Die Monte-Carlo-Methode mit Pseudo- und Quasi-Zufallszahlen

Größe: px
Ab Seite anzeigen:

Download "Die Monte-Carlo-Methode mit Pseudo- und Quasi-Zufallszahlen"

Transkript

1 Die Monte-Carlo-Methode mit Pseudo- und Quasi-Zufallszahlen Marco A. Harrendorf Hauptseminar Methoden der experimentellen Teilchenphysik WS 2011/2012 Karlsruhe Institut für Technologie (KIT)

2 Inhalt 1 Einführung und Motivation 2 Wahrscheinlichkeitstheorie 3 Generierung von Zufallszahlen 4 Pseudo-Zufallszahlen 5 Quasi-Zufallszahlen 6 Anwendungsbeispiele zur Teilchenphysik Marco A. Harrendorf (KIT) Monte-Carlo-Methode / 26

3 Herkunft des Namens (a) Spielbank Monte-Carlo (b) Roulette-Tisch [2] Marco A. Harrendorf (KIT) Monte-Carlo-Methode / 26

4 Überblick über die Monte-Carlo-Methode Denition: Monte-Carlo-Methode Numerische Methode zur Lösung mathematischer Probleme mit Hilfe der Modellierung von Zufallsgröÿen Erste Verwirklichung 1727: Bestimmung von π durch Georges-Louis Leclerc Comte de Buon Erste theoretische Abhandlung 1949: The Monte Carlo method, Metropolis N., Ulam S., J. Amer. statistical Assoc. 44 (1949), Marco A. Harrendorf (KIT) Monte-Carlo-Methode / 26

5 Verwendungsgebiete der Monte-Carlo-Methode Integration Simulation Teilchen- und Neutronenphysik Bedienungstheorie Spieltheorie Ökonometrie Festkörperphysik... Marco A. Harrendorf (KIT) Monte-Carlo-Methode / 26

6 Besonderheiten der Monte-Carlo-Methode 1 Einfache Struktur des Rechenalgorithmus Marco A. Harrendorf (KIT) Monte-Carlo-Methode / 26

7 Besonderheiten der Monte-Carlo-Methode 1 Einfache Struktur des Rechenalgorithmus Realisierung eines zufälligen Versuchs Marco A. Harrendorf (KIT) Monte-Carlo-Methode / 26

8 Besonderheiten der Monte-Carlo-Methode 1 Einfache Struktur des Rechenalgorithmus Realisierung eines zufälligen Versuchs N-malige Widerholung des Versuchs Marco A. Harrendorf (KIT) Monte-Carlo-Methode / 26

9 Besonderheiten der Monte-Carlo-Methode 1 Einfache Struktur des Rechenalgorithmus Realisierung eines zufälligen Versuchs N-malige Widerholung des Versuchs Statistische Auswertung Marco A. Harrendorf (KIT) Monte-Carlo-Methode / 26

10 Besonderheiten der Monte-Carlo-Methode 1 Einfache Struktur des Rechenalgorithmus Realisierung eines zufälligen Versuchs N-malige Widerholung des Versuchs Statistische Auswertung 2 Rechengenauigkeit entsprechend dem Gesetz der groÿen Zahlen Marco A. Harrendorf (KIT) Monte-Carlo-Methode / 26

11 Beispiel: Bestimmung von π 4 Eigenes Simulationsprogramm abrufbar unter Benutzername: HS Passwort: montecarlo Abbildung: Skizze zur Bestimmung von π 4 [4] Marco A. Harrendorf (KIT) Monte-Carlo-Methode / 26

12 Wahrscheinlichkeitstheorie 1 Einführung 2 Wahrscheinlichkeitstheorie Marco A. Harrendorf (KIT) Monte-Carlo-Methode / 26

13 Wiederholung: Wahrscheinlichkeitstheorie Zufallsgröÿe: Diskreter Wert: Zugeordnete Wahrscheinlichkeitsdichte: Wahrscheinlichkeitsverteilung von ξ: Wahrscheinlichkeit für ξ = x i : Erwartungswert einer Zufallsgröÿe: Dispersion einer Zufallsgröÿe: ξ = ( x 1 x 2... x n ) p 1 p 2... p n ξ x i p i P{ξ = x i } = p i Eξ = n i=1 x ip i Dξ = E ((ξ Eξ) 2) Dξ = E ( ξ 2) (Eξ) 2 Marco A. Harrendorf (KIT) Monte-Carlo-Methode / 26

14 Normalverteilte Zufallsgröÿen Verteilungsdichte einer normalverteilten Zufallsgröÿe ξ (, ): p(x) = 1 (x a)2 e 2σ 2 2πσ Eξ = a, Dξ = σ 2 Bestimmung des Wahrscheinlichkeitsintegrals: P { x < ξ < x } = 1 2πσ x x exp Mit Wahl x = (a 3σ) und x = (a + 3σ) folgt: { } (x a)2 2σ 2 dx P {(a 3σ) < ξ < (a + 3σ)} = Marco A. Harrendorf (KIT) Monte-Carlo-Methode / 26

15 Der zentrale Grenzwertsatz der Wahrscheinlichkeitsrechnung Betrachtung N gleichartig verteilter Zufallsgröÿen ξ 1, ξ 2,..., ξ N. Erwartungswert m und Dispersion b: Eξ 1 = Eξ 2 =... = Eξ N = m Dξ 1 = Dξ 2 =... = Dξ N = b 2 Aus der Summe dieser N Zufallsgröÿen ϱ N = ξ 1 + ξ ξ N folgt Eϱ N = E (ξ 1 + ξ ξ N ) = Nm Dϱ N = D (ξ 1 + ξ ξ N ) = Nb 2 Marco A. Harrendorf (KIT) Monte-Carlo-Methode / 26

