Biostatistik, Winter 2011/12

Größe: px
Ab Seite anzeigen:

Download "Biostatistik, Winter 2011/12"

Transkript

1 Biostatistik, Winter 2011/12 Vergleich zweier Stichproben, nichtparametrische Tests Prof. Dr. Achim Klenke 11. Vorlesung: /86 Inhalt 1 Tests t-test 2 Vergleich zweier Stichproben Gepaarter t-test Ungepaarter t-test Ungepaarter t-test bei unterschiedlicher Varianz, Welch Test Vergleich: Gepaarter vs ungepaarter t-test 3 Nichtparametrische Lagetests Der Mediantest Wilcoxon Rangsummentest 4 χ 2 -Test χ 2 -Test 2/86

2 Tests t-test, Problemstellung t-test Merkmal (Messgröße) zufällig und normalverteilt. Erwartungswert µ R unbekannt. Varianz σ 2 > 0 unbekannt. Hypothese H 0 = {µ 0 } für ein µ 0 R (Lehrmeinung). Alternative H 1. H 1 : H 1 : H 1 : µ < µ 0 linksseitig, µ > µ 0 rechtsseitig, µ µ 0 beidseitig. Problem Entwickle Test zum Niveau α (0, 1). 3/86 Vergleich mit Gaußtest Gemeinsam Messwerte normalverteilt, µ unbekannt. Stichprobe x 1,..., x n H 0 verwerfen, wenn Teststatistik T (x) groß (rechtsseitige Alternative). Anders bei t-test Varianz σ 2 unbekannt, schätzen durch sn 1 2 = 1 n (x i x) 2 n 1 i=1 Teststatistik T (x) = x µ 0 s n 1 / n. t-quantile t n 1;1 α statt Normal-Quantile z α. Keine Fallzahlplanung möglich, da σ 2 unbekannt.

3 Tests Linksseitige Alternative t-test Verwerfungsregel Alternative H 1 (, µ 0 ). Stichprobe x 1,..., x n.teststatistik T (x) = x µ 0 s n 1 / n. Verwirf H 0 zugunsten von H 1, falls T (x) t n 1;1 α. p-wert p(x) = t n 1 (T (x)) = 1 t n 1 ( T (x)). t n 1 Verteilungsfunktion der t n 1 -Verteilung (Tabelle A.4). 5/86 Tests t-test Rechtsseitige Alternative Verwerfungsregel Alternative H 1 (µ 0, ). Stichprobe x 1,..., x n. Teststatistik T (x) = x µ 0 s n 1 / n. Verwirf H 0 zugunsten von H 1, falls T (x) t n 1;1 α. p-wert p(x) = t n 1 ( T (x)) = 1 t n 1 (T (x)). t n 1 Verteilungsfunktion der t n 1 -Verteilung (Tabelle A.4). 6/86

4 Tests Beidseitige Alternative t-test Verwerfungsregel Alternative H 1 R \ {µ 0 }. Stichprobe x 1,..., x n. Teststatistik T (x) = x µ 0 s n 1 / n. Verwirf H 0 zugunsten von H 1, falls T (x) t n 1;1 α/2. p-wert p(x) = 2(1 t n 1 ( T (x) )). t n 1 Verteilungsfunktion der t n 1 -Verteilung (Tabelle A.4). 7/86 Tests Beispiel: Straußeneier t-test Straußeneier, Gewicht µ unbekannt, normalverteilt. Konservative Hypothese: µ = µ 0 = 110. Alternative H 1 : µ 110. Beidseitiger t-test zum Niveau α = 0.05 mit Stichprobengröße n verwirft H 0, falls T (x) = x 110 s n 1 / 10 t 9;1 α/2 = t 9; = /86

5 Tests t-test Gesammelte Daten Test verwirft H 0, falls x 110 s n 1 / 10 t 9; = i x i Wir berechnen x = 103.9, s n 1 = und T (x) = / 10 = Fazit Wegen T (x) = > verwirft der Test H 0 gegen H 1 zum Niveau 5% 9/86 Straußeneier, p-wert Tests t-test Allgemeine Formel Hier T (x) = Tabelle: p(x) = 2(1 t n 1 ( T (x) )). p-wert ist t 9 (3.9) = p(x) = 2(1 t 9 ( T (x) )) = 2(1 t 9 (3.90)) = = 0.362%. Der beidseitige t-test verwirft zu jedem Niveau α > 0.362%. 10/86

6 Tests t-test Anstieg des Niveaus beim Ersetzen t n 1 durch z Für große n können die Quantile von t n 1 durch die von N 0,1 ersetzt werden. Fehler im Niveau: n Fehler einseitiger Test Fehler zweiseitiger Test /86 Grundproblem Vergleich zweier Stichproben Gepaarter t-test Bei n Individuen soll eine Messgröße x unter zwei Versuchsbedingungen gemessen werden. Unterscheiden sich die Mittelwerte der Messungen? 12/86

7 Modellierung Vergleich zweier Stichproben Gepaarter t-test Unter Versuchsbedingung 1 sind die Messwerte x (1) 1,..., x (1) n unabhängig mit Erwartungswerte µ 1. Unter Versuchsbedingung 2 sind die Messwerte x (2) 1,..., x (2) n unabhängig mit Erwartungswerte µ 2. Annahme (Hoffnung!!!): Die Differenzen x (2) 1 x (1) 1,..., x (2) n x (1) n sind (ungefähr) normalverteilt mit unbekannter Varianz σ 2 (und Erwartungswert µ 2 µ 1 ). Nullhypothese (H 0 ): µ 1 = µ 2. Alternative (H 1 ): µ 1 µ 2 (beidseitig) µ 1 < µ 2 (rechtsseitig) µ 1 > µ 2 (linksseitig). 13/86 Verfahren Vergleich zweier Stichproben Gepaarter t-test Unter der Nullhypothese sind die Differenzen x k = x (2) k x (1) k unabhängig normalverteilt mit unbekannter Varianz σ 2 und Erwartungswert µ = µ 2 µ 1 = 0. Also verfahren wir jetzt wie im bekannten t-test: Teststatistik T (x) = x s n 1 / n, wobei ist und x = 1 n n x k = 1 n k=1 s 2 n 1 = 1 n 1 n k=1 (x (2) k x (1) k ) n (x i x) 2. k=1 14/86

8 Vergleich zweier Stichproben Linksseitige Alternative Gepaarter t-test Verwerfungsregel Nullhypothese (H 0 ): µ 2 = µ 1 Alternative (H 1 ): µ 2 < µ 1. Verwirf H 0 zugunsten von H 1, falls T (x) t n 1;1 α. p-wert p(x) = t n 1 (T (x)) = 1 t n 1 ( T (x)). t n 1 Verteilungsfunktion der t n 1 -Verteilung (Tabelle A.4). 15/86 Vergleich zweier Stichproben Rechtsseitige Alternative Gepaarter t-test Verwerfungsregel Nullhypothese (H 0 ): µ 2 = µ 1 Alternative (H 1 ): µ 2 > µ 1. Verwirf H 0 zugunsten von H 1, falls T (x) t n 1;1 α. p-wert p(x) = t n 1 ( T (x)) = 1 t n 1 (T (x)). t n 1 Verteilungsfunktion der t n 1 -Verteilung (Tabelle A.4). 16/86

9 Vergleich zweier Stichproben Beidseitige Alternative Gepaarter t-test Verwerfungsregel Nullhypothese (H 0 ): µ 2 = µ 1 Alternative (H 1 ): µ 2 µ 1. Verwirf H 0 zugunsten von H 1, falls T (x) t n 1;1 α/2. p-wert p(x) = 2(1 t n 1 ( T (x) )). t n 1 Verteilungsfunktion der t n 1 -Verteilung (Tabelle A.4). 17/86 Vergleich zweier Stichproben Gepaarter t-test Beispiel: Orientierung von Zugvögeln Zugvögel werden einer Beleuchtung mit bestimmter Farbe (grün oder blau) ausgesetzt. Ist das Orientierungsverhalten (magnetischer Kompass) abhängig von der Farbe? 18/86

