBLEME Maximum Likelihood ist o konsistent, o asymptotisch effizient und asymptotisch normalverteilt In kleinen Samples problematisch (sollte >100 (besser 1000) sein) ln L ist global konkav, trotzdem Schätzprobleme (keine Konvergenz des Iterationsverfahrens, Singularität der Hessematrix der 2. Ableitungen) Multikollinearität der Variablen Eine Dummyvariable erklärt Outcome komplett ( Riesenkoeffizienten) + Linearkombinationen 10

11 d i : immer wenn d i =1, dann ist y i =1 MAX β i = 1 { i ( i i) ( i) ( i i) } N ln L = y ln F X β + δd + 1 y ln 1 F X β + δ d i { } ( β ) ( β ) ( ) ( β ) = ln F X + d + y ln F X + 1 y ln 1 F X i i i i i i d =1 d =0 i δ nur aus dem ersten Term geschätzt, Maximierung von ln L bedeutet δ wird maximal ==> + Scaling der Variablen Standardfehler checken 11

12 EIGENSCHAFTEN DES SCHÄTZERS OLS macht wenig Probleme, wenn einige Annahmen verletzt sind, z.b. immer noch konsistent, wenn Fehler autokorreliert oder heteroskedastisch In Probit/Logit: Nur β ist identifiziert, nicht β allein, übliche Annahme σ=1. σ Heteroskedastie: o Wenn unabhängig von RHS-variablen, kein Problem, aber: 2 o Wenn σi = exp( γ1 + γ2x1 i) o β kann nicht konsistent geschätzt werden 12

13 INTERPRETATION DER KOEFFIZIENTEN Nichtlineares Verfahren Einfluss der Variablen abhängig von Lage Marginale Effekte notwendig dp dx 1 = β 1 f ( X β ) An welcher Stelle sollen marginale Effekte ausgewertet werden? Für alle i, dann 0 Zum Sample-Durchschnitt Für besonders relevante Kombinationen von Variablen 13

14 14

15 15

16 DUMMY VARIABLEN Diskrete Änderung X k ( Y X) Δ Pr = 1 ΔX k ( Y X X ) ( Y X X ) = Pr = 1, = 0 Pr = 1, = 1 k k Stata, Limdep bieten automatisierte Prozesse für marginale Effekte an Tabellen in marginalen Effekten immer besser Scott Long (Univ. of Indiana) hat eigene Prozeduren für Interpretation am Web 16

17 ODDS RATIO IM LOGIT Pr( Y = 1 X) Pr( Y = 1 X) Odds: = Pr Y = 0 X 1 Pr Y = 1 X ( ) ( ) Also: wie oft passiert 1 relativ zu 0, Variation zwischen 0 und Ln(Odds): Variation zwischen und : ( Y = X) ( Y X) Pr 1 ln 1 Pr = 1 = X β Äquivalent zum Logit: Pr ( Y 1 X) Interpretation ( X β ) ( X ) exp = =, ergibt interessante 1 + exp β 17

18 ODDS Ω P Ω ( X) = = 1 P e X β Gegeben zwei Realisationen von X : X 1 und X 0 Verhältnis der Odds Ω Ω ( X1 ) ( X ) 0 = e ( X X ) 1 0 β Wenn 1, ( 0) j e β > β j >, X j erhöht die Odds, Y = 1 zu beobachten 18

19 ORDERED PROBIT/LOGIT Ordinale Variable, z.b. Schulnoten * Latente Variable (, ) Y wird nur in N Werten gemessen Yi = m wenn τ * m 1 i τ m, 1 Y < m N τ Threshold, Cutpoints Schwellen sind unbekannt müssen auch geschätzt werden 19

20 FÜR ORDERED PROBIT Pr Y = 0 =Φ 0 Xβ ( ) ( ) ( Y = ) =Φ( τ1 Xβ) Φ( Xβ) ( Y = ) =Φ( τ Xβ) Φ( τ Xβ) Pr 1 Pr ( Y = N) = Φ( τ Xβ) Pr 1 N 1 Eine Änderung von X verschiebt die gesamte Wahrscheinlichkeitsdichte nach links/rechts Achtung: Interpretation schwierig, nur an den Rändern eindeutig 20

21 21

22 22

23 23

Binäre abhängige Variablen

Binäre abhängige Variablen Binäre abhängige Variablen Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Einführung Oft wollen wir qualitative Variablen

Mehr

Kapitel 4: Binäre Regression

Kapitel 4: Binäre Regression Kapitel 4: Binäre Regression Steffen Unkel (basierend auf Folien von Nora Fenske) Statistik III für Nebenfachstudierende WS 2013/2014 4.1 Motivation Ausgangssituation Gegeben sind Daten (y i, x i1,...,

Mehr

Kategoriale abhängige Variablen: Logit- und Probit -Modelle. Statistik II

Kategoriale abhängige Variablen: Logit- und Probit -Modelle. Statistik II Kategoriale abhängige Variablen: Logit- und Probit -Modelle Statistik II Wiederholung Literatur Annahmen und Annahmeverletzungen Funktionen Exponenten, Wurzeln usw. Das Problem Das binäre Logit-Modell

Mehr

Binäre Auswahlmodelle (Logit, Probit,...)