16 Der zentrale Grenzwertsatz der Wahrscheinlichkeitsrechnung Betrachte normalverteilte Zufallsgröÿe χ mit Parametern: a = Nm σ 2 = Nb 2 Behauptung des zentralen Grenzwertsatzes für ein beliebiges Interval (x, x ): P { x < ϱ N < x } = x ϱ N asymptotisch normalverteilt für groÿes N x pχ N (x)dx Marco A. Harrendorf (KIT) Monte-Carlo-Methode / 26

17 Das Gesetz der groÿen Zahlen Aus P {(a 3σ) < ξ < (a + 3σ)} = folgt mit a = Nm und σ 2 = Nb 2 : { P (Nm 3b N) < ξ < (Nm + } 3b N) { P (m 3b ) < ξ < (m + 3b } ) N N P 1 N ξ j m N < 3b N j = 1 Marco A. Harrendorf (KIT) Monte-Carlo-Methode / 26

18 Generierung von Zufallszahlen 1 Einführung 2 Wahrscheinlichkeitstheorie 3 Generierung von Zufallszahlen Marco A. Harrendorf (KIT) Monte-Carlo-Methode / 26

19 Generierung von Zufallszahlen auf einem Computer Tabellenwerke Zufallszahlengeneratoren Pseudo-Zufallszahlen Quasi-Zufallszahlen Marco A. Harrendorf (KIT) Monte-Carlo-Methode / 26

20 Charakteristiken guter Zufallsgeneratoren Aperiodizität Equidistribution Test Serial Test Runs-up and Runs-down Test Marco A. Harrendorf (KIT) Monte-Carlo-Methode / 26

21 Pseudo-Zufallszahlen 1 Einführung 2 Wahrscheinlichkeitstheorie 3 Generierung von Zufallszahlen 4 Pseudo-Zufallszahlen Marco A. Harrendorf (KIT) Monte-Carlo-Methode / 26

22 Methode der mittleren Quadrate Wahl von ξ 0 = als Startwert (engl. Seed). ξ0 2 = ξ 1 = ξ1 2 = ξ 2 = ξ2 2 = ξ 3 = ξ3 2 = ξ 4 = ξ4 2 = ξ 5 = Marco A. Harrendorf (KIT) Monte-Carlo-Methode / 26

23 Kongruenzmethode (Methode der Reste) Wahl von s 0 = 1 als Seed. Berechnungsformel für weitere Seeds: s k+1 = ( 5 17 s k ) % ( 2 40 ) Berechnungsformel für Zufallszahlen: ξ k = 2 40 s k s 1 = ξ 1 = s 2 = ξ 2 = s 3 = ξ 3 = s 4 = ξ 4 = Marco A. Harrendorf (KIT) Monte-Carlo-Methode / 26

24 Quasi-Zufallszahlen 1 Einführung 2 Wahrscheinlichkeitstheorie 3 Generierung von Zufallszahlen 4 Pseudo-Zufallszahlen 5 Quasi-Zufallszahlen Marco A. Harrendorf (KIT) Monte-Carlo-Methode / 26

25 Quasi-Zufallszahlen (a) Pseudo-Zufallszahlen [1] (b) Quasi-Zufallszahlen [1] Abbildung: Vergleich der Häufung von Zufallszahlen Marco A. Harrendorf (KIT) Monte-Carlo-Methode / 26

26 Die Koksma-Hlawka-Ungleichung Approximation eines Integrals mit Hilfe deterministischer Zahlenfolgen y 1,..., y N : [x,x ] d f ( u)d u = 1 N N n = 1 f ( y N ) Fehlerabschätzung durch Koksma-Hlawka-Ungleichung 1 N f ( y N ) f ( u)d u N [x,x ] V (f )D N d mit n = 1 Variation der Funktion: V (f ( ) Diskrepanz der Zahlenfolge: D N (log N) d O N Marco A. Harrendorf (KIT) Monte-Carlo-Methode / 26

27 Beispiel für Verwendung der Quasi-Zufallszahlen Gegeben: Funktion f ( y N ) mit Ef ( y N ) = 1: f ( y N ) = 1 10! (1 + 2y 1) (2 + 2y 2 )... (9 + 2y 9 ) Wahrscheinlicher Fehler für Näherung mit Pseudo-Zufallszahlen [3]: P = 0.3 N Wahrscheinlicher Fehler für Näherung mit Quasi-Zufallszahlen [3]: Q = 2 N Marco A. Harrendorf (KIT) Monte-Carlo-Methode / 26

28 Anwendungsbeispiele zur Teilchenphysik 1 Einführung 2 Wahrscheinlichkeitstheorie 3 Generierung von Zufallszahlen 4 Pseudo-Zufallszahlen 5 Quasi-Zufallszahlen 6 Anwendungsbeispiele zur Teilchenphysik Marco A. Harrendorf (KIT) Monte-Carlo-Methode / 26

29 Anwendungsbeispiel: Neutronendurchgang durch eine Platte Abbildung: Skizze zur Simulation des Neutronendurchgangs durch eine Platte Marco A. Harrendorf (KIT) Monte-Carlo-Methode / 26

