Credit Metrics. Wird in erster Linie für die Evaluierung von Bond Portfolios verwendet. (Siehe Crouhy et al. (2000), J.P.Morgan Inc.

Größe: px
Ab Seite anzeigen:

Download "Credit Metrics. Wird in erster Linie für die Evaluierung von Bond Portfolios verwendet. (Siehe Crouhy et al. (2000), J.P.Morgan Inc."

Transkript

1 Wurde bei J.P.Morgan entwickelt. Credit Metrics Wird in erster Linie für die Evaluierung von Bond Portfolios verwendet. (Siehe Crouhy et al. (2000), J.P.Morgan Inc. (1997)) Basiert auf ein Bonität-Einstufungssystem (zb. von Moody oder von Standard and Poor s). Berücksichtigt die Veränderungen im PF-Wert aufgrund von Veränderungen in den Bonität-Einstufungen. Sei P ein Portfolio von n Krediten mit einer fixen Laufzeit (zb. 1 Jahr). Sei S i der Zustand-Indikator von Kreditnehmer i. Die möglichen Zustände werden mit 0,1,...,m bezeichnet, wobei S i = 0 der Zahlungsunfähigkeit entspricht. Beispiel 1 Einstufungssystem von Standard and Poor s m = 7; S i = 0 heißt Zahlungsunfähigkeit; S i = 1 oder CCC; S i = 2 oder B; S i = 3 oder BB; S i = 4 oder BBB; S i = 5 oder A; S i = 6 oder AA; S i = 7 oder AAA. 13

2 Für jeden Kreditnehmer wird die Dynamik der Bonität-Einstufungen mit Hilfe einer Markov Kette mit Zustandsmenge {0,1,...,m} und Übergangsmatrix P modelliert. Die Übergangswahrscheinlichkeiten werden mit Hilfe von historischen Daten geschätzt, zb.: Ursprüngliche Einstufung am Ende des Jahres Zahlungs- Einstufung AAA AA A BBB BB B CCC unfähigkeit AAA AA A BBB BB B CCC Recovery Rates Im Fall einer Zahlungsunfähigkeit hängt die recovery rate von der Einstufung des Kreditnehmers ab. Der Durchschnittswert und die Standardabweichung der recovery rate werden aufgrund von historischen Daten innerhalb jeder Einstufungsklasse geschätzt. 14

3 Evaluierung der Bonds im Falle einer Neu-Einstufung Beispiel 2 Betrachten wir ein BBB Bond mit Laufzeit 5 Jahre. Er zahlt jedes Jahr ein Kupon von 6%. Die forward Zinsstrukturkurven (forward yield curves) für jede Einstufungsklasse sind wie folgt gegeben (in %): Einstufung 1. Jahr 2. Jahr 3. Jahr 4. Jahr AAA AA A BBB BB CCC Für ein Nennwert von 100 zahlt der Bond 6 Währungseinheiten am Ende des 1., 2., 3. und 4. Jahres. Am Ende des 5. Jahres zahlt der Bond 106 Währungseinheiten. Annahme: Am Ende des ersten Jahres wird der Bond neu als A Bond eingestuft. Wert des Bonds am Ende des ersten Jahres: V = ,73% = (1+4,32%) 2 (1+4,93%) 3 (1+5,32%) 4 15

4 Analog wird der Wert des Bonds am Ende des 1. Jahres ermittelt, falls er zu diesem Zeitpunkt zu anderen Klassen eingestuft wird. Es wird eine recovery rate von 51.13% im Falle von Zahlungsunfähigekt angenommen. Einstufung am Ende des 1. Jahres Wert AAA AA A BBB BB B CCC Zahlungsunfähigkeit

5 Wert und Risiko eines Bond-Portfolios in Credit Metrics Die Abhängigkeit der Neueinstufungen unterschiedlicher Bonds und die Wahrscheinlichkeiten von Neueinstufungen von Gruppen von Bonds werden mit Hilfe der dazugehörigen Rendite berechnet. Die Rendite von Bond i wird als Normalverteilung Y i modelliert. Seien d Def, d CCC,..., d AAA = + Schwellwerte, sodass für ein Kreditnehmer die Wahrscheinlichkeit des Übergangs in einer neuen Stufe S i am Ende einer vordefinierten Periode folgendermaßen gegeben sind: P(S i = 0) = φ(d Def ), P(S i = CCC) = φ(d CCC ) φ(d Def ),..., P(S i = AAA) = 1 φ(aa). Die Rendite mehrerer Bonds werden mit Hilfe der multivariaten Normalverteilung modelliert. Die Korrelationsmatrix dieser Verteilung wird in Credit Metrics mit Hilfe von Faktormodellen berechnet. Dann können Gesamtwahrscheinlichkeiten wie P(S 1 = 0,...,S n = 3) = P(Y 1 d Def,...,d B < Y n d BB ) berechnet werden. Als Modell für die Abhängigkeitsstruktur des Vektors (Y 1,Y 2,...,Y n ) wird die Gauss sche Copula(!) verwendet. Die Risikomasse eines Kreditportfolios werden mit Hilfe von Simulationen berechnet. Es werden viele Szenarien generiert, aufgrund derer der empirische VaR ermittelt wird. 17

6 Die Bernoulli gemischte Verteilung Der 0-1 Zufallsvektor X = (X 1,...,X n ) T hat eine Bernoulli gemischte Verteilung (BMV) wenn es einen Zufallsvektor Z = (Z 1,Z 2,...,Z m ) T, m < n, und Funktionen f i :R m [0,1], i = 1,2,...,n, gibt, sodass X bedingt durch Z ein Vektor von unabhängingen Bernoulli verteilten Zufallsvariablen ist und P(X i = 1 Z) = f i (Z), P(X i = 0) = 1 f i (Z) Für x = (x 1,...,x n ) T {0,1} n gilt P(X = x Z) = n f i (Z) x i (1 f i (Z)) 1 x i Die unbedingte Verteilung: ( n P(X = x) = E(P(X = x Z)) = E f i (Z) x i (1 f i(z)) 1 x i Annahme: alle Funktionen f i sind identisch, f i = f. Für die Anzahl der Zahlungsunfähigkeitsfällen N = n X i gilt N Z Binomial(n,f(Z)). ) 18

7 Die Poisson gemischte Verteilung Der diskrete Zufallsvektor X = (X 1,...,X n ) T hat eine Poisson gemischte Verteilung (PMV) wenn es einen Zufallsvektor Z = (Z 1,Z 2,...,Z m ) T, m < n, und Funktionen λ i :R m (0, ), i = 1,2,...,n, gibt, sodass X bedingt durch Z ein Vektor von unabhängingen Poisson verteilten Zufallsvariablen ist und P(X i = x i Z) = λ i(z) x i e λi(z) für x i N {0} x i! Für x = (x 1,...,x n ) T (N {0}) n gilt n λ i (Z) x i P(X = x Z) = x i! e λ i(z) Die unbedingte Verteilung: ( n P(X = x) = E(P(X = x Z)) = E λ i (Z) x i x i! ) e λ i(z) Annahme: X = ( X 1,..., X n ) T ist PMV mit Faktoren Z. Sei X i = I [1, ) ( X i ). X = (X 1,...,X n ) ist BMV mit f i (Z) = 1 e λ i(z) Für λ i (Z) klein gilt Ñ = n X i n X i. Ñ Z Poisson( λ(z)) wobei λ = n i = 1 λ i(z). 19

