Biostatistik, Winter 2011/12

Größe: px
Ab Seite anzeigen:

Download "Biostatistik, Winter 2011/12"

Transkript

1 Biostatistik, Winter 2011/12 Vergleich zweier Stichproben, nichtparametrische Tests Prof. Dr. Achim Klenke 11. Vorlesung: /86 Inhalt 1 Tests t-test 2 Vergleich zweier Stichproben Gepaarter t-test Ungepaarter t-test Ungepaarter t-test bei unterschiedlicher Varianz, Welch Test Vergleich: Gepaarter vs ungepaarter t-test 3 Nichtparametrische Lagetests Der Mediantest Wilcoxon Rangsummentest 4 χ 2 -Test χ 2 -Test 2/86

2 Tests t-test, Problemstellung t-test Merkmal (Messgröße) zufällig und normalverteilt. Erwartungswert µ R unbekannt. Varianz σ 2 > 0 unbekannt. Hypothese H 0 = {µ 0 } für ein µ 0 R (Lehrmeinung). Alternative H 1. H 1 : H 1 : H 1 : µ < µ 0 linksseitig, µ > µ 0 rechtsseitig, µ µ 0 beidseitig. Problem Entwickle Test zum Niveau α (0, 1). 3/86 Vergleich mit Gaußtest Gemeinsam Messwerte normalverteilt, µ unbekannt. Stichprobe x 1,..., x n H 0 verwerfen, wenn Teststatistik T (x) groß (rechtsseitige Alternative). Anders bei t-test Varianz σ 2 unbekannt, schätzen durch sn 1 2 = 1 n (x i x) 2 n 1 i=1 Teststatistik T (x) = x µ 0 s n 1 / n. t-quantile t n 1;1 α statt Normal-Quantile z α. Keine Fallzahlplanung möglich, da σ 2 unbekannt.

3 Tests Linksseitige Alternative t-test Verwerfungsregel Alternative H 1 (, µ 0 ). Stichprobe x 1,..., x n.teststatistik T (x) = x µ 0 s n 1 / n. Verwirf H 0 zugunsten von H 1, falls T (x) t n 1;1 α. p-wert p(x) = t n 1 (T (x)) = 1 t n 1 ( T (x)). t n 1 Verteilungsfunktion der t n 1 -Verteilung (Tabelle A.4). 5/86 Tests t-test Rechtsseitige Alternative Verwerfungsregel Alternative H 1 (µ 0, ). Stichprobe x 1,..., x n. Teststatistik T (x) = x µ 0 s n 1 / n. Verwirf H 0 zugunsten von H 1, falls T (x) t n 1;1 α. p-wert p(x) = t n 1 ( T (x)) = 1 t n 1 (T (x)). t n 1 Verteilungsfunktion der t n 1 -Verteilung (Tabelle A.4). 6/86

4 Tests Beidseitige Alternative t-test Verwerfungsregel Alternative H 1 R \ {µ 0 }. Stichprobe x 1,..., x n. Teststatistik T (x) = x µ 0 s n 1 / n. Verwirf H 0 zugunsten von H 1, falls T (x) t n 1;1 α/2. p-wert p(x) = 2(1 t n 1 ( T (x) )). t n 1 Verteilungsfunktion der t n 1 -Verteilung (Tabelle A.4). 7/86 Tests Beispiel: Straußeneier t-test Straußeneier, Gewicht µ unbekannt, normalverteilt. Konservative Hypothese: µ = µ 0 = 110. Alternative H 1 : µ 110. Beidseitiger t-test zum Niveau α = 0.05 mit Stichprobengröße n verwirft H 0, falls T (x) = x 110 s n 1 / 10 t 9;1 α/2 = t 9; = /86

5 Tests t-test Gesammelte Daten Test verwirft H 0, falls x 110 s n 1 / 10 t 9; = i x i Wir berechnen x = 103.9, s n 1 = und T (x) = / 10 = Fazit Wegen T (x) = > verwirft der Test H 0 gegen H 1 zum Niveau 5% 9/86 Straußeneier, p-wert Tests t-test Allgemeine Formel Hier T (x) = Tabelle: p(x) = 2(1 t n 1 ( T (x) )). p-wert ist t 9 (3.9) = p(x) = 2(1 t 9 ( T (x) )) = 2(1 t 9 (3.90)) = = 0.362%. Der beidseitige t-test verwirft zu jedem Niveau α > 0.362%. 10/86

6 Tests t-test Anstieg des Niveaus beim Ersetzen t n 1 durch z Für große n können die Quantile von t n 1 durch die von N 0,1 ersetzt werden. Fehler im Niveau: n Fehler einseitiger Test Fehler zweiseitiger Test /86 Grundproblem Vergleich zweier Stichproben Gepaarter t-test Bei n Individuen soll eine Messgröße x unter zwei Versuchsbedingungen gemessen werden. Unterscheiden sich die Mittelwerte der Messungen? 12/86

7 Modellierung Vergleich zweier Stichproben Gepaarter t-test Unter Versuchsbedingung 1 sind die Messwerte x (1) 1,..., x (1) n unabhängig mit Erwartungswerte µ 1. Unter Versuchsbedingung 2 sind die Messwerte x (2) 1,..., x (2) n unabhängig mit Erwartungswerte µ 2. Annahme (Hoffnung!!!): Die Differenzen x (2) 1 x (1) 1,..., x (2) n x (1) n sind (ungefähr) normalverteilt mit unbekannter Varianz σ 2 (und Erwartungswert µ 2 µ 1 ). Nullhypothese (H 0 ): µ 1 = µ 2. Alternative (H 1 ): µ 1 µ 2 (beidseitig) µ 1 < µ 2 (rechtsseitig) µ 1 > µ 2 (linksseitig). 13/86 Verfahren Vergleich zweier Stichproben Gepaarter t-test Unter der Nullhypothese sind die Differenzen x k = x (2) k x (1) k unabhängig normalverteilt mit unbekannter Varianz σ 2 und Erwartungswert µ = µ 2 µ 1 = 0. Also verfahren wir jetzt wie im bekannten t-test: Teststatistik T (x) = x s n 1 / n, wobei ist und x = 1 n n x k = 1 n k=1 s 2 n 1 = 1 n 1 n k=1 (x (2) k x (1) k ) n (x i x) 2. k=1 14/86

8 Vergleich zweier Stichproben Linksseitige Alternative Gepaarter t-test Verwerfungsregel Nullhypothese (H 0 ): µ 2 = µ 1 Alternative (H 1 ): µ 2 < µ 1. Verwirf H 0 zugunsten von H 1, falls T (x) t n 1;1 α. p-wert p(x) = t n 1 (T (x)) = 1 t n 1 ( T (x)). t n 1 Verteilungsfunktion der t n 1 -Verteilung (Tabelle A.4). 15/86 Vergleich zweier Stichproben Rechtsseitige Alternative Gepaarter t-test Verwerfungsregel Nullhypothese (H 0 ): µ 2 = µ 1 Alternative (H 1 ): µ 2 > µ 1. Verwirf H 0 zugunsten von H 1, falls T (x) t n 1;1 α. p-wert p(x) = t n 1 ( T (x)) = 1 t n 1 (T (x)). t n 1 Verteilungsfunktion der t n 1 -Verteilung (Tabelle A.4). 16/86

9 Vergleich zweier Stichproben Beidseitige Alternative Gepaarter t-test Verwerfungsregel Nullhypothese (H 0 ): µ 2 = µ 1 Alternative (H 1 ): µ 2 µ 1. Verwirf H 0 zugunsten von H 1, falls T (x) t n 1;1 α/2. p-wert p(x) = 2(1 t n 1 ( T (x) )). t n 1 Verteilungsfunktion der t n 1 -Verteilung (Tabelle A.4). 17/86 Vergleich zweier Stichproben Gepaarter t-test Beispiel: Orientierung von Zugvögeln Zugvögel werden einer Beleuchtung mit bestimmter Farbe (grün oder blau) ausgesetzt. Ist das Orientierungsverhalten (magnetischer Kompass) abhängig von der Farbe? 18/86

10 Vergleich zweier Stichproben Gepaarter t-test Beispiel: Orientierung von Zugvögeln Zugvögel werden einer Beleuchtung mit bestimmter Farbe (grün oder blau) ausgesetzt. Ist die Genauigkeit der Orientierung (magnetischer Kompass) abhängig von der Farbe? Nullhypothese: Nein. Alternative: Doch. 19/86 Vergleich zweier Stichproben Gepaarter t-test Beispiel: Orientierung von Zugvögeln Versuchsanordnung Es werden n = 17 Trauerschnäpper in Käfigen einer Beleuchtung mit blauem Licht ausgesetzt (Versuchsbedingung 1) und jeweils in mehreren Durchgängen ihre Flugrichtung ermittelt. Die Flugrichtung wird als Punkt auf einem Kreis dargestellt. Aus allen Punkten auf dem Kreis wird der Schwerpunktvektor ermittelt. Danach der gleiche Versuch mit grünem Licht (Bedingung 2). 20/86

