MA Projekt: Langfristige Kapitalmarktsimulation

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "MA Projekt: Langfristige Kapitalmarktsimulation"

Transkript

1 MA Projekt: Langfristige Kapitalmarktsimulation Einführung in die Simulation Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring 4 / WiWi-Gebäude Bremen 1

2 Gliederung: 1. Einführung 1.1. Finanzmarktentwicklungen 1.2. Random-Walk Modell 1.3. Generierung von Random-Walks Simulationsmöglichkeiten mit Excel Simulationsmöglichkeiten mit Matlab 1.4. Fallstudie: Der Cost-Average-Effekt 2

3 Gliederung: 2. Monte Carlo Simulation 2.1. Grundlegender Ansatz 2.2. Fallstudie: Simulation einer Stop-Loss-Strategie 2.3. Fallstudie: Simulation zum Cost-Average Effekt 3

4 Jan96 Jul96 Jan97 Jul97 Jan98 Jul98 Jan99 Jul99 Jan00 Jul00 Jan01 Jul01 Jan02 Jul02 Jan03 Jul03 Jan04 Jul04 Jan05 Jul05 Einführung in die Simulation 1.1. Finanzmarktentwicklungen Euro Stoxx , , , , , ,00 0,00 Datum 4

5 Häufigkeit Einführung in die Simulation Renditeverteilung Histogramm Häufigkeit ,2-0,15-0,1-0,05 0 0,05 0,1 0,15 0,2 Klasse 5

6 Beobachtungen: Renditen sind nicht normalverteilt Schiefe (linksschief, rechtssteil) Steilgipflig (hohe Wölbung ) aber vereinfachende Annahme für den Einstieg: Normalverteilung! 6

7 1.2. Random-Walk Modell Zahllose denkbare Renditegenerierungsprozesse. Einfaches Standardmodell: Random-Walk. Annahme: Effizienter Markt. Kursänderungen erfolgen nur aufgrund unerwarteter Neuigkeiten. Diese sind definitionsgemäß zufällig. 7

8 Einfacher Simulationsansatz: Random-Walk-Modell a) Random-Walk ohne Drift y 1 t y t t mit t standardnormalverteilte Zufallsvariable b) Random-Walk mit Drift mit y t y t 1 Driftkomponente t 8

9 Einführung in die Simulation Beispiel zweier Random-Walks ohne Drift Zwei Random-Walks Random-Walk 1 Random-Walk 2 9

10 Anwendung des Random-Walk Modells zur Generierung von künstlichen Finanzzeitreihen Annahme: ε t sei normalverteilte, stetige Rendite in der Periode t Dann ergibt sich der Kurs K t nach: (1) K t K 1 e t t Durch Logarithmierung erhält man: (2) ln( t ) ln( Kt 1) ln( e ) ln( Kt 1) t K t 10

11 1.3. Generierung von Random-Walks Denkbare Werkzeuge: Tabellenkalkulationen (Excel, Gnumeric) Add-Ins für Tabellenkalkulationen (z.b. PopTools) Mathematisch-statistische Werkzeuge (Matlab, Octave) Programmierung (z.b. Pascal, C, C++, Java, ) 11

12 Simulationsmöglichkeiten mit Excel a) mit Hilfe der Excel-eigenen Möglichkeiten eingebaute Funktionen VBA-Analysefunktionen VBA-Programmierung b) mit Hilfe von Plug-Ins SimTools PopTools und andere c) mit Matlab-Unterstützung 12

13 Mit VBA-Analysefunktion 13

14 Mit eingebauten Funktionen 14

15 Allgemeine Vorgehensweise zur Erzeugung beliebig verteilter Zufallszahlen 1. Erzeugung gleichverteilter ZV im Intervall [0,1] 2. Berechnung der Inversen der Verteilungsfunktion 3. Skalierung der transformierten ZV Anmerkung: Schritte 2. und 3. in vorheriger Abbildung simultan erfolgt. 15

16 F(x) Einführung in die Simulation Visualisierung anhand der (Standard-) Normalverteilung F(x) 1 1. Schritt: Gl. ZV, z.b. 0,6 0,9 0,8 0,7 0,6 0,5 0,4 0,3 F(x) 0,2 0, x 2. Schritt: Berechnung der Inversen 3. Skalierung 16

17 zu Schritt 3: Skalierung Formel: nach Schritt 2 besitzt die ZV y noch nicht den gewünschten Mittelwert und Standardabweichung; Skalierung (Umrechnung) dann erforderlich, liefert x. (3) x y y y x x 17

18 Dabei bedeuten: y μ y σ y μ x σ x Erzeugte ZV beliebiger Verteilung (z.b. F-Verteilung) Theoretischer Mittelwert von y Theoretische Standardabweichung von y Gewünschter Mittelwert von x Gewünschte Standardabweichung von x 18

19 Beispiel einer reskalierten, F-verteilten ZV 19

20 Formeln für F-verteilte Zufallsvariablen: Ist X ~ F m,n verteilt, so gilt für Erwartungswert und Varianz: (4) E( X ) n n 2 (5) 2n m n Var( X ) 2 m n n 4 20

21 Häufigkeit Einführung in die Simulation Histogramm der erzeugten Renditen Histogramm Häufigkeit -0,2 0 0,2 0,4 0,6 0,8 1 Klasse 21

22 Anmerkungen: linkssteile, rechtsschiefe Verteilungen können durch Multiplikation mit (-1) in linksschiefe, rechtssteile Verteilungen transformiert werden letztere erlauben die Simulation von Katastrophen neben der F-Verteilung erzeugt auch die Chi2-Verteilung schiefe Verteilungen die t-verteilung bietet sich für die Simulation von fat tails an 22