10 Vergleich zweier Stichproben Gepaarter t-test Beispiel: Orientierung von Zugvögeln Zugvögel werden einer Beleuchtung mit bestimmter Farbe (grün oder blau) ausgesetzt. Ist die Genauigkeit der Orientierung (magnetischer Kompass) abhängig von der Farbe? Nullhypothese: Nein. Alternative: Doch. 19/86 Vergleich zweier Stichproben Gepaarter t-test Beispiel: Orientierung von Zugvögeln Versuchsanordnung Es werden n = 17 Trauerschnäpper in Käfigen einer Beleuchtung mit blauem Licht ausgesetzt (Versuchsbedingung 1) und jeweils in mehreren Durchgängen ihre Flugrichtung ermittelt. Die Flugrichtung wird als Punkt auf einem Kreis dargestellt. Aus allen Punkten auf dem Kreis wird der Schwerpunktvektor ermittelt. Danach der gleiche Versuch mit grünem Licht (Bedingung 2). 20/86

11 Vergleich zweier Stichproben Gepaarter t-test Beispiel: Orientierung von Zugvögeln Bestimmung des Schwerpunktvektors Je variabler die Richtungen, desto kürzer der Pfeil! 21/86 Vergleich zweier Stichproben Gepaarter t-test Beispiel: Orientierung von Zugvögeln Ansatz des Tests Für jeden Vogel i = 1,..., 17 bezeichnen wir mit x (1) i die Länge des Schwerpunktvektors bei blauem Licht und mit x (2) i die Länge des Schwerpunktvektors bei grünem Licht. x i = x (2) i x (1) i. Festlegung des Niveaus: α = 5%. Schwerpunktvektoren sind Mittelwerte vieler zufälliger Beobachtungen, also etwa normalverteilt (zentraler Grenzwertsatz). Also: Gepaarter t-test mit beidseitiger Alternative und Niveau 5%. Verwerfe H 0, falls T (x) > t n 1;1 α/2 = t 16;0.975 = /86

12 Vergleich zweier Stichproben Gepaarter t-test Beispiel: Orientierung von Zugvögeln Daten und Durchführung Differenzen x i : Mittelwert und Streuung: x = s n 1 = x t-statistik T (x) = s n 1 / n = / Also ist T (x) = 2.34 > 2.12 = t 16; p-wert: p(x) = 2(1 t n 1 ( T (x) )) = 2(1 t 16 (2.34)) = 2( ) = /86 Vergleich zweier Stichproben Gepaarter t-test Beispiel: Orientierung von Zugvögeln Fazit Wir können die Hypothese, dass die Farbe des Lichtes keine Rolle für die Orientierungsgenauigkeit der Trauerschnäpper spielt, zum Niveau 5% verwerfen. 24/86

13 Vergleich zweier Stichproben Ungepaarter t-test Beispiel: Backenzähne von Hipparions (c): public domain 25/86 Vergleich zweier Stichproben Ungepaarter t-test Beispiel: Backenzähne von Hipparions Die Daten 77 Backenzähne gefunden in den Chiwondo Beds, Malawi, jetzt in den Sammlungen des Hessischen Landesmuseums, Darmstadt 26/86

14 Vergleich zweier Stichproben Ungepaarter t-test Beispiel: Backenzähne von Hipparions Zuordnung Die Zähne wurden zwei Arten zugeordnet: Hipparion africanum 4 Mio. Jahre, 39 Zähne Hipparion libycum 2,5 Mio. Jahre, 38 Zähne 27/86 Vergleich zweier Stichproben Ungepaarter t-test Beispiel: Backenzähne von Hipparions Geologischer Hintergrund Vor 2,8 Mio. Jahren kühlte sich das Klima weltweit ab. Das Klima in Ostafrika: warm-feucht kühl-trocken Hipparion: Laubfresser Grasfresser 28/86

15 Vergleich zweier Stichproben Ungepaarter t-test Beispiel: Backenzähne von Hipparions Frage Hipparion: Laubfresser Grasfresser andere Nahrung andere Zähne? Messungen: mesiodistale Länge Lässt sich die Nullhypothese, dass die Zähne gleich sind, zum Niveau 1% verwerfen? 29/86 Die Theorie Vergleich zweier Stichproben Ungepaarter t-test Annahme: Wir haben zwei unabhängige Stichproben x 1,1,..., x 1,n1 und x 2,1,..., x 2,n2. Die x 1,i stammen aus einer Normalverteilung mit (unbekanntem) Mittelwert µ 1 und unbekannter Varianz σ 2 > 0, die x 2,i aus einer Normalverteilung mit (unbekanntem) Mittelwert µ 2 und derselben Varianz σ 2. 30/86

16 Die Theorie Vergleich zweier Stichproben Ungepaarter t-test Seien x 1 = 1 n 1 x 1,i, x 2 = 1 n 2 n 1 n 2 i=1 i=1 die jeweiligen Stichprobenmittelwerte, s 1 = 1 n 1 (x 1,i x 1 ) n 1 1 2, i=1 s 2 = 1 n 2 (x 2,i x 2 ) n 2 1 2, i=1 die (korrigierten) Stichprobenstreuungen. x 2,i 31/86 Die Theorie Vergleich zweier Stichproben Ungepaarter t-test Wir möchten die Hypothese H 0 : µ 1 = µ 2 prüfen. Wenn µ 1 = µ 2 gilt, so sollte x 1 = x 2 bis auf Zufallsschwankungen gelten, denn E[x 1 ] = µ 1, E[x 2 ] = µ 2. Was ist die Skala der typischen Schwankungen von x 2 x 1? Var(x 1 x 2 ) = σ 2( 1 n n 2 ) Problem (wie bereits im ein-stichproben-fall): Wir kennen σ 2 nicht. Wir schätzen es im zwei-stichproben-fall durch die gepoolte Stichprobenvarianz s 2 = (n 1 1)s (n 2 1)s 2 2 n 1 + n 2 2 und bilden die Teststatistik T (x) = x 2 x 1. 1 s n n 2 32/86

17 Die Theorie Vergleich zweier Stichproben Ungepaarter t-test Es gilt dann: Wenn µ 1 = µ 2 gilt, so ist T (x) = x 2 x 1. 1 s n n 2 t-verteilt mit n 1 + n 2 2 Freiheitsgraden. 33/86 Die Theorie Linksseitige Alternative Vergleich zweier Stichproben Ungepaarter t-test Verwerfungsregel Nullhypothese (H 0 ): µ 2 = µ 1 Alternative (H 1 ): µ 2 < µ 1. Verwirf H 0 zugunsten von H 1, falls T (x) t n1 +n 2 2;1 α. p-wert p(x) = t n1 +n 2 2(T (x)) = 1 t n1 +n 2 2( T (x)). t n1 +n 2 2 Verteilungsfunktion der t n1 +n 2 2-Verteilung (Tabelle A.4). 34/86

18 Die Theorie Rechtsseitige Alternative Vergleich zweier Stichproben Ungepaarter t-test Verwerfungsregel Nullhypothese (H 0 ): µ 2 = µ 1 Alternative (H 1 ): µ 2 > µ 1. Verwirf H 0 zugunsten von H 1, falls T (x) t n1 +n 2 2;1 α. p-wert p(x) = t n1 +n 2 2( T (x)) = 1 t n1 +n 2 2(T (x)). t n1 +n 2 2 Verteilungsfunktion der t n1 +n 2 2-Verteilung (Tabelle A.4). 35/86 Die Theorie Beidseitige Alternative Vergleich zweier Stichproben Ungepaarter t-test Verwerfungsregel Nullhypothese (H 0 ): µ 2 = µ 1 Alternative (H 1 ): µ 2 µ 1. Verwirf H 0 zugunsten von H 1, falls T (x) t n1 +n 2 2;1 α/2. p-wert p(x) = 2(1 t n1 +n 2 2( T (x) )). t n1 +n 2 2 Verteilungsfunktion der t n1 +n 2 2-Verteilung (Tabelle A.4). 36/86

19 Vergleich zweier Stichproben Ungepaarter t-test Beispiel: Backenzähne von Hipparions Die Daten H. libycum H. africanum x A = 25.9, s A = 2.2 x A s A x A + s A x L = 28.4, s L = 4.3 x L s L x L + s L mesiodistale Länge [mm] 37/86 Vergleich zweier Stichproben Ungepaarter t-test Beispiel: Backenzähne von Hipparions Die Daten n A = 39, x A = 25.9, s A = 2.2 n L = 38, x L = 28.4, s L = 4.3 Gepoolte Stichprobenstreuung (n A 1)sA 2 s = + (n L 1)sL 2 n A + n L = 2 = Es folgt T (x) = x L x A = 1 s n A /39 + 1/38 = n L 38/86

