Credit Metrics. Wird in erster Linie für die Evaluierung von Bond Portfolios verwendet. (Siehe Crouhy et al. (2000), J.P.Morgan Inc.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Credit Metrics. Wird in erster Linie für die Evaluierung von Bond Portfolios verwendet. (Siehe Crouhy et al. (2000), J.P.Morgan Inc."

Transkript

1 Wurde bei J.P.Morgan entwickelt. Credit Metrics Wird in erster Linie für die Evaluierung von Bond Portfolios verwendet. (Siehe Crouhy et al. (2000), J.P.Morgan Inc. (1997)) Basiert auf ein Bonität-Einstufungssystem (zb. von Moody oder von Standard and Poor s). Berücksichtigt die Veränderungen im PF-Wert aufgrund von Veränderungen in den Bonität-Einstufungen. Sei P ein Portfolio von n Krediten mit einer fixen Laufzeit (zb. 1 Jahr). Sei S i der Zustand-Indikator von Kreditnehmer i. Die möglichen Zustände werden mit 0,1,...,m bezeichnet, wobei S i = 0 der Zahlungsunfähigkeit entspricht. Beispiel 1 Einstufungssystem von Standard and Poor s m = 7; S i = 0 heißt Zahlungsunfähigkeit; S i = 1 oder CCC; S i = 2 oder B; S i = 3 oder BB; S i = 4 oder BBB; S i = 5 oder A; S i = 6 oder AA; S i = 7 oder AAA. 13

2 Für jeden Kreditnehmer wird die Dynamik der Bonität-Einstufungen mit Hilfe einer Markov Kette mit Zustandsmenge {0,1,...,m} und Übergangsmatrix P modelliert. Die Übergangswahrscheinlichkeiten werden mit Hilfe von historischen Daten geschätzt, zb.: Ursprüngliche Einstufung am Ende des Jahres Zahlungs- Einstufung AAA AA A BBB BB B CCC unfähigkeit AAA AA A BBB BB B CCC Recovery Rates Im Fall einer Zahlungsunfähigkeit hängt die recovery rate von der Einstufung des Kreditnehmers ab. Der Durchschnittswert und die Standardabweichung der recovery rate werden aufgrund von historischen Daten innerhalb jeder Einstufungsklasse geschätzt. 14

3 Evaluierung der Bonds im Falle einer Neu-Einstufung Beispiel 2 Betrachten wir ein BBB Bond mit Laufzeit 5 Jahre. Er zahlt jedes Jahr ein Kupon von 6%. Die forward Zinsstrukturkurven (forward yield curves) für jede Einstufungsklasse sind wie folgt gegeben (in %): Einstufung 1. Jahr 2. Jahr 3. Jahr 4. Jahr AAA AA A BBB BB CCC Für ein Nennwert von 100 zahlt der Bond 6 Währungseinheiten am Ende des 1., 2., 3. und 4. Jahres. Am Ende des 5. Jahres zahlt der Bond 106 Währungseinheiten. Annahme: Am Ende des ersten Jahres wird der Bond neu als A Bond eingestuft. Wert des Bonds am Ende des ersten Jahres: V = ,73% = (1+4,32%) 2 (1+4,93%) 3 (1+5,32%) 4 15

4 Analog wird der Wert des Bonds am Ende des 1. Jahres ermittelt, falls er zu diesem Zeitpunkt zu anderen Klassen eingestuft wird. Es wird eine recovery rate von 51.13% im Falle von Zahlungsunfähigekt angenommen. Einstufung am Ende des 1. Jahres Wert AAA AA A BBB BB B CCC Zahlungsunfähigkeit

5 Wert und Risiko eines Bond-Portfolios in Credit Metrics Die Abhängigkeit der Neueinstufungen unterschiedlicher Bonds und die Wahrscheinlichkeiten von Neueinstufungen von Gruppen von Bonds werden mit Hilfe der dazugehörigen Rendite berechnet. Die Rendite von Bond i wird als Normalverteilung Y i modelliert. Seien d Def, d CCC,..., d AAA = + Schwellwerte, sodass für ein Kreditnehmer die Wahrscheinlichkeit des Übergangs in einer neuen Stufe S i am Ende einer vordefinierten Periode folgendermaßen gegeben sind: P(S i = 0) = φ(d Def ), P(S i = CCC) = φ(d CCC ) φ(d Def ),..., P(S i = AAA) = 1 φ(aa). Die Rendite mehrerer Bonds werden mit Hilfe der multivariaten Normalverteilung modelliert. Die Korrelationsmatrix dieser Verteilung wird in Credit Metrics mit Hilfe von Faktormodellen berechnet. Dann können Gesamtwahrscheinlichkeiten wie P(S 1 = 0,...,S n = 3) = P(Y 1 d Def,...,d B < Y n d BB ) berechnet werden. Als Modell für die Abhängigkeitsstruktur des Vektors (Y 1,Y 2,...,Y n ) wird die Gauss sche Copula(!) verwendet. Die Risikomasse eines Kreditportfolios werden mit Hilfe von Simulationen berechnet. Es werden viele Szenarien generiert, aufgrund derer der empirische VaR ermittelt wird. 17

6 Die Bernoulli gemischte Verteilung Der 0-1 Zufallsvektor X = (X 1,...,X n ) T hat eine Bernoulli gemischte Verteilung (BMV) wenn es einen Zufallsvektor Z = (Z 1,Z 2,...,Z m ) T, m < n, und Funktionen f i :R m [0,1], i = 1,2,...,n, gibt, sodass X bedingt durch Z ein Vektor von unabhängingen Bernoulli verteilten Zufallsvariablen ist und P(X i = 1 Z) = f i (Z), P(X i = 0) = 1 f i (Z) Für x = (x 1,...,x n ) T {0,1} n gilt P(X = x Z) = n f i (Z) x i (1 f i (Z)) 1 x i Die unbedingte Verteilung: ( n P(X = x) = E(P(X = x Z)) = E f i (Z) x i (1 f i(z)) 1 x i Annahme: alle Funktionen f i sind identisch, f i = f. Für die Anzahl der Zahlungsunfähigkeitsfällen N = n X i gilt N Z Binomial(n,f(Z)). ) 18

7 Die Poisson gemischte Verteilung Der diskrete Zufallsvektor X = (X 1,...,X n ) T hat eine Poisson gemischte Verteilung (PMV) wenn es einen Zufallsvektor Z = (Z 1,Z 2,...,Z m ) T, m < n, und Funktionen λ i :R m (0, ), i = 1,2,...,n, gibt, sodass X bedingt durch Z ein Vektor von unabhängingen Poisson verteilten Zufallsvariablen ist und P(X i = x i Z) = λ i(z) x i e λi(z) für x i N {0} x i! Für x = (x 1,...,x n ) T (N {0}) n gilt n λ i (Z) x i P(X = x Z) = x i! e λ i(z) Die unbedingte Verteilung: ( n P(X = x) = E(P(X = x Z)) = E λ i (Z) x i x i! ) e λ i(z) Annahme: X = ( X 1,..., X n ) T ist PMV mit Faktoren Z. Sei X i = I [1, ) ( X i ). X = (X 1,...,X n ) ist BMV mit f i (Z) = 1 e λ i(z) Für λ i (Z) klein gilt Ñ = n X i n X i. Ñ Z Poisson( λ(z)) wobei λ = n i = 1 λ i(z). 19