30 Auslosen der freien Weglänge Absorptionsquerschnitt: Σ C Streuquerschnitt: Σ S Gesamtwirkungsquerschnitt: Σ = Σ C + Σ S Weglänge: r = x 2 + y 2 Freie Weglänge eines Neutrons: λ Wahrscheinlichkeitsdichte für freie Weglänge: p(r) = Σe Σr Auslosen der freien Weglänge: ξ = λ 0 Σe Σr dr ξ = 1 e Σλ λ = 1 ln (1 ξ) Σ Wegen der Gleichverteilung folgt: λ = 1 Σ ln ξ Marco A. Harrendorf (KIT) Monte-Carlo-Methode / 26

31 Auslosen der Bewegungsrichtung Annahme: Alle Streurichtungen gleichwahrscheinlich Kosinus des Raumwinkels: Sinus des Raumwinkels: Auslosen des Kosinus: µ = cos φ ν = sin φ µ = 2 ξ 1 Bestimmung des Sinus: Wegen 1 = sin 2 φ + cos 2 φ folgt: ν = ± 1 µ 2 Festlegung des Sinus-Vorzeichens durch weiteres Auslosen Marco A. Harrendorf (KIT) Monte-Carlo-Methode / 26

32 Berechnung der weiteren Neutronenbewegung Berechnung der nächsten x-position: x k+1 = x k + λ k µ k Berechnung der nächsten y-position: y k+1 = y k + λ k ν k Prüfen auf Durchdringung der Platte: x k+1 > x max? x k+1 < x min? y k+1 > y max? y k+1 < y min? Prüfen auf Absorption in der Platte durch erneutes Auslosen: ξ < Σ C Σ? Marco A. Harrendorf (KIT) Monte-Carlo-Methode / 26

33 Auswertung der Neutronensimulation Anzahl der simulierten Neutronen: N Anzahl der durchgedrungen Neutronen: N + Anzahl der reektierten Neutronen: N Anzahl der absorbierten Neutronen: N 0 Wahrscheinlichkeit für Durchdringung: Wahrscheinlichkeit für Reexion: p + N+ N p Wahrscheinlichkeit für Absorption: N N p 0 N0 N Marco A. Harrendorf (KIT) Monte-Carlo-Methode / 26

34 Programm zur Simulation des Neutronendurchgangs Eigenes Simulationsprogramm abrufbar unter Benutzername: HS Passwort: montecarlo Marco A. Harrendorf (KIT) Monte-Carlo-Methode / 26

35 Anwendungsbeispiel: GEANT4 GEometry And Tracking Version 4 Entwicklungsplattform zur Simulation von Strahlungsteilchen in Materie Entwicklung und Verwendung am CERN Marco A. Harrendorf (KIT) Monte-Carlo-Methode / 26

36 Vielen Dank für die Aufmerksamkeit Abbildung: Zufallszahlengenerator von xkcd [5] Marco A. Harrendorf (KIT) Monte-Carlo-Methode / 26

37 Quellenverzeichnis M.O. Distler: Statistik, Datenanalyse und Simulation, wwwa1.kph.uni-mainz.de/vorlesungen/ws07/statistik/kapitel2d.pdf, Abrufdatum: T. Lozano: A roulette wheel, Abrufdatum: I.M. Sobol: Die Monte-Carlo-Methode, Berlin, 1991 Springob: Statistische Berechnung von pi, Abrufdatum: xkcd: Random Number, Abrufdatum: Marco A. Harrendorf (KIT) Monte-Carlo-Methode / 26

Die Monte-Carlo-Methode mit Pseudound Quasi-Zufallszahlen

Die Monte-Carlo-Methode mit Pseudound Quasi-Zufallszahlen Hauptseminar Methoden der experimentellen Teilchenphysik WS 2011/2012 Die Monte-Carlo-Methode mit Pseudound Quasi-Zufallszahlen Marco A. Harrendorf Karlsruhe Institut für Technologie, Bachelor Physik Vortrag

Mehr

Monte Carlo Simulationen

Monte Carlo Simulationen Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt Stefan Wunsch 31. Mai 2014 INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK (IEKP) KIT Universität des Landes Baden-Württemberg und

Mehr

Hauptseminar. Monte-Carlo-Methoden, stochastische Schätzungen und deren Unsicherheit. Robert John 2.11.2011

Hauptseminar. Monte-Carlo-Methoden, stochastische Schätzungen und deren Unsicherheit. Robert John 2.11.2011 Hauptseminar Monte-Carlo-Methoden, stochastische Schätzungen und deren Unsicherheit Robert John 1 Inhalt Herkunft Stochastische Schätzung Monte-Carlo-Methode Varianzreduktion Zufallszahlen Anwendungsgebiete

Mehr

Monte-Carlo Simulation

Monte-Carlo Simulation Monte-Carlo Simulation Dolga Olena Otto-von-Guericke-Universität Fakultät für Informatik Seminar-Das virtuelle Labor Inhaltsverzeichnis Überblick Geschichte Anwendung -Bereiche -Spezielle Methoden Mathematische

Mehr

Monte-Carlo-Simulation

Monte-Carlo-Simulation Modellierung und Simulation Monte-Carlo-Simulation Universität Hamburg Johannes Schlundt 7. Januar 2013 Monte-Carlo-Simulation Johannes S. 1/31 Inhalt Motivation Geschichtliche Entwicklung Monte-Carlo-Simulation

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

Fotios Filis. Monte-Carlo-Simulation

Fotios Filis. Monte-Carlo-Simulation Fotios Filis Monte-Carlo-Simulation Monte-Carlo-Methoden??? Spielcasino gibt Namen Monte Carlo war namensgebend für diese Art von Verfahren: Erste Tabellen mit Zufallszahlen wurden durch Roulette-Spiel-Ergebnisse