Binäre Auswahlmodelle (Logit, Probit,...) Binäre Auswahlmodelle (Logit, Probit,...) 27. November 204 In diesem Kapitel führen wir eine Klasse von Modellen für binäre Auswahlprobleme ein, deren wichtigste Vertreter das Logit- und das Probit-Modell

Mehr

Kap. 9: Regression mit einer binären abhängigen Variablen

Kap. 9: Regression mit einer binären abhängigen Variablen Kap. 9: Regression mit einer binären abhängigen Variablen Motivation Lineares Wahrscheinlichkeitsmodell Probit- und Logit-Regression Maximum Likelihood Empirisches Beispiel: Analyse der HMDA-Daten Ausblick:

Mehr

Multinomiale logistische Regression

Multinomiale logistische Regression Multinomiale logistische Regression Die multinomiale logistische Regression dient zur Schätzung von Gruppenzugehörigkeiten bzw. einer entsprechenden Wahrscheinlichkeit hierfür, wobei als abhänginge Variable

Mehr

Multivariate Analyseverfahren

Multivariate Analyseverfahren Multivariate Analyseverfahren Logistische Regression Prof. Dr. Stein 14.01.2014 & 20.01.2014 1 / 62 Inhaltsverzeichnis 1 Grundidee 2 3 4 5 2 / 62 Der Erklärungsgegenstand Soziale Forschungsgegenstände

Mehr

Modelle mit diskreten abhängigen Variablen

Modelle mit diskreten abhängigen Variablen Kapitel 19 Modelle mit diskreten abhängigen Variablen 19.1 Vorbemerkungen Bisher sind wir stets davon ausgegangen, dass die abhängige Variable y intervallskaliert ist. Zusätzlich haben wir meist angenommen,

Mehr

Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Prüfung im Fach Ökonometrie im WS 2011/12 Lösungsskizze

Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Prüfung im Fach Ökonometrie im WS 2011/12 Lösungsskizze Lehrstuhl für Statistik und empirische irtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Prüfung im ach Ökonometrie im S 20/2 Lösungsskizze Aufgabe (.5 Punkte) Sie verfügen über einen Datensatz, der Informationen

Mehr

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression Institut für Soziologie Methoden 2 Regressionsanalyse I: Einfache lineare Regression Programm Anwendungsbereich Vorgehensweise Interpretation Annahmen Zusammenfassung Übungsaufgabe Literatur # 2 Anwendungsbereich

Mehr

Partial Credit Model und Tutz Model

Partial Credit Model und Tutz Model November 22, 2011 Item Response Theory - Partial Credit Model Einleitung IRT-Einteilung Datenstruktur PCM - Herleitung Parameterschätzung Goodness of Fit Beispiel Sequential Models for Ordered Responses

Mehr

6.0 Logistische Regression. 6 Logistische Regression. 6.1 Das binäre Modell. 6 Logistische Regression

6.0 Logistische Regression. 6 Logistische Regression. 6.1 Das binäre Modell. 6 Logistische Regression 6.0 Logistische Regression 6.1 Das binäre Modell 6.1 Das binäre Modell Sei x der Vektor der Einflussgrößen mit einem Eins-Element, um die Regressionskonstante zu modellieren. Angenommen, es gilt das Regressionsmodell:

Mehr

Semiparametrisches Kredit Scoring

Semiparametrisches Kredit Scoring Semiparametrisches Kredit Scoring Marlene Müller Fraunhofer Institut für Techno- und Wirtschaftsmathematik (ITWM) Kaiserslautern Bernd Rönz, Wolfgang Härdle Center for Applied Statistics and Economics

Mehr

Logistische Regression

Logistische Regression TU Chemnitz SoSe 2012 Seminar: Multivariate Analysemethoden 26.06.2012 Dozent: Dr. Thomas Schäfer Logistische Regression Ein Verfahren zum Schätzen von Wahrscheinlichkeiten Referentinnen: B. Sc. Psych.

Mehr

Institut für Soziologie Dipl.-Soz. Benjamin Gedon. Methoden 2. Logistische Regression I

Institut für Soziologie Dipl.-Soz. Benjamin Gedon. Methoden 2. Logistische Regression I Institut für Soziologie Dipl.-Soz. Methoden 2 Logistische Regression I Programm Ergänzung zu letzter Sitzung: Interpretation nichtlinearer Effekte Anwendungsbereich der logistischen Regression Entwicklung

Mehr

Abschlussklausur (60 Minuten), 15. Juli 2014

Abschlussklausur (60 Minuten), 15. Juli 2014 Prof. Dr. Amelie Wuppermann Volkswirtschaftliche Fakultät Universität München Sommersemester 2014 Empirische Ökonomie 1 Abschlussklausur (60 Minuten), 15. Juli 2014 Bearbeitungshinweise Die Bearbeitungszeit