20 Vergleich zweier Stichproben Ungepaarter t-test Beispiel: Backenzähne von Hipparions Durchführung des Tests Nullhypothese µ 1 = µ 2, Alternative µ 1 µ 2 (beidseitig). Test verwirft zum Niveau α = 1%, wenn T (x) > t na +n L 2;1 α/2 = t 75; Tatsächliche Daten: T (x) = 3.22 > p-wert p(x) = 2(1 t na +n L 2( T (x) )) = 2(1 t 75 (3.22)) = 2( ) = Diesen p-wert sollte man nicht glauben, weil die Modellanahmen zu optimistisch waren. 39/86 Vergleich zweier Stichproben Ungepaarter t-test Beispiel: Backenzähne von Hipparions Fazit Der ungepaarte Zweistichproben-t-Test verwirft die Nullhypothese, dass die mesiodistale Länge der Backenzähne bei Hipparion africanum und Hipparion libycum gleich Erwartungswert hätten, zu Gunsten der zweiseitigen Alternative zum Niveau 1%. 40/86

21 Vergleich zweier Stichproben Die Theorie (Welch Test) Ungepaarter t-test bei unterschiedlicher Varianz, Welch Test Annahme: Wir haben zwei unabhängige Stichproben x 1,1,..., x 1,n1 und x 2,1,..., x 2,n2. Die x 1,i stammen aus einer Normalverteilung mit (unbekanntem) Mittelwert µ 1 und unbekannter Varianz σ 2 1 > 0, die x 2,i aus einer Normalverteilung mit (unbekanntem) Mittelwert µ 2 und möglicherweise anderer Varianz σ /86 Vergleich zweier Stichproben Die Theorie (Welch Test) Ungepaarter t-test bei unterschiedlicher Varianz, Welch Test Seien s 1 = 1 n 1 (x 1,i x 1 ) n 1 1 2, i=1 s 2 = 1 n 2 (x 2,i x 2 ) n 2 1 2, i=1 die (korrigierten) Stichprobenstreuungen. 42/86

22 Vergleich zweier Stichproben Die Theorie (Welch Test) Ungepaarter t-test bei unterschiedlicher Varianz, Welch Test Unter der Hypothese µ 1 = µ 2 ist die Teststatistik T (x) = x 2 x 1 s 2 1 n 1 + s2 2 n 2 ungefähr t-verteilt mit f Freiheitsgraden, wobei f aus den Daten geschätzt wird: ( ) s n 1 + s2 2 n 2 f =. s 4 1 n 2 1 (n 1 1) + s4 2 n 2 2 (n 2 1) 43/86 Vergleich zweier Stichproben Ungepaarter t-test bei unterschiedlicher Varianz, Welch Test Die Theorie (Welch Test) Linksseitige Alternative Verwerfungsregel Nullhypothese (H 0 ): µ 2 = µ 1 Alternative (H 1 ): µ 2 < µ 1. Verwirf H 0 zugunsten von H 1, falls T (x) t f ;1 α. p-wert p(x) = t f (T (x)) = 1 t f ( T (x)). t f Verteilungsfunktion der t f -Verteilung (Tabelle A.4). 44/86

23 Vergleich zweier Stichproben Ungepaarter t-test bei unterschiedlicher Varianz, Welch Test Die Theorie (Welch Test) Rechtsseitige Alternative Verwerfungsregel Nullhypothese (H 0 ): µ 2 = µ 1 Alternative (H 1 ): µ 2 > µ 1. Verwirf H 0 zugunsten von H 1, falls T (x) t f ;1 α. p-wert p(x) = t f ( T (x)) = 1 t f (T (x)). t f Verteilungsfunktion der t f -Verteilung (Tabelle A.4). 45/86 Vergleich zweier Stichproben Ungepaarter t-test bei unterschiedlicher Varianz, Welch Test Die Theorie (Welch Test) Beidseitige Alternative Verwerfungsregel Nullhypothese (H 0 ): µ 2 = µ 1 Alternative (H 1 ): µ 2 µ 1. Verwirf H 0 zugunsten von H 1, falls T (x) t f ;1 α/2. p-wert p(x) = 2(1 t f ( T (x) )). t f Verteilungsfunktion der t f -Verteilung (Tabelle A.4). 46/86

24 Vergleich zweier Stichproben Ungepaarter t-test bei unterschiedlicher Varianz, Welch Test Beispiel: Versuch zur Keimhemmung Versuchsaufbau im Pflanzenphysiologischen Praktikum In vier Petrischalen werden jeweils exakt 100 Samen Gartenkresse ausgebracht. Gewässert wird mit (A) Aqua dest. (zur Kontrolle) (B) ABS Lösung (C) Saccharose-Lösung (D) Saccharose-ABS-Lösung Nach zwei Tagen wird gezählt, wie viele Samen gekeimt haben. 47/86 Vergleich zweier Stichproben Ungepaarter t-test bei unterschiedlicher Varianz, Welch Test Beispiel: Versuch zur Keimhemmung Im Praktikum wird jeder Versuch dreimal durchgeführt. Versuch A B C D Keime Schale Keime Schale Keime Schale A B C D 48/86

25 Vergleich zweier Stichproben Ungepaarter t-test bei unterschiedlicher Varianz, Welch Test Beispiel: Versuch zur Keimhemmung A B C D (A) Aqua dest. (B) ABS (C) Saccharose (D) Saccharose- ABS Fragen Ist die Hemmung bei B schon vorhanden? Hemmt Saccharose (C)? Hemmt Saccharose mit ABS (D) stärker als Saccharose? Ist die Wirkung von Saccharose und ABS gleich? 49/86 Vergleich zweier Stichproben Ungepaarter t-test bei unterschiedlicher Varianz, Welch Test Beispiel: Versuch zur Keimhemmung Vergleich C gegen D Vermutung: Hemmung bei ABS+Saccharose (D) stärker als bei Saccharose (C). Test zum Niveau α = 1% soll Klarheit schaffen. Nullhypothese: (D) genauso wie (C) Alternative: (D) hemmt stärker. 50/86

26 Vergleich zweier Stichproben Ungepaarter t-test bei unterschiedlicher Varianz, Welch Test Beispiel: Versuch zur Keimhemmung Vergleich C gegen D, Welch Test Daten x C,1 = 45, x C,2 = 44, x C,3 = 45 x D,1 = 25, x D,2 = 27, x D,3 = 29 Idee: Daten etwa normalverteilt mit unbekannten Mittelwerten µ C und µ D und unbekannten Varianzen σ 2 C, σ2 D. Nullhypothese (H 0 ) µ C = µ D Alternative (H 1 ) µ C > µ D. Linksseitiger Zwei-Stichproben t-test mit unterschiedlichen Varianzen (Welch Test). 51/86 Vergleich zweier Stichproben Ungepaarter t-test bei unterschiedlicher Varianz, Welch Test Beispiel: Versuch zur Keimhemmung Vergleich C gegen D, Welch Test x C,1 = 45, x C,2 = 44, x C,3 = 45 x D,1 = 25, x D,2 = 27, x D,3 = 29 x C = 44.67, x D = 27. s C = 1 3 (x C,i x C ) 2 2 i=1 1 = 2 (( )2 + ( ) 2 + ( ) 2 ) = /86

27 Vergleich zweier Stichproben Ungepaarter t-test bei unterschiedlicher Varianz, Welch Test Beispiel: Versuch zur Keimhemmung Vergleich C gegen D, Welch Test x C,1 = 45, x C,2 = 44, x C,3 = 45 x D,1 = 25, x D,2 = 27, x D,3 = 29 x C = 44.67, x D = 27. s D = 1 3 (x D,i x D ) 2 2 i=1 1 = 2 ((25 27)2 + (27 27) 2 + (29 27) 2 ) = 2. 53/86 Vergleich zweier Stichproben Ungepaarter t-test bei unterschiedlicher Varianz, Welch Test Beispiel: Versuch zur Keimhemmung Vergleich C gegen D, Welch Test t-statistik T (x) = Freiheitsgrade f = x C = 44.67, x D = 27. s C = , s D = 2. x D x C = + s2 D nd s 2 C n C ( s 2 C n C + s2 D nd ) 2 sc 4 + s4 nc 2 D (n C 1) nd 2 (n D 1) = =... = /86