Mehr

Monte-Carlo Simulation

Monte-Carlo Simulation Monte-Carlo Simulation Sehr häufig hängen wichtige Ergebnisse von unbekannten Werten wesentlich ab, für die man allerhöchstens statistische Daten hat oder für die man ein Modell der Wahrscheinlichkeitsrechnung

Mehr

Statistik. R. Frühwirth. Statistik. fru@hephy.oeaw.ac.at. VO 142.090 http://tinyurl.com/tu142090. Februar 2010. R. Frühwirth Statistik 1/536

Statistik. R. Frühwirth. Statistik. fru@hephy.oeaw.ac.at. VO 142.090 http://tinyurl.com/tu142090. Februar 2010. R. Frühwirth Statistik 1/536 fru@hephy.oeaw.ac.at VO 142.090 http://tinyurl.com/tu142090 Februar 2010 1/536 Übersicht über die Vorlesung Teil 1: Deskriptive Teil 2: Wahrscheinlichkeitsrechnung Teil 3: Zufallsvariable Teil 4: Parameterschätzung

Mehr

Simulation mit modernen Tools - runde und spitze Berechnung von π -

Simulation mit modernen Tools - runde und spitze Berechnung von π - Simulation mit modernen Tools - runde und spitze Berechnung von π - Prof. Dr. rer. nat. Stefan Ritter Fakultät EIT 7. April 01 Gliederung 1. Wozu Simulation?. Moderne Tools zur Simulation 1. Maple, Geogebra

Mehr

Monte Carlo Simulation (Grundlagen)

Monte Carlo Simulation (Grundlagen) Der Titel des vorliegenden Beitrages wird bei den meisten Lesern vermutlich Assoziationen mit Roulette oder Black Jack hervorrufen. Allerdings haben das heutige Thema und die Spieltische nur den Namen

Mehr

R ist freie Software und kann von der Website. www.r-project.org

R ist freie Software und kann von der Website. www.r-project.org R R ist freie Software und kann von der Website heruntergeladen werden. www.r-project.org Nach dem Herunterladen und der Installation von R kann man R durch Doppelklicken auf das R-Symbol starten. R wird

Mehr

Faktorisierung ganzer Zahlen mittels Pollards ρ-methode (1975)

Faktorisierung ganzer Zahlen mittels Pollards ρ-methode (1975) Dass das Problem, die Primzahlen von den zusammengesetzten zu unterscheiden und letztere in ihre Primfaktoren zu zerlegen zu den wichtigsten und nützlichsten der ganzen Arithmetik gehört und den Fleiss

Mehr

Informatik für Schüler, Foliensatz 12 Pseudo-Zufallszahlen

Informatik für Schüler, Foliensatz 12 Pseudo-Zufallszahlen rof. G. Kemnitz Institut für Informatik, Technische Universität Clausthal 14. April 2010 1/14 Informatik für Schüler, Foliensatz 12 Pseudo-Zufallszahlen Prof. G. Kemnitz Institut für Informatik, Technische

Mehr

Monte Carlo Simulationen

Monte Carlo Simulationen Monte Carlo Simulationen Zahlreiche Vorgänge in der Natur werden durch stochastische Prozesse bestimmt. Beispiele: Diffusion Spin-Spin-Wechselwirkung (Magnetisierung eines Ferromagneten, Ising-Modell)

Mehr

Monte-Carlo- Simulation. Seminar zur Vorlesung Teilchendetektoren und Experiment an ELSA

Monte-Carlo- Simulation. Seminar zur Vorlesung Teilchendetektoren und Experiment an ELSA Monte-Carlo- Simulation Seminar zur Vorlesung Teilchendetektoren und Experiment an ELSA Übersicht Einleitung Simulation mit Geant4 generierte Daten Zusammenfassung 2 Simulation Mathematische Modellierung

Mehr

Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse

Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse Rechnernutzung in der Physik Teil 3 Statistische Methoden der Datenanalyse Karlsruher Institut für Technologie Ulrich Husemann Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie

Mehr

Seminar Finanzmathematik

Seminar Finanzmathematik Seminar Finanzmathematik Simulationen zur Black-Scholes Formel von Christian Schmitz Übersicht Zufallszahlen am Computer Optionspreis als Erwartungswert Aktienkurse simulieren Black-Scholes Formel Theorie

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

Die Bestimmung von Value-at-Risk-Werten mit Hilfe der Monte-Carlo-Simulation

Die Bestimmung von Value-at-Risk-Werten mit Hilfe der Monte-Carlo-Simulation Die Bestimmung von Value-at-Risk-Werten mit Hilfe der Monte-Carlo-Simulation Studiengang Informatik Jens Schiborowski 8. Januar 2009 Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik 1 Abstract

Mehr

ZUFALLSZAHLEN. WPG Informatik / Mathematik. BG/BRG Bad Ischl. A. Lindner

ZUFALLSZAHLEN. WPG Informatik / Mathematik. BG/BRG Bad Ischl. A. Lindner ZUFALLSZAHLEN WPG Informatik / Mathematik BG/BRG Bad Ischl A. Lindner 1 BEDEUTUNG VON ZUFALLSZAHLEN Beispiel: Computertip für Lotto in einer Trafik. Wie kann ein (elektronisches) Gerät, das nach einem

Mehr

Mathematik des Hybriden Monte-Carlo. Marcus Weber. Zuse Institute Berlin

Mathematik des Hybriden Monte-Carlo. Marcus Weber. Zuse Institute Berlin Mathematik des Hybriden Monte-Carlo Marcus Weber Zuse Institute Berlin Statistische Thermodynamik Ziel: Am Computer ein Ensemble samplen. Messung im Gleichgewicht (zeitunabhängige Verteilung π der Systemzustände

Mehr

Einführung in die Geostatistik (7) Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam.