8 Annahmen: Beispiele von Bernoulli gemischten Verteilungen Z ist univariat (d.h. es gibt einen Risikofaktor) f i = f für alle i Es gilt: P(X i = 1 Z) = f(z), i; N Z = n X i Binomial(n,f(Z)). Die unbedingte Wahrscheinlichkeit, dass die ersten k Kreditnehmer zahlungsunfähig werden P(X 1 = 1,...,X k = 1,X k+1 = 0,...,X n = 0) = E(P(X 1 = 1,...,X k = 1,X k+1 = 0,...,X n = 0 Z)) = E(f(Z) k (1 f(z)) n k ) Sei G die Verteilungsfunktion von Z. Dann gilt: P(X 1 = 1,...,X k = 1,X k+1 = 0,...,X n = 0) = f(z) k (1 f(z)) n k d(g(z)) Die Verteilung der Anzahl N der Zahlungsunfähigen Kreditnehmer : ( n P(N = k) = k) f(z) k (1 f(z)) n k d(g(z)) 20

9 Die Beta-gemischte Verteilung Es gilt Z Beta(a,b) und f(z) = z. Die Dichte g von Z: g(z) = 1 β(a,b) za 1 (1 z) b 1, für a,b > 0, z (0,1) wobei β(a,b) = 1 0 za 1 (1 z) b 1 dz die Euler sche Betafunktion ist. Verteilung der Anzahl der zahlungsunfähigen Kreditnehmer: ( n P(N = k) = k) 1 z k (1 z) n k g(z)dz = 1 0 ( n 1 z k) a+k 1 (1 z) n k+b 1 dz = β(a, b) 0 ( n ) β(a+k,b+n k) beta-binomial Verteilung k β(a, b) Probit-normal Mischung Z N(0,1), f(z) = φ(µ + σz), µ R, σ > 0 und φ ist die Standard Normalverteilungsfunktion. Logit-normal Mischung Z N(0,1), f(z) = (1+exp{µ+σz}) 1, µ R, σ > 0. 21

10 CreditRisk + - Ein Poisson gemischtes Modell (Entwickelt von CSFB in 1997, siehe Crouhy et al. (2000) und suisse.com/investment banking/research/en/credit risk.jsp m unabhängige Risikofaktoren Z 1,Z 2,...,Z m, Z j Γ(α j,β j ), j = 1,2,...,m, sodass E(Z j ) = 1. λ i (Z) = λ i m j=1 a ijz j, m j=1 a ij = 1 für i = 1,2,...,n. λ i > 0, α j, β j sind Konstante. α j, β j werden meistens so gewählt, dass E(λ i (Z)) = λ i > 0) gilt. Die Dichte von Z j ist folgendermassen gegeben: f j (z) = zα j 1 exp{ z/β j } β α j j Γ(α j ) Verlust bei Kredit i durch Zahlungsunfähigkeit von Kreditnehmer i: LGD i = (1 λ i )L i, 1 i n, wobei λ i die erwartete deterministische Recovery rate ist und L i die Höhe von Kredit i ist. Das Ziel ist, die Verlustverteilung durch eine diskrete Verteilung zu approximieren und für diese die Erzeugende Funktion zu ermitteln. 22

11 Sei Y eine diskrete ZV mit Wertebereich {y 1,...,y m } oder eine kontinuierliche ZV mit Dichtefunktion f(y) in R Definition 1 Die erzeugende Funktion von Y ist definiert als g Y (t) := E(t Y ) = m ty i P(Y = y i) bzw. g Y (t) := t y f(y)dy für t [0,1]. Einige Eigenschaften der erzeugenden Funktionen: (i) Wenn Y Bernoulli(p) dann g Y (t) = 1+p(t 1). (ii) Wenn Y Poisson(λ), dann g Y (t) = exp{λ(t 1)}. (iii) Für unabhängige Zufallsvariablen X 1,...,X n gilt n g X X n (t) = g Xi (t). (iv) Sei Y eine Zufallsvariable mit Dichtefunktion f und sei g X Y=y (t) die erzeugenden Funktion von X Y = y. Dann gilt g X (t) = g X Y=y (t)f(y)dy. 23

12 (v) Sei g X (t) die erzeugende Funktion von X. Dann gilt P(X = k) = 1 k! g(k) X (0) wobei g(k) X (t) = dk g X ) dt. k

13 Die Erzeugende Funktion der Verlustverteilung Jeder Verlust wird als ganzzahliges Vielfaches einer vordefinierten Verlusteinheit L 0 (zb. L o = 10 6 Euro): [ ] (1 λi )L [ ] i LGD i = (1 λ i )L i L 0 = v i L 0 mit v i := (1 λi )L i L 0 wobei [x] = argmin t { t x :t Z,t x ( 1/2,1/2]}. L 0 Die Verlustfunktion: L = n X iv i L 0. (a) Ermittlung der erzeugenden Funktion für N = X X n X i Z Poisson(λ i (Z)), i = g Xi Z(t) = exp{λ i (Z)(t 1)}, i = g N Z (t) = n g Xi Z(t) = n exp{λ i (Z)(t 1)} = exp{µ(t 1)}, (5) mit µ := n λ i(z) = n ( λ i m j=1 a ijz j ). g N (t) = g N Z=(z1,z 2,...,z m )f 1 (z 1 )...f m (z m )dz 1...dz m = { n m exp ( λ i j=1 } a ij z j )(t 1) f 1 (z 1 )...f m (z m )dz 1...dz m = 24

14 exp { (t 1) m ( n λ i a ij } {{ } µ j j=1 ) } z j ) f 1 (z 1 )...f m (z m )dz 1...dz m = exp{(t 1)µ 1 z 1 }f 1 (z 1 )dz 1...exp{(t 1)µ m z m }f m (z m )dz m = m j=1 0 1 exp{z j µ j (t 1)} β α j j Γ(α j) zαj 1 j exp{ z j /β j }dz j (6) Die Berechnung der einzelnen Integrale in (6) ergibt: 0 1 Γ(α j )β α j j exp{z j µ j (t 1)}z α j 1 j exp{ z j /β j }dz j = ( 1 δj 1 δ j t ) αj δ j = β j µ j /(1+β j µ j ). (7)

15 Es gilt also g N (t) = m ( ) αj 1 δj. 1 δ j t j=1 (b) Ermittlung der erzeugenden Funktion für L = n X iv i L 0. Bedingter Verlust aufgrund Zahlungsunfähigkeit von Kreditnehmer i: L i Z = v i (X i Z); L i Z unabhängig für i = 1,2,...,n. g Li Z(t) = E(t L i Z) = E(tv ix i Z) = g Xi Z(t v i ). Die erzeugende Funktion des gesamten Verlusts bedingt durch Z: n n g L Z (t) = g L1 +L L n Z(t) = g Li Z(t) = g Xi Z(t v i ) = m n exp j( j=1z λ i a ij (t v i 1) ). 25

16 Ähnlich wie bei der Berechnung von g N (t) erhalten wir: m ( ) αj 1 δj g L (t) = wobei Λ j (t) = 1 n λ i a ij t v i. 1 δ j Λ j (t) j=1 δ j und µ j sind wie in (7) bzw. (5) gegeben. Beispiel 3 Kreditportfolio mit n = 100 Krediten, Anzahl der Risikofaktoren m = 1 oder m = 5, λ i = λ = 0.15, für i = 1,2,...,n, α j = α = 1, β j = β = 1, a i,j = 1/m, i = 1,2,...,n, j = 1,2,...,m P(N = k) = 1 k! g(k) N (0) = 1 d k g N k! dt. k Für die Berechnung von P(N = k), k = 0,1,...,100, kann folgende rekursive Formel verwendet werden: k 1 g (k) N (0) = l=0 ( k 1 ) l g (k 1 l) N (0) m j=1 µ j l!α j δ l+1 j, k > 1 26