8 Annahmen: Beispiele von Bernoulli gemischten Verteilungen Z ist univariat (d.h. es gibt einen Risikofaktor) f i = f für alle i Es gilt: P(X i = 1 Z) = f(z), i; N Z = n X i Binomial(n,f(Z)). Die unbedingte Wahrscheinlichkeit, dass die ersten k Kreditnehmer zahlungsunfähig werden P(X 1 = 1,...,X k = 1,X k+1 = 0,...,X n = 0) = E(P(X 1 = 1,...,X k = 1,X k+1 = 0,...,X n = 0 Z)) = E(f(Z) k (1 f(z)) n k ) Sei G die Verteilungsfunktion von Z. Dann gilt: P(X 1 = 1,...,X k = 1,X k+1 = 0,...,X n = 0) = f(z) k (1 f(z)) n k d(g(z)) Die Verteilung der Anzahl N der Zahlungsunfähigen Kreditnehmer : ( n P(N = k) = k) f(z) k (1 f(z)) n k d(g(z)) 20

9 Die Beta-gemischte Verteilung Es gilt Z Beta(a,b) und f(z) = z. Die Dichte g von Z: g(z) = 1 β(a,b) za 1 (1 z) b 1, für a,b > 0, z (0,1) wobei β(a,b) = 1 0 za 1 (1 z) b 1 dz die Euler sche Betafunktion ist. Verteilung der Anzahl der zahlungsunfähigen Kreditnehmer: ( n P(N = k) = k) 1 z k (1 z) n k g(z)dz = 1 0 ( n 1 z k) a+k 1 (1 z) n k+b 1 dz = β(a, b) 0 ( n ) β(a+k,b+n k) beta-binomial Verteilung k β(a, b) Probit-normal Mischung Z N(0,1), f(z) = φ(µ + σz), µ R, σ > 0 und φ ist die Standard Normalverteilungsfunktion. Logit-normal Mischung Z N(0,1), f(z) = (1+exp{µ+σz}) 1, µ R, σ > 0. 21

10 CreditRisk + - Ein Poisson gemischtes Modell (Entwickelt von CSFB in 1997, siehe Crouhy et al. (2000) und suisse.com/investment banking/research/en/credit risk.jsp m unabhängige Risikofaktoren Z 1,Z 2,...,Z m, Z j Γ(α j,β j ), j = 1,2,...,m, sodass E(Z j ) = 1. λ i (Z) = λ i m j=1 a ijz j, m j=1 a ij = 1 für i = 1,2,...,n. λ i > 0, α j, β j sind Konstante. α j, β j werden meistens so gewählt, dass E(λ i (Z)) = λ i > 0) gilt. Die Dichte von Z j ist folgendermassen gegeben: f j (z) = zα j 1 exp{ z/β j } β α j j Γ(α j ) Verlust bei Kredit i durch Zahlungsunfähigkeit von Kreditnehmer i: LGD i = (1 λ i )L i, 1 i n, wobei λ i die erwartete deterministische Recovery rate ist und L i die Höhe von Kredit i ist. Das Ziel ist, die Verlustverteilung durch eine diskrete Verteilung zu approximieren und für diese die Erzeugende Funktion zu ermitteln. 22

11 Sei Y eine diskrete ZV mit Wertebereich {y 1,...,y m } oder eine kontinuierliche ZV mit Dichtefunktion f(y) in R Definition 1 Die erzeugende Funktion von Y ist definiert als g Y (t) := E(t Y ) = m ty i P(Y = y i) bzw. g Y (t) := t y f(y)dy für t [0,1]. Einige Eigenschaften der erzeugenden Funktionen: (i) Wenn Y Bernoulli(p) dann g Y (t) = 1+p(t 1). (ii) Wenn Y Poisson(λ), dann g Y (t) = exp{λ(t 1)}. (iii) Für unabhängige Zufallsvariablen X 1,...,X n gilt n g X X n (t) = g Xi (t). (iv) Sei Y eine Zufallsvariable mit Dichtefunktion f und sei g X Y=y (t) die erzeugenden Funktion von X Y = y. Dann gilt g X (t) = g X Y=y (t)f(y)dy. 23

12 (v) Sei g X (t) die erzeugende Funktion von X. Dann gilt P(X = k) = 1 k! g(k) X (0) wobei g(k) X (t) = dk g X ) dt. k

13 Die Erzeugende Funktion der Verlustverteilung Jeder Verlust wird als ganzzahliges Vielfaches einer vordefinierten Verlusteinheit L 0 (zb. L o = 10 6 Euro): [ ] (1 λi )L [ ] i LGD i = (1 λ i )L i L 0 = v i L 0 mit v i := (1 λi )L i L 0 wobei [x] = argmin t { t x :t Z,t x ( 1/2,1/2]}. L 0 Die Verlustfunktion: L = n X iv i L 0. (a) Ermittlung der erzeugenden Funktion für N = X X n X i Z Poisson(λ i (Z)), i = g Xi Z(t) = exp{λ i (Z)(t 1)}, i = g N Z (t) = n g Xi Z(t) = n exp{λ i (Z)(t 1)} = exp{µ(t 1)}, (5) mit µ := n λ i(z) = n ( λ i m j=1 a ijz j ). g N (t) = g N Z=(z1,z 2,...,z m )f 1 (z 1 )...f m (z m )dz 1...dz m = { n m exp ( λ i j=1 } a ij z j )(t 1) f 1 (z 1 )...f m (z m )dz 1...dz m = 24

14 exp { (t 1) m ( n λ i a ij } {{ } µ j j=1 ) } z j ) f 1 (z 1 )...f m (z m )dz 1...dz m = exp{(t 1)µ 1 z 1 }f 1 (z 1 )dz 1...exp{(t 1)µ m z m }f m (z m )dz m = m j=1 0 1 exp{z j µ j (t 1)} β α j j Γ(α j) zαj 1 j exp{ z j /β j }dz j (6) Die Berechnung der einzelnen Integrale in (6) ergibt: 0 1 Γ(α j )β α j j exp{z j µ j (t 1)}z α j 1 j exp{ z j /β j }dz j = ( 1 δj 1 δ j t ) αj δ j = β j µ j /(1+β j µ j ). (7)

15 Es gilt also g N (t) = m ( ) αj 1 δj. 1 δ j t j=1 (b) Ermittlung der erzeugenden Funktion für L = n X iv i L 0. Bedingter Verlust aufgrund Zahlungsunfähigkeit von Kreditnehmer i: L i Z = v i (X i Z); L i Z unabhängig für i = 1,2,...,n. g Li Z(t) = E(t L i Z) = E(tv ix i Z) = g Xi Z(t v i ). Die erzeugende Funktion des gesamten Verlusts bedingt durch Z: n n g L Z (t) = g L1 +L L n Z(t) = g Li Z(t) = g Xi Z(t v i ) = m n exp j( j=1z λ i a ij (t v i 1) ). 25

16 Ähnlich wie bei der Berechnung von g N (t) erhalten wir: m ( ) αj 1 δj g L (t) = wobei Λ j (t) = 1 n λ i a ij t v i. 1 δ j Λ j (t) j=1 δ j und µ j sind wie in (7) bzw. (5) gegeben. Beispiel 3 Kreditportfolio mit n = 100 Krediten, Anzahl der Risikofaktoren m = 1 oder m = 5, λ i = λ = 0.15, für i = 1,2,...,n, α j = α = 1, β j = β = 1, a i,j = 1/m, i = 1,2,...,n, j = 1,2,...,m P(N = k) = 1 k! g(k) N (0) = 1 d k g N k! dt. k Für die Berechnung von P(N = k), k = 0,1,...,100, kann folgende rekursive Formel verwendet werden: k 1 g (k) N (0) = l=0 ( k 1 ) l g (k 1 l) N (0) m j=1 µ j l!α j δ l+1 j, k > 1 26