Mehr

Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik

Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik Ludwig Fahrmeir, Nora Fenske Institut für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik 29. März 21 Hinweise:

Mehr

Probeklausur Zeitreihenökonometrie (Sommersemester 2014) 1

Probeklausur Zeitreihenökonometrie (Sommersemester 2014) 1 Probeklausur Zeitreihenökonometrie (Sommersemester 2014) 1 Aufgabe 1: Betrachtet wird folgendes Modell zur Erklärung des Managergehalts salary durch den Umsatz sales, die Eigenkapitalrendite roe und die

Mehr

29. Mai 2006. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt.

29. Mai 2006. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt. L. Fahrmeir, C. Belitz Department für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik 29. Mai 2006 Hinweise:

Mehr

Notiz zur logistischen Regression

Notiz zur logistischen Regression Kapitel 1 Notiz zur logistischen Regression 1.1 Grundlagen Bei dichotomen abhängigen Variablen ergeben sich bei einer normalen linearen Regression Probleme. Während man die Ausprägungen einer dichotomen

Mehr

Kommentierter SPSS-Ausdruck zur logistischen Regression

Kommentierter SPSS-Ausdruck zur logistischen Regression Daten: POK V AG 3 (POKV_AG3_V07.SAV) Kommentierter SPSS-Ausdruck zur logistischen Regression Fragestellung: Welchen Einfluss hat die Fachnähe und das Geschlecht auf die interpersonale Attraktion einer

Mehr

8. Februar 2007. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt.

8. Februar 2007. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt. L. Fahrmeir, C. Belitz Department für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik 8. Februar 2007 Hinweise:

Mehr

Christian FG Schendera. Regressionsanalyse. mit SPSS. 2. korrigierte und aktualisierte Auflage DE GRUYTER OLDENBOURG

Christian FG Schendera. Regressionsanalyse. mit SPSS. 2. korrigierte und aktualisierte Auflage DE GRUYTER OLDENBOURG Christian FG Schendera Regressionsanalyse mit SPSS 2. korrigierte und aktualisierte Auflage DE GRUYTER OLDENBOURG Inhalt Vorworte V 1 Korrelation 1 1.1 Einführung 1 1.2 Erste Voraussetzung: Das Skalenniveau

Mehr

IBM SPSS Regression 22

IBM SPSS Regression 22 IBM SPSS Regression 22 Hinweis Vor Verwendung dieser Informationen und des darin beschriebenen Produkts sollten die Informationen unter Bemerkungen auf Seite 33 gelesen werden. Produktinformation Diese

Mehr

Unsupervised Kernel Regression

Unsupervised Kernel Regression 9. Mai 26 Inhalt Nichtlineare Dimensionsreduktion mittels UKR (Unüberwachte KernRegression, 25) Anknüpfungspunkte Datamining I: PCA + Hauptkurven Benötigte Zutaten Klassische Kernregression Kerndichteschätzung

Mehr

Klausur Sommersemester 2010

Klausur Sommersemester 2010 Klausur Sommersemester 2010 Lehrstuhl: Wirtschaftspolitik Prüfungsfach: Empirische Wirtschaftsforschung Prüfer: Prof. Dr. K. Kraft Datum: 04.08.2010 Hilfsmittel: Nicht-programmierbarer Taschenrechner Klausurdauer:

Mehr

Multivariate Statistik

Multivariate Statistik Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)

Mehr

Die binäre Logistische Regression ein vielseitiges und robustes Analyseinstrument sozialwissenschaftlicher Forschung

Die binäre Logistische Regression ein vielseitiges und robustes Analyseinstrument sozialwissenschaftlicher Forschung Die binäre Logistische Regression ein vielseitiges und robustes Analyseinstrument sozialwissenschaftlicher Forschung Eine Einführung für Anwender - Marcel Erlinghagen - Gelsenkirchen, Oktober 2003 Gliederung

Mehr

2.Tutorium Generalisierte Regression

2.Tutorium Generalisierte Regression 2.Tutorium Generalisierte Regression - Binäre Regression - Moritz Berger: 04.11.2013 und 11.11.2013 Shuai Shao: 06.11.2013 und 13.11.2013 Institut für Statistik, LMU München 1 / 16 Gliederung 1 Erweiterte

Mehr

Oliver Kuß*; Dorothee Twardella**; Maria Blettner***; Thomas L. Diepgen**

Oliver Kuß*; Dorothee Twardella**; Maria Blettner***; Thomas L. Diepgen** Effektschätzung in Cluster-Randomized Trials mit binärer Zielgröße: Eine Sensitivitätsanalyse mit numerischer Integration, MCMC und NPMLE am Beispiel der DHP Oliver Kuß*; Dorothee Twardella**; Maria Blettner***;

Mehr

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren)

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Multiple Regression 1 Was ist multiple lineare Regression? Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Annahme: Der Zusammenhang