17 Monte Carlo Methoden in Kreditrisiko-Management P Kreditportfolio bestehend aus m Krediten; Verlustfunktion L = n L i; Die Verluste L i sind unabhängig bedingt durch einen Vektor Z von ökonomischen Einflussfaktoren. Gesucht: VaR α (L) = q α (L), CVaR α = E(L L > q α (L)), CVaR i,α = E(L i L > q α (L)). Bei Anwendung von Monte Carlo (MC) Simulation tritt das Problem der Simulation von seltenen Ereignissen auf ( rare event simulation )! ZB. α = 0,99. Nur etwas 1% der standard MC Simulationen führt zu einem Verlust L, sodass L > q α (L). Standard MC Schätzer: ĈVaR (MC) α (L) = 1 n I (q α,+ )(L i ) n L i I (qα,+ )(L i ) wobei L i der Verlustwert in der i-ten Simulationslauf ist. (L) ist sehr instabil, d.h. hat eine sehr hohe Varianz, wenn die Anzahl der Simulationen n nicht sehr sehr groß ist. ĈVaR (MC) α 27

18 Grundlagen von Importance Sampling Sei X eine ZV in einem Wahrscheinlichkeitsraum (Ω,F,P) mit absolut stetiger Verteilungsfunktion und Dichtefunktion f. Gesucht: θ = E(h(X)) = h. h(x)f(x)dx für eine bekannte Funktion Berechnung der Wahrscheinlichkeit eines Ereignisses A: h(x) = I A (x). Berechnung von CVaR: h(x) = xi x>c (x) mit c = VaR(X). Algorithmus 1 (Monte Carlo Integration) (1) Generiere X 1,X 2,..., X n unabhängig aus der Dichte f. (2) Berechne den standard MC Schätzer ˆθ (MC) n = 1 n n h(x i). Aus dem starken Gesetz der großen Zahlen: lim n ˆθ (MC) n = θ. Im Falle von seltenen Ereignissen (h(x) = I A (x), P(A) << 1) ist die Konvergenz sehr langsam. 28

19 Sei g eine Wahrscheinlichkeitsdichte, sodass f(x) > 0 g(x) > 0. { f(x) g(x) > 0 Wir definieren das Likelihood ratio als: r(x) := g(x) 0 g(x) = 0 Es gilt: θ = Algorithmus 2 (Importance Sampling) h(x)r(x)g(x)dx = E g (h(x)r(x)) (8) (1) Generiere X 1,X 2,..., X n unabhängig aus der Dichte g. (2) Berechne den IS Schätzer ˆθ (IS) n = 1 n n h(x i)r(x i ). g heißt Importance Sampling -Dichte. Ziel: Auswahl einer Importance Sampling -Dichte, sodass die Variance des IS-Schätzers wesentlich kleiner als die Varianz des standard MC Schätzers ist. var g (ˆθ (IS) n var ) (ˆθ (MC) n = (1/n)(E g (h 2 (X)r 2 (X)) θ 2 ) ) = (1/n)(E(h 2 (X)) θ 2 ) 29

20 Theoretisch kann die Varianz des IS-Schätzers auf 0 reduziert werden! Annahme h(x) 0, x. Für g (x) = f(x)h(x)/e(h(x)) gilt: ˆθ (IS) 1 = h(x 1 )r(x 1 ) = E(h(X)). Der IS-Schätzer gibt den richtigen Wert nach einer einzigen Simulation! Sei h(x) = I {X c} (x) wobei c >> E(X) (seltenes Ereignis). Es gilt E(h 2 (X)) = P(X c) und aus (8) folgt: E g (h 2 (X)r 2 (X)) = h 2 (x)r 2 (x)g(x)dx = E g (r 2 (X);X c) = (9) h 2 (x)r(x)f(x)dx = h(x)r(x)f(x)dx = E(r(X);X c) (10) Das Ziel ist g so auszuwählen, dass E g (h 2 (X)r 2 (X)) klein wird, oder sodass r(x) für x c klein und das Ereignis X c unter der Dichte g wahrscheinlicher als unter der Dichte f ist. 30

21 Exponential tilting: Bestimmung des IS-Dichte für light tailed Variablen Sei M x (t):r R die Momentum-generierende Funktion von X: IS-Dichte: g t (x) = etx f(x) M X (t) M X (t) = E(e tx ) = Likelihood Ratio: r t (x) = f(x) g t (x) = M X(t)e tx. Sei µ t = E gt (X) = E(X exp{tx})/m X (t). e tx f(x)dx Wie kann man ein geeignetes t für ein bestimmtes IS Problem ermitteln? Z.B. für die Schätzung der Tail-Wahrscheinlichkeit? Das Ziel ist t so zu wählen, dass E(r(X);X c) = E(I X c M X (t)e tx ) klein wird. e tx e tc, für x c, t 0 E(I X c M X (t)e tx ) M X (t)e tc. Wir setzten t = argmin{m X (t)e tc :t 0}. Daraus folgt t = t(c) wobei t(c) die Lösung der Gleichung µ t = c ist. (Eine eindeutige Lösung existiert für alle relevanten Werte von c - ohne Beweis). 31

22 Exponential Tilting für die Normalverteilung Sei X N(0,1) mit Dichtefunktion φ(x). g t (x) = etx φ(x) M X (t) = etx φ(x) e t2 /2 = 1 2π exp{ 1 2 (x t)2 } und µ t = D.h. unter der Verteilung g t gilt X N(t,1) Die Gleichung µ t = c lautet t = c. IS im Falle von Wahrscheinlichkeitsmaßen E(X exp{tx}) M X (t) Seien f und g Wahrscheinlichkeitsdichten. Definiere zwei Wahrscheinlichkeitsmasse P und Q: P(A) = f(x)dx und Q(A) = g(x)dx x A x A Die grundelegende Gleichung der IS (8) lautet dann: θ = E P (h(x)) = E Q (h(x)r(x)) Analog: Exponential tilting im Fall von Wahrscheinlichkeitsdichten: Sei X eine ZV in ((Ω,F,P)) sodass M X (t) = E P (exp{tx}) <, t. Sei Q t (A) := E P exp{tx} M X (t) ;A ein Wahrscheinlichkeitsmaß in (Ω, F). Der IS-Algorithmus bleibt gleich: Simuliere unabhängige Realisierungen von X i in (Ω,F,Q t ) und setze ˆθ n (IS) = (1/n) n X ir t (X i ) wobei r t (X) = M X (t)exp{ tx}. 32 = t

23 Anwendung von IS auf Bernoulli Mischung Modelle (siehe Glasserman und Li (2003)) Sei L = m e iy i die Verlustfunktion eines Kreditportfolios. Y i sind die Verlustindikatoren mit Default-Wahrscheinlichkeit p i und e i = (1 λ i )L i die positiven deterministischen Exposures (λ i sind recovery rates und L i sind die Kredithöhen), i = 1,2,...,m. Sei Z ein Vektor von ökonomischen Einflussfaktoren, sodass Y i Z unabhängig sind und Y i (Z = z) Bernoulli(p i (z)). Ziel: Schätzung von θ = P(L c) mit Hilfe des IS-Ansatzes, für ein gegebenes c, c >> E(L). Vereinfachter Fall: Y i sind unabhängig, i = 1,2,...,m. Sei Ω = {0,1} m der Raum der Zustände von Y. Das Wahrscheinlichleitsmaß P in Ω: m P({y}) = p y i i (1 p i) 1 y i, y {0,1}m. Die Momentum-generierende Funktion von L: M L (t) = m (ete i p i + 1 p i ). 33