17 Monte Carlo Methoden in Kreditrisiko-Management P Kreditportfolio bestehend aus m Krediten; Verlustfunktion L = n L i; Die Verluste L i sind unabhängig bedingt durch einen Vektor Z von ökonomischen Einflussfaktoren. Gesucht: VaR α (L) = q α (L), CVaR α = E(L L > q α (L)), CVaR i,α = E(L i L > q α (L)). Bei Anwendung von Monte Carlo (MC) Simulation tritt das Problem der Simulation von seltenen Ereignissen auf ( rare event simulation )! ZB. α = 0,99. Nur etwas 1% der standard MC Simulationen führt zu einem Verlust L, sodass L > q α (L). Standard MC Schätzer: ĈVaR (MC) α (L) = 1 n I (q α,+ )(L i ) n L i I (qα,+ )(L i ) wobei L i der Verlustwert in der i-ten Simulationslauf ist. (L) ist sehr instabil, d.h. hat eine sehr hohe Varianz, wenn die Anzahl der Simulationen n nicht sehr sehr groß ist. ĈVaR (MC) α 27

18 Grundlagen von Importance Sampling Sei X eine ZV in einem Wahrscheinlichkeitsraum (Ω,F,P) mit absolut stetiger Verteilungsfunktion und Dichtefunktion f. Gesucht: θ = E(h(X)) = h. h(x)f(x)dx für eine bekannte Funktion Berechnung der Wahrscheinlichkeit eines Ereignisses A: h(x) = I A (x). Berechnung von CVaR: h(x) = xi x>c (x) mit c = VaR(X). Algorithmus 1 (Monte Carlo Integration) (1) Generiere X 1,X 2,..., X n unabhängig aus der Dichte f. (2) Berechne den standard MC Schätzer ˆθ (MC) n = 1 n n h(x i). Aus dem starken Gesetz der großen Zahlen: lim n ˆθ (MC) n = θ. Im Falle von seltenen Ereignissen (h(x) = I A (x), P(A) << 1) ist die Konvergenz sehr langsam. 28

19 Sei g eine Wahrscheinlichkeitsdichte, sodass f(x) > 0 g(x) > 0. { f(x) g(x) > 0 Wir definieren das Likelihood ratio als: r(x) := g(x) 0 g(x) = 0 Es gilt: θ = Algorithmus 2 (Importance Sampling) h(x)r(x)g(x)dx = E g (h(x)r(x)) (8) (1) Generiere X 1,X 2,..., X n unabhängig aus der Dichte g. (2) Berechne den IS Schätzer ˆθ (IS) n = 1 n n h(x i)r(x i ). g heißt Importance Sampling -Dichte. Ziel: Auswahl einer Importance Sampling -Dichte, sodass die Variance des IS-Schätzers wesentlich kleiner als die Varianz des standard MC Schätzers ist. var g (ˆθ (IS) n var ) (ˆθ (MC) n = (1/n)(E g (h 2 (X)r 2 (X)) θ 2 ) ) = (1/n)(E(h 2 (X)) θ 2 ) 29

20 Theoretisch kann die Varianz des IS-Schätzers auf 0 reduziert werden! Annahme h(x) 0, x. Für g (x) = f(x)h(x)/e(h(x)) gilt: ˆθ (IS) 1 = h(x 1 )r(x 1 ) = E(h(X)). Der IS-Schätzer gibt den richtigen Wert nach einer einzigen Simulation! Sei h(x) = I {X c} (x) wobei c >> E(X) (seltenes Ereignis). Es gilt E(h 2 (X)) = P(X c) und aus (8) folgt: E g (h 2 (X)r 2 (X)) = h 2 (x)r 2 (x)g(x)dx = E g (r 2 (X);X c) = (9) h 2 (x)r(x)f(x)dx = h(x)r(x)f(x)dx = E(r(X);X c) (10) Das Ziel ist g so auszuwählen, dass E g (h 2 (X)r 2 (X)) klein wird, oder sodass r(x) für x c klein und das Ereignis X c unter der Dichte g wahrscheinlicher als unter der Dichte f ist. 30

21 Exponential tilting: Bestimmung des IS-Dichte für light tailed Variablen Sei M x (t):r R die Momentum-generierende Funktion von X: IS-Dichte: g t (x) = etx f(x) M X (t) M X (t) = E(e tx ) = Likelihood Ratio: r t (x) = f(x) g t (x) = M X(t)e tx. Sei µ t = E gt (X) = E(X exp{tx})/m X (t). e tx f(x)dx Wie kann man ein geeignetes t für ein bestimmtes IS Problem ermitteln? Z.B. für die Schätzung der Tail-Wahrscheinlichkeit? Das Ziel ist t so zu wählen, dass E(r(X);X c) = E(I X c M X (t)e tx ) klein wird. e tx e tc, für x c, t 0 E(I X c M X (t)e tx ) M X (t)e tc. Wir setzten t = argmin{m X (t)e tc :t 0}. Daraus folgt t = t(c) wobei t(c) die Lösung der Gleichung µ t = c ist. (Eine eindeutige Lösung existiert für alle relevanten Werte von c - ohne Beweis). 31

22 Exponential Tilting für die Normalverteilung Sei X N(0,1) mit Dichtefunktion φ(x). g t (x) = etx φ(x) M X (t) = etx φ(x) e t2 /2 = 1 2π exp{ 1 2 (x t)2 } und µ t = D.h. unter der Verteilung g t gilt X N(t,1) Die Gleichung µ t = c lautet t = c. IS im Falle von Wahrscheinlichkeitsmaßen E(X exp{tx}) M X (t) Seien f und g Wahrscheinlichkeitsdichten. Definiere zwei Wahrscheinlichkeitsmasse P und Q: P(A) = f(x)dx und Q(A) = g(x)dx x A x A Die grundelegende Gleichung der IS (8) lautet dann: θ = E P (h(x)) = E Q (h(x)r(x)) Analog: Exponential tilting im Fall von Wahrscheinlichkeitsdichten: Sei X eine ZV in ((Ω,F,P)) sodass M X (t) = E P (exp{tx}) <, t. Sei Q t (A) := E P exp{tx} M X (t) ;A ein Wahrscheinlichkeitsmaß in (Ω, F). Der IS-Algorithmus bleibt gleich: Simuliere unabhängige Realisierungen von X i in (Ω,F,Q t ) und setze ˆθ n (IS) = (1/n) n X ir t (X i ) wobei r t (X) = M X (t)exp{ tx}. 32 = t

23 Anwendung von IS auf Bernoulli Mischung Modelle (siehe Glasserman und Li (2003)) Sei L = m e iy i die Verlustfunktion eines Kreditportfolios. Y i sind die Verlustindikatoren mit Default-Wahrscheinlichkeit p i und e i = (1 λ i )L i die positiven deterministischen Exposures (λ i sind recovery rates und L i sind die Kredithöhen), i = 1,2,...,m. Sei Z ein Vektor von ökonomischen Einflussfaktoren, sodass Y i Z unabhängig sind und Y i (Z = z) Bernoulli(p i (z)). Ziel: Schätzung von θ = P(L c) mit Hilfe des IS-Ansatzes, für ein gegebenes c, c >> E(L). Vereinfachter Fall: Y i sind unabhängig, i = 1,2,...,m. Sei Ω = {0,1} m der Raum der Zustände von Y. Das Wahrscheinlichleitsmaß P in Ω: m P({y}) = p y i i (1 p i) 1 y i, y {0,1}m. Die Momentum-generierende Funktion von L: M L (t) = m (ete i p i + 1 p i ). 33