Mehr

Einfache ökonometrische Verfahren für die Kreditrisikomessung*

Einfache ökonometrische Verfahren für die Kreditrisikomessung* Einfache ökonometrische Verfahren für die Kreditrisikomessung* Ulrich Kaiser und Andrea Szczesny Zusammenfassung Dieser Beitrag stellt verschiedene ökonometrische Methoden zur Bewertung und Berechnung

Mehr

SPSS Regression Models 12.0

SPSS Regression Models 12.0 SPSS Regression Models 12.0 Weitere Informationen zu SPSS -Software-Produkten finden Sie auf unserer Website unter der Adresse http://www.spss.com, oder wenden Sie sich an SPSS GmbH Software Rosenheimer

Mehr

Monte Carlo Methoden in Kreditrisiko-Management

Monte Carlo Methoden in Kreditrisiko-Management Monte Carlo Methoden in Kreditrisiko-Management P Kreditportfolio bestehend aus m Krediten; Verlustfunktion L = n i=1 L i; Die Verluste L i sind unabhängig bedingt durch einen Vektor Z von ökonomischen

Mehr

Univariate Lineare Regression. (eine unabhängige Variable)

Univariate Lineare Regression. (eine unabhängige Variable) Univariate Lineare Regression (eine unabhängige Variable) Lineare Regression y=a+bx Präzise lineare Beziehung a.. Intercept b..anstieg y..abhängige Variable x..unabhängige Variable Lineare Regression y=a+bx+e

Mehr

Statistische Methoden: Tests, Regression und multivariate Verfahren

Statistische Methoden: Tests, Regression und multivariate Verfahren (CM)²-Nachwuchsring, Workshop Statistik, 25.Januar 2013 Statistische Methoden: Tests, Regression und multivariate Verfahren Ralf Korn ((CM)², TU Kaiserslautern, Fraunhofer ITWM) 0. Einige Probleme aus

Mehr

Master of Science in Pflege

Master of Science in Pflege Master of Science in Pflege Modul: Statistik Einfache und multiple Regressionsanalyse / Logistische Regressionsanalyse November 2012 Prof. Dr. Jürg Schwarz Folie 2 Programm 28. November 2012: Vormittag

Mehr

i PASW Regression 18

i PASW Regression 18 i PASW Regression 18 Weitere Informationen zu SPSS Inc.-Software-Produkten finden Sie auf unserer Website unter der Adresse http://www.spss.com oder wenden Sie sich an SPSS Inc. 233 South Wacker Drive,

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

Regressionsanalysen. Zusammenhänge von Variablen. Ziel der Regression. ( Idealfall )

Regressionsanalysen. Zusammenhänge von Variablen. Ziel der Regression. ( Idealfall ) Zusammenhänge von Variablen Regressionsanalysen linearer Zusammenhang ( Idealfall ) kein Zusammenhang nichtlinearer monotoner Zusammenhang (i.d.regel berechenbar über Variablentransformationen mittels

Mehr

2. Korrelation, lineare Regression und multiple Regression

2. Korrelation, lineare Regression und multiple Regression multiple 2.2 Lineare 2.2 Lineare 1 / 130 2.2 Lineare 2 / 130 2.1 Beispiel: Arbeitsmotivation Untersuchung zur Motivation am Arbeitsplatz in einem Chemie-Konzern 25 Personen werden durch Arbeitsplatz zufällig

Mehr

Geoadditive Regression

Geoadditive Regression Seminar: Stochastische Geometrie und ihre Anwendungen - Zufallsfelder Universität Ulm 27.01.2009 Inhalt Einleitung 1 Einleitung 2 3 Penalisierung 4 Idee Variogramm und Kovarianz Gewöhnliches Ansatz für

Mehr

Fallbeispiel: Kreditscoring

Fallbeispiel: Kreditscoring Fallbeispiel: Kreditscoring Stefan Lang 14. Juni 2005 SS 2005 Datensatzbeschreibung (1) Ziel Untersuchung der Bonität eines Kunden in Abhängigkeit von erklärenden Variablen Zielvariable Bonität des Kunden:

Mehr

Personalisierung. Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung. Data Mining.

Personalisierung. Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung. Data Mining. Personalisierung Personalisierung Thomas Mandl Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung Klassifikation Die Nutzer werden in vorab bestimmte Klassen/Nutzerprofilen

Mehr

Quantitative Methoden der Bildungsforschung

Quantitative Methoden der Bildungsforschung Glieung Wieholung Korrelationen Grundlagen lineare Regression Lineare Regression in SPSS Übung Wieholung Korrelationen Standardisiertes Zusammenhangsmaß (unstandardisiert: Kovarianz) linearer Zusammenhang

Mehr

Grundzüge der Ereignisdatenanalyse

Grundzüge der Ereignisdatenanalyse Grundzüge der Ereignisdatenanalyse Regressionsmodelle Sommersemester 2009 Regressionsmodelle Event History Analysis (1/48) Übersicht Wiederholung Exponential- und Weibull-Modell Weitere Modelle Regressionsmodelle

Mehr

Survival Analysis. Rene.Boeheim@jku.at. December 2008

Survival Analysis. Rene.Boeheim@jku.at. December 2008 Survival Analysis René Böheim Rene.Boeheim@jku.at December 2008 Basierend auf Cleves, Gould, and Gutierrez (2004), An Introduction to Survival Analysis using Stata, Revised Edition, Stata Press, Texas.