24 Das Wahrscheinlichkeitsmaß Q t : n ( ) exp{te i y i } Q t ({y}) = exp{te i } p i +1 p i p y i i (1 p i) 1 y i. Seien q t,i neue Default-Wahrscheinlichlichkeiten: Somit gilt: q t,i := exp{te i } p i /(exp{te i } p i +1 p i ). Q t ({y}) = m q y i i (1 q i) 1 y i, y {0,1}m. D.h. nach der exponential tilting sind die Default-Indikatoren unabhängig mit neuen Default-Wahrscheinlichkeiten q t,i. lim t q t,i = 1 und lim t q t,i = 0 E Q t (L) nimmt alle Werte in (0, m e i) an für t R. Für IS-Anwendungen wähle t, sodass m e i q t,i = c. Allgemeiner Fall: Y i sind unabhängig bedingt durch Z 1. Schritt: Schätzung der bedingten Überschuss-Wahrscheinlichkeit θ(z) := P(L c Z = z) für eine gegebene Realisierung z der ökonomischen Faktoren Z, mit Hilfe des im vereinfachten Fall beschriebenen IS-Ansatzes. 34

25 Algorithmus 3 (IS für die bedingte Verlustverteilung) (1) Für ein gegebenes z berechne die bedingtenn Default- Wahrscheinlichkeiten p i (z) (wie im einfachen Unabhägigkeitsfall) und löse folgende Gleichung: m exp{te i }p i (z) exp{te i }p i (z)+1 p i (z) = c Die Lösung t = t(c, z) gibt den richtigen tilting-grad. (2) Erzeuge n 1 bedingte Realisierungen des Vektors der Default- Indikatoren (Y 1,...,Y m ). Die einzelnen Indikatoren Y i, werden unabhängig aus Bernoulli(q i ), i = 1,2,...,m, simuliert, wobei q i = exp{t(c,z)e i }p i (z) exp{t(c,z)e i }p i (z)+1 p i (z) (3) Sei M L (t,z) := [exp{te i }p i (z)+1 p i (z)] die bedingte Momenterzeugende Funktion von L. Seien L (1), L (2),...,L (n 1) die n 1 bedingten Realisierungen von L für die n 1 simulierten Realisierun- 35

26 gen von Y 1,Y 2,...,Y m. Berechne den IS-Schätzer für die Tail- Wahrscheinlichkeit der bedingten Verlustverteilung: ˆθ (IS) n 1 (z) = M L (t(c,z),z) 1 n 1 n 1 j=1 I L (j) cexp{ t(c,z)l (j) }L (j).

27 2. Schritt: Schätzung der unbedingten Überschuss Wahrscheinlichkeit θ = P(L c). Naive Vorgangsweise: Erzeuge mehrere Realisierungen z der Einflussfaktoren Z und berechne ˆθ n (IS) 1 (z) für jede dieser Realisierungen. Der gesuchte Schätzer ist der Durchschnittswert der Schätzer ˆθ n (IS) 1 (z) über alle Realisierungen z. Das ist nicht die beste Lösung, siehe Glasserman und Li (2003). Bessere Herangehensweise: IS für die Einflussfaktoren. Annahme: Z N p (0,Σ) (zb. probit-normal Bernoulli Mischung) Die IS-Dichte g ist die Dichte von N p (µ,σ) für einen neuen Erwartungswertvektor µ R p. Eine gute Wahl von µ sollte zu häufigen Realisierungen z die zu höheren bedingten Default- Wahrscheinlichkeiten p i (z) führen. Likelihood Ratio: r µ (Z) = exp{ 1 2 Zt Σ 1 Z} exp{ 1 2 (Z µ)t Σ 1 (Z µ)} = exp{ µ Σ 1 Z µ Σ 1 µ} 36

28 Algorithmus 4 (vollständige IS für Bernoulli Mischung Modelle mit Gauss schen Faktoren) (1) Erzeuge z 1,z 2,...,z n N p (µ,σ) (n ist die Anzahl der Simulationsrunden) (2) Für jedes z i berechne ˆθ (IS) n 1 (z i ) wie in Algorithmus 3. (3) Berechne den IS-Schätzer für die unbedingte Überschuss- Wahrscheinlichkeit: ˆθ n (IS) = 1 n r µ (z i )ˆθ n (IS) n 1 (z i ) 37

29 Die Auswahl von µ µ soll so gewählt werden, dass die Varianz des Schätzers klein ist. Idee von Glasserman und Li (2003) (Skizze): ˆθ n (IS) 1 (z) P(L c Z = z) Suche eine gute IS-Dichte für die Funktion z P(L c Z = z). Die optimale IS-Dichte g ist proportional zu P(L c Z = z)exp{ 1 2 zt Σ 1 z}. Vorschlag: Wähle eine IS-Dichte mit demselben Modus wie die optimale Dichte g. Das führt zu folgendem Optimierungsproblem: µ = argmax z {P(L c Z = z)exp{ 1 2 zt Σ 1 z} }. Exakte Lösung ist schwierig weil P(L c Z = z) ist i.a. nicht in analytischer Form verfügbar. Siehe Glasserman und Li (2003) für Lösungsansätze. 38

Monte Carlo Methoden in Kreditrisiko-Management

Monte Carlo Methoden in Kreditrisiko-Management Monte Carlo Methoden in Kreditrisiko-Management P Kreditportfolio bestehend aus m Krediten; Verlustfunktion L = n i=1 L i; Die Verluste L i sind unabhängig bedingt durch einen Vektor Z von ökonomischen

Mehr

Die latenten Variablen Y = (Y 1,Y 2,...,Y n ) T hängen mit dem Wert der Aktien der jeweiligen Firmen folgendermaßen zusammen.

Die latenten Variablen Y = (Y 1,Y 2,...,Y n ) T hängen mit dem Wert der Aktien der jeweiligen Firmen folgendermaßen zusammen. Das KMV Modell (siehe auch www.moodyskmv.com) Die Status Variablen S = (S 1,S 2,...,S n ) können nur zwei Werte 0 und 1 annehmen, d.h. m = 1. Die latenten Variablen Y = (Y 1,Y 2,...,Y n ) T hängen mit

Mehr

Beispiel 5 Europäische Call Option (ECO) in einer Aktie S mit Laufzeit T und Ausübungspreis (Strikepreis) K.

Beispiel 5 Europäische Call Option (ECO) in einer Aktie S mit Laufzeit T und Ausübungspreis (Strikepreis) K. Beispiel 5 Europäische Call Option (ECO) in einer Aktie S mit Laufzeit T und Ausübungspreis (Strikepreis) K. Wert der Call Option zum Zeitpunkt T: max{s T K,0} Preis der ECO zum Zeitpunkt t < T: C = C(t,

Mehr

Seminar Quantitatives Risikomanagement

Seminar Quantitatives Risikomanagement Seminar Quantitatives Risikomanagement Kreditrisikomanagement II Fabian Wunderlich Mathematisches Institut der Universität zu Köln Sommersemester 2009 Betreuung: Prof. Schmidli, J. Eisenberg Contents 1

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko

Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko Jan Jescow Stoehr Gliederung 1. Einführung / Grundlagen 1.1 Ziel 1.2 CreditRisk+ und CreditMetrics 2. Kreditportfolio 2.1 Konstruktion

Mehr

Commercial Banking. Kreditportfoliosteuerung

Commercial Banking. Kreditportfoliosteuerung Commercial Banking Kreditportfoliosteuerung Dimensionen des Portfoliorisikos Risikomessung: Was ist Kreditrisiko? Marking to Market Veränderungen des Kreditportfolios: - Rating-Veränderung bzw. Spreadveränderung

Mehr

Extremwertverteilungen

Extremwertverteilungen Seminar Statistik Institut für Stochastik 12. Februar 2009 Gliederung 1 Grenzwertwahrscheinlichkeiten 2 3 MDA Fréchet MDA Weibull MDA Gumbel 4 5 6 Darstellung von multivariaten, max-stabilen Verteilungsfunktionen

Mehr

Credit Risk+: Eine Einführung

Credit Risk+: Eine Einführung Credit Risk+: Eine Einführung Volkert Paulsen December 9, 2004 Abstract Credit Risk+ ist neben Credit Metrics ein verbreitetes Kreditrisikomodell, dessen Ursprung in der klassischen Risikotheorie liegt.