23 Rechnerübung: Erzeugung von Random-Walks mit normalverteilten Renditen F-verteilten Renditen Chi2-verteilten Renditen t-verteilten Renditen Achtung: Linksschiefe realer Renditeverteilungen beachten! 23

24 Simulationsmöglichkeiten mit Matlab a) randtool vorgefertiges Tool in Matlab grafische Benutzeroberfläche Erzeugung von Verteilungen vielfältigster Art Visualisierung Exportmöglichkeiten der ZV, z.b. um in Excel fortzufahren 24

25 25

26 b) mit Matlab-Konsole grundsätzliche Vorgehen genauso wie in Excel: gleichverteilte Zufallszahlen Nutzung der inversen (kumulativen) Verteilungsfunktion daneben weitere Funktionen zur direkten Erzeugung Funktion random zahlreiche Verteilungen siehe Online-Hilfe 26

27 gleichverteilte ZV erzeugen Inverse der Verteilungsfunktion, hier Normalverteilung mit μ=2 und σ=4 27

28 Name der gewünschten Verteilungsfunktion Verteilungsparameter, hier μ=0 und σ=1 Dimension der Outputmatrix 28

29 Rechnerübung: Erzeugung eines Random-Walk mit Matlab Annahme: normalverteilte (stetige) Renditen μ = 0,00671 σ = 0,06043 Simulation von Monatsrenditen, 240 Monate Grafische Darstellung des Random-Walks 29

30 30

31 Simulierter Random-Walk mit Matlab

32 1.4. Fallstudie: Der Cost-Average-Effekt Einführendes Beispiel Einmalanlage: 1000 Laufende Anlage Periode Indexstand Anteile Wert Anlagebetrag Anteile Kum. Anteile Wert , ,00 200, , , ,11 390, , , ,38 561, , , ,44 818, , , , , ,00 10, ,25 Behauptung: Laufende Einzahlungen sind vorteilhafter als Einmalanlage Gegenthese: kein Unterschied im Mittel Dritte Position: Einmalanlage vorteilhafter 32

33 Aufgabe: Wer hat recht? Simulation des Cost-Average-Effektes mit Excel Matlab Was kommt bei einem (beliebigen) Kursverlauf heraus? 33

34 2.1. Grundlegender Ansatz Simulation von Modellen mit Zufallsvariablen Monte Carlo in Anlehnung an weltbekannte Spielcasino Ursprünglich entwickelt in Los Alamos (1940er Jahre, amerikanische Forschungsprogramm zur Entwicklung der Atombombe) Idee: Approximative, simulationsbasierte Lösung von Problemen, bei denen analytische Lösungen fehlen oder zu zeitaufwändig sind 34

35 Prinzipielle Vorgehensweise Ziehung von Zufallszahlen Konstruktion der Realisation eines stochastischen Pfades Modellauswertung Verteilungseigenschaften der Zielgröße 35

36 Beispiel: Test einer Kapitalanlagestrategie Problem: Zentrale Zielgrößen, z.b. Rendite Risiko sind abhängig von der Wertentwicklung der benutzten Anlageinstrumente! Lösung des Problems: Analytische Approximation Monte Carlo Simulation 36

37 Lösung mittels Monte Carlo Simulation 1. Formulierung der Kapitalanlagestrategie 2. Formulierung des stochastischen Modells der Wertentwicklungen (Spezifikation von Modell und Parameter) 3. Ziehung von Zufallszahlen 4. Berechnung des stochastischen Pfades gemäß Auswertung der Strategie nach Ermittlung der Verteilung der Zielgröße(n) 37

38 2.2. Fallstudie: Simulation einer Stop-Loss-Strategie Problem: Stop-Loss-Strategie ist eine einfache Wertsicherungsstrategie. Vorgegeben ist ein am Ende des Anlagezeitraums zu erreichender Vermögensendwert. Der abdiskontierte Wert ist der sog. Floor. Sobald der Wert des Portfolios unter den Floor fällt, wird in vollständig in die risikofreie Anlage umgeschichtet. Welche Eigenschaften besitzt diese Strategie? 38

39 Beispielhafte Lösung: 1. Formulierung der Kapitalanlagestrategie Angenommen wird: a) Ein Anfangsvermögen von 1000 (Indexwert). b) Ein Anlagezeitraum von 10 Jahren. c) Eine garantierte Mindestverzinsung von 2% p.a. d) Eine sichere Anlagemöglichkeit zu 5% p.a. e) Eine 50:50 Aufteilung zwischen risikofreier und risikobehafteter Anlage f) Ein Handeln nach der beschriebenen Stop-Loss- Strategie. 39

40 2. Formulierung des stochastischen Modells: Random-Walk-Modell a) Random-Walk ohne Drift y 1 t y t t mit t standardnormalverteilte Zufallsvariable b) Random-Walk mit Drift mit y t y t 1 Driftkomponente t 40

41 Annahme der Verteilung und der Verteilungsparameter Stetige Renditen Normalverteilungsannahme Erwartungswert 8% p.a. Standardabweichung 20% p.a. Stochastische Modell der Wertentwicklung: P r t t exp(ln( P 1 ) ~ t N(0.08,0.2) r t ) 41

42 Wert Einführung in die Simulation Schritte 3, 4 und 5: Pfad 1 Wertentwicklungen Zeit Floor Risikoanlage Portfolio 42

43 Häufigkeit Einführung in die Simulation 6. Ermittlung der Verteilung der Zielgrößen Klasse Häufigkeit 1255, , , , , , , , , , , , , , und größer , Histogramm 2006, , , , , Klasse 5764, und größer Häufigkeit 43