Mehr

Koeffizienten der Logitanalyse. Kurt Holm. Almo Statistik-System www.almo-statistik.de holm@almo-statistik.de kurt.holm@jku.at

Koeffizienten der Logitanalyse. Kurt Holm. Almo Statistik-System www.almo-statistik.de holm@almo-statistik.de kurt.holm@jku.at Koeffizienten der Logitanalyse Kurt Holm Almo Statistik-System www.almo-statistik.de holm@almo-statistik.de kurt.holm@jku.at 1 Kurt Holm Koeffizienten der Logitanalyse Eine häufig gestellte Frage lautet:

Mehr

Logistische Regression - - - - - 24. Juni 2011

Logistische Regression - - - - - 24. Juni 2011 Lehrveranstaltung Empirische Forschung und Politikberatung Sommersemester 2011 Logistische Regression - - - - - 24. Juni 2011 Anja Hall, Bundesinstitut für Berufsbildung, AB 2.2: Qualifikation, berufliche

Mehr

Generalisierte lineare Modelle. Statistik 3 im Nebenfach. Binäre Regressionsmodelle. 4.1 Binäre Regression

Generalisierte lineare Modelle. Statistik 3 im Nebenfach. Binäre Regressionsmodelle. 4.1 Binäre Regression Generalisierte lineare Modelle Statistik 3 im Nebenfach Friedrich Leisch Institut für Statistik Ludwig-Maximilians-Universität München WS 2010/2011 basierend auf Fahrmeir, Kneib & Lang (2007) 4 Generalisierte

Mehr

Multiple Regression II: Signifikanztests, Gewichtung, Multikollinearität und Kohortenanalyse

Multiple Regression II: Signifikanztests, Gewichtung, Multikollinearität und Kohortenanalyse Multiple Regression II: Signifikanztests,, Multikollinearität und Kohortenanalyse Statistik II Übersicht Literatur Kausalität und Regression Inferenz und standardisierte Koeffizienten Statistik II Multiple

Mehr

Korrelation - Regression. Berghold, IMI

Korrelation - Regression. Berghold, IMI Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines

Mehr

SPSS Regression Models 16.0

SPSS Regression Models 16.0 i SPSS Regression Models 16.0 Weitere Informationen zu SPSS -Software-Produkten finden Sie auf unserer Website unter der Adresse http://www.spss.com oder wenden Sie sich an SPSS Inc. 233 South Wacker Drive,

Mehr

Übersicht. VL Forschungsmethoden. Ereignisdatenanalyse

Übersicht. VL Forschungsmethoden. Ereignisdatenanalyse VL Forschungsmethoden Ereignisdatenanalyse 1 2 3 4 5 Übersicht VL Forschungsmethoden Event Data (1/45) Harold Macmillan, PM 1957-1963 The greatest challenge in politics: events, my dear boy, events Was

Mehr

Beispiel 5 Europäische Call Option (ECO) in einer Aktie S mit Laufzeit T und Ausübungspreis (Strikepreis) K.

Beispiel 5 Europäische Call Option (ECO) in einer Aktie S mit Laufzeit T und Ausübungspreis (Strikepreis) K. Beispiel 5 Europäische Call Option (ECO) in einer Aktie S mit Laufzeit T und Ausübungspreis (Strikepreis) K. Wert der Call Option zum Zeitpunkt T: max{s T K,0} Preis der ECO zum Zeitpunkt t < T: C = C(t,

Mehr

Computer Vision: Optische Flüsse

Computer Vision: Optische Flüsse Computer Vision: Optische Flüsse D. Schlesinger TUD/INF/KI/IS Bewegungsanalyse Optischer Fluss Lokale Verfahren (Lukas-Kanade) Globale Verfahren (Horn-Schunck) (+ kontinuierliche Ansätze: mathematische

Mehr

Survival Analysis (Modul: Lebensdaueranalyse)

Survival Analysis (Modul: Lebensdaueranalyse) Survival Analysis (Modul: Lebensdaueranalyse) ROLAND RAU Universität Rostock, Sommersemester 2015 12. Mai 2015 c Roland Rau Survival Analysis 1 / 24 Hausaufgabe 1 Schreiben Sie die Log-Likelihood Gleichung

Mehr

Zeitreihen. Statistik II

Zeitreihen. Statistik II Statistik II Wiederholung Literatur -Daten Trends und Saisonalität Fehlerstruktur Statistik II (1/31) Wiederholung Literatur -Daten Trends und Saisonalität Fehlerstruktur Statistik II (1/31) Zum Nachlesen

Mehr

Untersuchungen zum Thema Tracking Error

Untersuchungen zum Thema Tracking Error Untersuchungen zum Thema Tracking Error J. Fulmek 24. August 2003 1 Einleitung Im Folgenden werden folgende Punkte untersucht: 1. verschiedene in der Literatur übliche Definitionen des Tracking Errors