Mehr

Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011

Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011 Kevin Schellkes und Christian Hendricks 29.08.2011 Inhalt Der herkömmliche Ansatz zur Simulation logarithmischer Renditen Ansatz zur Simulation mit Copulas Test und Vergleich der beiden Verfahren Fazit

Mehr

P( X µ c) Var(X) c 2. mit. In der Übung wurde eine alternative, äquivalente Formulierung verwendet: P( X µ < c) 1 Var(X)

P( X µ c) Var(X) c 2. mit. In der Übung wurde eine alternative, äquivalente Formulierung verwendet: P( X µ < c) 1 Var(X) Ich habe eine Frage zur Tschebyschew Ungleichung. In der Aufgabe 4 des Übungsblattes 3 benötigt man ja die Ungleichung. In diesem Falle war der Bereich (0, 20) symmetrisch um den Erwartungswert µ = 5.

Mehr

Kreditrisiko bei Swiss Life. Carl-Heinz Meyer, 13.06.2008

Kreditrisiko bei Swiss Life. Carl-Heinz Meyer, 13.06.2008 Kreditrisiko bei Swiss Life Carl-Heinz Meyer, 13.06.2008 Agenda 1. Was versteht man unter Kreditrisiko? 2. Ein Beisiel zur Einführung. 3. Einige kleine Modelle. 4. Das grosse kollektive Modell. 5. Risikoberechnung

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

Risikomessung und Value at Risk Wintersemester 2013/14

Risikomessung und Value at Risk Wintersemester 2013/14 Risikomessung und Value at Risk Wintersemester 2013/14 Walter Sanddorf-Köhle Statistik und Ökonometrie Foliensatz Nr. 11 Version vom 24. Januar 2014 1 / 45 6.5.1 Bisherige Vorgehensweise zur Berechnung

Mehr

Commercial Banking. Kreditgeschäft 2. Bedingte marginale und kumulative Ausfallwahrscheinlichkeit

Commercial Banking. Kreditgeschäft 2. Bedingte marginale und kumulative Ausfallwahrscheinlichkeit Commercial Banking Kreditgeschäft Bedingte marginale und kumulative Ausfallwahrscheinlichkeit Bedingte Marginale Ausfallwahrscheinlichkeit (BMAW t ) (Saunders: MMR ) prob (Ausfall in Periode t kein Ausfall

Mehr

Vorlesung 7: Value-at-Risk für Kreditrisiken

Vorlesung 7: Value-at-Risk für Kreditrisiken Vorlesung 7: Value-at-Risk für Kreditrisiken 17. April 2015 Dr. Patrick Wegmann Universität Basel WWZ, Department of Finance patrick.wegmann@unibas.ch www.wwz.unibas.ch/finance Die Verlustverteilung im

Mehr

, dt. $+ f(x) = , - + < x < +, " > 0. " 2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) =

, dt. $+ f(x) = , - + < x < +,  > 0.  2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) = 38 6..7.4 Normalverteilung Die Gauß-Verteilung oder Normal-Verteilung ist eine stetige Verteilung, d.h. ihre Zufallsvariablen können beliebige reelle Zahlenwerte annehmen. Wir definieren sie durch die

Mehr

Stochastische Eingangsprüfung, 17.05.2008

Stochastische Eingangsprüfung, 17.05.2008 Stochastische Eingangsprüfung, 17.5.8 Wir gehen stets von einem Wahrscheinlichkeitsraum (Ω, A, P) aus. Aufgabe 1 ( Punkte) Sei X : Ω [, ) eine integrierbare Zufallsvariable mit XdP = 1. Sei Q : A R, Q(A)

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Dozent: Volker Krätschmer Fakultät für Mathematik, Universität Duisburg-Essen, WS 2012/13 1. Präsenzübung Aufgabe T 1 Sei (Z 1,...,

Mehr

Risikomanagement und Statistik. Raimund Kovacevic

Risikomanagement und Statistik. Raimund Kovacevic Risikomanagement und Statistik Raimund Kovacevic Dieses Werk ist Urheberrechtlich geschützt. Jede Vervielfältigung ohne Einverständnis des Autors ist verboten. Risiko hazard, a chance of bad consequences,

Mehr

Solvency II und die Standardformel

Solvency II und die Standardformel Fakultät Mathematik und Naturwissenschaften Institut für Mathematische Stochastik Solvency II und die Standardformel Festkolloquium 20 Jahre (neue) Versicherungsmathematik an der TU Dresden Sebastian Fuchs

Mehr

Risikomanagement: Hintergrund und Ziele

Risikomanagement: Hintergrund und Ziele Risikomanagement: Hintergrund und Ziele Beispiel 1 Anfangskapital V 0 = 100 Spiel: man verliert oder gewinnt 50 mit Wahrsch. jeweils 1/2. Kapital nach dem Spiel V 1 = { 150 mit Wahrsch. 1/2 50 mit Wahrsch.

Mehr

Modellbildung und Simulation

Modellbildung und Simulation Modellbildung und Simulation 5. Vorlesung Wintersemester 2007/2008 Klaus Kasper Value at Risk (VaR) Glossar Portfolio: In der Ökonomie bezeichnet der Begriff Portfolio ein Bündel von Investitionen, das

Mehr

Delta-Gamma-Verfahren als Standard- Risikomodell für Lebensversicherer

Delta-Gamma-Verfahren als Standard- Risikomodell für Lebensversicherer Delta-Gamma-Verfahren als Standard- Risikomodell für Lebensversicherer 1 Einleitung Im Rahmen des SST wird teilweise vereinfachend angenommen, dass der Zusammenhang zwischen der Veränderung des risikotragenden

Mehr

Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006

Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006 1 3.34 1.1 Angabe Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006 U sei auf dem Intervall (0, 1) uniform verteilt. Zeigen

Mehr

Multivariate Statistik

Multivariate Statistik Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)

Mehr

Value at Risk Einführung

Value at Risk Einführung Value at Risk Einführung Veranstaltung Risk Management & Computational Finance Dipl.-Ök. Hans-Jörg von Mettenheim mettenheim@iwi.uni-hannover.de Institut für Wirtschaftsinformatik Leibniz Universität Hannover

Mehr

Generalthema: Ausgewählte Fragen der Fremdfinanzierung

Generalthema: Ausgewählte Fragen der Fremdfinanzierung Institut für Geld- und Kapitalverkehr der Universität Hamburg Prof. Dr. Hartmut Schmidt Seminar zur Allgemeinen Betriebswirtschaftslehre und Bankbetriebslehre Wintersemester 1999/000 Zuständiger Mitarbeiter:

Mehr

9 Die Normalverteilung

9 Die Normalverteilung 9 Die Normalverteilung Dichte: f(x) = 1 2πσ e (x µ)2 /2σ 2, µ R,σ > 0 9.1 Standard-Normalverteilung µ = 0, σ 2 = 1 ϕ(x) = 1 2π e x2 /2 Dichte Φ(x) = 1 x 2π e t2 /2 dt Verteilungsfunktion 331 W.Kössler,

Mehr

$ % + 0 sonst. " p für X =1 $

$ % + 0 sonst.  p für X =1 $ 31 617 Spezielle Verteilungen 6171 Bernoulli Verteilung Wir beschreiben zunächst drei diskrete Verteilungen und beginnen mit einem Zufallsexperiment, indem wir uns für das Eintreffen eines bestimmten Ereignisses