24 Das Wahrscheinlichkeitsmaß Q t : n ( ) exp{te i y i } Q t ({y}) = exp{te i } p i +1 p i p y i i (1 p i) 1 y i. Seien q t,i neue Default-Wahrscheinlichlichkeiten: Somit gilt: q t,i := exp{te i } p i /(exp{te i } p i +1 p i ). Q t ({y}) = m q y i i (1 q i) 1 y i, y {0,1}m. D.h. nach der exponential tilting sind die Default-Indikatoren unabhängig mit neuen Default-Wahrscheinlichkeiten q t,i. lim t q t,i = 1 und lim t q t,i = 0 E Q t (L) nimmt alle Werte in (0, m e i) an für t R. Für IS-Anwendungen wähle t, sodass m e i q t,i = c. Allgemeiner Fall: Y i sind unabhängig bedingt durch Z 1. Schritt: Schätzung der bedingten Überschuss-Wahrscheinlichkeit θ(z) := P(L c Z = z) für eine gegebene Realisierung z der ökonomischen Faktoren Z, mit Hilfe des im vereinfachten Fall beschriebenen IS-Ansatzes. 34

25 Algorithmus 3 (IS für die bedingte Verlustverteilung) (1) Für ein gegebenes z berechne die bedingtenn Default- Wahrscheinlichkeiten p i (z) (wie im einfachen Unabhägigkeitsfall) und löse folgende Gleichung: m exp{te i }p i (z) exp{te i }p i (z)+1 p i (z) = c Die Lösung t = t(c, z) gibt den richtigen tilting-grad. (2) Erzeuge n 1 bedingte Realisierungen des Vektors der Default- Indikatoren (Y 1,...,Y m ). Die einzelnen Indikatoren Y i, werden unabhängig aus Bernoulli(q i ), i = 1,2,...,m, simuliert, wobei q i = exp{t(c,z)e i }p i (z) exp{t(c,z)e i }p i (z)+1 p i (z) (3) Sei M L (t,z) := [exp{te i }p i (z)+1 p i (z)] die bedingte Momenterzeugende Funktion von L. Seien L (1), L (2),...,L (n 1) die n 1 bedingten Realisierungen von L für die n 1 simulierten Realisierun- 35

26 gen von Y 1,Y 2,...,Y m. Berechne den IS-Schätzer für die Tail- Wahrscheinlichkeit der bedingten Verlustverteilung: ˆθ (IS) n 1 (z) = M L (t(c,z),z) 1 n 1 n 1 j=1 I L (j) cexp{ t(c,z)l (j) }L (j).

27 2. Schritt: Schätzung der unbedingten Überschuss Wahrscheinlichkeit θ = P(L c). Naive Vorgangsweise: Erzeuge mehrere Realisierungen z der Einflussfaktoren Z und berechne ˆθ n (IS) 1 (z) für jede dieser Realisierungen. Der gesuchte Schätzer ist der Durchschnittswert der Schätzer ˆθ n (IS) 1 (z) über alle Realisierungen z. Das ist nicht die beste Lösung, siehe Glasserman und Li (2003). Bessere Herangehensweise: IS für die Einflussfaktoren. Annahme: Z N p (0,Σ) (zb. probit-normal Bernoulli Mischung) Die IS-Dichte g ist die Dichte von N p (µ,σ) für einen neuen Erwartungswertvektor µ R p. Eine gute Wahl von µ sollte zu häufigen Realisierungen z die zu höheren bedingten Default- Wahrscheinlichkeiten p i (z) führen. Likelihood Ratio: r µ (Z) = exp{ 1 2 Zt Σ 1 Z} exp{ 1 2 (Z µ)t Σ 1 (Z µ)} = exp{ µ Σ 1 Z µ Σ 1 µ} 36

28 Algorithmus 4 (vollständige IS für Bernoulli Mischung Modelle mit Gauss schen Faktoren) (1) Erzeuge z 1,z 2,...,z n N p (µ,σ) (n ist die Anzahl der Simulationsrunden) (2) Für jedes z i berechne ˆθ (IS) n 1 (z i ) wie in Algorithmus 3. (3) Berechne den IS-Schätzer für die unbedingte Überschuss- Wahrscheinlichkeit: ˆθ n (IS) = 1 n r µ (z i )ˆθ n (IS) n 1 (z i ) 37

29 Die Auswahl von µ µ soll so gewählt werden, dass die Varianz des Schätzers klein ist. Idee von Glasserman und Li (2003) (Skizze): ˆθ n (IS) 1 (z) P(L c Z = z) Suche eine gute IS-Dichte für die Funktion z P(L c Z = z). Die optimale IS-Dichte g ist proportional zu P(L c Z = z)exp{ 1 2 zt Σ 1 z}. Vorschlag: Wähle eine IS-Dichte mit demselben Modus wie die optimale Dichte g. Das führt zu folgendem Optimierungsproblem: µ = argmax z {P(L c Z = z)exp{ 1 2 zt Σ 1 z} }. Exakte Lösung ist schwierig weil P(L c Z = z) ist i.a. nicht in analytischer Form verfügbar. Siehe Glasserman und Li (2003) für Lösungsansätze. 38

Monte Carlo Methoden in Kreditrisiko-Management

Monte Carlo Methoden in Kreditrisiko-Management Monte Carlo Methoden in Kreditrisiko-Management P Kreditportfolio bestehend aus m Krediten; Verlustfunktion L = n i=1 L i; Die Verluste L i sind unabhängig bedingt durch einen Vektor Z von ökonomischen

Mehr

Die latenten Variablen Y = (Y 1,Y 2,...,Y n ) T hängen mit dem Wert der Aktien der jeweiligen Firmen folgendermaßen zusammen.

Die latenten Variablen Y = (Y 1,Y 2,...,Y n ) T hängen mit dem Wert der Aktien der jeweiligen Firmen folgendermaßen zusammen. Das KMV Modell (siehe auch www.moodyskmv.com) Die Status Variablen S = (S 1,S 2,...,S n ) können nur zwei Werte 0 und 1 annehmen, d.h. m = 1. Die latenten Variablen Y = (Y 1,Y 2,...,Y n ) T hängen mit

Mehr

V A,i (T) = V A,i (t)exp µ A,i σ2 A,i 2. T t. ist die Volatilität.

V A,i (T) = V A,i (t)exp µ A,i σ2 A,i 2. T t. ist die Volatilität. Das multivariate KMV Modell: Berechnung von multivariaten Default Wahrscheinlichkeiten Seien (W j(t): 0 t T,) unabhängige Standard Brown sche Bewegungen, j = 1,2,...,m. Grundlegendes Modell: ( ) V A,i

Mehr

Was ist Kreditrisiko? Zitat von McNeil, Frey und Embrechts (2005):

Was ist Kreditrisiko? Zitat von McNeil, Frey und Embrechts (2005): Was ist Kreditrisiko? Zitat von McNeil, Frey und Embrechts (2005): Credit risk is the risk that the value of a portfolio changes due to unexpected changes in the credit quality of issuers or trading partners.

Mehr

Beispiel 5 Europäische Call Option (ECO) in einer Aktie S mit Laufzeit T und Ausübungspreis (Strikepreis) K.