44 Aufgaben: 1. Umsetzung des Beispiels mit Excel und den PopTools 2. Umsetzung des Beispiels mit Matlab 44

45 Mit Excel und den PopTools 45

46 Mit Matlab: Histogramm der Verteilung des Endvermögens bei 1000 Durchläufen

47 2.3. Fallstudie: Simulation zum Cost-Average-Effekt Aufgabe: Modifikation der Musterlösung aus Kap. 1 Erweiterung auf beliebig viele Simulationsdurchläufe Simulation mit 5000 Durchläufen Beantwortung der gestellten Frage (vgl. Kap. 1) 47

Computational Finance

Computational Finance Computational Finance Kapitel 2.1: Einführung in die Simulation Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring 4

Mehr

Computational Finance

Computational Finance Computational Finance Kapitel 2.2: Monte Carlo Simulation Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring 4 / WiWi-Gebäude

Mehr

Computational Finance

Computational Finance Computational Finance : Simulationsbasierte Optionsbewertung Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring 4 / WiWi-Gebäude

Mehr

Investition und Risiko. Finanzwirtschaft I 5. Semester

Investition und Risiko. Finanzwirtschaft I 5. Semester Investition und Risiko Finanzwirtschaft I 5. Semester 1 Gliederung Ziel Korrekturverfahren: Einfache Verfahren der Risikoberücksichtigung Sensitivitätsanalyse Monte Carlo Analyse Investitionsentscheidung

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt. Stock, Nordflügel R. 0-49 (Persike) R. 0- (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de WS 008/009 Fachbereich

Mehr

Numerische Optionsbepreisung durch Monte-Carlo-Simulation und Vergleich mit dem Black-Scholes-Modell

Numerische Optionsbepreisung durch Monte-Carlo-Simulation und Vergleich mit dem Black-Scholes-Modell Numerische Optionsbepreisung durch Monte-Carlo-Simulation und Vergleich mit dem Black-Scholes-Modell Bachelorarbeit zur Erlangung des akademischen Grades Bachelor of Science (B.Sc.) im Studiengang Wirtschaftswissenschaft

Mehr

Monte Carlo Simulation (Grundlagen)

Monte Carlo Simulation (Grundlagen) Der Titel des vorliegenden Beitrages wird bei den meisten Lesern vermutlich Assoziationen mit Roulette oder Black Jack hervorrufen. Allerdings haben das heutige Thema und die Spieltische nur den Namen

Mehr

Materialien zur Vorlesung. Rendite und Risiko

Materialien zur Vorlesung. Rendite und Risiko Materialien zur Vorlesung Rendite und Risiko Burkhard Erke Quellen: Brealey/Myers, Kap. 7 Mai 2006 Lernziele Langfristige Rendite von Finanzanlagen: Empirie Aktienindizes Messung von Durchschnittsrenditen

Mehr

Monte Carlo Simulationen

Monte Carlo Simulationen Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt Stefan Wunsch 31. Mai 2014 INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK (IEKP) KIT Universität des Landes Baden-Württemberg und

Mehr

Portfoliomanagement: Konzepte und Strategien

Portfoliomanagement: Konzepte und Strategien Thorsten Poddig / Ulf Brinkmann / Katharina Seiler Portfoliomanagement: Konzepte und Strategien Theorie und praxisorientierte Anwendungen mit Excel TM 2. überarbeitete Auflage UHLENBRUCH Verlag, Bad Soden/Ts.

Mehr

Monte-Carlo Simulation

Monte-Carlo Simulation Monte-Carlo Simulation Sehr häufig hängen wichtige Ergebnisse von unbekannten Werten wesentlich ab, für die man allerhöchstens statistische Daten hat oder für die man ein Modell der Wahrscheinlichkeitsrechnung

Mehr

Commercial Banking. Kreditportfoliosteuerung

Commercial Banking. Kreditportfoliosteuerung Commercial Banking Kreditportfoliosteuerung Dimensionen des Portfoliorisikos Risikomessung: Was ist Kreditrisiko? Marking to Market Veränderungen des Kreditportfolios: - Rating-Veränderung bzw. Spreadveränderung

Mehr

, dt. $+ f(x) = , - + < x < +, " > 0. " 2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) =

, dt. $+ f(x) = , - + < x < +,  > 0.  2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) = 38 6..7.4 Normalverteilung Die Gauß-Verteilung oder Normal-Verteilung ist eine stetige Verteilung, d.h. ihre Zufallsvariablen können beliebige reelle Zahlenwerte annehmen. Wir definieren sie durch die

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko

Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko Jan Jescow Stoehr Gliederung 1. Einführung / Grundlagen 1.1 Ziel 1.2 CreditRisk+ und CreditMetrics 2. Kreditportfolio 2.1 Konstruktion

Mehr

Statistik. R. Frühwirth. Statistik. fru@hephy.oeaw.ac.at. VO 142.090 http://tinyurl.com/tu142090. Februar 2010. R. Frühwirth Statistik 1/536

Statistik. R. Frühwirth. Statistik. fru@hephy.oeaw.ac.at. VO 142.090 http://tinyurl.com/tu142090. Februar 2010. R. Frühwirth Statistik 1/536 fru@hephy.oeaw.ac.at VO 142.090 http://tinyurl.com/tu142090 Februar 2010 1/536 Übersicht über die Vorlesung Teil 1: Deskriptive Teil 2: Wahrscheinlichkeitsrechnung Teil 3: Zufallsvariable Teil 4: Parameterschätzung

Mehr

Versuchsplanung. Teil 1 Einführung und Grundlagen. Dr. Tobias Kiesling <kiesling@stat.uni-muenchen.de> Einführung in die Versuchsplanung

Versuchsplanung. Teil 1 Einführung und Grundlagen. Dr. Tobias Kiesling <kiesling@stat.uni-muenchen.de> Einführung in die Versuchsplanung Versuchsplanung Teil 1 Einführung und Grundlagen Dr. Tobias Kiesling Inhalt Einführung in die Versuchsplanung Hintergründe Grundlegende Prinzipien und Begriffe Vorgehensweise

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Teil I Beschreibende Statistik 29

Teil I Beschreibende Statistik 29 Vorwort zur 2. Auflage 15 Vorwort 15 Kapitel 0 Einführung 19 0.1 Methoden und Aufgaben der Statistik............................. 20 0.2 Ablauf statistischer Untersuchungen..............................