11 Vergleich zweier Stichproben Gepaarter t-test Beispiel: Orientierung von Zugvögeln Bestimmung des Schwerpunktvektors Je variabler die Richtungen, desto kürzer der Pfeil! 21/86 Vergleich zweier Stichproben Gepaarter t-test Beispiel: Orientierung von Zugvögeln Ansatz des Tests Für jeden Vogel i = 1,..., 17 bezeichnen wir mit x (1) i die Länge des Schwerpunktvektors bei blauem Licht und mit x (2) i die Länge des Schwerpunktvektors bei grünem Licht. x i = x (2) i x (1) i. Festlegung des Niveaus: α = 5%. Schwerpunktvektoren sind Mittelwerte vieler zufälliger Beobachtungen, also etwa normalverteilt (zentraler Grenzwertsatz). Also: Gepaarter t-test mit beidseitiger Alternative und Niveau 5%. Verwerfe H 0, falls T (x) > t n 1;1 α/2 = t 16;0.975 = /86

12 Vergleich zweier Stichproben Gepaarter t-test Beispiel: Orientierung von Zugvögeln Daten und Durchführung Differenzen x i : Mittelwert und Streuung: x = s n 1 = x t-statistik T (x) = s n 1 / n = / Also ist T (x) = 2.34 > 2.12 = t 16; p-wert: p(x) = 2(1 t n 1 ( T (x) )) = 2(1 t 16 (2.34)) = 2( ) = /86 Vergleich zweier Stichproben Gepaarter t-test Beispiel: Orientierung von Zugvögeln Fazit Wir können die Hypothese, dass die Farbe des Lichtes keine Rolle für die Orientierungsgenauigkeit der Trauerschnäpper spielt, zum Niveau 5% verwerfen. 24/86

13 Vergleich zweier Stichproben Ungepaarter t-test Beispiel: Backenzähne von Hipparions (c): public domain 25/86 Vergleich zweier Stichproben Ungepaarter t-test Beispiel: Backenzähne von Hipparions Die Daten 77 Backenzähne gefunden in den Chiwondo Beds, Malawi, jetzt in den Sammlungen des Hessischen Landesmuseums, Darmstadt 26/86

14 Vergleich zweier Stichproben Ungepaarter t-test Beispiel: Backenzähne von Hipparions Zuordnung Die Zähne wurden zwei Arten zugeordnet: Hipparion africanum 4 Mio. Jahre, 39 Zähne Hipparion libycum 2,5 Mio. Jahre, 38 Zähne 27/86 Vergleich zweier Stichproben Ungepaarter t-test Beispiel: Backenzähne von Hipparions Geologischer Hintergrund Vor 2,8 Mio. Jahren kühlte sich das Klima weltweit ab. Das Klima in Ostafrika: warm-feucht kühl-trocken Hipparion: Laubfresser Grasfresser 28/86

15 Vergleich zweier Stichproben Ungepaarter t-test Beispiel: Backenzähne von Hipparions Frage Hipparion: Laubfresser Grasfresser andere Nahrung andere Zähne? Messungen: mesiodistale Länge Lässt sich die Nullhypothese, dass die Zähne gleich sind, zum Niveau 1% verwerfen? 29/86 Die Theorie Vergleich zweier Stichproben Ungepaarter t-test Annahme: Wir haben zwei unabhängige Stichproben x 1,1,..., x 1,n1 und x 2,1,..., x 2,n2. Die x 1,i stammen aus einer Normalverteilung mit (unbekanntem) Mittelwert µ 1 und unbekannter Varianz σ 2 > 0, die x 2,i aus einer Normalverteilung mit (unbekanntem) Mittelwert µ 2 und derselben Varianz σ 2. 30/86

16 Die Theorie Vergleich zweier Stichproben Ungepaarter t-test Seien x 1 = 1 n 1 x 1,i, x 2 = 1 n 2 n 1 n 2 i=1 i=1 die jeweiligen Stichprobenmittelwerte, s 1 = 1 n 1 (x 1,i x 1 ) n 1 1 2, i=1 s 2 = 1 n 2 (x 2,i x 2 ) n 2 1 2, i=1 die (korrigierten) Stichprobenstreuungen. x 2,i 31/86 Die Theorie Vergleich zweier Stichproben Ungepaarter t-test Wir möchten die Hypothese H 0 : µ 1 = µ 2 prüfen. Wenn µ 1 = µ 2 gilt, so sollte x 1 = x 2 bis auf Zufallsschwankungen gelten, denn E[x 1 ] = µ 1, E[x 2 ] = µ 2. Was ist die Skala der typischen Schwankungen von x 2 x 1? Var(x 1 x 2 ) = σ 2( 1 n n 2 ) Problem (wie bereits im ein-stichproben-fall): Wir kennen σ 2 nicht. Wir schätzen es im zwei-stichproben-fall durch die gepoolte Stichprobenvarianz s 2 = (n 1 1)s (n 2 1)s 2 2 n 1 + n 2 2 und bilden die Teststatistik T (x) = x 2 x 1. 1 s n n 2 32/86

17 Die Theorie Vergleich zweier Stichproben Ungepaarter t-test Es gilt dann: Wenn µ 1 = µ 2 gilt, so ist T (x) = x 2 x 1. 1 s n n 2 t-verteilt mit n 1 + n 2 2 Freiheitsgraden. 33/86 Die Theorie Linksseitige Alternative Vergleich zweier Stichproben Ungepaarter t-test Verwerfungsregel Nullhypothese (H 0 ): µ 2 = µ 1 Alternative (H 1 ): µ 2 < µ 1. Verwirf H 0 zugunsten von H 1, falls T (x) t n1 +n 2 2;1 α. p-wert p(x) = t n1 +n 2 2(T (x)) = 1 t n1 +n 2 2( T (x)). t n1 +n 2 2 Verteilungsfunktion der t n1 +n 2 2-Verteilung (Tabelle A.4). 34/86

18 Die Theorie Rechtsseitige Alternative Vergleich zweier Stichproben Ungepaarter t-test Verwerfungsregel Nullhypothese (H 0 ): µ 2 = µ 1 Alternative (H 1 ): µ 2 > µ 1. Verwirf H 0 zugunsten von H 1, falls T (x) t n1 +n 2 2;1 α. p-wert p(x) = t n1 +n 2 2( T (x)) = 1 t n1 +n 2 2(T (x)). t n1 +n 2 2 Verteilungsfunktion der t n1 +n 2 2-Verteilung (Tabelle A.4). 35/86 Die Theorie Beidseitige Alternative Vergleich zweier Stichproben Ungepaarter t-test Verwerfungsregel Nullhypothese (H 0 ): µ 2 = µ 1 Alternative (H 1 ): µ 2 µ 1. Verwirf H 0 zugunsten von H 1, falls T (x) t n1 +n 2 2;1 α/2. p-wert p(x) = 2(1 t n1 +n 2 2( T (x) )). t n1 +n 2 2 Verteilungsfunktion der t n1 +n 2 2-Verteilung (Tabelle A.4). 36/86

19 Vergleich zweier Stichproben Ungepaarter t-test Beispiel: Backenzähne von Hipparions Die Daten H. libycum H. africanum x A = 25.9, s A = 2.2 x A s A x A + s A x L = 28.4, s L = 4.3 x L s L x L + s L mesiodistale Länge [mm] 37/86 Vergleich zweier Stichproben Ungepaarter t-test Beispiel: Backenzähne von Hipparions Die Daten n A = 39, x A = 25.9, s A = 2.2 n L = 38, x L = 28.4, s L = 4.3 Gepoolte Stichprobenstreuung (n A 1)sA 2 s = + (n L 1)sL 2 n A + n L = 2 = Es folgt T (x) = x L x A = 1 s n A /39 + 1/38 = n L 38/86

20 Vergleich zweier Stichproben Ungepaarter t-test Beispiel: Backenzähne von Hipparions Durchführung des Tests Nullhypothese µ 1 = µ 2, Alternative µ 1 µ 2 (beidseitig). Test verwirft zum Niveau α = 1%, wenn T (x) > t na +n L 2;1 α/2 = t 75; Tatsächliche Daten: T (x) = 3.22 > p-wert p(x) = 2(1 t na +n L 2( T (x) )) = 2(1 t 75 (3.22)) = 2( ) = Diesen p-wert sollte man nicht glauben, weil die Modellanahmen zu optimistisch waren. 39/86 Vergleich zweier Stichproben Ungepaarter t-test Beispiel: Backenzähne von Hipparions Fazit Der ungepaarte Zweistichproben-t-Test verwirft die Nullhypothese, dass die mesiodistale Länge der Backenzähne bei Hipparion africanum und Hipparion libycum gleich Erwartungswert hätten, zu Gunsten der zweiseitigen Alternative zum Niveau 1%. 40/86