Mehr

Klassische Risikomodelle

Klassische Risikomodelle Klassische Risikomodelle Kathrin Sachernegg 15. Jänner 2008 1 Inhaltsverzeichnis 1 Einführung 3 1.1 Begriffserklärung.................................. 3 2 Individuelles Risikomodell 3 2.1 Geschlossenes

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Kapitel 4: Binäre Regression

Kapitel 4: Binäre Regression Kapitel 4: Binäre Regression Steffen Unkel (basierend auf Folien von Nora Fenske) Statistik III für Nebenfachstudierende WS 2013/2014 4.1 Motivation Ausgangssituation Gegeben sind Daten (y i, x i1,...,

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen 6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Bisher: Diskrete Zufallsvariablen,

Mehr

BONUS MALUS SYSTEME UND MARKOV KETTEN

BONUS MALUS SYSTEME UND MARKOV KETTEN Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik, Institut für Mathematische Stochastik BONUS MALUS SYSTEME UND MARKOV KETTEN Klaus D. Schmidt Ringvorlesung TU Dresden Fakultät MN,

Mehr

Urlaubszeitung extra tipps extra wegweiser extra urlaub! ostseebad laboe *

Urlaubszeitung extra tipps extra wegweiser extra urlaub! ostseebad laboe * x Uz x x x! * 2015 D G J vä (F: 30) F ü A ü z! Fö Fö z D : T ü z Gä ö O E z, ü O! ä, jz, D F ü ö P D v T, Z z Gä N D V jz Dü, Zäz ä ö O T z N, z E A N ä A F/ v I J, T ü E D, v P Gä v üz, ü jz A N ö U ö:

Mehr

+ 2 F2 (u) X 1 F1 (u)) Der Koeffizient der unteren Tail-Abhängigkeit von (X 1,X 2 ) T wird folgendermaßen definiert:

+ 2 F2 (u) X 1 F1 (u)) Der Koeffizient der unteren Tail-Abhängigkeit von (X 1,X 2 ) T wird folgendermaßen definiert: Tail Abhängigkeit Definition 12 Sei (X 1,X 2 ) T ein Zufallsvektor mit Randverteilungen F 1 und F 2. Der Koeffizient der oberen Tail-Abhängigkeit von (X 1,X 2 ) T wird folgendermaßen definiert: λ U (X

Mehr

Risikomanagement: Hintergrund und Ziele

Risikomanagement: Hintergrund und Ziele Risikomanagement: Hintergrund und Ziele Beispiel 1 Anfangskapital V 0 = 100 Spiel: man verliert oder gewinnt 50 mit Wahrsch. jeweils 1/2. Kapital nach dem Spiel V 1 = { 150 mit Wahrsch. 1/2 50 mit Wahrsch.

Mehr

Inhaltsverzeichnis. Vorwort zur zweiten Auflage. Vorwort zur ersten Auflage

Inhaltsverzeichnis. Vorwort zur zweiten Auflage. Vorwort zur ersten Auflage Inhaltsverzeichnis Vorwort zur zweiten Auflage Vorwort zur ersten Auflage v viii 1 Märkte und Produkte 1 1.1 Motivation: Das Gesicht der Finanzkrise............. 1 1.2 Grundlegende Begriffe.......................

Mehr

Monte Carlo Simulation (Grundlagen)

Monte Carlo Simulation (Grundlagen) Der Titel des vorliegenden Beitrages wird bei den meisten Lesern vermutlich Assoziationen mit Roulette oder Black Jack hervorrufen. Allerdings haben das heutige Thema und die Spieltische nur den Namen

Mehr

Credit Metrics: Eine Einführung

Credit Metrics: Eine Einführung Credit Metrics: Eine Einführung Volkert Paulsen July 23, 2009 Abstract Credit Metrics ist ein Kredit Risko Modell, daß den Verlust quantifiziert, der durch eine Bonitätsveränderung von Schuldnern verursacht

Mehr

Übungsrunde 9, Gruppe 2 LVA 107.369, Übungsrunde 8, Gruppe 2, 12.12. Markus Nemetz, TU Wien, 12/2006

Übungsrunde 9, Gruppe 2 LVA 107.369, Übungsrunde 8, Gruppe 2, 12.12. Markus Nemetz, TU Wien, 12/2006 3.75. Angabe Übungsrunde 9, Gruppe 2 LVA 07.369, Übungsrunde 8, Gruppe 2, 2.2. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 2/2006 X sei eine stetige sg mit Dichte f(x), x R. Ermitteln Sie einen

Mehr

1 Stochastische Prozesse in stetiger Zeit

1 Stochastische Prozesse in stetiger Zeit 1 Stochastische Prozesse in stetiger Zeit 1.1 Grundlagen Wir betrachten zufällige Prozesse, definiert auf einem Wahrscheinlichkeitsraum (Ω, F, P), welche Werte in einen fest gewählten Zustandsraum annehmen.

Mehr

Quantilsschätzung als Werkzeug zur VaR-Berechnung

Quantilsschätzung als Werkzeug zur VaR-Berechnung Quantilsschätzung als Werkzeug zur VaR-Berechnung Ralf Lister, Aktuar, lister@actuarial-files.com Zusammenfassung: Zwei Fälle werden betrachtet und die jeweiligen VaR-Werte errechnet. Im ersten Fall wird

Mehr

Risikoaggregation und allokation

Risikoaggregation und allokation 2. Weiterbildungstag der DGVFM Risikoaggregation und allokation Einführung in das Thema Prof. Dr. Claudia Cottin, FH Bielefeld Dr. Stefan Nörtemann, msg life Hannover, 21. Mai 2015 2. Weiterbildungstag

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

Monte-Carlo Simulation

Monte-Carlo Simulation Monte-Carlo Simulation Sehr häufig hängen wichtige Ergebnisse von unbekannten Werten wesentlich ab, für die man allerhöchstens statistische Daten hat oder für die man ein Modell der Wahrscheinlichkeitsrechnung

Mehr

Von den Grundlagen der Monte-Carlo-Methode zur Simulation von Teilchenreaktionen und Teilchendetektoren

Von den Grundlagen der Monte-Carlo-Methode zur Simulation von Teilchenreaktionen und Teilchendetektoren Von den Grundlagen der Monte-Carlo-Methode zur Simulation von Teilchenreaktionen und Teilchendetektoren Michael Unrau HS WS 08/09 14 November 2008 HS 08/09 Monte-Carlo Methoden 14 November 2008 1 / 24

Mehr

Quantitatives Risikomanagement

Quantitatives Risikomanagement Quantitatives Risikomanagement Korrelation und Abhängigkeit im Risikomanagement: Eigenschaften und Irrtümer von Jan Hahne und Wolfgang Tischer -Korrelation und Abhängigkeit im Risikomanagement: Eigenschaften

Mehr

Binäre abhängige Variablen

Binäre abhängige Variablen Binäre abhängige Variablen Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Einführung Oft wollen wir qualitative Variablen

Mehr

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002)

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002) 6. Bayes-Klassifikation (Schukat-Talamazzini 2002) (Böhm 2003) (Klawonn 2004) Der Satz von Bayes: Beweis: Klassifikation mittels des Satzes von Bayes (Klawonn 2004) Allgemeine Definition: Davon zu unterscheiden

Mehr

Markov-Ketten-Monte-Carlo-Verfahren

Markov-Ketten-Monte-Carlo-Verfahren Markov-Ketten-Monte-Carlo-Verfahren Anton Klimovsky 21. Juli 2014 Strichprobenerzeugung aus einer Verteilung (das Samplen). Markov- Ketten-Monte-Carlo-Verfahren. Metropolis-Hastings-Algorithmus. Gibbs-Sampler.