Beispiel 5 Europäische Call Option (ECO) in einer Aktie S mit Laufzeit T und Ausübungspreis (Strikepreis) K. Beispiel 5 Europäische Call Option (ECO) in einer Aktie S mit Laufzeit T und Ausübungspreis (Strikepreis) K. Wert der Call Option zum Zeitpunkt T: max{s T K,0} Preis der ECO zum Zeitpunkt t < T: C = C(t,

Mehr

(Entwickelt von CSFB in 1997, siehe Crouhy et al. (2000) und suisse.com/investment banking/research/en/credit risk.

(Entwickelt von CSFB in 1997, siehe Crouhy et al. (2000) und  suisse.com/investment banking/research/en/credit risk. CreditRisk + - Ein Poisson Mixture Modell (Entwickelt von CSFB in 1997, siehe Crouhy et al. (2000) und http://www.credit suisse.com/investment banking/research/en/credit risk.jsp m unabhängige Risikofaktoren

Mehr

Multivariate Verteilungen

Multivariate Verteilungen Multivariate Verteilungen Zufallsvektoren und Modellierung der Abhängigkeiten Ziel: Modellierung der Veränderungen der Risikofaktoren X n = (X n,1, X n,2,..., X n,d ) Annahme: X n,i und X n,j sind abhängig

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

Seminar Quantitatives Risikomanagement

Seminar Quantitatives Risikomanagement Seminar Quantitatives Risikomanagement Kreditrisikomanagement II Fabian Wunderlich Mathematisches Institut der Universität zu Köln Sommersemester 2009 Betreuung: Prof. Schmidli, J. Eisenberg Contents 1

Mehr

Beispiel 6 (Multivariate Normalverteilung)

Beispiel 6 (Multivariate Normalverteilung) Beispiel 6 (Multivariate Normalverteilung) Sei X N(µ,Σ). Es existiert eine Matrix A IR d k, sodass X d = µ+az wobei Z N k (0,I) und AA T = Σ. Weiters gilt Z = RS wobei S ein gleichmäßig verteilter Zufallsvektor

Mehr

Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko

Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko Jan Jescow Stoehr Gliederung 1. Einführung / Grundlagen 1.1 Ziel 1.2 CreditRisk+ und CreditMetrics 2. Kreditportfolio 2.1 Konstruktion

Mehr

Extremwertverteilungen

Extremwertverteilungen Seminar Statistik Institut für Stochastik 12. Februar 2009 Gliederung 1 Grenzwertwahrscheinlichkeiten 2 3 MDA Fréchet MDA Weibull MDA Gumbel 4 5 6 Darstellung von multivariaten, max-stabilen Verteilungsfunktionen

Mehr

Kreditrisiko bei Swiss Life. Carl-Heinz Meyer, 13.06.2008

Kreditrisiko bei Swiss Life. Carl-Heinz Meyer, 13.06.2008 Kreditrisiko bei Swiss Life Carl-Heinz Meyer, 13.06.2008 Agenda 1. Was versteht man unter Kreditrisiko? 2. Ein Beisiel zur Einführung. 3. Einige kleine Modelle. 4. Das grosse kollektive Modell. 5. Risikoberechnung

Mehr

Was ist Kreditrisiko? Zitat von McNeil, Frey und Embrechts (2005):

Was ist Kreditrisiko? Zitat von McNeil, Frey und Embrechts (2005): Was ist Kreditrisiko? Zitat von McNeil, Frey und Embrechts (2005): Credit risk is the risk that the value of a portfolio changes due to unexpected changes in the credit quality of issuers or trading partners.

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

Commercial Banking. Kreditportfoliosteuerung

Commercial Banking. Kreditportfoliosteuerung Commercial Banking Kreditportfoliosteuerung Dimensionen des Portfoliorisikos Risikomessung: Was ist Kreditrisiko? Marking to Market Veränderungen des Kreditportfolios: - Rating-Veränderung bzw. Spreadveränderung

Mehr

Nachteile: STD existiert nur für Verteilungen mit E(FL 2 ) <, d.h. nicht ansetzbar bei leptokurtischen ( fat tailed ) Verlustverteilungen;

Nachteile: STD existiert nur für Verteilungen mit E(FL 2 ) <, d.h. nicht ansetzbar bei leptokurtischen ( fat tailed ) Verlustverteilungen; Risikomaße basierend auf die Verlustverteilung Sei F L := F Ln+1 die Verteilung der Verlust L n+1. Die Parameter von F Ln+1 werden anhand von historischen Daten entweder direkt oder mit Hilfe der Risikofaktoren

Mehr

Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011

Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011 Kevin Schellkes und Christian Hendricks 29.08.2011 Inhalt Der herkömmliche Ansatz zur Simulation logarithmischer Renditen Ansatz zur Simulation mit Copulas Test und Vergleich der beiden Verfahren Fazit

Mehr

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit 3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate

Mehr

Credit Risk+: Eine Einführung

Credit Risk+: Eine Einführung Credit Risk+: Eine Einführung Volkert Paulsen December 9, 2004 Abstract Credit Risk+ ist neben Credit Metrics ein verbreitetes Kreditrisikomodell, dessen Ursprung in der klassischen Risikotheorie liegt.

Mehr

P( X µ c) Var(X) c 2. mit. In der Übung wurde eine alternative, äquivalente Formulierung verwendet: P( X µ < c) 1 Var(X)

P( X µ c) Var(X) c 2. mit. In der Übung wurde eine alternative, äquivalente Formulierung verwendet: P( X µ < c) 1 Var(X) Ich habe eine Frage zur Tschebyschew Ungleichung. In der Aufgabe 4 des Übungsblattes 3 benötigt man ja die Ungleichung. In diesem Falle war der Bereich (0, 20) symmetrisch um den Erwartungswert µ = 5.

Mehr

2. Ein Zufallsvektor X IR d ist multivariat normal verteilt dann und nur dann wenn seine charakteristische Funktion folgendermaßen gegeben ist:

2. Ein Zufallsvektor X IR d ist multivariat normal verteilt dann und nur dann wenn seine charakteristische Funktion folgendermaßen gegeben ist: Multivariate elliptische Verteilungen a) Die multivariate Normalverteilung Definition 2 Der Zufallsvektor (X 1, X 2,..., X d ) T hat eine multivariate Normalverteilung (oder eine multivariate Gauss sche

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

Stochastische Eingangsprüfung, 17.05.2008

Stochastische Eingangsprüfung, 17.05.2008 Stochastische Eingangsprüfung, 17.5.8 Wir gehen stets von einem Wahrscheinlichkeitsraum (Ω, A, P) aus. Aufgabe 1 ( Punkte) Sei X : Ω [, ) eine integrierbare Zufallsvariable mit XdP = 1. Sei Q : A R, Q(A)

Mehr

Theorem 19 Sei (X 1,X 2 ) T ein normalverteilter Zufallsvektor. Dann gilt: λ U (X 1,X 2 ) = λ L (X 1,X 2 ) = 0.