21 Vergleich zweier Stichproben Die Theorie (Welch Test) Ungepaarter t-test bei unterschiedlicher Varianz, Welch Test Annahme: Wir haben zwei unabhängige Stichproben x 1,1,..., x 1,n1 und x 2,1,..., x 2,n2. Die x 1,i stammen aus einer Normalverteilung mit (unbekanntem) Mittelwert µ 1 und unbekannter Varianz σ 2 1 > 0, die x 2,i aus einer Normalverteilung mit (unbekanntem) Mittelwert µ 2 und möglicherweise anderer Varianz σ /86 Vergleich zweier Stichproben Die Theorie (Welch Test) Ungepaarter t-test bei unterschiedlicher Varianz, Welch Test Seien s 1 = 1 n 1 (x 1,i x 1 ) n 1 1 2, i=1 s 2 = 1 n 2 (x 2,i x 2 ) n 2 1 2, i=1 die (korrigierten) Stichprobenstreuungen. 42/86

22 Vergleich zweier Stichproben Die Theorie (Welch Test) Ungepaarter t-test bei unterschiedlicher Varianz, Welch Test Unter der Hypothese µ 1 = µ 2 ist die Teststatistik T (x) = x 2 x 1 s 2 1 n 1 + s2 2 n 2 ungefähr t-verteilt mit f Freiheitsgraden, wobei f aus den Daten geschätzt wird: ( ) s n 1 + s2 2 n 2 f =. s 4 1 n 2 1 (n 1 1) + s4 2 n 2 2 (n 2 1) 43/86 Vergleich zweier Stichproben Ungepaarter t-test bei unterschiedlicher Varianz, Welch Test Die Theorie (Welch Test) Linksseitige Alternative Verwerfungsregel Nullhypothese (H 0 ): µ 2 = µ 1 Alternative (H 1 ): µ 2 < µ 1. Verwirf H 0 zugunsten von H 1, falls T (x) t f ;1 α. p-wert p(x) = t f (T (x)) = 1 t f ( T (x)). t f Verteilungsfunktion der t f -Verteilung (Tabelle A.4). 44/86

23 Vergleich zweier Stichproben Ungepaarter t-test bei unterschiedlicher Varianz, Welch Test Die Theorie (Welch Test) Rechtsseitige Alternative Verwerfungsregel Nullhypothese (H 0 ): µ 2 = µ 1 Alternative (H 1 ): µ 2 > µ 1. Verwirf H 0 zugunsten von H 1, falls T (x) t f ;1 α. p-wert p(x) = t f ( T (x)) = 1 t f (T (x)). t f Verteilungsfunktion der t f -Verteilung (Tabelle A.4). 45/86 Vergleich zweier Stichproben Ungepaarter t-test bei unterschiedlicher Varianz, Welch Test Die Theorie (Welch Test) Beidseitige Alternative Verwerfungsregel Nullhypothese (H 0 ): µ 2 = µ 1 Alternative (H 1 ): µ 2 µ 1. Verwirf H 0 zugunsten von H 1, falls T (x) t f ;1 α/2. p-wert p(x) = 2(1 t f ( T (x) )). t f Verteilungsfunktion der t f -Verteilung (Tabelle A.4). 46/86

24 Vergleich zweier Stichproben Ungepaarter t-test bei unterschiedlicher Varianz, Welch Test Beispiel: Versuch zur Keimhemmung Versuchsaufbau im Pflanzenphysiologischen Praktikum In vier Petrischalen werden jeweils exakt 100 Samen Gartenkresse ausgebracht. Gewässert wird mit (A) Aqua dest. (zur Kontrolle) (B) ABS Lösung (C) Saccharose-Lösung (D) Saccharose-ABS-Lösung Nach zwei Tagen wird gezählt, wie viele Samen gekeimt haben. 47/86 Vergleich zweier Stichproben Ungepaarter t-test bei unterschiedlicher Varianz, Welch Test Beispiel: Versuch zur Keimhemmung Im Praktikum wird jeder Versuch dreimal durchgeführt. Versuch A B C D Keime Schale Keime Schale Keime Schale A B C D 48/86

25 Vergleich zweier Stichproben Ungepaarter t-test bei unterschiedlicher Varianz, Welch Test Beispiel: Versuch zur Keimhemmung A B C D (A) Aqua dest. (B) ABS (C) Saccharose (D) Saccharose- ABS Fragen Ist die Hemmung bei B schon vorhanden? Hemmt Saccharose (C)? Hemmt Saccharose mit ABS (D) stärker als Saccharose? Ist die Wirkung von Saccharose und ABS gleich? 49/86 Vergleich zweier Stichproben Ungepaarter t-test bei unterschiedlicher Varianz, Welch Test Beispiel: Versuch zur Keimhemmung Vergleich C gegen D Vermutung: Hemmung bei ABS+Saccharose (D) stärker als bei Saccharose (C). Test zum Niveau α = 1% soll Klarheit schaffen. Nullhypothese: (D) genauso wie (C) Alternative: (D) hemmt stärker. 50/86

26 Vergleich zweier Stichproben Ungepaarter t-test bei unterschiedlicher Varianz, Welch Test Beispiel: Versuch zur Keimhemmung Vergleich C gegen D, Welch Test Daten x C,1 = 45, x C,2 = 44, x C,3 = 45 x D,1 = 25, x D,2 = 27, x D,3 = 29 Idee: Daten etwa normalverteilt mit unbekannten Mittelwerten µ C und µ D und unbekannten Varianzen σ 2 C, σ2 D. Nullhypothese (H 0 ) µ C = µ D Alternative (H 1 ) µ C > µ D. Linksseitiger Zwei-Stichproben t-test mit unterschiedlichen Varianzen (Welch Test). 51/86 Vergleich zweier Stichproben Ungepaarter t-test bei unterschiedlicher Varianz, Welch Test Beispiel: Versuch zur Keimhemmung Vergleich C gegen D, Welch Test x C,1 = 45, x C,2 = 44, x C,3 = 45 x D,1 = 25, x D,2 = 27, x D,3 = 29 x C = 44.67, x D = 27. s C = 1 3 (x C,i x C ) 2 2 i=1 1 = 2 (( )2 + ( ) 2 + ( ) 2 ) = /86

27 Vergleich zweier Stichproben Ungepaarter t-test bei unterschiedlicher Varianz, Welch Test Beispiel: Versuch zur Keimhemmung Vergleich C gegen D, Welch Test x C,1 = 45, x C,2 = 44, x C,3 = 45 x D,1 = 25, x D,2 = 27, x D,3 = 29 x C = 44.67, x D = 27. s D = 1 3 (x D,i x D ) 2 2 i=1 1 = 2 ((25 27)2 + (27 27) 2 + (29 27) 2 ) = 2. 53/86 Vergleich zweier Stichproben Ungepaarter t-test bei unterschiedlicher Varianz, Welch Test Beispiel: Versuch zur Keimhemmung Vergleich C gegen D, Welch Test t-statistik T (x) = Freiheitsgrade f = x C = 44.67, x D = 27. s C = , s D = 2. x D x C = + s2 D nd s 2 C n C ( s 2 C n C + s2 D nd ) 2 sc 4 + s4 nc 2 D (n C 1) nd 2 (n D 1) = =... = /86

28 Vergleich zweier Stichproben Ungepaarter t-test bei unterschiedlicher Varianz, Welch Test Beispiel: Versuch zur Keimhemmung Vergleich C gegen D, Welch Test t-statistik Freiheitsgrade T (x) = f = Der linksseitige Test zum Niveau α = 0.01 verwirft H 0, falls T (x) < t f,1 α = t 2.331; (Alternativ: Tabellenwert t 2;0.99 = 6.96) Wegen T (x) = 14.7 < 5.77 verwirft der Test zum Niveau 1% die Nullhypothese. p-wert p(x) = t ( 14.7) = Alternativ: Tabellenwert p(x) t 2 ( 14.7) = /86 Vergleich zweier Stichproben Ungepaarter t-test bei unterschiedlicher Varianz, Welch Test Beispiel: Versuch zur Keimhemmung Vergleich C gegen D, Ergebnis Mit Hilfe eines ungepaarten einseitigen t-tests bei unterschiedlichen Varianzen (Welch Test) wird die Nullhypothese (Saccharose hemmt die Keimung gleich gut wie ein Lösung mit Saccharose und ABS) auf dem Niveau 1% gegen die Alternative (S hemmt nicht so gut wie S+ABS) verworfen. Der p-wert beträgt p (bzw. p = , wenn man exakt mit dem Computer rechnet, statt den p-wert nach der Tabelle der t 2 -Verteilung anzunähern). 56/86

29 Vergleich zweier Stichproben Ungepaarter t-test bei unterschiedlicher Varianz, Welch Test Beispiel: Versuch zur Keimhemmung Vergleich C gegen B Hemmt Saccharose (C) genauso gut wie ABS (B)? Zweiseitiger ungepaarter t-test bei unterschiedlichen Varianzen (Welch Test) zum Niveau α = 1%. 57/86 Vergleich zweier Stichproben Ungepaarter t-test bei unterschiedlicher Varianz, Welch Test Beispiel: Versuch zur Keimhemmung Vergleich C gegen B, Daten t-statistik Freiheitsgrade x C = 44.67, x B = s C = , s B = T (x) = x C x B s 2 C Beidseitiger Test verwirft, falls n C + s2 B n B f = = T (x) > t 2.032;0.995 t 2;0.995 = Wegen T (x) = 10.1 verwirft der Test zum Niveau 1%. p-wert 2(1 t (10.1)) 2(1 t 2 (10.1)) = /86