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

Simulation von Zinsentwicklungen und Bewertung von gängigen Finanzprodukten

Simulation von Zinsentwicklungen und Bewertung von gängigen Finanzprodukten Simulation von Zinsentwicklungen und Bewertung von gängigen Finanzprodukten Andreas Eichler Institut für Finanzmathematik Johannes Kepler Universität Linz 1. Februar 2010 1 / 7 Gliederung 1 Was ist Finanzmathematik

Mehr

Value at Risk Einführung

Value at Risk Einführung Value at Risk Einführung Veranstaltung Risk Management & Computational Finance Dipl.-Ök. Hans-Jörg von Mettenheim mettenheim@iwi.uni-hannover.de Institut für Wirtschaftsinformatik Leibniz Universität Hannover

Mehr

Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt

Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt Stefan Wunsch 31. Mai 014 Inhaltsverzeichnis Inhaltsverzeichnis 1 Was sind Monte Carlo Simulationen? 3 Zufallszahlen 3

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

5. Schließende Statistik. 5.1. Einführung

5. Schließende Statistik. 5.1. Einführung 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

Ausarbeitung des Seminarvortrags zum Thema

Ausarbeitung des Seminarvortrags zum Thema Ausarbeitung des Seminarvortrags zum Thema Anlagepreisbewegung zum Seminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn von Imke Meyer im W9/10 Anlagepreisbewegung

Mehr

Ein möglicher Unterrichtsgang

Ein möglicher Unterrichtsgang Ein möglicher Unterrichtsgang. Wiederholung: Bernoulli Experiment und Binomialverteilung Da der sichere Umgang mit der Binomialverteilung, auch der Umgang mit dem GTR und den Diagrammen, eine notwendige

Mehr

AUTOMATISIERTE HANDELSSYSTEME

AUTOMATISIERTE HANDELSSYSTEME UweGresser Stefan Listing AUTOMATISIERTE HANDELSSYSTEME Erfolgreich investieren mit Gresser K9 FinanzBuch Verlag 1 Einsatz des automatisierten Handelssystems Gresser K9 im Portfoliomanagement Portfoliotheorie

Mehr

Seminar Finanzmathematik

Seminar Finanzmathematik Seminar Finanzmathematik Simulationen zur Black-Scholes Formel von Christian Schmitz Übersicht Zufallszahlen am Computer Optionspreis als Erwartungswert Aktienkurse simulieren Black-Scholes Formel Theorie

Mehr

Modellgestützte Analyse und Optimierung Übungsblatt 4

Modellgestützte Analyse und Optimierung Übungsblatt 4 Fakultät für Informatik Lehrstuhl 4 Peter Buchholz, Jan Kriege Sommersemester 2015 Modellgestützte Analyse und Optimierung Übungsblatt 4 Ausgabe: 27.04.2015, Abgabe: 04.05.2015 (12 Uhr) Aufgabe 4.1: Verteilungsfunktionen

Mehr

Statistischer Mittelwert und Portfoliorendite

Statistischer Mittelwert und Portfoliorendite 8 Wahrscheinlichkeitsrechnung und Statistik Statistischer Mittelwert und Portfoliorendite Durch die immer komplexer werdenden Bündel von Investitionen stellen Investorinnen und Investoren eine Vielzahl

Mehr

Quantilsschätzung als Werkzeug zur VaR-Berechnung

Quantilsschätzung als Werkzeug zur VaR-Berechnung Quantilsschätzung als Werkzeug zur VaR-Berechnung Ralf Lister, Aktuar, lister@actuarial-files.com Zusammenfassung: Zwei Fälle werden betrachtet und die jeweiligen VaR-Werte errechnet. Im ersten Fall wird

Mehr

ZUFALLSZAHLEN. WPG Informatik / Mathematik. BG/BRG Bad Ischl. A. Lindner

ZUFALLSZAHLEN. WPG Informatik / Mathematik. BG/BRG Bad Ischl. A. Lindner ZUFALLSZAHLEN WPG Informatik / Mathematik BG/BRG Bad Ischl A. Lindner 1 BEDEUTUNG VON ZUFALLSZAHLEN Beispiel: Computertip für Lotto in einer Trafik. Wie kann ein (elektronisches) Gerät, das nach einem

Mehr

Genexpression. Expression eines einzelnen Gens. Expressionsmessung. Genexpressionsmessung. Transkription (Vorgang) Genexpression

Genexpression. Expression eines einzelnen Gens. Expressionsmessung. Genexpressionsmessung. Transkription (Vorgang) Genexpression Genexpressionsmessung Genexpression Transkription (Vorgang) Genexpression (quantitativ) Wieviele m-rna Moleküle eines bestimmten Gens sind in den Zellen? Genomische Datenanalyse 8. Kapitel Wie mißt man

Mehr

Seminar Finanzmathematik

Seminar Finanzmathematik Seminar Finanzmathematik Simulationen zur Black-Scholes Formel Seite 1 von 24 Zufallszahlen am Computer 3 Gleichverteilte Zufallszahlen 3 Weitere Verteilungen 3 Quadratische Verteilung 4 Normalverteilung

Mehr

Einführung in die Geostatistik (7) Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam.