Einführung in die Geostatistik (7) Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam. Einführung in die Geostatistik (7) Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam.de 1 Gliederung 7 Weitere Krigingverfahren 7.1 Simple-Kriging 7.2 Indikator-Kriging

Mehr

Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt

Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt Stefan Wunsch 31. Mai 014 Inhaltsverzeichnis Inhaltsverzeichnis 1 Was sind Monte Carlo Simulationen? 3 Zufallszahlen 3

Mehr

Einführung in Statistik und Messwertanalyse für Physiker

Einführung in Statistik und Messwertanalyse für Physiker Gerhard Böhm, Günter Zech Einführung in Statistik und Messwertanalyse für Physiker SUB Göttingen 7 219 110 697 2006 A 12486 Verlag Deutsches Elektronen-Synchrotron Inhalt sverzeichnis 1 Einführung 1 1.1

Mehr

Was können Schüler anhand von Primzahltests über Mathematik lernen?

Was können Schüler anhand von Primzahltests über Mathematik lernen? Was können Schüler anhand von Primzahltests über Mathematik lernen? Innermathematisches Vernetzen von Zahlentheorie und Wahrscheinlichkeitsrechnung Katharina Klembalski Humboldt-Universität Berlin 20.

Mehr

Stochastik-Praktikum

Stochastik-Praktikum Stochastik-Praktikum Zufallszahlen und Monte Carlo Peter Frentrup Humboldt-Universität zu Berlin 17. Oktober 2017 (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 17. Oktober 2017 1 / 23

Mehr

Grundlagen der Monte Carlo Simulation

Grundlagen der Monte Carlo Simulation Grundlagen der Monte Carlo Simulation 10. Dezember 2003 Peter Hofmann Inhaltsverzeichnis 1 Monte Carlo Simulation.................... 2 1.1 Problemstellung.................... 2 1.2 Lösung durch Monte

Mehr

Von den Grundlagen der Monte-Carlo-Methode zur Simulation von Teilchenreaktionen und Teilchendetektoren

Von den Grundlagen der Monte-Carlo-Methode zur Simulation von Teilchenreaktionen und Teilchendetektoren Von den Grundlagen der Monte-Carlo-Methode zur Simulation von Teilchenreaktionen und Teilchendetektoren Michael Unrau HS WS 08/09 14 November 2008 HS 08/09 Monte-Carlo Methoden 14 November 2008 1 / 24

Mehr

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen

Mehr

FC1 - Monte Carlo Simulationen

FC1 - Monte Carlo Simulationen FC1 - Monte Carlo Simulationen 16. Oktober 2007 Universität Paderborn - Theoretische Physik Autor: Simone Sanna, Stephan Blankenburg Datum: 16. Oktober 2007 FC1 - Monte Carlo Simulationen 3 1 Das Monte

Mehr

Ausarbeitung des Seminarvortrags zum Thema

Ausarbeitung des Seminarvortrags zum Thema Ausarbeitung des Seminarvortrags zum Thema Anlagepreisbewegung zum Seminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn von Imke Meyer im W9/10 Anlagepreisbewegung

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 07. Mai 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 5 1 Klassische Wahrscheinlichkeitsdefinition

Mehr

W-Rechnung und Statistik für Ingenieure Übung 11

W-Rechnung und Statistik für Ingenieure Übung 11 W-Rechnung und Statistik für Ingenieure Übung 11 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) Mathematikgebäude Raum 715 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) W-Rechnung und Statistik

Mehr

Seminar Finanzmathematik

Seminar Finanzmathematik Seminar Finanzmathematik Simulationen zur Black-Scholes Formel Seite 1 von 24 Zufallszahlen am Computer 3 Gleichverteilte Zufallszahlen 3 Weitere Verteilungen 3 Quadratische Verteilung 4 Normalverteilung

Mehr

Grundlagen der Monte-Carlo-Methode

Grundlagen der Monte-Carlo-Methode Probieren geht über studieren Institut für experimentelle Kernphysik Karlsruher Institut für Technologie 16. November 2009 Übersicht Definitionen und Motivation 1 Definitionen und Motivation Typische Problemstellung

Mehr

Ein möglicher Unterrichtsgang

Ein möglicher Unterrichtsgang Ein möglicher Unterrichtsgang. Wiederholung: Bernoulli Experiment und Binomialverteilung Da der sichere Umgang mit der Binomialverteilung, auch der Umgang mit dem GTR und den Diagrammen, eine notwendige

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

Statistik - Fehlerrechnung - Auswertung von Messungen

Statistik - Fehlerrechnung - Auswertung von Messungen 2013-11-13 Statistik - Fehlerrechnung - Auswertung von Messungen TEIL I Vorbereitungskurs F-Praktikum B (Physik), RWTH Aachen Thomas Hebbeker Literatur Eindimensionaler Fall: Grundbegriffe Wahrscheinlichkeitsverteilungen:

Mehr

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden.