28 Vergleich zweier Stichproben Ungepaarter t-test bei unterschiedlicher Varianz, Welch Test Beispiel: Versuch zur Keimhemmung Vergleich C gegen D, Welch Test t-statistik Freiheitsgrade T (x) = f = Der linksseitige Test zum Niveau α = 0.01 verwirft H 0, falls T (x) < t f,1 α = t 2.331; (Alternativ: Tabellenwert t 2;0.99 = 6.96) Wegen T (x) = 14.7 < 5.77 verwirft der Test zum Niveau 1% die Nullhypothese. p-wert p(x) = t ( 14.7) = Alternativ: Tabellenwert p(x) t 2 ( 14.7) = /86 Vergleich zweier Stichproben Ungepaarter t-test bei unterschiedlicher Varianz, Welch Test Beispiel: Versuch zur Keimhemmung Vergleich C gegen D, Ergebnis Mit Hilfe eines ungepaarten einseitigen t-tests bei unterschiedlichen Varianzen (Welch Test) wird die Nullhypothese (Saccharose hemmt die Keimung gleich gut wie ein Lösung mit Saccharose und ABS) auf dem Niveau 1% gegen die Alternative (S hemmt nicht so gut wie S+ABS) verworfen. Der p-wert beträgt p (bzw. p = , wenn man exakt mit dem Computer rechnet, statt den p-wert nach der Tabelle der t 2 -Verteilung anzunähern). 56/86

29 Vergleich zweier Stichproben Ungepaarter t-test bei unterschiedlicher Varianz, Welch Test Beispiel: Versuch zur Keimhemmung Vergleich C gegen B Hemmt Saccharose (C) genauso gut wie ABS (B)? Zweiseitiger ungepaarter t-test bei unterschiedlichen Varianzen (Welch Test) zum Niveau α = 1%. 57/86 Vergleich zweier Stichproben Ungepaarter t-test bei unterschiedlicher Varianz, Welch Test Beispiel: Versuch zur Keimhemmung Vergleich C gegen B, Daten t-statistik Freiheitsgrade x C = 44.67, x B = s C = , s B = T (x) = x C x B s 2 C Beidseitiger Test verwirft, falls n C + s2 B n B f = = T (x) > t 2.032;0.995 t 2;0.995 = Wegen T (x) = 10.1 verwirft der Test zum Niveau 1%. p-wert 2(1 t (10.1)) 2(1 t 2 (10.1)) = /86

30 Vergleich zweier Stichproben Ungepaarter t-test bei unterschiedlicher Varianz, Welch Test Beispiel: Versuch zur Keimhemmung Vergleich C gegen B, Ergebnis Der zweiseitige ungepaarte t-test bei unterschiedlicher Varianz (Welch Test) verwirft die Nullhypothese (Saccharose hemmt Keimung gleich gut wie ABS) gegen die beidseitige Alternative zum Niveau 1%. Der p-wert ist etwa /86 Vergleich zweier Stichproben Vergleich: Gepaarter vs ungepaarter t-test Vergleich: Gepaarter vs ungepaarter t-test Wenn die Stichprobenlänge unterschiedlich ist, ergibt gepaart keinen Sinn. Wenn die Stichprobenlänge gleich ist: Sind die Stichproben unabhängig voneinander? Falls ja, dann ungepaart testen. Ein gepaarter Test würde sinnlose Abhängigkeiten unterstellen und hätte auch eine geringere Schärfe. Sind die Stichproben voneinander abhängig? (z.b. Messungen von denselben Individuen bzw. Objekten) Falls ja, dann ist ein gepaarter Test sinnvoll. Bei starker Abhängigkeitsstruktur hat der gepaarte t-test größere Schärfe (da der Test von Variabilität zwischen den Individuen bereinigt ist) 60/86

31 Nichtparametrische Lagetests Der Mediantest Beispiel: Medikamententest Bei der Behandlung mit dem etablierten Herzmedikament XY lebt die Hälfte der Patienten noch acht Jahre oder länger. Bei einem neuen Medikament wurde in einer Langzeitstudie an 20 Patienten festgestellt, wie lange die Patienten noch leben: Patient Nr Lebensdauer x i Patient Nr Lebensdauer x i Ist das neue Medikament besser als das etablierte? 61/86 Nichtparametrische Lagetests Der Mediantest Beispiel: Medikamententest Nullhypothese H 0 : Alternative H 1 : Beide gleich gut. Neues Medikament besser. Formal: Nullhypothese H 0 : Lebensdauer des neuen Medikaments hat einen Median von höchstens 8 Jahren. Alternative H 1 : Lebensdauer des neuen Medikaments hat einen Median von mehr als 8 Jahren. 62/86

32 Nichtparametrische Lagetests Der Mediantest Beispiel: Medikamenentest Sei T (x) die Anzahl der Werte x i mit x i 8. Unter H 0 ist für jedes i: Also ist T (x) b 20,0.5. P[x i 8] = 1 2. Gilt H 1, so ist T (x) b 20,p mit p > 0.5. Große Werte von T (x) stützen H 1. Der p-wert ist p = 20 k=t (x) b 20,0.5 (k). 63/86 Nichtparametrische Lagetests Der Mediantest Beispiel: Medikamententest Patient Nr Lebensdauer x i Patient Nr Lebensdauer x i Wir haben also und p = 20 k=11 T (x) = 11 b 20,0.5 (k) = Die Ergebnisse geben also keinen Hinweis darauf, dass das neue Medikament besser als das etablierte wäre. 64/86

33 Nichtparametrische Lagetests Theorie: Mediantest Formale Problemstellung Der Mediantest Sei m P der bekannte Median einer gewissen Verteilung P (altes Medikament) und m Q der Median der Verteilung Q (neues Medikament). Daten: x 1,..., x n gezogen nach der Verteilung Q. T (x) =Anzahl der Werte x i mit x i > m P. Nullhypothese H 0 : Alternative H 1 : m P = m Q m P > m Q (linksseitig) m P < m Q (rechtsseitig) m P m Q (beidseitig). 65/86 Nichtparametrische Lagetests Theorie: Mediantest Linksseitige Alternative m P > m Q Der Mediantest p-wert ( ) T (x) n 1 T (x) 2 p = b n,0.5 (k) 1 Φ. n/4 k=0 Verwerfungsregel H 0 wird zum Niveau α verworfen, falls p α. 66/86

34 Nichtparametrische Lagetests Theorie: Mediantest Rechtsseitige Alternative: m P < m Q Der Mediantest p-wert p = n k=t (x) b n,0.5 (k) 1 Φ ( ) T (x) n+1 2. n/4 Verwerfungsregel H 0 wird zum Niveau α verworfen, falls p α. 67/86 Nichtparametrische Lagetests Theorie: Mediantest Beidseitige Alternative: m P m Q Der Mediantest p-wert und T (x) p = 2 b n,0.5 (k) falls T (x) < n/2 p = 2 k=0 n k=t (x) b n,0.5 (k) falls T (x) > n/2. [ ( )] T (x) n In beiden Fällen gilt p 2 1 Φ. n/4 Verwerfungsregel H 0 wird zum Niveau α verworfen, falls p α. 68/86

35 Nichtparametrische Lagetests Wilcoxon Rangsummentest Beispiel: Hipparion Reloaded Niemand sagt Ihnen, dass die Größen der Backenzähne normalverteilt sind. Was kann man ohne diese Annahme noch rechnen? 69/86 Rangsummen Nichtparametrische Lagetests Wilcoxon Rangsummentest Gegeben zwei Stichproben x 1, x 2,..., x m und y 1, y 2,..., y n. Setze U i = Rang von x i in den y 1,..., y n = Anzahl der j mit y j < x i m und definiere die Rangsumme U(x, y) = U i. Beispiel mit m = 4 und n = 7 x i i=1 y j Wert Rang U i Rangsumme U(x, y) = = 6. 70/86

36 Rangsummen Nichtparametrische Lagetests Wilcoxon Rangsummentest Idee Entstammen die x i und y j der gleichen Verteilung (H 0 ), so sollte U i n/2 sein und U mn 2. U(x, y) groß zeigt an, dass (x i ) tendenziell größer ist als (y j ). U(x, y) klein zeigt an, dass (x i ) tendenziell kleiner ist als (y j ). 71/86 Rangsummen Nichtparametrische Lagetests Wilcoxon Rangsummentest Die Verteilung U m,n von U(x, y) unter H 0 ist tabelliert und heißt Wilcoxon-U-Verteilung mit Parametern m und n. Für große m, n ist U(x, y) mn 2 approx. N 0,1. mn(m+n+1) 12 Also können wir das Quantil u m,n;α durch das Quantil z α approximativ ausrechnen: u m,n;α mn 2 + mn(m + n + 1) 12 z α. 72/86