Mehr

Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko

Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko Jan Jescow Stoehr Gliederung 1. Einführung / Grundlagen 1.1 Ziel 1.2 CreditRisk+ und CreditMetrics 2. Kreditportfolio 2.1 Konstruktion

Mehr

IBM SPSS Regression 20

IBM SPSS Regression 20 IBM SPSS Regression 20 Hinweis: Lesen Sie zunächst die allgemeinen Informationen unter Hinweise auf S. 47, bevor Sie dieses Informationsmaterial sowie das zugehörige Produkt verwenden. Diese Ausgabe bezieht

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Modellierung des Stornos nach Beitragsanpassung in der PKV

Modellierung des Stornos nach Beitragsanpassung in der PKV ierung des Stornos nach Beitragsanpassung in der PKV 02.07.2013 Alexander Küpper Central Krankenversicherung AG Inhaltsverzeichnis Einführung Gesetzlicher Rahmen Stornomodell Anwendung Ausblick und Weiterentwicklung

Mehr

Allgemeine Regressionsanalyse. Kovariablen / Prädiktoren / unabhängige Variablen X j R d, evtl. deterministisch

Allgemeine Regressionsanalyse. Kovariablen / Prädiktoren / unabhängige Variablen X j R d, evtl. deterministisch Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 9.1 Allgemeine Regressionsanalyse Daten (X j, Y j ), j = 1,..., N unabhängig Kovariablen / Prädiktoren / unabhängige Variablen X j R d, evtl.

Mehr

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen.

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen. Modul G.1 WS 07/08: Statistik 17.01.2008 1 Wiederholung Kovarianz und Korrelation Kovarianz = Maß für den linearen Zusammenhang zwischen zwei Variablen x und y Korrelation Die Korrelation ist ein standardisiertes

Mehr

Generalisierte Additive Modelle im Credit Rating: Eine Fallstudie zum Vergleich verschiedener Verfahren

Generalisierte Additive Modelle im Credit Rating: Eine Fallstudie zum Vergleich verschiedener Verfahren Generalisierte Additive Modelle im Credit Rating: Eine Fallstudie zum Vergleich verschiedener Verfahren Marlene Müller Beuth Hochschule für Technik Berlin, Fachbereich II Luxemburger Str. 10, D 13353 Berlin

Mehr

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14.

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14. Aufgabe : einfacher T-Test Statistik bei einer Stichprobe Standardfehl Standardab er des Mittelwert weichung Mittelwertes 699 39.68 76.59 2.894 Test bei einer Sichprobe Testwert = 45.5 95% Konfidenzintervall

Mehr

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002)

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002) 6. Bayes-Klassifikation (Schukat-Talamazzini 2002) (Böhm 2003) (Klawonn 2004) Der Satz von Bayes: Beweis: Klassifikation mittels des Satzes von Bayes (Klawonn 2004) Allgemeine Definition: Davon zu unterscheiden

Mehr

Kapitel 8. Dummy Variablen. Let us remember the unfortunate econometrician

Kapitel 8. Dummy Variablen. Let us remember the unfortunate econometrician Kapitel 8 Dummy Variablen Let us remember the unfortunate econometrician who, in one of the major functions of his system, had to use a proxy for risk and a dummy for sex. (Machlup, 974, 892) Dummy Variablen

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Zeitreihenanalyse. Teil III: Nichtlineare Zeitreihenmodelle. Prof. Dr. W. Zucchini, Dr. O. Nenadić, A. Schlegel. Göttingen, Januar 2008 DAX

Zeitreihenanalyse. Teil III: Nichtlineare Zeitreihenmodelle. Prof. Dr. W. Zucchini, Dr. O. Nenadić, A. Schlegel. Göttingen, Januar 2008 DAX Zeitreihenanalyse Teil III: Nichtlineare Zeitreihenmodelle Prof. Dr. W. Zucchini, Dr. O. Nenadić, A. Schlegel DAX -10-5 0 5 10 0 200 400 600 800 1000 trading day Göttingen, Januar 2008 Inhaltsverzeichnis

Mehr

Die Monte-Carlo-Methode mit Pseudo- und Quasi-Zufallszahlen

Die Monte-Carlo-Methode mit Pseudo- und Quasi-Zufallszahlen Die Monte-Carlo-Methode mit Pseudo- und Quasi-Zufallszahlen Marco A. Harrendorf Hauptseminar Methoden der experimentellen Teilchenphysik WS 2011/2012 Karlsruhe Institut für Technologie (KIT) 25.11.2011

Mehr

Datenanalyse und Statistik

Datenanalyse und Statistik Datenanalyse und Statistik p. 1/44 Datenanalyse und Statistik Vorlesung 2 (Graphik I) K.Gerald van den Boogaart http://www.stat.boogaart.de Datenanalyse und Statistik p. 2/44 Daten Schätzung Test Mathe