Theorem 19 Sei (X 1,X 2 ) T ein normalverteilter Zufallsvektor. Dann gilt: λ U (X 1,X 2 ) = λ L (X 1,X 2 ) = 0. Theorem 19 Sei (X 1,X 2 ) T ein normalverteilter Zufallsvektor. Dann gilt: λ U (X 1,X 2 ) = λ L (X 1,X 2 ) = 0. Korollar 2 Sei (X 1,X 2 ) T ein Zufallsvektor mit stetigen Randverteilungen und einer Gauss

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

4. Verteilungen von Funktionen von Zufallsvariablen

4. Verteilungen von Funktionen von Zufallsvariablen 4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

13 Grenzwertsätze Das Gesetz der großen Zahlen

13 Grenzwertsätze Das Gesetz der großen Zahlen 13 Grenzwertsätze 13.1 Das Gesetz der großen Zahlen Der Erwartungswert einer zufälligen Variablen X ist in der Praxis meist nicht bekannt. Um ihn zu bestimmen, sammelt man Beobachtungen X 1,X 2,...,X n

Mehr

Solvency II und die Standardformel

Solvency II und die Standardformel Fakultät Mathematik und Naturwissenschaften Institut für Mathematische Stochastik Solvency II und die Standardformel Festkolloquium 20 Jahre (neue) Versicherungsmathematik an der TU Dresden Sebastian Fuchs

Mehr

Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006

Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006 1 3.34 1.1 Angabe Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006 U sei auf dem Intervall (0, 1) uniform verteilt. Zeigen

Mehr

Stochastik Praktikum Markov Chain Monte Carlo Methoden

Stochastik Praktikum Markov Chain Monte Carlo Methoden Stochastik Praktikum Markov Chain Monte Carlo Methoden Humboldt-Universität zu Berlin 14.10.2010 Problemstellung Wie kann eine Zufallsstichprobe am Computer simuliert werden, deren Verteilung aus einem

Mehr

Methoden der Statistik Markov Chain Monte Carlo Methoden

Methoden der Statistik Markov Chain Monte Carlo Methoden Methoden der Statistik Markov Chain Monte Carlo Methoden Humboldt-Universität zu Berlin 08.02.2013 Problemstellung Wie kann eine Zufallsstichprobe am Computer simuliert werden, deren Verteilung aus einem

Mehr

Commercial Banking. Kreditgeschäft 2. Bedingte marginale und kumulative Ausfallwahrscheinlichkeit

Commercial Banking. Kreditgeschäft 2. Bedingte marginale und kumulative Ausfallwahrscheinlichkeit Commercial Banking Kreditgeschäft Bedingte marginale und kumulative Ausfallwahrscheinlichkeit Bedingte Marginale Ausfallwahrscheinlichkeit (BMAW t ) (Saunders: MMR ) prob (Ausfall in Periode t kein Ausfall

Mehr

CreditMetrics. Portfoliokreditrisiko Seminar. 10. Oktober Sebastian Sandner. Statistik Seminar bei PD Dr. Rafael Weißbach Universität Mannheim

CreditMetrics. Portfoliokreditrisiko Seminar. 10. Oktober Sebastian Sandner. Statistik Seminar bei PD Dr. Rafael Weißbach Universität Mannheim CreditMetrics Portfoliokreditrisiko Seminar 10. Oktober 2007 Sebastian Sandner Statistik Seminar bei PD Dr. Rafael Weißbach Universität Mannheim Gliederung Page 1. Einführung in Credit Metrics 4 2. Durchführung

Mehr

Finanzmathematische Modelle und Simulation

Finanzmathematische Modelle und Simulation Finanzmathematische Modelle und Simulation WS 9/1 Rebecca Henkelmann In meiner Ausarbeitung Grundbegriffe der Stochastik I, geht es darum die folgenden Begriffe für die nächsten Kapitel einzuführen. Auf

Mehr

Risikomessung und Value at Risk Wintersemester 2013/14

Risikomessung und Value at Risk Wintersemester 2013/14 Risikomessung und Value at Risk Wintersemester 2013/14 Walter Sanddorf-Köhle Statistik und Ökonometrie Foliensatz Nr. 11 Version vom 24. Januar 2014 1 / 45 6.5.1 Bisherige Vorgehensweise zur Berechnung

Mehr

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Dozent: Volker Krätschmer Fakultät für Mathematik, Universität Duisburg-Essen, WS 2012/13 1. Präsenzübung Aufgabe T 1 Sei (Z 1,...,

Mehr

Vorlesung 7: Value-at-Risk für Kreditrisiken

Vorlesung 7: Value-at-Risk für Kreditrisiken Vorlesung 7: Value-at-Risk für Kreditrisiken 17. April 2015 Dr. Patrick Wegmann Universität Basel WWZ, Department of Finance patrick.wegmann@unibas.ch www.wwz.unibas.ch/finance Die Verlustverteilung im

Mehr

Risikomanagement und Statistik. Raimund Kovacevic

Risikomanagement und Statistik. Raimund Kovacevic Risikomanagement und Statistik Raimund Kovacevic Dieses Werk ist Urheberrechtlich geschützt. Jede Vervielfältigung ohne Einverständnis des Autors ist verboten. Risiko hazard, a chance of bad consequences,

Mehr

Value at Risk Einführung

Value at Risk Einführung Value at Risk Einführung Veranstaltung Risk Management & Computational Finance Dipl.-Ök. Hans-Jörg von Mettenheim mettenheim@iwi.uni-hannover.de Institut für Wirtschaftsinformatik Leibniz Universität Hannover

Mehr

, dt. $+ f(x) = , - + < x < +, " > 0. " 2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) =

, dt. $+ f(x) = , - + < x < +,  > 0.  2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) = 38 6..7.4 Normalverteilung Die Gauß-Verteilung oder Normal-Verteilung ist eine stetige Verteilung, d.h. ihre Zufallsvariablen können beliebige reelle Zahlenwerte annehmen. Wir definieren sie durch die

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)

Mehr

Case II: F is unknown Bootstrapping! The empirical distribution function of X i, 1 i n, is giben as. F n (x) = 1 n. For n large F n F holds.

Case II: F is unknown Bootstrapping! The empirical distribution function of X i, 1 i n, is giben as. F n (x) = 1 n. For n large F n F holds. Case II: F is unknown Bootstrapping! The empirical distribution function of X i, 1 i n, is giben as F n (x) = 1 n I [xi, )(x). n For n large F n F holds. i=1 Generate samples from F n be choosing n elementes

Mehr

Copula Funktionen. Eine Einführung. Nils Friewald

Copula Funktionen. Eine Einführung. Nils Friewald Copula Funktionen Eine Einführung Nils Friewald Institut für Managementwissenschaften Abteilung Finanzwirtschaft und Controlling Favoritenstraße 9-11, 1040 Wien friewald@imw.tuwien.ac.at 13. Juni 2005

Mehr

Risikomanagement: Hintergrund und Ziele

Risikomanagement: Hintergrund und Ziele Risikomanagement: Hintergrund und Ziele Beispiel 1 Anfangskapital V 0 = 100 Spiel: man verliert oder gewinnt 50 mit Wahrsch. jeweils 1/2. Kapital nach dem Spiel V 1 = { 150 mit Wahrsch. 1/2 50 mit Wahrsch.