37 Nichtparametrische Lagetests Wilcoxon Rangsummentest Wilcoxon Rangsummentest Die Theorie Formale Problemstellung Die Werte der Stichprobe x 1,..., x m sind unabhängig und nach der Verteilung P gezogen. Die Werte der Stichprobe y 1,..., y n sind unabhängig und nach der Verteilung Q gezogen. Nullhypothese H 0 : Alternative H 1 : P = Q P tendenziell größer als Q (linksseitig) P tendenziell kleiner als Q (rechtsseitig) P Q (beidseitig) 73/86 Nichtparametrische Lagetests Wilcoxon Rangsummentest Wilcoxon Rangsummentest Linksseitige Alternative: P größer als Q Verwerfungsregel Verwirf H 0 zugunsten von H 1, falls U(x, y) > u m,n;1 α mn 2 + mn(m + n + 1) 12 z 1 α. p-wert mn U(x, y) p 1 Φ 2. mn(m+n+1) 12 74/86

38 Nichtparametrische Lagetests Wilcoxon Rangsummentest Wilcoxon Rangsummentest Rechtsseitige Alternative: P kleiner als Q Verwerfungsregel Verwirf H 0 zugunsten von H 1, falls U(x, y) < u m,n;α mn 2 + mn(m + n + 1) 12 z α. p-wert p 1 Φ U(x, y) mn 2. mn(m+n+1) 12 75/86 Nichtparametrische Lagetests Wilcoxon Rangsummentest Wilcoxon Rangsummentest Beidseitige Alternative: P Q Verwerfungsregel Verwirf H 0 zugunsten von H 1, falls U(x, y) > u m,n;1 α/2 mn 2 + mn(m + n + 1) 12 z 1 α/2. oder U(x, y) < u m,n;α/2 mn mn(m + n + 1) 2 + z α/2. 12 p-wert p 2 1 Φ U(x, y) mn 2 mn(m+n+1) /86

39 Nichtparametrische Lagetests Wilcoxon Rangsummentest Beispiel: Hipparion Reloaded Die Daten Libycum Africanum /86 Nichtparametrische Lagetests Wilcoxon Rangsummentest Beispiel: Hipparion Reloaded Die Daten, U-Statistik Libycum: m = 38 Zähne, Africanum: n = 39 Zähne. Durch mühseliges Ausrechnen von Hand (oder mit dem Computer) erhält man U(Lib, Afr) = 990. Wir verwerfen die Nullhypothese Libycum=Africanum zum Niveau 1% zugunsten der beidseitigen Alternative, falls U > u 38,39;0.995 = 992 oder U < u 38,39;0.005 = 490 (Tabelle: A.8). Beides ist nicht der Fall, also wird die Nullhypothese zum Niveau 1% nicht verworfen. 78/86

40 Nichtparametrische Lagetests Wilcoxon Rangsummentest Beispiel: Hipparion Reloaded Die Daten, U-Statistik m = 38, n = 39, U(Lib, Afr) = 990. p-wert: p 2 1 Φ [ = 2 1 Φ U(Lib, Afr) mn 2 mn(m+n+1) 12 ( )] = 2(1 Φ(2.537)) 2( ) = /86 Nichtparametrische Lagetests Wilcoxon Rangsummentest Beispiel: Hipparion Reloaded Fazit Der zweiseitige Wilcoxon Rangsummentest verwirft die Hypothese, dass Hipparion Africanum und Libycum unterschiedliche mesiodistale Zahnlänge haben zum Niveau 1% nicht. Der p-wert beträgt p = /86

41 χ 2 -Test Das Grundproblem χ 2 -Test χ 2 -Test Wir beobachten ein Merkmal in endlich vielen Ausprägungen i = 1,..., k mit Häufigkeiten x 1,..., x k. Gesamtzahl n = x x k. Nach einer Theorie sollte der Anteil von Typ i gleich p i sein, also die absolute Häufigkeit etwa E i = p i n. Es soll ein Test zum Niveau α entwickelt werden, der diese Theorie prüft. 81/86 χ 2 -Test Teststatistik χ 2 -Test χ 2 -Test Beobachtungen x 1,..., x k. Gesamtzahl n = x x k. Erwartete Häufigkeiten E i = p i n. Gewichtete quadratische Abweichungen als Teststatistik T (x) = k i=1 (x i E i ) 2 E i. Ist χ 2 (x) zu groß, so wird die Hypothese verworfen. 82/86

42 χ 2 -Test Verwerfungsregel χ 2 -Test χ 2 -Test Unter H 0 ist T (x) chiquadrat-verteilt (χ 2 f ) mit f = k 1 Freiheitsgraden. Ist T (x) > χ 2 f ;1 α, so wird die Nullhypothese zum Niveau α verworfen. Der p-wert ist p = 1 χ 2 f (T (x)). 83/86 χ 2 -Test χ 2 -Test Beispiel: Hardy-Weinberg Gesetz Fragestellung In einer sehr großen Population tritt an einem Locus das Gen A mit Wahrscheinlichkeit p = 0.53 auf, das Gen a mit Wahrscheinlichkeit 1 p = Nach dem Hardy-Weinberg Gesetz sind die Anteile AA Aa aa p 2 = p(1 p) = (1 p) 2 = In einer Teilpopulation der Größe n soll die Gültigkeit des Hardy-Weinberg Gesetzes geprüft werden. 84/86

43 χ 2 -Test χ 2 -Test Beispiel: Hardy-Weinberg Gesetz Der Test Die Hypothese HW Gesetz gilt soll zum Niveau 1% geprüft werden. Es werden die Daten x AA, x Aa und x aa mit Gesamtumfang n = erhoben. Teststatistik T (x) = (x AA 2809 n) (x Aa 4982) (x aa 2209) Der Test verwirft, falls T (x) > χ 2;0.99 = 9.21 (Tabelle A.5). 85/86 χ 2 -Test χ 2 -Test Beispiel: Hardy-Weinberg Gesetz Der Test, Daten und Durchführung Teststatistik AA Aa aa ( n)2 T (x) = = ( )2 ( ) Der Test verwirft die Nullhypothese zum Niveau 1%, weil T (x) = > χ 2;0.99 = p-wert p(x) = 1 χ 2 2(33.187) = /86

Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test

Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test 1/29 Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test (t-test für ungepaarte Stichproben) Matthias Birkner http://www.staff.uni-mainz.de/birkner/biostatistik1516/ 11.12.2015 2/29 Inhalt 1 t-test

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen 5. Der zwei-stichproben-t-test. und der Wilcoxon-Test

Wahrscheinlichkeitsrechnung und Statistik für Biologen 5. Der zwei-stichproben-t-test. und der Wilcoxon-Test Wahrscheinlichkeitsrechnung und Statistik für Biologen 5. Der zwei-stichproben-t-test (t-test für ungepaarte Stichproben) und der Wilcoxon-Test Dirk Metzler 22. Mai 2015 Inhaltsverzeichnis 1 Wiederholung:

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 / Übungsaufgaben Prof. Dr. Achim Klenke http://www.aklenke.de 13. Vorlesung: 10.02.2012 1/51 Aufgabe 1 Aufgabenstellung Übungsaufgaben Ein Pharmakonzern möchte ein neues Schlankheitsmedikament

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Einfache statistische Testverfahren

Einfache statistische Testverfahren Einfache statistische Testverfahren Johannes Hain Lehrstuhl für Mathematik VIII (Statistik) 1/29 Hypothesentesten: Allgemeine Situation Im Folgenden wird die statistische Vorgehensweise zur Durchführung

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

12. Vergleich mehrerer Stichproben

12. Vergleich mehrerer Stichproben 12. Vergleich mehrerer Stichproben Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Häufig wollen wir verschiedene Populationen, Verfahren, usw. miteinander vergleichen. Beipiel: Vergleich

Mehr

Eine Einführung in R: Statistische Tests

Eine Einführung in R: Statistische Tests Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws12/r-kurs/

Mehr

Statistik II für Betriebswirte Vorlesung 2

Statistik II für Betriebswirte Vorlesung 2 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 2 21. Oktober 2014 Verbundene Stichproben Liegen zwei Stichproben vor, deren Werte einander

Mehr

Business Value Launch 2006

Business Value Launch 2006 Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung

Mehr

Statistik II für Betriebswirte Vorlesung 3

Statistik II für Betriebswirte Vorlesung 3 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 3 5. November 2013 Beispiel: Aktiensplit (Aczel & Sounderpandan, Aufg. 14-28) Ein Börsenanalyst

Mehr

Motivation. Wilcoxon-Rangsummentest oder Mann-Whitney U-Test. Wilcoxon Rangsummen-Test Voraussetzungen. Bemerkungen

Motivation. Wilcoxon-Rangsummentest oder Mann-Whitney U-Test. Wilcoxon Rangsummen-Test Voraussetzungen. Bemerkungen Universität Karlsruhe (TH) Forschungsuniversität gegründet 825 Wilcoxon-Rangsummentest oder Mann-Whitney U-Test Motivation In Experimenten ist die Datenmenge oft klein Daten sind nicht normalverteilt Dann