Einführung in die Geostatistik (7) Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam. Einführung in die Geostatistik (7) Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam.de 1 Gliederung 7 Weitere Krigingverfahren 7.1 Simple-Kriging 7.2 Indikator-Kriging

Mehr

Kapitalmarkttheorie: Vorbereitungen

Kapitalmarkttheorie: Vorbereitungen 0 Kapitel Kapitalmarkttheorie: Vorbereitungen Kapitelübersicht 1 Renditen 2 Renditen und Halteperioden 3 Rendite-Kennzahlen 4 Durchschnittliche Aktienrenditen und risikofreie Renditen 5 Risiko-Kennzahlen

Mehr

Von den Grundlagen der Monte-Carlo-Methode zur Simulation von Teilchenreaktionen und Teilchendetektoren

Von den Grundlagen der Monte-Carlo-Methode zur Simulation von Teilchenreaktionen und Teilchendetektoren Von den Grundlagen der Monte-Carlo-Methode zur Simulation von Teilchenreaktionen und Teilchendetektoren Michael Unrau HS WS 08/09 14 November 2008 HS 08/09 Monte-Carlo Methoden 14 November 2008 1 / 24

Mehr

Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011

Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011 Kevin Schellkes und Christian Hendricks 29.08.2011 Inhalt Der herkömmliche Ansatz zur Simulation logarithmischer Renditen Ansatz zur Simulation mit Copulas Test und Vergleich der beiden Verfahren Fazit

Mehr

Statistische Auswertung der Daten von Blatt 13

Statistische Auswertung der Daten von Blatt 13 Statistische Auswertung der Daten von Blatt 13 Problemstellung 1 Graphische Darstellung der Daten 1 Diskussion der Normalverteilung 3 Mittelwerte und deren Konfidenzbereiche 3 Signifikanz der Behandlung

Mehr

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Dozent: Volker Krätschmer Fakultät für Mathematik, Universität Duisburg-Essen, WS 2012/13 1. Präsenzübung Aufgabe T 1 Sei (Z 1,...,

Mehr

Fotios Filis. Monte-Carlo-Simulation

Fotios Filis. Monte-Carlo-Simulation Fotios Filis Monte-Carlo-Simulation Monte-Carlo-Methoden??? Spielcasino gibt Namen Monte Carlo war namensgebend für diese Art von Verfahren: Erste Tabellen mit Zufallszahlen wurden durch Roulette-Spiel-Ergebnisse

Mehr

Monte Carlo Simulationen

Monte Carlo Simulationen Monte Carlo Simulationen Zahlreiche Vorgänge in der Natur werden durch stochastische Prozesse bestimmt. Beispiele: Diffusion Spin-Spin-Wechselwirkung (Magnetisierung eines Ferromagneten, Ising-Modell)

Mehr

Die Binomialverteilung

Die Binomialverteilung Fachseminar zur Stochastik Die Binomialverteilung 23.11.2015 Referenten: Carolin Labrzycki und Caroline Kemper Gliederung Einstieg Definition der Binomialverteilung Herleitung der Formel an einem Beispiel

Mehr

Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006

Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006 1 3.34 1.1 Angabe Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006 U sei auf dem Intervall (0, 1) uniform verteilt. Zeigen

Mehr

1 Verteilungen und ihre Darstellung

1 Verteilungen und ihre Darstellung GKC Statistische Grundlagen für die Korpuslinguistik Kapitel 2: Univariate Deskription von Daten 8.11.2004 Univariate (= eindimensionale) Daten bestehen aus Beobachtungen eines einzelnen Merkmals. 1 Verteilungen

Mehr

Portfolio Management

Portfolio Management Kapitel 3 Portfolio Management Josef Leydold c 2006 Mathematische Methoden III Portfolio Management 1 / 45 Lernziele Konzept der modernen Portfolio-Theorie Capital Asset Pricing Model Optimieren eines

Mehr

Umsetzung von DEA in Excel

Umsetzung von DEA in Excel Umsetzung von DEA in Excel Thorsten Poddig Armin Varmaz 30. November 2005 1 Vorbemerkungen In diesem Dokument, das als Begleitmaterial zum in der Zeitschrift,,Controlling, Heft 10, 2005 veröffentlichten

Mehr

3 Monte-Carlo-Simulationen

3 Monte-Carlo-Simulationen 3 Monte-Carlo-Simulationen In diesem Kapitel soll mit der so genannten Monte-Carlo-Methode ein wichtiges Anwendungsgebiet des in Kapitel 2 erarbeiteten Begriffs- und Methodenapparats detaillierter beleuchtet

Mehr

R ist freie Software und kann von der Website. www.r-project.org

R ist freie Software und kann von der Website. www.r-project.org R R ist freie Software und kann von der Website heruntergeladen werden. www.r-project.org Nach dem Herunterladen und der Installation von R kann man R durch Doppelklicken auf das R-Symbol starten. R wird

Mehr

Modellbildung und Simulation

Modellbildung und Simulation Modellbildung und Simulation 5. Vorlesung Wintersemester 2007/2008 Klaus Kasper Value at Risk (VaR) Glossar Portfolio: In der Ökonomie bezeichnet der Begriff Portfolio ein Bündel von Investitionen, das

Mehr

Statistik im Bachelor-Studium der BWL und VWL

Statistik im Bachelor-Studium der BWL und VWL Max C. Wewel Statistik im Bachelor-Studium der BWL und VWL Methoden, Anwendung, Interpretation Mit herausnehmbarer Formelsammlung ein Imprint von Pearson Education München Boston San Francisco Harlow,

Mehr

I-CPPI Premium-Qualität durch die richtige Balance zwischen Renditechancen und Sicherheit

I-CPPI Premium-Qualität durch die richtige Balance zwischen Renditechancen und Sicherheit I-CPPI Premium-Qualität durch die richtige Balance zwischen Renditechancen und Sicherheit *Die DWS/DB Gruppe ist nach verwaltetem Fondsvermögen der größte deutsche Anbieter von Publikumsfonds. Quelle:

Mehr

Korrelationen, Portfoliotheorie von Markowitz, Capital Asset Pricing Model

Korrelationen, Portfoliotheorie von Markowitz, Capital Asset Pricing Model Korrelationen, Portfoliotheorie von Markowitz, Capital Asset Pricing Model Matthias Eltschka 13. November 2007 Inhaltsverzeichnis 1 Einleitung 3 2 Vorbereitung 4 2.1 Diversifikation...........................