Mehr

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Review)

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Review) Einige Konzepte aus der Wahrscheinlichkeitstheorie (Review) 1 Diskrete Zufallsvariablen (Random variables) Eine Zufallsvariable X(c) ist eine Variable (genauer eine Funktion), deren Wert vom Ergebnis c

Mehr

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung 2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von

Mehr

Kapitel 8: Zufallsvektoren

Kapitel 8: Zufallsvektoren Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse 03.12.2015 Kapitel 8: Zufallsvektoren Statt einem Merkmal werden häufig mehrere Merkmale gleichzeitig betrachtet, z.b. Körpergröße und

Mehr

$ % + 0 sonst. " p für X =1 $

$ % + 0 sonst.  p für X =1 $ 31 617 Spezielle Verteilungen 6171 Bernoulli Verteilung Wir beschreiben zunächst drei diskrete Verteilungen und beginnen mit einem Zufallsexperiment, indem wir uns für das Eintreffen eines bestimmten Ereignisses

Mehr

Monte-Carlo Simulation

Monte-Carlo Simulation Monte-Carlo Simulation Sehr häufig hängen wichtige Ergebnisse von unbekannten Werten wesentlich ab, für die man allerhöchstens statistische Daten hat oder für die man ein Modell der Wahrscheinlichkeitsrechnung

Mehr

Stochastik für Studierende der Informatik

Stochastik für Studierende der Informatik Wiederholungs-/Fragestunde Peter Czuppon Uni Freiburg, 05. September 2016 Diese Zusammenfassung wurde mit Hilfe des Skriptes von Prof. Dr. Pfaffelhuber aus dem Sommersemester 2016 erstellt. Ferner deckt

Mehr

Stochastik. 1. Wahrscheinlichkeitsräume

Stochastik. 1. Wahrscheinlichkeitsräume Stochastik 1. Wahrscheinlichkeitsräume Ein Zufallsexperiment ist ein beliebig oft und gleichartig wiederholbarer Vorgang mit mindestens zwei verschiedenen Ergebnissen, bei dem der Ausgang ungewiß ist.

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Modellbildung und Simulation

Modellbildung und Simulation Modellbildung und Simulation 5. Vorlesung Wintersemester 2007/2008 Klaus Kasper Value at Risk (VaR) Glossar Portfolio: In der Ökonomie bezeichnet der Begriff Portfolio ein Bündel von Investitionen, das

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Multivariate Statistik

Multivariate Statistik Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)

Mehr

Beispiel 6 (Einige Aufgaben zur Gleichverteilung)

Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Aufgabe (Anwendung der Chebyshev-Ungleichung) Sei X eine Zufallsvariable mit E(X) = µ und var(x) = σ a) Schätzen Sie die Wahrscheinlichkeit dafür, daß

Mehr

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678 Lösungsvorschläge zu Blatt 8 X binomialverteilt mit p = 0. und n = 10: a PX = = 10 q = 1 p = 0.8 0. 0.8 10 = 0, 1,..., 10 PX = PX = 0 + PX = 1 + PX = 10 10 = 0. 0 0.8 10 + 0. 1 0.8 9 + 0 1 10 = 0.8 8 [

Mehr

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen David Geier und Sven Middelberg RWTH Aachen, Sommersemester 27 Inhaltsverzeichnis Information 2 Aufgabe 4 Aufgabe 2 6 4 Aufgabe

Mehr

Markovketten. Bsp. Page Ranking für Suchmaschinen. Wahlfach Entscheidung unter Risiko und stat. Datenanalyse 07.01.2015

Markovketten. Bsp. Page Ranking für Suchmaschinen. Wahlfach Entscheidung unter Risiko und stat. Datenanalyse 07.01.2015 Markovketten Markovketten sind ein häufig verwendetes Modell zur Beschreibung von Systemen, deren Verhalten durch einen zufälligen Übergang von einem Systemzustand zu einem anderen Systemzustand gekennzeichnet

Mehr

Kapitel 4: Binäre Regression

Kapitel 4: Binäre Regression Kapitel 4: Binäre Regression Steffen Unkel (basierend auf Folien von Nora Fenske) Statistik III für Nebenfachstudierende WS 2013/2014 4.1 Motivation Ausgangssituation Gegeben sind Daten (y i, x i1,...,

Mehr

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 23. Bemerkung Integralbegriffe für Funktionen f : R d R (i) Lebesgue-Integral (Vorlesung Analysis IV). Spezialfall: (ii) Uneigentliches Riemann-Integral

Mehr

Übung Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung mit

Übung Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung mit Übung 2 24..23 Ü b u n g 2 Aufgabe Die Poissonverteilung P(λ) hat die Wahrscheinlichkeitsfunktion p(x) = λx e λ (x ) x! Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung

Mehr

BONUS MALUS SYSTEME UND MARKOV KETTEN

BONUS MALUS SYSTEME UND MARKOV KETTEN Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik, Institut für Mathematische Stochastik BONUS MALUS SYSTEME UND MARKOV KETTEN Klaus D. Schmidt Ringvorlesung TU Dresden Fakultät MN,

Mehr

Reelle Zufallsvariablen

Reelle Zufallsvariablen Kapitel 3 eelle Zufallsvariablen 3. Verteilungsfunktionen esultat aus der Maßtheorie: Zwischen der Menge aller W-Maße auf B, nennen wir sie W B ), und der Menge aller Verteilungsfunktionen auf, nennen

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Zufallsvariable Erinnerung: Merkmal, Merkmalsausprägung Deskriptive Statistik:

Mehr

Delta-Gamma-Verfahren als Standard- Risikomodell für Lebensversicherer

Delta-Gamma-Verfahren als Standard- Risikomodell für Lebensversicherer Delta-Gamma-Verfahren als Standard- Risikomodell für Lebensversicherer 1 Einleitung Im Rahmen des SST wird teilweise vereinfachend angenommen, dass der Zusammenhang zwischen der Veränderung des risikotragenden

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38 Dynamische Systeme und Zeitreihenanalyse Multivariate Normalverteilung und ML Schätzung Kapitel 11 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Multivariate

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 206 Prof. Dr. Stefan Etschberger HSA Unabhängigkeit von Ereignissen A, B unabhängig: Eintreten von A liefert keine Information über P(B). Formal: P(A

Mehr

Suffizienz und Vollständigkeit

Suffizienz und Vollständigkeit KAPITEL 7 Suffizienz und Vollständigkeit 7.1. Definition der Suffizienz im diskreten Fall Beispiel 7.1.1. Betrachten wir eine unfaire Münze, wobei die Wahrscheinlichkeit θ, dass die Münze Kopf zeigt, geschätzt

Mehr

Woche 2: Zufallsvariablen

Woche 2: Zufallsvariablen Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 17/19, 24.04.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Teil III Zufallsvariablen Wahrscheinlichkeit

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr 1.4.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen Sei X eine kontinuierliche Zufallsvariable. Wir können aus X leicht eine diskrete Zufallsvariable konstruieren, indem wir

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Zeitstetige Markov-Prozesse: Einführung und Beispiele

Zeitstetige Markov-Prozesse: Einführung und Beispiele Zeitstetige Markov-Prozesse: Einführung und Beispiele Simone Wielart 08.12.10 Inhalt Q-Matrizen und ihre Exponentiale Inhalt Q-Matrizen und ihre Exponentiale Zeitstetige stochastische Prozesse Inhalt Q-Matrizen

Mehr

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5 4 Verteilungen und ihre Kennzahlen 1 Kapitel 4: Verteilungen und ihre Kennzahlen A: Beispiele Beispiel 1: Eine diskrete Zufallsvariable X, die nur die Werte 1,, 3, 4, 5 mit positiver Wahrscheinlichkeit

Mehr

1 Multivariate Zufallsvariablen

1 Multivariate Zufallsvariablen 1 Multivariate Zufallsvariablen 1.1 Multivariate Verteilungen Definition 1.1. Zufallsvariable, Zufallsvektor (ZV) Sei Ω die Ergebnismenge eines Zufallsexperiments. Eine (univariate oder eindimensionale)

Mehr

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung 4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung Häufig werden mehrere Zufallsvariablen gleichzeitig betrachtet, z.b. Beispiel 4.1. Ein Computersystem bestehe aus n Teilsystemen. X i sei der Ausfallzeitpunkt