Mehr

Eine computergestützte Einführung mit

Eine computergestützte Einführung mit Thomas Cleff Deskriptive Statistik und Explorative Datenanalyse Eine computergestützte Einführung mit Excel, SPSS und STATA 3., überarbeitete und erweiterte Auflage ^ Springer Inhaltsverzeichnis 1 Statistik

Mehr

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2014

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2014 Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2014 Walter Sanddorf-Köhle Foliensatz Nr. 8 1 / 40 Erweiterungen des Binomialmodells Dividendenzahlungen Sei S der Wert einer Aktie

Mehr

5.2 Optionen Auswahl der Statistiken, die bei der jeweiligen Prozedur zur Verfügung stehen.

5.2 Optionen Auswahl der Statistiken, die bei der jeweiligen Prozedur zur Verfügung stehen. 5 Statistik mit SPSS Die Durchführung statistischer Auswertungen erfolgt bei SPSS in 2 Schritten, der Auswahl der geeigneten Methode, bestehend aus Prozedur Variable Optionen und der Ausführung. 5.1 Variablen

Mehr

Messgeräte: Mess-System-Analyse und Messmittelfähigkeit

Messgeräte: Mess-System-Analyse und Messmittelfähigkeit Messgeräte: Mess-System-Analyse und Messmittelfähigkeit Andreas Berlin 14. Juli 2009 Bachelor-Seminar: Messen und Statistik Inhalt: 1 Aspekte einer Messung 2 Mess-System-Analyse 2.1 ANOVA-Methode 2.2 Maße

Mehr

Präsentation auf der regionalen Nutzerkonferenz des Forschungsdatenzentrums der Länder am 21./22.04.2005 in Berlin

Präsentation auf der regionalen Nutzerkonferenz des Forschungsdatenzentrums der Länder am 21./22.04.2005 in Berlin Betriebliche Weiterbildung im europäischen Vergleich Neue Analysemöglichkeiten auf Basis der Mikrodaten der zweiten europäischen Weiterbildungserhebung (CVTS2) Präsentation auf der regionalen Nutzerkonferenz

Mehr

9 Diskriminanzanalyse

9 Diskriminanzanalyse 9 Diskriminanzanalyse 9.1 Problemstellung Ziel einer Diskriminanzanalyse: Bereits bekannte Objektgruppen (Klassen/Cluster) anhand ihrer Merkmale charakterisieren und unterscheiden sowie neue Objekte in

Mehr

Klausur STATISTIK 2 für Diplom VWL

Klausur STATISTIK 2 für Diplom VWL Klausur STATISTIK 2 für Diplom VWL Name, Vorname: Matrikel-Nr. Die Klausur enthält zwei Typen von Aufgaben: Teil A besteht aus Fragen mit mehreren vorgegebenen Antwortvorschlägen, von denen mindestens

Mehr

Auswahlbasierte Conjoint-Analyse - CBCA

Auswahlbasierte Conjoint-Analyse - CBCA Auswahlbasierte Conjoint-Analyse - CBCA Hier stellen wir nun eine Weiterentwicklung der Conjoint-Analyse vor, die sich in der Marktforschungspraxis und teilweise auch in der Umweltökonomie großer Beliebtheit

Mehr

Advanced Statistics. Komplexe Beziehungen präziser analysieren. Highlights

Advanced Statistics. Komplexe Beziehungen präziser analysieren. Highlights IBM SPSS Advanced Statistics Komplexe Beziehungen präziser analysieren Highlights Erstellung flexibler Modelle mithilfe einer Vielzahl von Modellerstellungsoptionen Präzisere Vorhersagemodelle durch ein

Mehr

adjusted R 2 korrigiertes Bestimmtheitsmaß, korrigiertes R 2 Bias, Verzerrung coefficient of determination Bestimmtheitsmaß, R 2

adjusted R 2 korrigiertes Bestimmtheitsmaß, korrigiertes R 2 Bias, Verzerrung coefficient of determination Bestimmtheitsmaß, R 2 acceptance region Annahmebereich adjusted R 2 korrigiertes Bestimmtheitsmaß, korrigiertes R 2 alternative hypothesis Alternativhypothese asymptotic distribution asymptotische Verteilung asymptotic normal

Mehr

IBM SPSS Advanced Statistics

IBM SPSS Advanced Statistics IBM Software IBM SPSS Statistics 19 IBM SPSS Advanced Statistics Genauere Analyse von komplexen Beziehungen Geschäftsvorteile Gehen Sie über Basisanalysen hinaus Erstellen flexibler Modelle mit einer Vielzahl

Mehr

Die Tarifierung in der Autohaftpflichtversicherung mittels verallgemeinerter linearer Modelle

Die Tarifierung in der Autohaftpflichtversicherung mittels verallgemeinerter linearer Modelle Diplomarbeit Die Tarifierung in der Autohaftpflichtversicherung mittels verallgemeinerter linearer Modelle von Patricia Siedlok betreut von PD Dr. Volkert Paulsen Mathematisches Institut für Statistik