Mehr

Datenanalyse mit Python. Dr. Wolfram Schroers <Wolfram.Schroers - at - Field-theory.org>

Datenanalyse mit Python. Dr. Wolfram Schroers <Wolfram.Schroers - at - Field-theory.org> Datenanalyse mit Python Dr. Wolfram Schroers Problem Beobachtungen Modell (Annahmen, Vereinfachungen) Vorhersagen Vergleich Python: Stärken und Schwächen Anwendung:

Mehr

Unsupervised Kernel Regression

Unsupervised Kernel Regression 9. Mai 26 Inhalt Nichtlineare Dimensionsreduktion mittels UKR (Unüberwachte KernRegression, 25) Anknüpfungspunkte Datamining I: PCA + Hauptkurven Benötigte Zutaten Klassische Kernregression Kerndichteschätzung

Mehr

Schätzer (vgl. Kapitel 1): Stichprobenmittel X N. Stichprobenmedian X N

Schätzer (vgl. Kapitel 1): Stichprobenmittel X N. Stichprobenmedian X N Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 8.1 Schätzer für Lage- und Skalenparameter und Verteilungsmodellwahl Lageparameter (l(x + a) = l(x) + a): Erwartungswert EX Median von X

Mehr

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen

Mehr

Statistik II für Betriebswirte Vorlesung 3

Statistik II für Betriebswirte Vorlesung 3 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 3 5. November 2013 Beispiel: Aktiensplit (Aczel & Sounderpandan, Aufg. 14-28) Ein Börsenanalyst

Mehr

Delta-Gamma-Verfahren als Standard- Risikomodell für Lebensversicherer

Delta-Gamma-Verfahren als Standard- Risikomodell für Lebensversicherer Delta-Gamma-Verfahren als Standard- Risikomodell für Lebensversicherer 1 Einleitung Im Rahmen des SST wird teilweise vereinfachend angenommen, dass der Zusammenhang zwischen der Veränderung des risikotragenden

Mehr

Überblick über die Tests

Überblick über die Tests Anhang A Überblick über die Tests A.1 Ein-Stichproben-Tests A.1.1 Tests auf Verteilungsannahmen ˆ Shapiro-Wilk-Test Situation: Test auf Normalverteilung H 0 : X N(µ, σ 2 ) H 1 : X nicht normalverteilt

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Institut für Stochastik Prof. r. N. Bäuerle ipl.-math. S. Urban Lösungsvorschlag 3. Übungsblatt zur Vorlesung Finanzmathematik I Aufgabe as endnutzenoptimale Aktienportfolio bei Exp-Nutzen Wir betrachten

Mehr

Stochastische Eingangsprüfung, 17.05.2008

Stochastische Eingangsprüfung, 17.05.2008 Stochastische Eingangsprüfung, 17.5.8 Wir gehen stets von einem Wahrscheinlichkeitsraum (Ω, A, P) aus. Aufgabe 1 ( Punkte) Sei X : Ω [, ) eine integrierbare Zufallsvariable mit XdP = 1. Sei Q : A R, Q(A)

Mehr

Einführung in die Geostatistik (2) Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam.

Einführung in die Geostatistik (2) Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam. Einführung in die Geostatistik () Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam.de Gliederung Allgemeine Statistik. Deskriptive Statistik. Wahrscheinlichkeitstheorie.3

Mehr

Seminar zur speziellen Betriebswirtschaftslehre Kreditrisiko. Thema 4 Backtesting von Portfoliomodellen für Kreditrisiko

Seminar zur speziellen Betriebswirtschaftslehre Kreditrisiko. Thema 4 Backtesting von Portfoliomodellen für Kreditrisiko Seminar zur speziellen Betriebswirtschaftslehre Kreditrisiko Thema 4 Backtesting von Portfoliomodellen für Kreditrisiko Vortrag von Igor Grinberg, Kai Hartmanshenn und Stephan Pueschel am 30.01.2002 Gliederung

Mehr

Finanz- und Risikomanagement II

Finanz- und Risikomanagement II Finanz- und Risikomanagement II Fakultät Grundlagen März 2009 Fakultät Grundlagen Finanz- und Risikomanagement II Einperiodenmodell Marktmodell Bewertung von Derivaten Binomialbaum Bewertungen im Abhängigkeiten

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Ist Asset-Liability-Modeling (ALM) tot?

Ist Asset-Liability-Modeling (ALM) tot? 1 Ist Asset-Liability-Modeling (ALM) tot? Baring Asset Management Kompass 2004 Schlosshotel Kronberg, 4. Februar 2004 Peter Scherkamp Ist Asset-Liability-Modeling (ALM) tot? Antwort: Ja! (... aber nur

Mehr

Beispiel: Sonntagsfrage. Einführung in die induktive Statistik. Statistische Tests. Statistische Tests

Beispiel: Sonntagsfrage. Einführung in die induktive Statistik. Statistische Tests. Statistische Tests Beispiel: Sonntagsfrage Vier Wochen vor der österreichischen Nationalratswahl 1999 wurde 499 Haushalten die Sonntagsfrage gestellt: Falls nächsten Sonntag Wahlen wären, welche Partei würden Sie wählen?