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

Ausarbeitung des Seminarvortrags zum Thema

Ausarbeitung des Seminarvortrags zum Thema Ausarbeitung des Seminarvortrags zum Thema Anlagepreisbewegung zum Seminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn von Imke Meyer im W9/10 Anlagepreisbewegung

Mehr

Credit Risk I. Einführung in die Kreditrisikomodellierung. Georg Pfundstein Betreuer: Rupert Hughes-Brandl. 02. Juli 2010

Credit Risk I. Einführung in die Kreditrisikomodellierung. Georg Pfundstein Betreuer: Rupert Hughes-Brandl. 02. Juli 2010 Credit Risk I Einführung in die Kreditrisikomodellierung. Georg Pfundstein Betreuer: Rupert Hughes-Brandl 02. Juli 2010 Georg Pfundstein Credit Risk I 02. Juli 2010 1 / 40 Inhaltsverzeichnis 1 Grundlagen

Mehr

Planen mit mathematischen Modellen 00844: Computergestützte Optimierung. Autor: Dr. Heinz Peter Reidmacher

Planen mit mathematischen Modellen 00844: Computergestützte Optimierung. Autor: Dr. Heinz Peter Reidmacher Planen mit mathematischen Modellen 00844: Computergestützte Optimierung Leseprobe Autor: Dr. Heinz Peter Reidmacher 11 - Portefeuilleanalyse 61 11 Portefeuilleanalyse 11.1 Das Markowitz Modell Die Portefeuilleanalyse

Mehr

Markovketten. Bsp. Page Ranking für Suchmaschinen. Wahlfach Entscheidung unter Risiko und stat. Datenanalyse 07.01.2015

Markovketten. Bsp. Page Ranking für Suchmaschinen. Wahlfach Entscheidung unter Risiko und stat. Datenanalyse 07.01.2015 Markovketten Markovketten sind ein häufig verwendetes Modell zur Beschreibung von Systemen, deren Verhalten durch einen zufälligen Übergang von einem Systemzustand zu einem anderen Systemzustand gekennzeichnet

Mehr

Ganzheitliche Risikomessung im Sinne des Anlegers

Ganzheitliche Risikomessung im Sinne des Anlegers Ganzheitliche Risikomessung im Sinne des Anlegers Für alle Anlageprodukte / Wertpapiere gilt Risikofreier Zins 1% + Risikoprämien? + Management? - Kosten abhängig von der Anlage - Steuer abhängig von der

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

Nichtlebenversicherungsmathematik Aus welchen Teilen besteht eine Prämie Zufallsrisiko, Parameterrisiko, Risikokapital Risikomasse (VaR, ES) Definition von Kohärenz Zusammengesetze Poisson: S(i) CP, was

Mehr

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8 . Aufgabe: Für zwei verschiedene Aktien wurde der relative Kurszuwachs (in % beobachtet. Aus den jeweils 20 Quartaldaten ergaben sich die folgenden Box-Plots. Box-and-Whisker Plot Aktie Aktie 2-0,2 0,8,8

Mehr

Kreditrisikomodell von Jarrow-Lando-Turnbull im Einsatz

Kreditrisikomodell von Jarrow-Lando-Turnbull im Einsatz Kreditrisikomodell von Jarrow-Lando-Turnbull im Einsatz Dr. Michael Leitschkis Generali Deutschland Holding AG Konzern-Aktuariat Personenversicherung München, den 13.10.2009 Agenda Einführung und Motivation

Mehr

Mertonscher Firmenwertansatz zur Modellierung von Kreditrisiken

Mertonscher Firmenwertansatz zur Modellierung von Kreditrisiken Mertonscher Firmenwertansatz zur Modellierung von Kreditrisiken Seminararbeit von Marleen Laakmann 2. Mai 2010 Einleitung Zur Messung und Steuerung von Kreditrisiken gibt es eine Reihe von Methoden und

Mehr

Bewertung von Forwards, Futures und Optionen

Bewertung von Forwards, Futures und Optionen Bewertung von Forwards, Futures und Optionen Olaf Leidinger 24. Juni 2009 Olaf Leidinger Futures und Optionen 2 24. Juni 2009 1 / 19 Überblick 1 Kurze Wiederholung Anleihen, Terminkontrakte 2 Ein einfaches

Mehr

G 59071. TM bewertet. Im Kundengeschäft hingegen

G 59071. TM bewertet. Im Kundengeschäft hingegen G 59071 n vielen Fällen wird die Kreditrisikomessung mit unterschiedlichen Portfoliomodellen für das Eigen- und das Kundengeschäft durchgeführt. Das durch geringe Stückzahlen und hohe Volumina charakterisierte

Mehr

34 5. FINANZMATHEMATIK

34 5. FINANZMATHEMATIK 34 5. FINANZMATHEMATIK 5. Finanzmathematik 5.1. Ein einführendes Beispiel Betrachten wir eine ganz einfache Situation. Wir haben einen Markt, wo es nur erlaubt ist, heute und in einem Monat zu handeln.

Mehr

MA Projekt: Langfristige Kapitalmarktsimulation

MA Projekt: Langfristige Kapitalmarktsimulation MA Projekt: Langfristige Kapitalmarktsimulation Einführung in die Simulation Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring

Mehr

Aufabe 7: Baum-Welch Algorithmus

Aufabe 7: Baum-Welch Algorithmus Effiziente Algorithmen VU Ausarbeitung Aufabe 7: Baum-Welch Algorithmus Florian Fest, Matr. Nr.0125496 baskit@generationfun.at Claudia Hermann, Matr. Nr.0125532 e0125532@stud4.tuwien.ac.at Matteo Savio,

Mehr

Die Bestimmung von Value-at-Risk-Werten mit Hilfe der Monte-Carlo-Simulation

Die Bestimmung von Value-at-Risk-Werten mit Hilfe der Monte-Carlo-Simulation Die Bestimmung von Value-at-Risk-Werten mit Hilfe der Monte-Carlo-Simulation Studiengang Informatik Jens Schiborowski 8. Januar 2009 Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik 1 Abstract

Mehr

Zielsetzung. Problematik

Zielsetzung. Problematik Kreditrisiko-Modellierung für Versicherungsunternehmen Tamer Yilmaz 21. November 2007 Zielsetzung Die Ermittlung der Eigenkapitalhinterlegung für das Kreditrisiko, die auf das Versicherungsunternehmen

Mehr

Marcus R.W. Martin Stefan Reitz. Carsten S. Wehn. Kreditderivate und. Kreditrisikomodelle. Eine mathematische Einführung

Marcus R.W. Martin Stefan Reitz. Carsten S. Wehn. Kreditderivate und. Kreditrisikomodelle. Eine mathematische Einführung Marcus R.W. Martin Stefan Reitz Carsten S. Wehn Kreditderivate und Kreditrisikomodelle Eine mathematische Einführung 2., überarbeitete und erweiterte Auflage ö Springer Spektrum Inhaltsverzeichnis Vorwort

Mehr

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Künstliche Intelligenz Unsicherheit Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Rückblick Agent in der Wumpuswelt konnte Entscheidungen

Mehr

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion Kapitel 12 Stetige Zufallsvariablen 12.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig

Mehr

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch 6 Stetige Verteilungen 1 Kapitel 6: Stetige Verteilungen A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch dargestellt. 0.2 6

Mehr

Quantitative Risk Management

Quantitative Risk Management Quantitative Risk Management Copulas und Abhängigkeit Johannes Paschetag Mathematisches Institut der Universität zu Köln Wintersemester 2009/10 Betreuung: Prof. Schmidli, J. Eisenberg i Inhaltsverzeichnis