Mehr

6. METRISCHE UND KATEGORIALE MERKMALE

6. METRISCHE UND KATEGORIALE MERKMALE 6. METRISCHE UND KATEGORIALE MERKMALE wenn an einer Beobachtungseinheit eine (oder mehrere) metrische und eine (oder mehrere) kategoriale Variable(n) erhoben wurden Beispiel: Haushaltsarbeit von Teenagern

Mehr

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel 16.11.01 MP1 - Grundlagen quantitativer Sozialforschung - (4) Datenanalyse 1 Gliederung Datenanalyse (inferenzstatistisch)

Mehr

9. StatistischeTests. 9.1 Konzeption

9. StatistischeTests. 9.1 Konzeption 9. StatistischeTests 9.1 Konzeption Statistische Tests dienen zur Überprüfung von Hypothesen über einen Parameter der Grundgesamtheit (bei einem Ein-Stichproben-Test) oder über die Verteilung einer Zufallsvariablen

Mehr

Grundlagen von Versuchsmethodik und Datenanalyse

Grundlagen von Versuchsmethodik und Datenanalyse Grundlagen von Versuchsmethodik und Datenanalyse Der Anfang: Hypothesen über Ursache-Wirkungs-Zusammenhänge Ursache Wirkung Koffein verbessert Kurzzeitgedächtnis Gewaltfilme führen zu aggressivem Verhalten

Mehr

Beispiel: Sonntagsfrage. Einführung in die induktive Statistik. Statistische Tests. Statistische Tests

Beispiel: Sonntagsfrage. Einführung in die induktive Statistik. Statistische Tests. Statistische Tests Beispiel: Sonntagsfrage Vier Wochen vor der österreichischen Nationalratswahl 1999 wurde 499 Haushalten die Sonntagsfrage gestellt: Falls nächsten Sonntag Wahlen wären, welche Partei würden Sie wählen?

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

Melanie Kaspar, Prof. Dr. B. Grabowski 1

Melanie Kaspar, Prof. Dr. B. Grabowski 1 7. Hypothesentests Ausgangssituation: Man muss sich zwischen 2 Möglichkeiten (=Hypothesen) entscheiden. Diese Entscheidung soll mit Hilfe von Beobachtungen ( Stichprobe ) getroffen werden. Die Hypothesen

Mehr

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.) ue biostatistik: nichtparametrische testverfahren / ergänzung 1/6 h. Lettner / physik Statistische Testverfahren Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Mehr

Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10

Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10 Analytische Statistik I Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10 Testen Anpassungstests (goodness of fit) Weicht eine gegebene Verteilung signifikant von einer bekannten

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Varianzanalyse Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr. Wolfgang

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Überblick über die Verfahren für Ordinaldaten

Überblick über die Verfahren für Ordinaldaten Verfahren zur Analyse ordinalskalierten Daten 1 Überblick über die Verfahren für Ordinaldaten Unterschiede bei unabhängigen Stichproben Test U Test nach Mann & Whitney H Test nach Kruskal & Wallis parametrische

Mehr

Einleitung 19. Teil I Datenanalyse und Modellbildung Grundlagen 25

Einleitung 19. Teil I Datenanalyse und Modellbildung Grundlagen 25 Inhaltsverzeichnis Einleitung 19 Zu diesem Buch 19 Konventionen in diesem Buch 20 Was Sie nicht lesen müssen 21 Falsche Voraussetzungen 21 Wie dieses Buch aufgebaut ist 21 Teil I: Datenanalyse und Grundlagen

Mehr

Welch-Test. Welch-Test

Welch-Test. Welch-Test Welch-Test Welch-Test Test auf Lageunterschied zweier normalverteilter Grundgesamtheiten mit unbekannten Varianzen durch Vergleich der Mittelwerte zweier unabhängiger Zufallsstichproben. Beispiel Im Labor

Mehr

Auswertung und Lösung

Auswertung und Lösung Dieses Quiz soll Ihnen helfen, Kapitel 4.7 und 4.8 besser zu verstehen. Auswertung und Lösung Abgaben: 71 / 265 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: 0 Durchschnitt: 5.65 Frage 1

Mehr

Skriptum zur Veranstaltung. Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik. 1. Version (mehr Draft als Skriptum)

Skriptum zur Veranstaltung. Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik. 1. Version (mehr Draft als Skriptum) Skriptum zur Veranstaltung Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik 1. Version (mehr Draft als Skriptum) Anmerkungen, Aufzeigen von Tippfehlern und konstruktive Kritik erwünscht!!!

Mehr

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER DAS THEMA: INFERENZSTATISTIK IV INFERENZSTATISTISCHE AUSSAGEN FÜR ZUSAMMENHÄNGE UND UNTERSCHIEDE Inferenzstatistik für Zusammenhänge Inferenzstatistik für Unterschiede

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Grundlagen der Inferenzstatistik

Grundlagen der Inferenzstatistik Grundlagen der Inferenzstatistik (Induktive Statistik oder schließende Statistik) Dr. Winfried Zinn 1 Deskriptive Statistik versus Inferenzstatistik Die Deskriptive Statistik stellt Kenngrößen zur Verfügung,

Mehr

Varianzanalyse ANOVA

Varianzanalyse ANOVA Varianzanalyse ANOVA Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/23 Einfaktorielle Varianzanalyse (ANOVA) Bisher war man lediglich in der Lage, mit dem t-test einen Mittelwertsvergleich für

Mehr

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Aufgabe 1 (10 Punkte). 10 Schüler der zehnten Klasse unterziehen sich zur Vorbereitung auf die Abschlussprüfung einem Mathematiktrainingsprogramm.

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003. Eine seltene Krankheit trete mit Wahrscheinlichkeit : 0000 auf. Die bedingte Wahrscheinlichkeit, dass ein bei einem Erkrankten durchgeführter

Mehr

Statistische Auswertung der Daten von Blatt 13

Statistische Auswertung der Daten von Blatt 13 Statistische Auswertung der Daten von Blatt 13 Problemstellung 1 Graphische Darstellung der Daten 1 Diskussion der Normalverteilung 3 Mittelwerte und deren Konfidenzbereiche 3 Signifikanz der Behandlung

Mehr

1.8 Kolmogorov-Smirnov-Test auf Normalverteilung

1.8 Kolmogorov-Smirnov-Test auf Normalverteilung 1.8 Kolmogorov-Smirnov-Test auf Normalverteilung Der Kolmogorov-Smirnov-Test ist einer der klassischen Tests zum Überprüfen von Verteilungsvoraussetzungen. Der Test vergleicht die Abweichungen der empirischen

Mehr

Test auf den Erwartungswert

Test auf den Erwartungswert Test auf den Erwartungswert Wir interessieren uns für den Erwartungswert µ einer metrischen Zufallsgröße. Beispiele: Alter, Einkommen, Körpergröße, Scorewert... Wir können einseitige oder zweiseitige Hypothesen

Mehr

Versuchsplanung. Teil 1 Einführung und Grundlagen. Dr. Tobias Kiesling Einführung in die Versuchsplanung

Versuchsplanung. Teil 1 Einführung und Grundlagen. Dr. Tobias Kiesling <kiesling@stat.uni-muenchen.de> Einführung in die Versuchsplanung Versuchsplanung Teil 1 Einführung und Grundlagen Dr. Tobias Kiesling Inhalt Einführung in die Versuchsplanung Hintergründe Grundlegende Prinzipien und Begriffe Vorgehensweise

Mehr

Wilcoxon-Rangsummen-Test

Wilcoxon-Rangsummen-Test Wilcoxon-Rangsummen-Test Theorie: Wilcoxon-Rangsummen-Test Der Wilcoxon-Rangsummen-Test prüft, ob sich die Verteilungen der Grundgesamtheiten zweier Stichproben bezüglich ihrer Lage unterscheiden. Ein

Mehr

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Einfaktorielle Versuchspläne 27/40 Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Abweichung Einfach Differenz Helmert Wiederholt Vergleich Jede Gruppe mit Gesamtmittelwert

Mehr

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97.