30 Vergleich zweier Stichproben Ungepaarter t-test bei unterschiedlicher Varianz, Welch Test Beispiel: Versuch zur Keimhemmung Vergleich C gegen B, Ergebnis Der zweiseitige ungepaarte t-test bei unterschiedlicher Varianz (Welch Test) verwirft die Nullhypothese (Saccharose hemmt Keimung gleich gut wie ABS) gegen die beidseitige Alternative zum Niveau 1%. Der p-wert ist etwa /86 Vergleich zweier Stichproben Vergleich: Gepaarter vs ungepaarter t-test Vergleich: Gepaarter vs ungepaarter t-test Wenn die Stichprobenlänge unterschiedlich ist, ergibt gepaart keinen Sinn. Wenn die Stichprobenlänge gleich ist: Sind die Stichproben unabhängig voneinander? Falls ja, dann ungepaart testen. Ein gepaarter Test würde sinnlose Abhängigkeiten unterstellen und hätte auch eine geringere Schärfe. Sind die Stichproben voneinander abhängig? (z.b. Messungen von denselben Individuen bzw. Objekten) Falls ja, dann ist ein gepaarter Test sinnvoll. Bei starker Abhängigkeitsstruktur hat der gepaarte t-test größere Schärfe (da der Test von Variabilität zwischen den Individuen bereinigt ist) 60/86

31 Nichtparametrische Lagetests Der Mediantest Beispiel: Medikamententest Bei der Behandlung mit dem etablierten Herzmedikament XY lebt die Hälfte der Patienten noch acht Jahre oder länger. Bei einem neuen Medikament wurde in einer Langzeitstudie an 20 Patienten festgestellt, wie lange die Patienten noch leben: Patient Nr Lebensdauer x i Patient Nr Lebensdauer x i Ist das neue Medikament besser als das etablierte? 61/86 Nichtparametrische Lagetests Der Mediantest Beispiel: Medikamententest Nullhypothese H 0 : Alternative H 1 : Beide gleich gut. Neues Medikament besser. Formal: Nullhypothese H 0 : Lebensdauer des neuen Medikaments hat einen Median von höchstens 8 Jahren. Alternative H 1 : Lebensdauer des neuen Medikaments hat einen Median von mehr als 8 Jahren. 62/86

32 Nichtparametrische Lagetests Der Mediantest Beispiel: Medikamenentest Sei T (x) die Anzahl der Werte x i mit x i 8. Unter H 0 ist für jedes i: Also ist T (x) b 20,0.5. P[x i 8] = 1 2. Gilt H 1, so ist T (x) b 20,p mit p > 0.5. Große Werte von T (x) stützen H 1. Der p-wert ist p = 20 k=t (x) b 20,0.5 (k). 63/86 Nichtparametrische Lagetests Der Mediantest Beispiel: Medikamententest Patient Nr Lebensdauer x i Patient Nr Lebensdauer x i Wir haben also und p = 20 k=11 T (x) = 11 b 20,0.5 (k) = Die Ergebnisse geben also keinen Hinweis darauf, dass das neue Medikament besser als das etablierte wäre. 64/86

33 Nichtparametrische Lagetests Theorie: Mediantest Formale Problemstellung Der Mediantest Sei m P der bekannte Median einer gewissen Verteilung P (altes Medikament) und m Q der Median der Verteilung Q (neues Medikament). Daten: x 1,..., x n gezogen nach der Verteilung Q. T (x) =Anzahl der Werte x i mit x i > m P. Nullhypothese H 0 : Alternative H 1 : m P = m Q m P > m Q (linksseitig) m P < m Q (rechtsseitig) m P m Q (beidseitig). 65/86 Nichtparametrische Lagetests Theorie: Mediantest Linksseitige Alternative m P > m Q Der Mediantest p-wert ( ) T (x) n 1 T (x) 2 p = b n,0.5 (k) 1 Φ. n/4 k=0 Verwerfungsregel H 0 wird zum Niveau α verworfen, falls p α. 66/86

34 Nichtparametrische Lagetests Theorie: Mediantest Rechtsseitige Alternative: m P < m Q Der Mediantest p-wert p = n k=t (x) b n,0.5 (k) 1 Φ ( ) T (x) n+1 2. n/4 Verwerfungsregel H 0 wird zum Niveau α verworfen, falls p α. 67/86 Nichtparametrische Lagetests Theorie: Mediantest Beidseitige Alternative: m P m Q Der Mediantest p-wert und T (x) p = 2 b n,0.5 (k) falls T (x) < n/2 p = 2 k=0 n k=t (x) b n,0.5 (k) falls T (x) > n/2. [ ( )] T (x) n In beiden Fällen gilt p 2 1 Φ. n/4 Verwerfungsregel H 0 wird zum Niveau α verworfen, falls p α. 68/86

35 Nichtparametrische Lagetests Wilcoxon Rangsummentest Beispiel: Hipparion Reloaded Niemand sagt Ihnen, dass die Größen der Backenzähne normalverteilt sind. Was kann man ohne diese Annahme noch rechnen? 69/86 Rangsummen Nichtparametrische Lagetests Wilcoxon Rangsummentest Gegeben zwei Stichproben x 1, x 2,..., x m und y 1, y 2,..., y n. Setze U i = Rang von x i in den y 1,..., y n = Anzahl der j mit y j < x i m und definiere die Rangsumme U(x, y) = U i. Beispiel mit m = 4 und n = 7 x i i=1 y j Wert Rang U i Rangsumme U(x, y) = = 6. 70/86

36 Rangsummen Nichtparametrische Lagetests Wilcoxon Rangsummentest Idee Entstammen die x i und y j der gleichen Verteilung (H 0 ), so sollte U i n/2 sein und U mn 2. U(x, y) groß zeigt an, dass (x i ) tendenziell größer ist als (y j ). U(x, y) klein zeigt an, dass (x i ) tendenziell kleiner ist als (y j ). 71/86 Rangsummen Nichtparametrische Lagetests Wilcoxon Rangsummentest Die Verteilung U m,n von U(x, y) unter H 0 ist tabelliert und heißt Wilcoxon-U-Verteilung mit Parametern m und n. Für große m, n ist U(x, y) mn 2 approx. N 0,1. mn(m+n+1) 12 Also können wir das Quantil u m,n;α durch das Quantil z α approximativ ausrechnen: u m,n;α mn 2 + mn(m + n + 1) 12 z α. 72/86

37 Nichtparametrische Lagetests Wilcoxon Rangsummentest Wilcoxon Rangsummentest Die Theorie Formale Problemstellung Die Werte der Stichprobe x 1,..., x m sind unabhängig und nach der Verteilung P gezogen. Die Werte der Stichprobe y 1,..., y n sind unabhängig und nach der Verteilung Q gezogen. Nullhypothese H 0 : Alternative H 1 : P = Q P tendenziell größer als Q (linksseitig) P tendenziell kleiner als Q (rechtsseitig) P Q (beidseitig) 73/86 Nichtparametrische Lagetests Wilcoxon Rangsummentest Wilcoxon Rangsummentest Linksseitige Alternative: P größer als Q Verwerfungsregel Verwirf H 0 zugunsten von H 1, falls U(x, y) > u m,n;1 α mn 2 + mn(m + n + 1) 12 z 1 α. p-wert mn U(x, y) p 1 Φ 2. mn(m+n+1) 12 74/86

38 Nichtparametrische Lagetests Wilcoxon Rangsummentest Wilcoxon Rangsummentest Rechtsseitige Alternative: P kleiner als Q Verwerfungsregel Verwirf H 0 zugunsten von H 1, falls U(x, y) < u m,n;α mn 2 + mn(m + n + 1) 12 z α. p-wert p 1 Φ U(x, y) mn 2. mn(m+n+1) 12 75/86 Nichtparametrische Lagetests Wilcoxon Rangsummentest Wilcoxon Rangsummentest Beidseitige Alternative: P Q Verwerfungsregel Verwirf H 0 zugunsten von H 1, falls U(x, y) > u m,n;1 α/2 mn 2 + mn(m + n + 1) 12 z 1 α/2. oder U(x, y) < u m,n;α/2 mn mn(m + n + 1) 2 + z α/2. 12 p-wert p 2 1 Φ U(x, y) mn 2 mn(m+n+1) /86

39 Nichtparametrische Lagetests Wilcoxon Rangsummentest Beispiel: Hipparion Reloaded Die Daten Libycum Africanum /86 Nichtparametrische Lagetests Wilcoxon Rangsummentest Beispiel: Hipparion Reloaded Die Daten, U-Statistik Libycum: m = 38 Zähne, Africanum: n = 39 Zähne. Durch mühseliges Ausrechnen von Hand (oder mit dem Computer) erhält man U(Lib, Afr) = 990. Wir verwerfen die Nullhypothese Libycum=Africanum zum Niveau 1% zugunsten der beidseitigen Alternative, falls U > u 38,39;0.995 = 992 oder U < u 38,39;0.005 = 490 (Tabelle: A.8). Beides ist nicht der Fall, also wird die Nullhypothese zum Niveau 1% nicht verworfen. 78/86