Mehr

Satz 2.8.3: Sei Q eine Intensitätsmatrix. Dann hat die

Satz 2.8.3: Sei Q eine Intensitätsmatrix. Dann hat die Satz 2.8.3: Sei Q eine Intensitätsmatrix. Dann hat die Rückwärtsgleichung P (t) = QP (t), P (0) = E eine minimale nicht negative Lösung (P (t) : t 0). Die Lösung bildet eine Matrix Halbgruppe, d.h. P (s)p

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Institut für Stochastik Prof. r. N. Bäuerle ipl.-math. S. Urban Lösungsvorschlag 3. Übungsblatt zur Vorlesung Finanzmathematik I Aufgabe as endnutzenoptimale Aktienportfolio bei Exp-Nutzen Wir betrachten

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Dr. C.J. Luchsinger 2 Zufallsgrössen Literatur Kapitel 2 * Statistik in Cartoons: Kapitel 4 * Krengel: 3.1 und 3.2 in 3 und (Honours Program) 10 sowie 11.1, 11.2 und 11.3 in

Mehr

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen

Mehr

Modellierung von Korrelationen zwischen Kreditausfallraten für Kreditportfolios. Bernd Rosenow, 3. Kölner Workshop Quantitative Finanzmarktforschung

Modellierung von Korrelationen zwischen Kreditausfallraten für Kreditportfolios. Bernd Rosenow, 3. Kölner Workshop Quantitative Finanzmarktforschung Modellierung von Korrelationen zwischen Kreditausfallraten für Kreditportfolios Bernd Rosenow Rafael Weißhaupt Frank Altrock Universität zu Köln West LB AG, Düsseldorf Gliederung Beschreibung des Datensatzes

Mehr

Genexpression. Expression eines einzelnen Gens. Expressionsmessung. Genexpressionsmessung. Transkription (Vorgang) Genexpression

Genexpression. Expression eines einzelnen Gens. Expressionsmessung. Genexpressionsmessung. Transkription (Vorgang) Genexpression Genexpressionsmessung Genexpression Transkription (Vorgang) Genexpression (quantitativ) Wieviele m-rna Moleküle eines bestimmten Gens sind in den Zellen? Genomische Datenanalyse 8. Kapitel Wie mißt man

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Neue Anforderungen an Risikomessung bei kollektiven Kapitalanlagen in der Schweiz. 31. Mai 2007 Dimitri Senik

Neue Anforderungen an Risikomessung bei kollektiven Kapitalanlagen in der Schweiz. 31. Mai 2007 Dimitri Senik Neue Anforderungen an Risikomessung bei kollektiven Kapitalanlagen in der Schweiz Dimitri Senik Agenda Risikomanagement bei Fonds: neue regulatorische Vorschriften Risikomessung gemäss KKV-EBK Risikomanagement

Mehr

Hochschule Rhein-Main. Sommersemester 2015

Hochschule Rhein-Main. Sommersemester 2015 n Vorlesung Hochschule Rhein-Main Sommersemester 2015 Dr. Roland Stamm 18. Mai 2015 n Erinnerung Eine Option ist das Recht (aber nicht die Verpflichtung) ein Produkt S in der Zukunft zu einem heute festgelegten

Mehr

4. Versicherungsangebot

4. Versicherungsangebot 4. Versicherungsangebot Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie (FS 11) Versicherungsangebot 1 / 13 1. Einleitung 1.1 Hintergrund In einem grossen Teil

Mehr

CreditMetrics. Portfoliokreditrisko Seminar. Korrelation und Asset Value Ansatz. 17. Oktober 2007 Robert Schilling

CreditMetrics. Portfoliokreditrisko Seminar. Korrelation und Asset Value Ansatz. 17. Oktober 2007 Robert Schilling Korrelation und Ansatz Portfoliokreditrisko Seminar 7. Oktober 007 Robert Schilling Seminarleitung: PD Dr. Rafael Weißbach Universität Mannheim Berechnung des Exposures Schätzung der Volatilität Schätzung

Mehr

Nachholklausur STATISTIK II

Nachholklausur STATISTIK II Nachholklausur STATISTIK II Name, Vorname: Matrikel-Nr.: Die Klausur enthält zwei Typen von Aufgaben: T e i l A besteht aus Fragen mit mehreren vorgegebenen Antwortvorschlägen, von denen mindestens eine

Mehr

TEILWEISE ASYNCHRONE ALGORITHMEN

TEILWEISE ASYNCHRONE ALGORITHMEN TEILWEISE ASYNCHRONE ALGORITHMEN FRANK LANGBEIN Literatur: D. Berseas, J. Tsitsilis: Parallel and distributed computatoin, pp. 48 489 URI: http://www.langbein.org/research/parallel/ Modell teilweiser asynchroner

Mehr

8. Stetige Zufallsvariablen

8. Stetige Zufallsvariablen 8. Stetige Zufallsvariablen Idee: Eine Zufallsvariable X ist stetig, falls ihr Träger eine überabzählbare Teilmenge der reellen Zahlen R ist. Beispiel: Glücksrad mit stetigem Wertebereich [0, 2π] Von Interesse

Mehr

Bonitätsrisiko und Unternehmensanleihen

Bonitätsrisiko und Unternehmensanleihen Bonitätsrisiko und Unternehmensanleihen Burkhard Erke Montag, März 31, 2008 Die Folien orientieren sich an (a) Unterrichtsmaterialien von Backus (NYU) und (b) Neuere Entwicklungen am Markt für Unternehmensanleihen,

Mehr

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678 Lösungsvorschläge zu Blatt 8 X binomialverteilt mit p = 0. und n = 10: a PX = = 10 q = 1 p = 0.8 0. 0.8 10 = 0, 1,..., 10 PX = PX = 0 + PX = 1 + PX = 10 10 = 0. 0 0.8 10 + 0. 1 0.8 9 + 0 1 10 = 0.8 8 [

Mehr

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013 Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013 Walter Sanddorf-Köhle Foliensatz Nr. 3 1 / 46 Ein Einperiodenmodell Beispiel 5 Betrachtet wird nun ein Wertpapiermarkt mit

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

Lebensdauer eines x-jährigen

Lebensdauer eines x-jährigen Lebensdauer eines x-jährigen Sabrina Scheriau 20. November 2007, Graz 1 INHALTSVERZEICHNIS 2 Inhaltsverzeichnis 1 Einleitung 3 2 Sterbewahrscheinlichkeiten 4 2.1 Definition und Ermittlung....................

Mehr

MaRisk-relevante Anpassungen im Kreditportfoliomodell. GenoPOINT, 28. November 2013 Dr. Martin Bialek parcit GmbH

MaRisk-relevante Anpassungen im Kreditportfoliomodell. GenoPOINT, 28. November 2013 Dr. Martin Bialek parcit GmbH im Kreditportfoliomodell GenoPOINT, 28. November 2013 Dr. Martin Bialek parcit GmbH Agenda Überblick KPM-KG Bedeutung des Portfoliomodells für den MaRisk-Report MaRisk-relevante Anpassungen MaRisk-relevante

Mehr

Mathematik des Hybriden Monte-Carlo. Marcus Weber. Zuse Institute Berlin

Mathematik des Hybriden Monte-Carlo. Marcus Weber. Zuse Institute Berlin Mathematik des Hybriden Monte-Carlo Marcus Weber Zuse Institute Berlin Statistische Thermodynamik Ziel: Am Computer ein Ensemble samplen. Messung im Gleichgewicht (zeitunabhängige Verteilung π der Systemzustände

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Inhalte Kurs Finanz- und Risikosteuerung

Inhalte Kurs Finanz- und Risikosteuerung Inhalte Kurs Finanz- und Risikosteuerung Studieninhalte (DS = Doppelstunde á 90 Minuten) Grundlagen der Bankensteuerung Finanzmathematische Grundlagen 12 DS Dynamische Verfahren der Investitionsrechnung

Mehr