Mehr

Übungsblatt 9. f(x) = e x, für 0 x

Übungsblatt 9. f(x) = e x, für 0 x Aufgabe 1: Übungsblatt 9 Basketball. Ein Profi wirft beim Training aus einer Entfernung von sieben Metern auf den Korb. Er trifft bei jedem Wurf mit einer Wahrscheinlichkeit von p = 1/2. Die Zufallsvariable

Mehr

Satz 105 (Gedächtnislosigkeit) Beweis: Sei X exponentialverteilt mit Parameter λ. Dann gilt Pr[X > x + y X > y] = Pr[X > y] Pr[X > x + y] = Pr[X > y]

Satz 105 (Gedächtnislosigkeit) Beweis: Sei X exponentialverteilt mit Parameter λ. Dann gilt Pr[X > x + y X > y] = Pr[X > y] Pr[X > x + y] = Pr[X > y] Gedächtnislosigkeit Satz 105 (Gedächtnislosigkeit) Eine (positive) kontinuierliche Zufallsvariable X mit Wertebereich R + ist genau dann exponentialverteilt, wenn für alle x, y > 0 gilt, dass Pr[X > x

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Definition 18 (Die verallgemeinerte Pareto Verteilung (GPD)) Die standard GPD G γ : ) 1/γ. G γ,ν,β = 1 (1 + γ x ν β

Definition 18 (Die verallgemeinerte Pareto Verteilung (GPD)) Die standard GPD G γ : ) 1/γ. G γ,ν,β = 1 (1 + γ x ν β Die POT Methode (Peaks over Threshold) Definition 18 (Die verallgemeinerte Pareto Verteilung (GPD)) Die standard GPD G γ : G γ (x) = { 1 (1 + γx) 1/γ für γ 0 1 exp{ x} für γ = 0 wobei x D(γ) D(γ) = { 0

Mehr

12 Ungleichungen. Wir beginnen mit einer einfachen Ungleichung über die Varianz. Satz 35 Es sei X eine zufällige Variable.

12 Ungleichungen. Wir beginnen mit einer einfachen Ungleichung über die Varianz. Satz 35 Es sei X eine zufällige Variable. 12 Ungleichungen Wir beginnen mit einer einfachen Ungleichung über die Varianz. Satz 35 Es sei X eine zufällige Variable. Dann gilt: min c R E(X c)2 = Var X. Beweis: Für alle reellen Zahlen c R gilt: E(X

Mehr

Stetige Standardverteilungen

Stetige Standardverteilungen Universität Basel Wirtschaftswissenschaftliches Zentrum Stetige Standardverteilungen Dr. Thomas Zehrt Inhalt: 1. Die stetige Gleichverteilung 2. Die Normalverteilung (a) Einstimmung (b) Standardisierung

Mehr

8. Formelsammlung. Pr[ ] = 0. 0 Pr[A] 1. Pr[Ā] = 1 Pr[A] A B = Pr[A] Pr[B] DWT 8.1 Gesetze zum Rechnen mit Ereignissen 203/467 Ernst W.

8. Formelsammlung. Pr[ ] = 0. 0 Pr[A] 1. Pr[Ā] = 1 Pr[A] A B = Pr[A] Pr[B] DWT 8.1 Gesetze zum Rechnen mit Ereignissen 203/467 Ernst W. 8. Formelsammlung 8.1 Gesetze zum Rechnen mit Ereignissen Im Folgenden seien A und B, sowie A 1,..., A n Ereignisse. Die Notation A B steht für A B und zugleich A B = (disjunkte Vereinigung). A 1... A

Mehr

8 Die Exponentialverteilung

8 Die Exponentialverteilung 8 Die Exponentialverteilung 8.1 Einführung Modelle Zuverlässigkeitsmodelle Lebensdauermodelle Bedienungsmodelle. 277 W.Kössler, Humboldt-Universität zu Berlin Def. 26 (Exponentialverteilung) Sei X eine

Mehr

2 Zufallsvariable und Verteilungsfunktionen

2 Zufallsvariable und Verteilungsfunktionen 8 2 Zufallsvariable und Verteilungsfunktionen Häufig ist es so, dass den Ausgängen eines Zufallexperiments, d.h. den Elementen der Ereignisalgebra, eine Zahl zugeordnet wird. Das wollen wir etwas mathematischer

Mehr

1. Grundbegri e. T n i=1 A i = A 1 \ A 2 \ : : : \ A n alle A i treten ein. na = A das zu A komplementäre Ereignis; tritt ein, wenn A nicht eintritt.

1. Grundbegri e. T n i=1 A i = A 1 \ A 2 \ : : : \ A n alle A i treten ein. na = A das zu A komplementäre Ereignis; tritt ein, wenn A nicht eintritt. . Grundbegri e Menge der Ereignisse. Die Elemente! der Menge heißen Elementarereignisse und sind unzerlegbare Ereignisse. Das Ereignis A tritt ein, wenn ein! A eintritt. ist auch das sichere Ereignis,

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.)

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) 1 Zusammenfassung Bedingte Verteilung: P (y x) = P (x, y) P (x) mit P (x) > 0 Produktsatz P (x, y) = P (x y)p (y) = P (y x)p (x) Kettenregel

Mehr

Klassische Risikomodelle

Klassische Risikomodelle Klassische Risikomodelle Kathrin Sachernegg 15. Jänner 2008 1 Inhaltsverzeichnis 1 Einführung 3 1.1 Begriffserklärung.................................. 3 2 Individuelles Risikomodell 3 2.1 Geschlossenes

Mehr

1. Grundbegri e der Stochastik

1. Grundbegri e der Stochastik Wiederholung von Grundwissen der Stochastik. Grundbegri e der Stochastik Menge der Ereignisse. Die Elemente! der Menge heißen Elementarereignisse und sind unzerlegbare Ereignisse. Das Ereignis A tritt

Mehr

TU DORTMUND Sommersemester 2018

TU DORTMUND Sommersemester 2018 Fakultät Statistik. April 08 Blatt Aufgabe.: Wir betrachten das Zufallsexperiment gleichzeitiges Werfen zweier nicht unterscheidbarer Würfel. Sei A das Ereignis, dass die Augensumme beider Würfel ungerade

Mehr

9 Die Normalverteilung

9 Die Normalverteilung 9 Die Normalverteilung Dichte: f(x) = 1 2πσ e (x µ)2 /2σ 2, µ R,σ > 0 9.1 Standard-Normalverteilung µ = 0, σ 2 = 1 ϕ(x) = 1 2π e x2 /2 Dichte Φ(x) = 1 x 2π e t2 /2 dt Verteilungsfunktion 331 W.Kössler,

Mehr

Unabhängigkeit von Zufallsvariablen

Unabhängigkeit von Zufallsvariablen Unabhängigkeit von Zufallsvariablen Seminar Gegenbeispiele in der Wahrscheinlichkeitstheorie Pascal Beckedorf 12. November 2012 Pascal Beckedorf Unabhängigkeit von Zufallsvariablen 12. November 2012 1

Mehr

Mathematik des Hybriden Monte-Carlo. Marcus Weber. Zuse Institute Berlin

Mathematik des Hybriden Monte-Carlo. Marcus Weber. Zuse Institute Berlin Mathematik des Hybriden Monte-Carlo Marcus Weber Zuse Institute Berlin Statistische Thermodynamik Ziel: Am Computer ein Ensemble samplen. Messung im Gleichgewicht (zeitunabhängige Verteilung π der Systemzustände

Mehr