40 Nichtparametrische Lagetests Wilcoxon Rangsummentest Beispiel: Hipparion Reloaded Die Daten, U-Statistik m = 38, n = 39, U(Lib, Afr) = 990. p-wert: p 2 1 Φ [ = 2 1 Φ U(Lib, Afr) mn 2 mn(m+n+1) 12 ( )] = 2(1 Φ(2.537)) 2( ) = /86 Nichtparametrische Lagetests Wilcoxon Rangsummentest Beispiel: Hipparion Reloaded Fazit Der zweiseitige Wilcoxon Rangsummentest verwirft die Hypothese, dass Hipparion Africanum und Libycum unterschiedliche mesiodistale Zahnlänge haben zum Niveau 1% nicht. Der p-wert beträgt p = /86

41 χ 2 -Test Das Grundproblem χ 2 -Test χ 2 -Test Wir beobachten ein Merkmal in endlich vielen Ausprägungen i = 1,..., k mit Häufigkeiten x 1,..., x k. Gesamtzahl n = x x k. Nach einer Theorie sollte der Anteil von Typ i gleich p i sein, also die absolute Häufigkeit etwa E i = p i n. Es soll ein Test zum Niveau α entwickelt werden, der diese Theorie prüft. 81/86 χ 2 -Test Teststatistik χ 2 -Test χ 2 -Test Beobachtungen x 1,..., x k. Gesamtzahl n = x x k. Erwartete Häufigkeiten E i = p i n. Gewichtete quadratische Abweichungen als Teststatistik T (x) = k i=1 (x i E i ) 2 E i. Ist χ 2 (x) zu groß, so wird die Hypothese verworfen. 82/86

42 χ 2 -Test Verwerfungsregel χ 2 -Test χ 2 -Test Unter H 0 ist T (x) chiquadrat-verteilt (χ 2 f ) mit f = k 1 Freiheitsgraden. Ist T (x) > χ 2 f ;1 α, so wird die Nullhypothese zum Niveau α verworfen. Der p-wert ist p = 1 χ 2 f (T (x)). 83/86 χ 2 -Test χ 2 -Test Beispiel: Hardy-Weinberg Gesetz Fragestellung In einer sehr großen Population tritt an einem Locus das Gen A mit Wahrscheinlichkeit p = 0.53 auf, das Gen a mit Wahrscheinlichkeit 1 p = Nach dem Hardy-Weinberg Gesetz sind die Anteile AA Aa aa p 2 = p(1 p) = (1 p) 2 = In einer Teilpopulation der Größe n soll die Gültigkeit des Hardy-Weinberg Gesetzes geprüft werden. 84/86

43 χ 2 -Test χ 2 -Test Beispiel: Hardy-Weinberg Gesetz Der Test Die Hypothese HW Gesetz gilt soll zum Niveau 1% geprüft werden. Es werden die Daten x AA, x Aa und x aa mit Gesamtumfang n = erhoben. Teststatistik T (x) = (x AA 2809 n) (x Aa 4982) (x aa 2209) Der Test verwirft, falls T (x) > χ 2;0.99 = 9.21 (Tabelle A.5). 85/86 χ 2 -Test χ 2 -Test Beispiel: Hardy-Weinberg Gesetz Der Test, Daten und Durchführung Teststatistik AA Aa aa ( n)2 T (x) = = ( )2 ( ) Der Test verwirft die Nullhypothese zum Niveau 1%, weil T (x) = > χ 2;0.99 = p-wert p(x) = 1 χ 2 2(33.187) = /86

12. Vergleich mehrerer Stichproben

12. Vergleich mehrerer Stichproben 12. Vergleich mehrerer Stichproben Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Häufig wollen wir verschiedene Populationen, Verfahren, usw. miteinander vergleichen. Beipiel: Vergleich

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Beispiel: Sonntagsfrage. Einführung in die induktive Statistik. Statistische Tests. Statistische Tests

Beispiel: Sonntagsfrage. Einführung in die induktive Statistik. Statistische Tests. Statistische Tests Beispiel: Sonntagsfrage Vier Wochen vor der österreichischen Nationalratswahl 1999 wurde 499 Haushalten die Sonntagsfrage gestellt: Falls nächsten Sonntag Wahlen wären, welche Partei würden Sie wählen?

Mehr

9. StatistischeTests. 9.1 Konzeption

9. StatistischeTests. 9.1 Konzeption 9. StatistischeTests 9.1 Konzeption Statistische Tests dienen zur Überprüfung von Hypothesen über einen Parameter der Grundgesamtheit (bei einem Ein-Stichproben-Test) oder über die Verteilung einer Zufallsvariablen

Mehr

6. METRISCHE UND KATEGORIALE MERKMALE

6. METRISCHE UND KATEGORIALE MERKMALE 6. METRISCHE UND KATEGORIALE MERKMALE wenn an einer Beobachtungseinheit eine (oder mehrere) metrische und eine (oder mehrere) kategoriale Variable(n) erhoben wurden Beispiel: Haushaltsarbeit von Teenagern

Mehr

Grundlagen von Versuchsmethodik und Datenanalyse

Grundlagen von Versuchsmethodik und Datenanalyse Grundlagen von Versuchsmethodik und Datenanalyse Der Anfang: Hypothesen über Ursache-Wirkungs-Zusammenhänge Ursache Wirkung Koffein verbessert Kurzzeitgedächtnis Gewaltfilme führen zu aggressivem Verhalten

Mehr

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel 16.11.01 MP1 - Grundlagen quantitativer Sozialforschung - (4) Datenanalyse 1 Gliederung Datenanalyse (inferenzstatistisch)

Mehr

Welch-Test. Welch-Test

Welch-Test. Welch-Test Welch-Test Welch-Test Test auf Lageunterschied zweier normalverteilter Grundgesamtheiten mit unbekannten Varianzen durch Vergleich der Mittelwerte zweier unabhängiger Zufallsstichproben. Beispiel Im Labor

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Fragestellungen der Schließenden Statistik

Fragestellungen der Schließenden Statistik Fragestellungen der Schließenden Statistik Bisher: Teil I: Beschreibende Statistik Zusammenfassung von an GesamtheitM N {e,,e N } erhobenem Datensatz x,,x N durch Häufigkeitsverteilung und Kennzahlen für

Mehr

Übungsaufgaben zu Kapitel 5. Aufgabe 101. Inhaltsverzeichnis:

Übungsaufgaben zu Kapitel 5. Aufgabe 101. Inhaltsverzeichnis: Inhaltsverzeichnis: Übungsaufgaben zu Kapitel 5... 1 Aufgabe 101... 1 Aufgabe 102... 2 Aufgabe 103... 2 Aufgabe 104... 2 Aufgabe 105... 3 Aufgabe 106... 3 Aufgabe 107... 3 Aufgabe 108... 4 Aufgabe 109...

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Varianzanalyse ANOVA

Varianzanalyse ANOVA Varianzanalyse ANOVA Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/23 Einfaktorielle Varianzanalyse (ANOVA) Bisher war man lediglich in der Lage, mit dem t-test einen Mittelwertsvergleich für

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

Schätzer (vgl. Kapitel 1): Stichprobenmittel X N. Stichprobenmedian X N

Schätzer (vgl. Kapitel 1): Stichprobenmittel X N. Stichprobenmedian X N Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 8.1 Schätzer für Lage- und Skalenparameter und Verteilungsmodellwahl Lageparameter (l(x + a) = l(x) + a): Erwartungswert EX Median von X

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Varianzanalyse Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr. Wolfgang

Mehr

Statistik Musterlösungen

Statistik Musterlösungen Statistik Musterlösungen Regina Tüchler & Achim Zeileis Institut für Statistik & Mathematik Wirtschaftsuniversität Wien 1 Grundbegriffe (1.23) Skript Reaktionen auf Videofilm. Aussagen M, E, P, S h(m)

Mehr

5.2. Nichtparametrische Tests. 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY

5.2. Nichtparametrische Tests. 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY 5.2. Nichtparametrische Tests 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY Voraussetzungen: - Die Verteilungen der beiden Grundgesamtheiten sollten eine ähnliche Form aufweisen. - Die

Mehr

2. Korrelation, lineare Regression und multiple Regression

2. Korrelation, lineare Regression und multiple Regression multiple 2.2 Lineare 2.2 Lineare 1 / 130 2.2 Lineare 2 / 130 2.1 Beispiel: Arbeitsmotivation Untersuchung zur Motivation am Arbeitsplatz in einem Chemie-Konzern 25 Personen werden durch Arbeitsplatz zufällig

Mehr

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Einfaktorielle Versuchspläne 27/40 Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Abweichung Einfach Differenz Helmert Wiederholt Vergleich Jede Gruppe mit Gesamtmittelwert