Mehr

6. METRISCHE UND KATEGORIALE MERKMALE

6. METRISCHE UND KATEGORIALE MERKMALE 6. METRISCHE UND KATEGORIALE MERKMALE wenn an einer Beobachtungseinheit eine (oder mehrere) metrische und eine (oder mehrere) kategoriale Variable(n) erhoben wurden Beispiel: Haushaltsarbeit von Teenagern

Mehr

Zur Verfügung gestellt in Kooperation mit / provided in cooperation with: GESIS - Leibniz-Institut für Sozialwissenschaften

Zur Verfügung gestellt in Kooperation mit / provided in cooperation with: GESIS - Leibniz-Institut für Sozialwissenschaften www.ssoar.info Teilnehmen oder Boykottieren : ein Anwendungsbeispiel der binären logistischen Regression mit SPSSx Kühnel, Steffen M.; Jagodzinski, Wolfgang; Terwey, Michael Veröffentlichungsversion /

Mehr

Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear":

Das Dialogfeld für die Regressionsanalyse (Lineare Regression) findet sich im Statistik- Menu unter Regression-Linear: Lineare Regression Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear": Im einfachsten Fall werden mehrere Prädiktoren (oder nur

Mehr

Neuerungen in Minitab 16

Neuerungen in Minitab 16 Neuerungen in Minitab 16 minitab@additive-net.de - Telefon: 06172 / 5905-30 Willkommen zu Minitab 16! Die neueste Version der Minitab Statistical Software umfasst mehr als siebzig neue Funktionen und Verbesserungen,

Mehr

Commercial Banking Übung 1 Kreditscoring

Commercial Banking Übung 1 Kreditscoring Commercial Banking Übung Kreditscoring Dr. Peter Raupach raupach@wiwi.uni-frankfurt.de Sprechzeit Dienstag 6-7:00 Uhr Raum 603 B Kreditscoring Gliederung Grundanliegen Das Sample Modellspezifikation Diskriminanzanalyse

Mehr

Cross-Kanal-Werbewirkung die Welt ist keine Badewanne

Cross-Kanal-Werbewirkung die Welt ist keine Badewanne Cross-Kanal-Werbewirkung die Welt ist keine Badewanne Burkhardt Funk Hamburg, 20.02.2013 Eine kurze Geschichte der Werbewirkungsmodelle BAYESIAN FORECASTING ATTRIBUTION MODELS USER JOURNEY IMPACT- RESPONSE

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Preferred citation style for this presentation

Preferred citation style for this presentation Preferred citation style for this presentation Simma, A. (2002) Ziel- und Verkehrsmittelwahl für Wege zum Skifahren in der Schweiz, 3. AMUS-Konferenz, Aachen, Juli 2002. 1 Ziel - und Verkehrsmittelwahl

Mehr

SISS: Schriftenreihe des Instituts für Sozialwissenschaften der Universität Stuttgart. No. 3 / 2010

SISS: Schriftenreihe des Instituts für Sozialwissenschaften der Universität Stuttgart. No. 3 / 2010 SISS: Schriftenreihe des Instituts für Sozialwissenschaften der Universität Stuttgart No. 3 / 2010 Binär-logistische Regressionsanalyse. Grundlagen und Anwendung für Sozialwissenschaftler Jochen Mayerl

Mehr

Fallbeispiel 5: Humankapital und Returns to Education. Seite 1

Fallbeispiel 5: Humankapital und Returns to Education. Seite 1 Fallbeispiel 5: Humankapital und Returns to Education Seite 1 Gliederung Einführung: Wirkungsanalysen in der Wirtschaftspolitik I. Theoretischer Teil 1 Humankapital 2 Returns to Education: Schooling Model

Mehr

Log-lineare Analyse I

Log-lineare Analyse I 1 Log-lineare Analyse I Einleitung Die log-lineare Analysemethode wurde von L.A. Goodman in den 60er und 70er Jahren entwickelt. Sie dient zur Analyse von Zusammenhängen in mehrdimensionalen Kontingenztafeln

Mehr

LISREL/CFA: Modelltest

LISREL/CFA: Modelltest LISREL/CFA: Modelltest im Rahmen des Interdisziplinären Seminars Multivariate Statistik bei psychologischen Fragestellungen Martina Feilke, Martina Unterburger, Christoph Burkhardt Dozenten: Prof. Dr.

Mehr

Analyse von Extremwerten

Analyse von Extremwerten Analyse von Extremwerten Interdisziplinäres Seminar: Statistische Verfahren in den Geowissenschaften Anna Hamann betreut durch Prof. Dr. Helmut Küchenhoff, Institut für Statistik Ludwig Maximilians Universität

Mehr

Ein SAS-Makro Paket für die Entwicklung und Validierung von Prognosemodellen auf Basis der logistischen Regression

Ein SAS-Makro Paket für die Entwicklung und Validierung von Prognosemodellen auf Basis der logistischen Regression Poster Ein SAS-Makro Paket für die Entwicklung und Validierung von Prognosemodellen auf Basis der logistischen Regression Rainer Muche, Christina Ring Christoph Ziegler Abteilung Biometrie und Med. Boehringer

Mehr