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden. PCG-Grundpraktikum Versuch 8- Reale Gas Multiple-Choice Test Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Reale Gas wird dieses Vorgespräch durch einen Multiple-Choice Test

Mehr

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Die Poisson-Verteilung Jianmin Lu RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Ausarbeitung zum Vortrag im Seminar Stochastik (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In der Wahrscheinlichkeitstheorie

Mehr

MATHEMATISCHE ANALYSE VON ALGORITHMEN

MATHEMATISCHE ANALYSE VON ALGORITHMEN MATHEMATISCHE ANALYSE VON ALGORITHMEN Michael Drmota Institut für Diskrete Mathematik und Geometrie, TU Wien michael.drmota@tuwien.ac.at www.dmg.tuwien.ac.at/drmota/ Ringvorlesung SS 2008, TU Wien Algorithmus

Mehr

Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006

Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006 1 3.34 1.1 Angabe Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006 U sei auf dem Intervall (0, 1) uniform verteilt. Zeigen

Mehr

Informatik Aufgaben. 1. Erstelle ein Programm zur Berechnung der Summe der Zahlen von 1 bis n, z.b. n = 100.

Informatik Aufgaben. 1. Erstelle ein Programm zur Berechnung der Summe der Zahlen von 1 bis n, z.b. n = 100. Informatik Aufgaben 1. Erstelle ein Programm zur Berechnung der Summe der Zahlen von 1 bis n, z.b. n = 100. 2. Erstelle ein Programm, das die ersten 20 (z.b.) ungeraden Zahlen 1, 3, 5,... ausgibt und deren

Mehr

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678 Lösungsvorschläge zu Blatt 8 X binomialverteilt mit p = 0. und n = 10: a PX = = 10 q = 1 p = 0.8 0. 0.8 10 = 0, 1,..., 10 PX = PX = 0 + PX = 1 + PX = 10 10 = 0. 0 0.8 10 + 0. 1 0.8 9 + 0 1 10 = 0.8 8 [

Mehr

Ruinwahrscheinlichkeiten im Glücksspiel

Ruinwahrscheinlichkeiten im Glücksspiel Ruinwahrscheinlichkeiten im Glücksspiel Wilhelm Stannat Fachbereich Mathematik TU Darmstadt February 24, 2007 Stochastik = Wahrscheinlichkeitstheorie + Statistik Wahrscheinlichkeitstheorie = Mathematische

Mehr

Vergleichsklausur 12.1 Mathematik vom 20.12.2005

Vergleichsklausur 12.1 Mathematik vom 20.12.2005 Vergleichsklausur 12.1 Mathematik vom 20.12.2005 Mit CAS S./5 Aufgabe Alternative: Ganzrationale Funktionen Berliner Bogen Das Gebäude in den Abbildungen heißt Berliner Bogen und steht in Hamburg. Ein

Mehr

Melanie Kaspar, Prof. Dr. B. Grabowski 1

Melanie Kaspar, Prof. Dr. B. Grabowski 1 7. Hypothesentests Ausgangssituation: Man muss sich zwischen 2 Möglichkeiten (=Hypothesen) entscheiden. Diese Entscheidung soll mit Hilfe von Beobachtungen ( Stichprobe ) getroffen werden. Die Hypothesen

Mehr

Ü b u n g s b l a t t 11

Ü b u n g s b l a t t 11 Mathe für Physiker I Wintersemester 0/04 Walter Oevel 8. 1. 004 Ü b u n g s b l a t t 11 Abgabe von Aufgaben am 15.1.004 in der Übung. Aufgabe 91*: (Differentialgleichungen, Separation. 10 Bonuspunkte

Mehr

Abitur 2007 Mathematik GK Stochastik Aufgabe C1

Abitur 2007 Mathematik GK Stochastik Aufgabe C1 Seite 1 Abiturloesung.de - Abituraufgaben Abitur 2007 Mathematik GK Stochastik Aufgabe C1 Eine Werbeagentur ermittelte durch eine Umfrage im Auftrag eines Kosmetikunternehmens vor Beginn einer Werbekampagne

Mehr

Elektronische Sicherheitssysteme

Elektronische Sicherheitssysteme Josef Börcsök Elektronische Sicherheitssysteme Hardwarekonzepte, Modelle und Berechnung f 2., überarbeitete Auflage Hüthig Verlag Heidelberg Inhaltsverzeichnis 1 Einleitung 1 1.1 Gründlegende Forderungen

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

Übersicht über den Studiengang

Übersicht über den Studiengang Inhaltsübersicht - Übersicht über den Studiengang - Modellstudienpläne - Übersicht Vertiefungen (optional) - Modellstudienpläne "Research Track" (optional) Übersicht über den Studiengang Varianten "Ohne

Mehr

Warteschlangen. Vier Doppelstunden in der Carl-Bantzer-Schule Ziegenhain von Johannes Becker

Warteschlangen. Vier Doppelstunden in der Carl-Bantzer-Schule Ziegenhain von Johannes Becker Warteschlangen Vier Doppelstunden in der Carl-Bantzer-Schule Ziegenhain von Johannes Becker Inhaltsverzeichnis 1. Einleitung...1 2. Aufgaben...2 3. Simulation einer Warteschlange mit dem Würfel...2 4.

Mehr

MATHEMATIK 3 STUNDEN. DATUM: 8. Juni 2009

MATHEMATIK 3 STUNDEN. DATUM: 8. Juni 2009 EUROPÄISCHES ABITUR 2009 MATHEMATIK 3 STUNDEN DATUM: 8. Juni 2009 DAUER DES EXAMENS : 3 Stunden (180 Minuten) ZUGELASSENE HILFSMITTEL : Europäische Formelsammlung Nicht graphischer und nicht programmierbarer

Mehr

Bauchgefühl oder kühle Berechnung Wer wird Fußball-Weltmeister 2014?