Mehr

Stichprobenauslegung. für stetige und binäre Datentypen

Stichprobenauslegung. für stetige und binäre Datentypen Stichprobenauslegung für stetige und binäre Datentypen Roadmap zu Stichproben Hypothese über das interessierende Merkmal aufstellen Stichprobe entnehmen Beobachtete Messwerte abbilden Schluss von der Beobachtung

Mehr

14.01.14 DAS THEMA: INFERENZSTATISTIK II. Standardfehler Konfidenzintervalle Signifikanztests. Standardfehler

14.01.14 DAS THEMA: INFERENZSTATISTIK II. Standardfehler Konfidenzintervalle Signifikanztests. Standardfehler DAS THEMA: INFERENZSTATISTIK II INFERENZSTATISTISCHE AUSSAGEN Standardfehler Konfidenzintervalle Signifikanztests Standardfehler der Standardfehler Interpretation Verwendung 1 ZUR WIEDERHOLUNG... Ausgangspunkt:

Mehr

8. Methoden der klassischen multivariaten Statistik

8. Methoden der klassischen multivariaten Statistik 8. Methoden der klassischen multivariaten Statistik 8.1. Darstellung von Daten Voraussetzungen auch in diesem Kapitel: Grundgesamtheit (Datenraum) Ω von Objekten (Fällen, Instanzen), denen J-Tupel von

Mehr

Einfache Statistiken in Excel

Einfache Statistiken in Excel Einfache Statistiken in Excel Dipl.-Volkswirtin Anna Miller Bergische Universität Wuppertal Schumpeter School of Business and Economics Lehrstuhl für Internationale Wirtschaft und Regionalökonomik Raum

Mehr

Prüfen von Mittelwertsunterschieden: t-test

Prüfen von Mittelwertsunterschieden: t-test Prüfen von Mittelwertsunterschieden: t-test Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) t-test

Mehr

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8 . Aufgabe: Für zwei verschiedene Aktien wurde der relative Kurszuwachs (in % beobachtet. Aus den jeweils 20 Quartaldaten ergaben sich die folgenden Box-Plots. Box-and-Whisker Plot Aktie Aktie 2-0,2 0,8,8

Mehr

Übungsserie Nr. 10 mit Lösungen

Übungsserie Nr. 10 mit Lösungen Übungsserie Nr. 10 mit Lösungen 1 Ein Untersuchungsdesign sieht einen multivariaten Vergleich einer Stichprobe von Frauen mit einer Stichprobe von Männern hinsichtlich der Merkmale X1, X2 und X3 vor (Codierung:

Mehr

Statistik im Bachelor-Studium der BWL und VWL

Statistik im Bachelor-Studium der BWL und VWL Max C. Wewel Statistik im Bachelor-Studium der BWL und VWL Methoden, Anwendung, Interpretation Mit herausnehmbarer Formelsammlung ein Imprint von Pearson Education München Boston San Francisco Harlow,

Mehr

Zusatzaufgaben zur Vorlesung Stochastik für Informatikstudenten

Zusatzaufgaben zur Vorlesung Stochastik für Informatikstudenten Zusatzaufgaben zur Vorlesung Stochastik für Informatikstudenten I.1 Erweitertes Urnenmodell mit Zurücklegen In einer Urne befinden sich ( N Kugeln, davon M 1 der Farbe F 1, M 2 der Farbe l ) F 2,..., M

Mehr

Statistische Methoden: Tests, Regression und multivariate Verfahren

Statistische Methoden: Tests, Regression und multivariate Verfahren (CM)²-Nachwuchsring, Workshop Statistik, 25.Januar 2013 Statistische Methoden: Tests, Regression und multivariate Verfahren Ralf Korn ((CM)², TU Kaiserslautern, Fraunhofer ITWM) 0. Einige Probleme aus

Mehr

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14.

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14. Aufgabe : einfacher T-Test Statistik bei einer Stichprobe Standardfehl Standardab er des Mittelwert weichung Mittelwertes 699 39.68 76.59 2.894 Test bei einer Sichprobe Testwert = 45.5 95% Konfidenzintervall

Mehr

Verteilungsanalyse. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/35

Verteilungsanalyse. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/35 Verteilungsanalyse Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/35 Datentypen Als Sammeln von Daten bezeichnet man in der Statistik das Aufzeichnen von Fakten. Erhobene Daten klassifziert man

Mehr

Statistische Analyse von Ereigniszeiten

Statistische Analyse von Ereigniszeiten Statistische Analyse von Survival Analysis VO Biostatistik im WS 2006/2007 1 2 3 : Leukemiedaten (unzensiert) 33 Patienten mit Leukemie; Zielvariable Überlebenszeit. Alle Patienten verstorben und Überlebenszeit

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

Univariate/ multivariate Ansätze. Klaus D. Kubinger. Test- und Beratungsstelle. Effektgrößen

Univariate/ multivariate Ansätze. Klaus D. Kubinger. Test- und Beratungsstelle. Effektgrößen Univariate/ multivariate Ansätze Klaus D. Kubinger Effektgrößen Rasch, D. & Kubinger, K.D. (2006). Statistik für das Psychologiestudium Mit Softwareunter-stützung zur Planung und Auswertung von Untersuchungen

Mehr

5 Statistische Testverfahren

5 Statistische Testverfahren 70 5 Statistische Testverfahren 5.1 Grundlegende Definitionen und Binomialtest Beispiel 5.1.1: (Fortsetzung von Beispiel 4.2.15) Wir nehmen an, dass das Medikament als wenig bedenklich eingestuft werden

Mehr

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur.

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur. Statistik Grundlagen Charakterisierung von Verteilungen Einführung Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsverteilungen Schätzen und Testen Korrelation Regression Einführung Die Analyse und modellhafte

Mehr

Abhängigkeit zweier Merkmale

Abhängigkeit zweier Merkmale Abhängigkeit zweier Merkmale Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/33 Allgemeine Situation Neben der Untersuchung auf Unterschiede zwischen zwei oder mehreren Untersuchungsgruppen hinsichtlich

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

29. Mai 2006. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt.

29. Mai 2006. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt. L. Fahrmeir, C. Belitz Department für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik 29. Mai 2006 Hinweise:

Mehr

Multivariate Statistik

Multivariate Statistik Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)

Mehr

8. Februar 2007. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt.

8. Februar 2007. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt. L. Fahrmeir, C. Belitz Department für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik 8. Februar 2007 Hinweise:

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen.

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen. Modul G.1 WS 07/08: Statistik 17.01.2008 1 Wiederholung Kovarianz und Korrelation Kovarianz = Maß für den linearen Zusammenhang zwischen zwei Variablen x und y Korrelation Die Korrelation ist ein standardisiertes

Mehr

Verteilungsanalyse. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/31

Verteilungsanalyse. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/31 Verteilungsanalyse Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/31 Datentypen Als Sammeln von Daten bezeichnet man in der Statistik das Aufzeichnen von Fakten. Erhobene Daten klassifziert man

Mehr

Probeklausur (1) Biostatistische Verfahren

Probeklausur (1) Biostatistische Verfahren Ernst-Abbe-Hochschule Jena FB Grundlagenwissenschaften Probeklausur (1) Biostatistische Verfahren Tag der Prüfung Studiengang Name: Matrikel-Nr.: Bearbeitungszeit 90 min Hilfsmittel Formelsammlung, auch

Mehr

25. Januar 2010. Ruhr-Universität Bochum. Methodenlehre III, WS 2009/2010. Prof. Dr. Holger Dette. 4. Multivariate Mittelwertvergleiche

25. Januar 2010. Ruhr-Universität Bochum. Methodenlehre III, WS 2009/2010. Prof. Dr. Holger Dette. 4. Multivariate Mittelwertvergleiche Ruhr-Universität Bochum 25. Januar 2010 1 / 75 2 / 75 4.1 Beispiel: Vergleich von verschiedenen Unterrichtsmethoden Zwei Zufallsstichproben (A und B) mit je 10 Schülern und 8 Schülern Gruppe A wird nach

Mehr

Seminar Text- und Datamining Datamining-Grundlagen

Seminar Text- und Datamining Datamining-Grundlagen Seminar Text- und Datamining Datamining-Grundlagen Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 23.05.2013 Gliederung 1 Klassifikationsprobleme 2 Evaluation

Mehr

6 Test von statistischen Hypothesen Empirische Wissenschaften arbeiten experimentell und stellen aufgrund von Beobachtungen Hypothesen und Theorien auf. Diese Hypothesen sind vereinfachte Modelle der Wirklichkeit.

Mehr

T-TEST BEI EINER STICHPROBE:

T-TEST BEI EINER STICHPROBE: Kapitel 19 T-Test Mit Hilfe der T-TEST-Prozeduren werden Aussagen über Mittelwerte getroffen. Dabei wird versucht, aus den Beobachtungen einer Stichprobe Rückschlüsse auf die Grundgesamtheit zu ziehen.