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97. Aufgabenblock 4 Aufgabe ) Da s = 8. cm nur eine Schätzung für die Streuung der Population ist, müssen wir den geschätzten Standardfehler verwenden. Dieser berechnet sich als n s s 8. ˆ = = =.88. ( n )

Mehr

Beurteilung der biometrischen Verhältnisse in einem Bestand. Dr. Richard Herrmann, Köln

Beurteilung der biometrischen Verhältnisse in einem Bestand. Dr. Richard Herrmann, Köln Beurteilung der biometrischen Verhältnisse in einem Bestand Dr. Richard Herrmann, Köln Beurteilung der biometrischen Verhältnisse in einem Bestand 1 Fragestellung Methoden.1 Vergleich der Anzahlen. Vergleich

Mehr

Übungsaufgaben zu Kapitel 5. Aufgabe 101. Inhaltsverzeichnis:

Übungsaufgaben zu Kapitel 5. Aufgabe 101. Inhaltsverzeichnis: Inhaltsverzeichnis: Übungsaufgaben zu Kapitel 5... 1 Aufgabe 101... 1 Aufgabe 102... 2 Aufgabe 103... 2 Aufgabe 104... 2 Aufgabe 105... 3 Aufgabe 106... 3 Aufgabe 107... 3 Aufgabe 108... 4 Aufgabe 109...

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

Einführung in die Induktive Statistik: Testen von Hypothesen

Einführung in die Induktive Statistik: Testen von Hypothesen Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte

Mehr

Einfache Varianzanalyse für abhängige

Einfache Varianzanalyse für abhängige Einfache Varianzanalyse für abhängige Stichproben Wie beim t-test gibt es auch bei der VA eine Alternative für abhängige Stichproben. Anmerkung: Was man unter abhängigen Stichproben versteht und wie diese

Mehr

Fragestellungen der Schließenden Statistik

Fragestellungen der Schließenden Statistik Fragestellungen der Schließenden Statistik Bisher: Teil I: Beschreibende Statistik Zusammenfassung von an GesamtheitM N {e,,e N } erhobenem Datensatz x,,x N durch Häufigkeitsverteilung und Kennzahlen für

Mehr

Ein- und Zweistichprobentests

Ein- und Zweistichprobentests (c) Projekt Neue Statistik 2003 - Lernmodul: Ein- Zweistichprobentests Ein- Zweistichprobentests Worum geht es in diesem Modul? Wiederholung: allgemeines Ablaufschema eines Tests Allgemeine Voraussetzungen

Mehr

7. Mai 2010. Ruhr-Universität Bochum. Methodenlehre II, SS 2009. Prof. Dr. Holger Dette

7. Mai 2010. Ruhr-Universität Bochum. Methodenlehre II, SS 2009. Prof. Dr. Holger Dette Ruhr-Universität Bochum 7. Mai 2010 1 / 95 Methodenlehre II NA 3/73 Telefon: 0234 322 8284 Email: holger.dette@rub.de Internet: www.ruhr-uni-bochum.de/mathematik3/index.html Vorlesung: Montag, 8.30-10.00

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum Franz Kronthaler Statistik angewandt Datenanalyse ist (k)eine Kunst Excel Edition ^ Springer Spektrum Inhaltsverzeichnis Teil I Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3

Mehr

Statistik im Versicherungs- und Finanzwesen

Statistik im Versicherungs- und Finanzwesen Springer Gabler PLUS Zusatzinformationen zu Medien von Springer Gabler Grimmer Statistik im Versicherungs- und Finanzwesen Eine anwendungsorientierte Einführung 2014 1. Auflage Übungsaufgaben zu Kapitel

Mehr

Überblick über die Tests

Überblick über die Tests Anhang A Überblick über die Tests A.1 Ein-Stichproben-Tests A.1.1 Tests auf Verteilungsannahmen ˆ Shapiro-Wilk-Test Situation: Test auf Normalverteilung H 0 : X N(µ, σ 2 ) H 1 : X nicht normalverteilt

Mehr

Statistische Tests zu ausgewählten Problemen

Statistische Tests zu ausgewählten Problemen Einführung in die statistische Testtheorie Statistische Tests zu ausgewählten Problemen Teil 4: Nichtparametrische Tests Statistische Testtheorie IV Einführung Beschränkung auf nichtparametrische Testverfahren

Mehr

Ein bisschen Statistik

Ein bisschen Statistik Prof. Dr. Beat Siebenhaar ein bisschen Statistik 1 Ein bisschen Statistik (orientiert an Hüsler/Zimmermann (006) mit Umsetzung auf die linguistische Fragen) 1. Datentypen und Grafik Grafische Darstellungen

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 23. Dezember 2010 1 Tests für Erwartungswerte Teststatistik Gauß-Test Zusammenhang zu Konfidenzintervallen t-test

Mehr

11. Nichtparametrische Tests

11. Nichtparametrische Tests 11. Nichtparametrische Tests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 In Kapitel 8 und 9 haben wir vorausgesetzt, daß die Beobachtungswerte normalverteilt sind. In diesem Fall kann

Mehr

k np g(n, p) = Pr p [T K] = Pr p [T k] Φ. np(1 p) DWT 4.1 Einführung 359/467 Ernst W. Mayr

k np g(n, p) = Pr p [T K] = Pr p [T k] Φ. np(1 p) DWT 4.1 Einführung 359/467 Ernst W. Mayr Die so genannte Gütefunktion g gibt allgemein die Wahrscheinlichkeit an, mit der ein Test die Nullhypothese verwirft. Für unser hier entworfenes Testverfahren gilt ( ) k np g(n, p) = Pr p [T K] = Pr p

Mehr

Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten

Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 4.1 4. Statistische Entscheidungsverfahren Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten Beispiel:

Mehr

Statistik Musterlösungen

Statistik Musterlösungen Statistik Musterlösungen Regina Tüchler & Achim Zeileis Institut für Statistik & Mathematik Wirtschaftsuniversität Wien 1 Grundbegriffe (1.23) Skript Reaktionen auf Videofilm. Aussagen M, E, P, S h(m)

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg : Gliederung 1 Einführung 2 Deskriptive Statistik

Mehr

Lösungen zu den Übungsaufgaben in Kapitel 10

Lösungen zu den Übungsaufgaben in Kapitel 10 Lösungen zu den Übungsaufgaben in Kapitel 10 (1) In einer Stichprobe mit n = 10 Personen werden für X folgende Werte beobachtet: {9; 96; 96; 106; 11; 114; 114; 118; 13; 14}. Sie gehen davon aus, dass Mittelwert

Mehr

? Unterscheiden sich Burschen und Mädchen im Ausmaß der Mithilfe im Haushalt?

? Unterscheiden sich Burschen und Mädchen im Ausmaß der Mithilfe im Haushalt? 341 i Metrische und kategoriale Merkmale An einer Beobachtungseinheit werden metrische und kategoriale Variable erhoben. Beispiel: Hausarbeit von Teenagern (Stunden/Woche) 25 15 STUNDEN 5-5 weiblich männlich?

Mehr

5.2. Nichtparametrische Tests. 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY

5.2. Nichtparametrische Tests. 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY 5.2. Nichtparametrische Tests 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY Voraussetzungen: - Die Verteilungen der beiden Grundgesamtheiten sollten eine ähnliche Form aufweisen. - Die

Mehr

Schätzer (vgl. Kapitel 1): Stichprobenmittel X N. Stichprobenmedian X N

Schätzer (vgl. Kapitel 1): Stichprobenmittel X N. Stichprobenmedian X N Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 8.1 Schätzer für Lage- und Skalenparameter und Verteilungsmodellwahl Lageparameter (l(x + a) = l(x) + a): Erwartungswert EX Median von X

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

Ein möglicher Unterrichtsgang

Ein möglicher Unterrichtsgang Ein möglicher Unterrichtsgang. Wiederholung: Bernoulli Experiment und Binomialverteilung Da der sichere Umgang mit der Binomialverteilung, auch der Umgang mit dem GTR und den Diagrammen, eine notwendige

Mehr

5. Schließende Statistik. 5.1. Einführung

5. Schließende Statistik. 5.1. Einführung 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

Prüfen von Mittelwertsunterschieden: t-test

Prüfen von Mittelwertsunterschieden: t-test Prüfen von Mittelwertsunterschieden: t-test Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) t-test

Mehr

Ablaufschema beim Testen

Ablaufschema beim Testen Ablaufschema beim Testen Schritt 1 Schritt 2 Schritt 3 Schritt 4 Schritt 5 Schritt 6 Schritt 7 Schritt 8 Schritt 9 Starten Sie die : Flashanimation ' Animation Ablaufschema Testen ' siehe Online-Version

Mehr

Hypothesentests mit SPSS. Beispiel für einen t-test

Hypothesentests mit SPSS. Beispiel für einen t-test Beispiel für einen t-test Daten: museum-f-v04.sav Hypothese: Als Gründe, in ein Museum zu gehen, geben mehr Frauen als Männer die Erweiterung der Bildung für Kinder an. Dies hängt mit der Geschlechtsrolle