Bauchgefühl oder kühle Berechnung Wer wird Fußball-Weltmeister 2014? Bauchgefühl oder kühle Berechnung Wer wird Fußball-Weltmeister 2014? Prof. Dr. Michael Feindt Karlsruher Institut für Technologie (KIT) Founder and Chief Scientific Advisor, Blue Yonder Wer wird Weltmeister?

Mehr

ChangePoint-Analysen - ein Überblick

ChangePoint-Analysen - ein Überblick ChangePoint-Analysen - ein Überblick Gliederung Motivation Anwendungsgebiete Chow Test Quandt-Andrews Test Fluktuations-Tests Binary Segmentation Recursive circular and binary segmentation algorithm Bayesscher

Mehr

Computational Finance

Computational Finance Computational Finance Kapitel 2.1: Einführung in die Simulation Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring 4

Mehr

Individuelles Bachelorstudium. Software Engineering for Physics

Individuelles Bachelorstudium. Software Engineering for Physics Individuelles Bachelorstudium Software Engineering for Physics 1 Qualifikationsprofil Das individuelle Bachelorstudium Software Engineering for Physics vermittelt eine breite, praktische und theoretische

Mehr

38. Algorithmus der Woche Zufallszahlen Wie kommt der Zufall in den Rechner?

38. Algorithmus der Woche Zufallszahlen Wie kommt der Zufall in den Rechner? 38. Algorithmus der Woche Zufallszahlen Wie kommt der Zufall in den Rechner? Autor Tim Jonischkat, Universität Duisburg-Essen Bruno Müller-Clostermann, Universität Duisburg-Essen Algorithmen sind clevere

Mehr

SOFTWARE FÜR PRG-APPLIKATIONEN

SOFTWARE FÜR PRG-APPLIKATIONEN SOFTWARE FÜR PRG-APPLIKATIONEN Autor: Frank Bergmann Letzte Änderung: 04.12.2014 09:09 1 1 Inhaltsverzeichnis 1 Inhaltsverzeichnis... 2 2 Allgemeines... 3 3 Installation und Programmaufruf... 3 4 Einstellungen...

Mehr

Kern- und Schulcurriculum Mathematik Klasse 9/10. Stand Schuljahr 2009/10

Kern- und Schulcurriculum Mathematik Klasse 9/10. Stand Schuljahr 2009/10 Kern- und Schulcurriculum Mathematik /10 Stand Schuljahr 2009/10 Fett und kursiv dargestellte Einheiten gehören zum Schulcurriculum In allen Übungseinheiten kommt die Leitidee Vernetzung zum Tragen - Hilfsmittel

Mehr

Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy

Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy Dr. Raimund Horn a Dipl. Chem. Barbara Bliss b Dipl. Phys. Lars Lasogga c a Fritz Haber Institut der Max Planck Gesellschaft

Mehr

Risikosimulation zur Optimierung der Finanzierungsplanung von Projekten

Risikosimulation zur Optimierung der Finanzierungsplanung von Projekten Risikosimulation zur Optimierung der Finanzierungsplanung von Projekten Dresden, 18.06.2012 Agenda Motivation Notwendigkeit einer Risikosimulation Grundlagen der Monte-Carlo-Simulation Konzept einer 4-Stufen-Risikosimulation

Mehr

Modellbildung und Simulation

Modellbildung und Simulation Modellbildung und Simulation 5. Vorlesung Wintersemester 2007/2008 Klaus Kasper Value at Risk (VaR) Glossar Portfolio: In der Ökonomie bezeichnet der Begriff Portfolio ein Bündel von Investitionen, das

Mehr

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort: Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

Part-Of-Speech-Tagging mit Viterbi Algorithmus

Part-Of-Speech-Tagging mit Viterbi Algorithmus Part-Of-Speech-Tagging mit Viterbi Algorithmus HS Endliche Automaten Inna Nickel, Julia Konstantinova 19.07.2010 1 / 21 Gliederung 1 Motivation 2 Theoretische Grundlagen Hidden Markov Model Viterbi Algorithmus

Mehr

Felix-Nicolai Müller. Seminar Fragebogenmethodik - WS2009/2010 - Universität Trier Dr. Dirk Kranz 24.11.2009

Felix-Nicolai Müller. Seminar Fragebogenmethodik - WS2009/2010 - Universität Trier Dr. Dirk Kranz 24.11.2009 Cohen s Kappa Felix-Nicolai Müller Seminar Fragebogenmethodik - WS2009/2010 - Universität Trier Dr. Dirk Kranz 24.11.2009 Felix-Nicolai Müller Cohen s Kappa 24.11.2009 1 / 21 Inhaltsverzeichnis 1 2 3 4

Mehr

3 Monte-Carlo-Simulationen

3 Monte-Carlo-Simulationen 3 Monte-Carlo-Simulationen In diesem Kapitel soll mit der so genannten Monte-Carlo-Methode ein wichtiges Anwendungsgebiet des in Kapitel 2 erarbeiteten Begriffs- und Methodenapparats detaillierter beleuchtet

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

Motivation. Jede Messung ist mit einem sogenannten Fehler behaftet, d.h. einer Messungenauigkeit

Motivation. Jede Messung ist mit einem sogenannten Fehler behaftet, d.h. einer Messungenauigkeit Fehlerrechnung Inhalt: 1. Motivation 2. Was sind Messfehler, statistische und systematische 3. Verteilung statistischer Fehler 4. Fehlerfortpflanzung 5. Graphische Auswertung und lineare Regression 6.