Mehr

$ % + 0 sonst. " p für X =1 $

$ % + 0 sonst.  p für X =1 $ 31 617 Spezielle Verteilungen 6171 Bernoulli Verteilung Wir beschreiben zunächst drei diskrete Verteilungen und beginnen mit einem Zufallsexperiment, indem wir uns für das Eintreffen eines bestimmten Ereignisses

Mehr

Korrelation - Regression. Berghold, IMI

Korrelation - Regression. Berghold, IMI Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines

Mehr

Mathematik IV: Statistik. für D-UWIS, D-ERDW, D-USYS und D-HEST SS14

Mathematik IV: Statistik. für D-UWIS, D-ERDW, D-USYS und D-HEST SS14 Mathematik IV: Statistik für D-UWIS, D-ERDW, D-USYS und D-HEST SS14 Hygienische Reiniger Wissenschaftliche Studie: 10 000 Reinigungsversuche, 6 Fälle mit mehr als 1 Bakterien Stimmt s jetzt oder was? Binomialtest:

Mehr

Binäre abhängige Variablen

Binäre abhängige Variablen Binäre abhängige Variablen Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Einführung Oft wollen wir qualitative Variablen

Mehr

Datenanalyse und Statistik

Datenanalyse und Statistik Datenanalyse und Statistik p. 1/44 Datenanalyse und Statistik Vorlesung 2 (Graphik I) K.Gerald van den Boogaart http://www.stat.boogaart.de Datenanalyse und Statistik p. 2/44 Daten Schätzung Test Mathe

Mehr

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero?

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Manche sagen: Ja, manche sagen: Nein Wie soll man das objektiv feststellen? Kann man Geschmack objektiv messen? - Geschmack ist subjektiv

Mehr

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18 3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen

Mehr

Tutorial: Homogenitätstest

Tutorial: Homogenitätstest Tutorial: Homogenitätstest Eine Bank möchte die Kreditwürdigkeit potenzieller Kreditnehmer abschätzen. Einerseits lebt die Bank ja von der Vergabe von Krediten, andererseits verursachen Problemkredite

Mehr

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1 Inhaltsverzeichnis Regressionsanalyse... 2 Lernhinweise... 2 Einführung... 2 Theorie (1-8)... 2 1. Allgemeine Beziehungen... 3 2. 'Best Fit'... 3 3. 'Ordinary Least Squares'... 4 4. Formel der Regressionskoeffizienten...

Mehr

Empirische Softwaretechnik. Experimente über Zusicherungen. Entwurf durch Vertrag. Übersicht

Empirische Softwaretechnik. Experimente über Zusicherungen. Entwurf durch Vertrag. Übersicht Empirische Softwaretechnik Prof. Dr. Walter F. Tichy Dr. Frank Padberg Experimente über Zusicherungen Sommersemester 2007 2 Übersicht Einführung Programmieren mit Vertrag 2 Experimente über die Nützlichkeit

Mehr

Stochastik Abitur 2009 Stochastik

Stochastik Abitur 2009 Stochastik Abitur 2009 Stochastik Beilage ea (erhöhtes Anforderungsniveau) ga (grundlegendes Anforderungsniveau) ISBN 978-3-8120-0108-3 und ISBN 978-3-8120-0223-3 1 Aufgabe 2 (ea) Rauchen ist das größte vermeidbare

Mehr

Nichtparametrische Datenanalyse

Nichtparametrische Datenanalyse Statistik und ihre Anwendungen Nichtparametrische Datenanalyse Unverbundene Stichproben von Edgar Brunner, Ullrich Munzel 1. Auflage Nichtparametrische Datenanalyse Brunner / Munzel schnell und portofrei

Mehr

werden können. Wenn der Benutzer zudem eine konkrete Differenz mit praktischen Konsequenzen angibt, berechnet der Assistent den Stichprobenumfang,

werden können. Wenn der Benutzer zudem eine konkrete Differenz mit praktischen Konsequenzen angibt, berechnet der Assistent den Stichprobenumfang, Dieses White Paper ist Teil einer Reihe von Veröffentlichungen, welche die Forschungsarbeiten der Minitab-Statistiker erläutern, in deren Rahmen die im Assistenten der Minitab 17 Statistical Software verwendeten

Mehr

Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse

Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse Univariate Varianz- und Kovarianzanlyse, Multivariate Varianzanalyse und Varianzanalyse mit Messwiederholung finden sich unter

Mehr

Lineare Modelle in R: Einweg-Varianzanalyse

Lineare Modelle in R: Einweg-Varianzanalyse Lineare Modelle in R: Einweg-Varianzanalyse Achim Zeileis 2009-02-20 1 Datenaufbereitung Wie schon in der Vorlesung wollen wir hier zur Illustration der Einweg-Analyse die logarithmierten Ausgaben der

Mehr

Auswertung und Darstellung wissenschaftlicher Daten (1)

Auswertung und Darstellung wissenschaftlicher Daten (1) Auswertung und Darstellung wissenschaftlicher Daten () Mag. Dr. Andrea Payrhuber Zwei Schritte der Auswertung. Deskriptive Darstellung aller Daten 2. analytische Darstellung (Gruppenvergleiche) SPSS-Andrea

Mehr

Messgeräte: Mess-System-Analyse und Messmittelfähigkeit

Messgeräte: Mess-System-Analyse und Messmittelfähigkeit Messgeräte: Mess-System-Analyse und Messmittelfähigkeit Andreas Berlin 14. Juli 2009 Bachelor-Seminar: Messen und Statistik Inhalt: 1 Aspekte einer Messung 2 Mess-System-Analyse 2.1 ANOVA-Methode 2.2 Maße

Mehr

Kapitel 7: Varianzanalyse mit Messwiederholung

Kapitel 7: Varianzanalyse mit Messwiederholung Kapitel 7: Varianzanalyse mit Messwiederholung Durchführung einer einfaktoriellen Varianzanalyse mit Messwiederholung 1 Durchführung einer zweifaktoriellen Varianzanalyse mit Messwiederholung auf einem

Mehr

Diskriminanzanalyse Beispiel

Diskriminanzanalyse Beispiel Diskriminanzanalyse Ziel bei der Diskriminanzanalyse ist die Analyse von Gruppenunterschieden, d. h. der Untersuchung von zwei oder mehr Gruppen hinsichtlich einer Vielzahl von Variablen. Diese Methode

Mehr

Probeklausur Zeitreihenökonometrie (Sommersemester 2014) 1

Probeklausur Zeitreihenökonometrie (Sommersemester 2014) 1 Probeklausur Zeitreihenökonometrie (Sommersemester 2014) 1 Aufgabe 1: Betrachtet wird folgendes Modell zur Erklärung des Managergehalts salary durch den Umsatz sales, die Eigenkapitalrendite roe und die

Mehr

Messsystemanalyse (MSA)

Messsystemanalyse (MSA) Messsystemanalyse (MSA) Inhaltsverzeichnis Ursachen & Auswirkungen von Messabweichungen Qualifikations- und Fähigkeitsnachweise Vorteile einer Fähigkeitsuntersuchung Anforderungen an das Messsystem Genauigkeit

Mehr

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen 4. Datenanalyse und Modellbildung Deskriptive Statistik 2-1 2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen Für die Auswertung einer Messreihe, die in Form

Mehr

Data Mining und Statistik: Gemeinsamkeiten und Unterschiede

Data Mining und Statistik: Gemeinsamkeiten und Unterschiede Universität Ulm Seminararbeit zum Thema Data Mining und Statistik: Gemeinsamkeiten und Unterschiede vorgelegt von: Daniel Meschenmoser betreut von: Dr. Tomas Hrycej Dr. Matthias Grabert Ulm, im Februar

Mehr

Grundbegriffe der Statistik

Grundbegriffe der Statistik Grundbegriffe der Statistik Quelle: Statistica (2003). Auszug aus dem elektronischen Handbuch des Statistikprogramms Statistica 6.1. Tula, OK: StatSoft, Inc. 1 Inhaltsverzeichnis Überblick über Grundbegriffe

Mehr

Webergänzung zu Kapitel 10

Webergänzung zu Kapitel 10 Webergänzung zu Kapitel 10 10.1.4 Varianzanalyse (ANOVA: analysis of variance) Im Kapitel 10 haben wir uns hauptsächlich mit Forschungsbeispielen beschäftigt, die nur zwei Ergebnissätze hatten (entweder

Mehr

Varianzanalyse * (1) Varianzanalyse (2)

Varianzanalyse * (1) Varianzanalyse (2) Varianzanalyse * (1) Einfaktorielle Varianzanalyse (I) Die Varianzanalyse (ANOVA = ANalysis Of VAriance) wird benutzt, um Unterschiede zwischen Mittelwerten von drei oder mehr Stichproben auf Signifikanz

Mehr

Varianzanalytische Methoden Zweifaktorielle Versuchspläne 4/13. Durchführung in SPSS (File Trait Angst.sav)

Varianzanalytische Methoden Zweifaktorielle Versuchspläne 4/13. Durchführung in SPSS (File Trait Angst.sav) Zweifaktorielle Versuchspläne 4/13 Durchführung in SPSS (File Trait Angst.sav) Analysieren > Allgemeines Lineares Modell > Univariat Zweifaktorielle Versuchspläne 5/13 Haupteffekte Geschlecht und Gruppe

Mehr

Softwaretechnik. Prof. Dr. Rainer Koschke. Fachbereich Mathematik und Informatik Arbeitsgruppe Softwaretechnik Universität Bremen

Softwaretechnik. Prof. Dr. Rainer Koschke. Fachbereich Mathematik und Informatik Arbeitsgruppe Softwaretechnik Universität Bremen Softwaretechnik Prof. Dr. Rainer Koschke Fachbereich Mathematik und Informatik Arbeitsgruppe Softwaretechnik Universität Bremen Wintersemester 2013/14 Überblick I Statistik bei kontrollierten Experimenten

Mehr

Mini-Skript Wahrscheinlichkeitstheorie und Statistik

Mini-Skript Wahrscheinlichkeitstheorie und Statistik Mini-Skript Wahrscheinlichkeitstheorie und Statistik Peter Bühlmann Georg Grafendorfer, Lukas Meier Inhaltsverzeichnis 1 Der Begriff der Wahrscheinlichkeit 1 1.1 Rechenregeln für Wahrscheinlichkeiten........................