Mehr

Statistik I für Betriebswirte Vorlesung 11

Statistik I für Betriebswirte Vorlesung 11 Statistik I für Betriebswirte Vorlesung 11 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 22. Juni 2012 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Toleranzberechnung/-Simulation

Toleranzberechnung/-Simulation Summenhäufigkeit zufallsgeneriert Toleranzberechnung/-Simulation Einführung Das Ziel ist es die Auswirkung von vielen Einzeltoleranzen auf ein Funktionsmaß zu ermitteln. Bekanntlich ist das addieren der

Mehr

Finanzwirtschaft. Foliensatz Vertiefungskurs aus ABWL: im Sommersemester 2004. 400 026 / 2 und 7 Univ. Ass. Dr. Matthias G.

Finanzwirtschaft. Foliensatz Vertiefungskurs aus ABWL: im Sommersemester 2004. 400 026 / 2 und 7 Univ. Ass. Dr. Matthias G. Universität Wien Institut für Betriebswirtschaftslehre ABWL IV: Finanzwirtschaft 400 026/2+7 Univ. Ass. Dr. M.G. Schuster Foliensatz Vertiefungskurs aus ABWL: Finanzwirtschaft im Sommersemester 2004 400

Mehr

Statistik im Versicherungs- und Finanzwesen

Statistik im Versicherungs- und Finanzwesen Springer Gabler PLUS Zusatzinformationen zu Medien von Springer Gabler Grimmer Statistik im Versicherungs- und Finanzwesen Eine anwendungsorientierte Einführung 2014 1. Auflage Übungsaufgaben zu Kapitel

Mehr

Risikoaggregation und allokation

Risikoaggregation und allokation 2. Weiterbildungstag der DGVFM Risikoaggregation und allokation Einführung in das Thema Prof. Dr. Claudia Cottin, FH Bielefeld Dr. Stefan Nörtemann, msg life Hannover, 21. Mai 2015 2. Weiterbildungstag

Mehr

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel Ausarbeitung zum Proseminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn zum Thema Simulation des Anlagenpreismodels von Simon Uphus im WS 09/10 Zusammenfassung

Mehr

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Grundlagen der Betriebswirtschaftslehre, Kurs 00091, KE 4, 5 und 6, SS 2008 1 Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Lösungshinweise zur Einsendearbeit

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg : Gliederung 1 Einführung 2 Deskriptive Statistik

Mehr

Beispiele zur UE Wirtschaftsstatistik 1 bei Nagel

Beispiele zur UE Wirtschaftsstatistik 1 bei Nagel Beispiele zur UE Wirtschaftsstatistik 1 bei Nagel 1 Ereignisse und Wahrscheinlichkeiten 1. Ein Würfel wird zweimal geworfen, der Stichprobenraum Ω ist Ihnen nicht neu. Versuchen Sie, den Stichprobenraum

Mehr

Inhaltsverzeichnis: Aufgaben zur Vorlesung Finanz- und Risikomanagement Seite 1 von 35 Prof. Dr. Gabriele Gühring, Fakultät Grundlagen

Inhaltsverzeichnis: Aufgaben zur Vorlesung Finanz- und Risikomanagement Seite 1 von 35 Prof. Dr. Gabriele Gühring, Fakultät Grundlagen Inhaltsverzeichnis: Übungsaufgaben zu Finanz- und Risikomanagement... 3 Aufgabe... 3 Aufgabe... 3 Aufgabe 3... 3 Aufgabe 4... 3 Aufgabe 5... 4 Aufgabe 6... 4 Aufgabe 7... 4 Aufgabe 8... 4 Aufgabe 9...

Mehr

Geometrische Brownsche Bewegung und Brownsche Brücke

Geometrische Brownsche Bewegung und Brownsche Brücke Geometrische Brownsche Bewegung und Brownsche Brücke Korinna Griesing Dozentin: Prof. Dr. Christine Müller 17. April 2012 Korinna Griesing 1 (26) Inhalt Motivation Statistische Methoden Geometrische Brownsche

Mehr

Die Monte-Carlo-Simulation

Die Monte-Carlo-Simulation Die Monte-Carlo-Simulation O.Büker 04.09.2008 O.Büker, PTB Institut Berlin 1 von 26 Inhaltsverzeichnis 1 Zur Person 2 Einführung 3 Geschichte 4 Beispiele 5 Ausblick 6 Referenzen O.Büker, PTB Institut Berlin

Mehr

Commercial Banking. Kreditgeschäft 2. Bedingte marginale und kumulative Ausfallwahrscheinlichkeit

Commercial Banking. Kreditgeschäft 2. Bedingte marginale und kumulative Ausfallwahrscheinlichkeit Commercial Banking Kreditgeschäft Bedingte marginale und kumulative Ausfallwahrscheinlichkeit Bedingte Marginale Ausfallwahrscheinlichkeit (BMAW t ) (Saunders: MMR ) prob (Ausfall in Periode t kein Ausfall

Mehr

Portfoliotheorie ( H. Markowitz/ J. Tobin) : Warum sollte man nicht alle Eier in einen Korb legen? Referat Finanzwirtschaft 6. FS

Portfoliotheorie ( H. Markowitz/ J. Tobin) : Warum sollte man nicht alle Eier in einen Korb legen? Referat Finanzwirtschaft 6. FS Portfoliotheorie ( H. Markowitz/ J. Tobin) : Warum sollte man nicht alle Eier in einen Korb legen? 1 Gliederung: 1.Allgemeines: 1.1 Definition des Begriffs Portfolio 1.1.1 Rendite 1.1.2 Risiko 1.1.3 Liquidität