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

Klausur: Einführung in die Statistik

Klausur: Einführung in die Statistik 1 Lösungen immer unter die jeweiligen Aufgaben schreiben. Bei Platzmangel auf die Rückseite schreiben (dann Nummer der bearbeiteten Aufgabe mit anmerken!!!). Lösungen, die nicht auf den Aufgabenblättern

Mehr

Aufgabe 1 10 ECTS. y i x j gering mittel hoch n i Hausrat 200 25 0 225 KFZ 0 10 75 85 Unfall 20 35 90 145 Reiserücktritt 40 5 0 45 n j 260 75 165 500

Aufgabe 1 10 ECTS. y i x j gering mittel hoch n i Hausrat 200 25 0 225 KFZ 0 10 75 85 Unfall 20 35 90 145 Reiserücktritt 40 5 0 45 n j 260 75 165 500 Aufgabe 1 Für die Securance-Versicherung liegen Ihnen die gemeinsamen absoluten Häugkeiten der Merkmale X: Schadenshöhe und Y : Versicherungsart für die letzten 500 gemeldeten Schäden vor. 1. Interpretieren

Mehr

Einführung in statistische Testmethoden

Einführung in statistische Testmethoden Einführung in statistische Testmethoden und die Bearbeitung von Messdaten mit Excel 1. Beispielhafte Einführung in den Gebrauch von Testmethoden 2. Typen von Messwerten, Verteilungen 3. Mittelwert, Varianz,

Mehr

Einfache statistische Auswertungen mit dem Programm SPSS

Einfache statistische Auswertungen mit dem Programm SPSS Einfache statistische Auswertungen mit dem Programm SPSS Datensatz: fiktive_daten.sav Dipl. Päd. Anne Haßelkus Dr. Dorothea Dette-Hagenmeyer 11/2011 Überblick 1 Deskriptive Statistiken; Mittelwert berechnen...

Mehr

Messung von Veränderungen. Dr. Julia Kneer Universität des Saarlandes

Messung von Veränderungen. Dr. Julia Kneer Universität des Saarlandes von Veränderungen Dr. Julia Kneer Universität des Saarlandes Veränderungsmessung Veränderungsmessung kennzeichnet ein Teilgebiet der Methodenlehre, das direkt mit grundlegenden Fragestellungen der Psychologie

Mehr

Testen von Hypothesen:

Testen von Hypothesen: Testen von Hypothesen: Ein Beispiel: Eine Firma produziert Reifen. In der Entwicklungsabteilung wurde ein neues Modell entwickelt, das wesentlich ruhiger läuft. Vor der Markteinführung muss aber auch noch

Mehr

Teil I Beschreibende Statistik 29

Teil I Beschreibende Statistik 29 Vorwort zur 2. Auflage 15 Vorwort 15 Kapitel 0 Einführung 19 0.1 Methoden und Aufgaben der Statistik............................. 20 0.2 Ablauf statistischer Untersuchungen..............................

Mehr

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion Kapitel 12 Stetige Zufallsvariablen 12.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig

Mehr

DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 2006/07 28.02.2007

DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 2006/07 28.02.2007 Wirtschaftswissenschaftliches Prüfungsamt DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 006/07 8.0.007 Lösung Prof. Dr. R Friedmann / Dr. R. Hauser Hinweise für die Klausurteilnehmer

Mehr

Weiterbildungskurs Stochastik

Weiterbildungskurs Stochastik Hansruedi Künsch Seminar für Statistik Departement Mathematik, ETH Zürich 24. Juni 2009 Inhalt STATISTIK DER BINOMIALVERTEILUNG 1 STATISTIK DER BINOMIALVERTEILUNG 2 Fragestellungen Typische Fragestellungen

Mehr

Psychologische Methodenlehre und Statistik II

Psychologische Methodenlehre und Statistik II Psychologische Methodenlehre und Statistik II Pantelis Christodoulides & Karin Waldherr 9. Juni 2010 Pantelis Christodoulides & Karin Waldherr Psychologische Methodenlehre und Statistik II 1/47 Allgemeines

Mehr

Dipl.-Volksw. Markus Pullen Wintersemester 2012/13

Dipl.-Volksw. Markus Pullen Wintersemester 2012/13 Statistische Auswertungen mit R Universität Kassel, FB 07 Wirtschaftswissenschaften Dipl.-Volksw. Markus Pullen Wintersemester 2012/13 Beispiele 8. Sitzung Konfidenzintervalle, Hypothesentests > # Anwendungsbeispiel

Mehr

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14.

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14. Aufgabe : einfacher T-Test Statistik bei einer Stichprobe Standardfehl Standardab er des Mittelwert weichung Mittelwertes 699 39.68 76.59 2.894 Test bei einer Sichprobe Testwert = 45.5 95% Konfidenzintervall

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt. Stock, Taubertsberg R. 0-0 (Persike) R. 0-1 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet0.sowi.uni-mainz.de/

Mehr

Eine Einführung in R: Statistische Tests

Eine Einführung in R: Statistische Tests Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws11/r-kurs/

Mehr

Statistische Analyse von Ereigniszeiten

Statistische Analyse von Ereigniszeiten Statistische Analyse von Survival Analysis VO Biostatistik im WS 2006/2007 1 2 3 : Leukemiedaten (unzensiert) 33 Patienten mit Leukemie; Zielvariable Überlebenszeit. Alle Patienten verstorben und Überlebenszeit

Mehr

Übungsserie Nr. 10 mit Lösungen

Übungsserie Nr. 10 mit Lösungen Übungsserie Nr. 10 mit Lösungen 1 Ein Untersuchungsdesign sieht einen multivariaten Vergleich einer Stichprobe von Frauen mit einer Stichprobe von Männern hinsichtlich der Merkmale X1, X2 und X3 vor (Codierung:

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

ANalysis Of VAriance (ANOVA) 1/2

ANalysis Of VAriance (ANOVA) 1/2 ANalysis Of VAriance (ANOVA) 1/2 Markus Kalisch 16.10.2014 1 ANOVA - Idee ANOVA 1: Zwei Medikamente zur Blutdrucksenkung und Placebo (Faktor). Gibt es einen sign. Unterschied in der Wirkung (kontinuierlich)?

Mehr

Zeit zum Kochen [in min] [10, 20[ [20, 30[ [30, 40[ [40, 50[ [50,60[ [60, 100] Hi

Zeit zum Kochen [in min] [10, 20[ [20, 30[ [30, 40[ [40, 50[ [50,60[ [60, 100] Hi 1. Susi und Fritzi bereiten ein Faschingsfest vor, dazu gehört natürlich ein Faschingsmenü. Ideen haben sie genug, aber sie möchten nicht zu viel Zeit fürs Kochen aufwenden. In einer Zeitschrift fanden

Mehr

Marktforschung I. Marktforschung I 2

Marktforschung I. Marktforschung I 2 Marktforschung I Marktforschung I Einführung in die Testtheorie (Toporowski) Mathematische Grundlagen (Toporowski) Varianzanalyse (Toporowski) Regressionsanalyse (Boztuğ) Diskriminanzanalyse (Hammerschmidt)

Mehr

Kapitel 10 Mittelwert-Tests Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests

Kapitel 10 Mittelwert-Tests Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests Kapitel 10 Mittelwert-Tests 10.1 Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests 10.1 Einstichproben- Mittelwert-Tests 10.1.1 Einstichproben- Gauß-Test Dichtefunktion der Standard-Normalverteilung

Mehr

1.6 Der Vorzeichentest

1.6 Der Vorzeichentest .6 Der Vorzeichentest In diesem Kapitel soll der Vorzeichentest bzw. Zeichentest vorgestellt werden, mit dem man Hypothesen bezüglich des Medians der unabhängig und identisch stetig verteilten Zufallsvariablen

Mehr

Statistik II: Signifikanztests /1

Statistik II: Signifikanztests /1 Medien Institut : Signifikanztests /1 Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Noch einmal: Grundlagen des Signifikanztests 2. Der chi 2 -Test 3. Der t-test

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2010/2011. Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2010/2011. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2010/2011 Aufgabe 1 Nach einer

Mehr

Einfache Statistiken in Excel

Einfache Statistiken in Excel Einfache Statistiken in Excel Dipl.-Volkswirtin Anna Miller Bergische Universität Wuppertal Schumpeter School of Business and Economics Lehrstuhl für Internationale Wirtschaft und Regionalökonomik Raum

Mehr