Mehr

Multinomiale logistische Regression

Multinomiale logistische Regression Multinomiale logistische Regression Die multinomiale logistische Regression dient zur Schätzung von Gruppenzugehörigkeiten bzw. einer entsprechenden Wahrscheinlichkeit hierfür, wobei als abhänginge Variable

Mehr

Evaluation. Caroline Sporleder. Computational Linguistics Universität des Saarlandes. Sommersemester 2011 26.05.2011

Evaluation. Caroline Sporleder. Computational Linguistics Universität des Saarlandes. Sommersemester 2011 26.05.2011 Evaluation Caroline Sporleder Computational Linguistics Universität des Saarlandes Sommersemester 2011 26.05.2011 Caroline Sporleder Evaluation (1) Datensets Caroline Sporleder Evaluation (2) Warum evaluieren?

Mehr

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression Institut für Soziologie Methoden 2 Regressionsanalyse I: Einfache lineare Regression Programm Anwendungsbereich Vorgehensweise Interpretation Annahmen Zusammenfassung Übungsaufgabe Literatur # 2 Anwendungsbereich

Mehr

Prozessfähigkeit bewerten Kennzahlen für normalverteilte und nicht-normalverteilte Merkmale

Prozessfähigkeit bewerten Kennzahlen für normalverteilte und nicht-normalverteilte Merkmale Prozessfähigkeit bewerten Kennzahlen für normalverteilte und nicht-normalverteilte Merkmale Barbara Bredner 15.01.2015 Inhaltsverzeichnis 2 Inhaltsverzeichnis Abbildungsverzeichnis 3 Tabellenverzeichnis

Mehr

Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip. KLAUSUR Statistik B

Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip. KLAUSUR Statistik B Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip Sommersemester 2010 KLAUSUR Statistik B Hinweise zur Bearbeitung: Bei allen Teilaufgaben

Mehr

Häufigkeitstabellen. Balken- oder Kreisdiagramme. kritischer Wert für χ2-test. Kontingenztafeln

Häufigkeitstabellen. Balken- oder Kreisdiagramme. kritischer Wert für χ2-test. Kontingenztafeln Häufigkeitstabellen Menüpunkt Data PivotTable Report (bzw. entsprechendes Icon): wähle Data Range (Zellen, die die Daten enthalten + Zelle mit Variablenname) wähle kategoriale Variable für Spalten- oder

Mehr

Anhang A: Fragebögen und sonstige Unterlagen

Anhang A: Fragebögen und sonstige Unterlagen Anhang Anhang A: Fragebögen und sonstige Unterlagen A.: Flyer zur Probandenrekrutierung 46 A.: Fragebogen zur Meditationserfahrung 47 48 A.3: Fragebogen Angaben zur Person 49 5 5 A.4: Termin- und Einladungsschreiben

Mehr

1. Biometrische Planung

1. Biometrische Planung 1. Biometrische Planung Die biometrische Planung ist Teil der Studienplanung für wissenschaftliche Studien, in denen eine statistische Bewertung von Daten erfolgen soll. Sie stellt alle erforderlichen

Mehr

Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik

Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik Ludwig Fahrmeir, Nora Fenske Institut für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik 29. März 21 Hinweise:

Mehr

Risiko und Symmetrie. Prof. Dr. Andrea Wirth

Risiko und Symmetrie. Prof. Dr. Andrea Wirth Risiko und Symmetrie Prof. Dr. Andrea Wirth Gliederung 1. Einleitung Was ist eigentlich Risiko? 2. Risiko Mathematische Grundlagen 3. Anwendungsbeispiele Wo genau liegt der Schmerz des Risikos? 4. Sie

Mehr

Abschlussklausur (60 Minuten), 15. Juli 2014

Abschlussklausur (60 Minuten), 15. Juli 2014 Prof. Dr. Amelie Wuppermann Volkswirtschaftliche Fakultät Universität München Sommersemester 2014 Empirische Ökonomie 1 Abschlussklausur (60 Minuten), 15. Juli 2014 Bearbeitungshinweise Die Bearbeitungszeit

Mehr

STATISTIK 1 - BEGLEITVERANSTALTUNG

STATISTIK 1 - BEGLEITVERANSTALTUNG STATISTIK 1 - BEGLEITVERANSTALTUNG VORLESUNG 4 ALPHA / BETA-FEHLER 12.12.2014 1 12.12.2014 1 Mona Ulrich, Psychologie (M.Sc.) AGENDA 01 STATISTISCHE HYPOTHESEN 02 POPULATION / STICHPROBE 03 ALPHA/ BETA-FEHLER

Mehr

Hinweise zur Fehlerrechnung im Grundpraktikum der Physik

Hinweise zur Fehlerrechnung im Grundpraktikum der Physik Grundpraktikum der Physik Hinweise zur Fehlerrechnung im Grundpraktikum der Physik Sascha Hankele sascha@hankele.com Patrick Paul patrick.paul@uni-ulm.de 11. Mai 2011 Inhaltsverzeichnis 1 Einführung und

Mehr

Sozialwissenschaftliche Methoden und Statistik I

Sozialwissenschaftliche Methoden und Statistik I Sozialwissenschaftliche Methoden und Statistik I Universität Duisburg Essen Standort Duisburg Integrierter Diplomstudiengang Sozialwissenschaften Skript zum SMS I Tutorium Von Mark Lutter Stand: April

Mehr

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678 Lösungsvorschläge zu Blatt 8 X binomialverteilt mit p = 0. und n = 10: a PX = = 10 q = 1 p = 0.8 0. 0.8 10 = 0, 1,..., 10 PX = PX = 0 + PX = 1 + PX = 10 10 = 0. 0 0.8 10 + 0. 1 0.8 9 + 0 1 10 = 0.8 8 [

Mehr

SFB 833 Bedeutungskonstitution. Kompaktkurs. Datenanalyse. Projekt Z2 Tübingen, Mittwoch, 18. und 20. März 2015

SFB 833 Bedeutungskonstitution. Kompaktkurs. Datenanalyse. Projekt Z2 Tübingen, Mittwoch, 18. und 20. März 2015 SFB 833 Bedeutungskonstitution Kompaktkurs Datenanalyse Projekt Z2 Tübingen, Mittwoch, 18. und 20. März 2015 Messen und Skalen Relativ (Relationensystem): Menge A von Objekten und eine oder mehrere Relationen

Mehr

PRAKTIKUM Experimentelle Prozeßanalyse 2. VERSUCH AS-PA-2 "Methoden der Modellbildung statischer Systeme" Teil 2 (für ausgewählte Masterstudiengänge)

PRAKTIKUM Experimentelle Prozeßanalyse 2. VERSUCH AS-PA-2 Methoden der Modellbildung statischer Systeme Teil 2 (für ausgewählte Masterstudiengänge) FACHGEBIET Systemanalyse PRAKTIKUM Experimentelle Prozeßanalyse 2 VERSUCH AS-PA-2 "Methoden der Modellbildung statischer Systeme" Teil 2 (für ausgewählte Masterstudiengänge) Verantw. Hochschullehrer: Prof.

Mehr

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table("c:\\compaufg\\kredit.

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table(c:\\compaufg\\kredit. Lösung 16.3 Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit

Mehr

Einsatzmöglichkeiten von Statistik im Ingenieurwesen

Einsatzmöglichkeiten von Statistik im Ingenieurwesen Einsatzmöglichkeiten von Statistik im Ingenieurwesen Vortrag des Monats 07.03.2006 Inhalt Qualitätsprogramme am Beispiel Six Sigma 1 Qualitätsprogramme am Beispiel Six Sigma Kurzbeschreibung von Six Sigma

Mehr

V A R I A N Z A N A L Y S E

V A R I A N Z A N A L Y S E V A R I A N Z A N A L Y S E Ziel / Funktion: statistische Beurteilung des Einflusses von nominal skalierten (kategorialen) Faktoren auf intervallskalierte abhängige Variablen Vorteil: die Wirkung von mehreren,

Mehr