Mehr

Proseminar BWL, Finance

Proseminar BWL, Finance Proseminar BWL, Finance Kap. 1: Einführung - Informationseffizienzhypothese - Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring

Mehr

Generalthema: Ausgewählte Fragen der Fremdfinanzierung

Generalthema: Ausgewählte Fragen der Fremdfinanzierung Institut für Geld- und Kapitalverkehr der Universität Hamburg Prof. Dr. Hartmut Schmidt Seminar zur Allgemeinen Betriebswirtschaftslehre und Bankbetriebslehre Wintersemester 1999/000 Zuständiger Mitarbeiter:

Mehr

Neue Anforderungen an Risikomessung bei kollektiven Kapitalanlagen in der Schweiz. 31. Mai 2007 Dimitri Senik

Neue Anforderungen an Risikomessung bei kollektiven Kapitalanlagen in der Schweiz. 31. Mai 2007 Dimitri Senik Neue Anforderungen an Risikomessung bei kollektiven Kapitalanlagen in der Schweiz Dimitri Senik Agenda Risikomanagement bei Fonds: neue regulatorische Vorschriften Risikomessung gemäss KKV-EBK Risikomanagement

Mehr

Multivariate Statistik

Multivariate Statistik Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)

Mehr

Einfache statistische Testverfahren

Einfache statistische Testverfahren Einfache statistische Testverfahren Johannes Hain Lehrstuhl für Mathematik VIII (Statistik) 1/29 Hypothesentesten: Allgemeine Situation Im Folgenden wird die statistische Vorgehensweise zur Durchführung

Mehr

Monte-Carlo-Simulation

Monte-Carlo-Simulation Modellierung und Simulation Monte-Carlo-Simulation Universität Hamburg Johannes Schlundt 7. Januar 2013 Monte-Carlo-Simulation Johannes S. 1/31 Inhalt Motivation Geschichtliche Entwicklung Monte-Carlo-Simulation

Mehr

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008 Aufgabe 1 Ihnen liegt

Mehr

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678 Lösungsvorschläge zu Blatt 8 X binomialverteilt mit p = 0. und n = 10: a PX = = 10 q = 1 p = 0.8 0. 0.8 10 = 0, 1,..., 10 PX = PX = 0 + PX = 1 + PX = 10 10 = 0. 0 0.8 10 + 0. 1 0.8 9 + 0 1 10 = 0.8 8 [

Mehr

Simulationsverfahren. Schwerpunkt: Monte Carlo Simulation

Simulationsverfahren. Schwerpunkt: Monte Carlo Simulation Simulationsverfahren Schwerpunkt: Monte Carlo Simulation Agenda 1. Was ist eine Simulation? 2. Verschiedene Arten von Simulation 3. Einsatzgebiete von Simulationen 4. Geschichte der MC Simulation 5. Warum

Mehr

Wozu benötigen Lebensversicherer Reserven? q x -Club am 4. April 2006 in Bonn

Wozu benötigen Lebensversicherer Reserven? q x -Club am 4. April 2006 in Bonn Wozu benötigen Lebensversicherer Reserven? q x -Club am 4. April 2006 in Bonn 1 Überblick Vertikaler und horizonaler Risikoausgleich ALM-Modell der Lebensversicherung 2 Was leistet überhaupt ein Versicherer?

Mehr

$ % + 0 sonst. " p für X =1 $

$ % + 0 sonst.  p für X =1 $ 31 617 Spezielle Verteilungen 6171 Bernoulli Verteilung Wir beschreiben zunächst drei diskrete Verteilungen und beginnen mit einem Zufallsexperiment, indem wir uns für das Eintreffen eines bestimmten Ereignisses

Mehr

Aufgabe 1 10 ECTS. y i x j gering mittel hoch n i Hausrat 200 25 0 225 KFZ 0 10 75 85 Unfall 20 35 90 145 Reiserücktritt 40 5 0 45 n j 260 75 165 500

Aufgabe 1 10 ECTS. y i x j gering mittel hoch n i Hausrat 200 25 0 225 KFZ 0 10 75 85 Unfall 20 35 90 145 Reiserücktritt 40 5 0 45 n j 260 75 165 500 Aufgabe 1 Für die Securance-Versicherung liegen Ihnen die gemeinsamen absoluten Häugkeiten der Merkmale X: Schadenshöhe und Y : Versicherungsart für die letzten 500 gemeldeten Schäden vor. 1. Interpretieren

Mehr

Einführung in die Statistik mit EXCEL und SPSS

Einführung in die Statistik mit EXCEL und SPSS Christine Duller Einführung in die Statistik mit EXCEL und SPSS Ein anwendungsorientiertes Lehr- und Arbeitsbuch Zweite, überarbeitete Auflage Mit 71 Abbildungen und 26 Tabellen Physica-Verlag Ein Unternehmen

Mehr

Quantitative Risk Management

Quantitative Risk Management Quantitative Risk Management Copulas und Abhängigkeit Johannes Paschetag Mathematisches Institut der Universität zu Köln Wintersemester 2009/10 Betreuung: Prof. Schmidli, J. Eisenberg i Inhaltsverzeichnis

Mehr

8. Methoden der klassischen multivariaten Statistik

8. Methoden der klassischen multivariaten Statistik 8. Methoden der klassischen multivariaten Statistik 8.1. Darstellung von Daten Voraussetzungen auch in diesem Kapitel: Grundgesamtheit (Datenraum) Ω von Objekten (Fällen, Instanzen), denen J-Tupel von

Mehr

4. Versicherungsangebot

4. Versicherungsangebot 4. Versicherungsangebot Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie (FS 11) Versicherungsangebot 1 / 13 1. Einleitung 1.1 Hintergrund In einem grossen Teil

Mehr