Mehr

Coupon Collector's-Problem (Sammelbilderproblem) Name: Walter Wolf Matrikelnr.: 533440 Dozent: Dr. W. Kössler

Coupon Collector's-Problem (Sammelbilderproblem) Name: Walter Wolf Matrikelnr.: 533440 Dozent: Dr. W. Kössler Coupon Collector's-Problem (Sammelbilderproblem) Name: Walter Wolf Matrikelnr.: 533440 Dozent: Dr. W. Kössler Problemstellung Als Sammelbilderproblem bezeichnet man die Frage, wie viele Produkte bzw. Bilder

Mehr

Numerische Optionsbepreisung durch Monte-Carlo-Simulation und Vergleich mit dem Black-Scholes-Modell

Numerische Optionsbepreisung durch Monte-Carlo-Simulation und Vergleich mit dem Black-Scholes-Modell Numerische Optionsbepreisung durch Monte-Carlo-Simulation und Vergleich mit dem Black-Scholes-Modell Bachelorarbeit zur Erlangung des akademischen Grades Bachelor of Science (B.Sc.) im Studiengang Wirtschaftswissenschaft

Mehr

Rekursionen (Teschl/Teschl 8.1-8.2)

Rekursionen (Teschl/Teschl 8.1-8.2) Rekursionen (Teschl/Teschl 8.1-8.2) Eine Rekursion kter Ordnung für k N ist eine Folge x 1, x 2, x 3,... deniert durch eine Rekursionsvorschrift x n = f n (x n 1,..., x n k ) für n > k, d. h. jedes Folgenglied

Mehr

Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff

Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff Zufallsgrößen 2.5 Zufallsgrößen 2.5.1 Verteilungsfunktion einer Zufallsgröße 2.5.2 Wahrscheinlichkeits- und Dichtefunktion Wahrscheinlichkeitsfunktion einer diskreten Zufallsgröße Dichtefunktion einer

Mehr

Schulinternes Curriculum. Mathematik

Schulinternes Curriculum. Mathematik Gymnasium Zitadelle Schulinternes Curriculum (G 8) Stand: Schuljahr 2012/13 Gymnasium Zitadelle Schulinternes Curriculum Seite 1 EF Eingeführtes Lehrbuch: Lambacher Schweizer 10 Einführungsphase Funktionen

Mehr

Value at Risk Einführung

Value at Risk Einführung Value at Risk Einführung Veranstaltung Risk Management & Computational Finance Dipl.-Ök. Hans-Jörg von Mettenheim mettenheim@iwi.uni-hannover.de Institut für Wirtschaftsinformatik Leibniz Universität Hannover

Mehr

Wir arbeiten mit Zufallszahlen

Wir arbeiten mit Zufallszahlen Abb. 1: Bei Kartenspielen müssen zu Beginn die Karten zufällig ausgeteilt werden. Wir arbeiten mit Zufallszahlen Jedesmal wenn ein neues Patience-Spiel gestartet wird, muss das Computerprogramm die Karten

Mehr

Monte Carlo Simulation

Monte Carlo Simulation Monte Carlo Simulation M. Alexander Thomas 1. Juni 26 Zusammenfassung Die Monte Carlo Methode ist ein in vielen Bereichen nicht mehr wegzudenkendes Hilfsmittel zur Berechung und Simulation wissenschaftlicher

Mehr

PVL 3 - Roulette. (5 Punkte) Abgabe bis 20.12.2015

PVL 3 - Roulette. (5 Punkte) Abgabe bis 20.12.2015 PVL 3 - Roulette (5 Punkte) Abgabe bis 20.12.2015 Beim Roulette wird in jeder Runde eine von 37 Zahlen (0-36) ausgespielt. Dabei können Geldbeträge direkt auf eine Zahl zwischen 1 und 36 gesetzt werden

Mehr

Das Black-Scholes Marktmodell

Das Black-Scholes Marktmodell Das Black-Scholes Marktmodell Andreas Eichler Institut für Finanzmathematik Johannes Kepler Universität Linz 8. April 2011 1 / 14 Gliederung 1 Einleitung Fortgeschrittene Finanzmathematik einfach erklärt

Mehr

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I Bayern FOS BOS Fachabiturprüfung 05 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I.0 Nebenstehende Abbildung zeigt den Graphen G f ' der ersten Ableitungsfunktion einer in ganz 0 definierten

Mehr

Kursthemen 12. Sitzung. Spezielle Verteilungen: Warteprozesse. Spezielle Verteilungen: Warteprozesse

Kursthemen 12. Sitzung. Spezielle Verteilungen: Warteprozesse. Spezielle Verteilungen: Warteprozesse Kursthemen 12. Sitzung Folie I - 12-1 Spezielle Verteilungen: Warteprozesse Spezielle Verteilungen: Warteprozesse A) Die Geometrische Verteilung (Folien 2 bis 7) A) Die Geometrische Verteilung (Folien

Mehr

Physik 4, Übung 8, Prof. Förster

Physik 4, Übung 8, Prof. Förster Physik 4, Übung 8, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1 1. Aufgabe: Der E-Commerce-Umsatz (in Millionen Euro) der fünf größten Online- Shopping-Clubs liegt wie folgt vor: Club Nr. Umsatz 1 120 2 72 3 54 4 30 5 24 a) Bestimmen Sie den Ginikoeffizienten. b) Zeichnen

Mehr

Messtechnik. Gedächnisprotokoll Klausur 2012 24. März 2012. Es wurde die Kapazität von 10 Kondensatoren gleicher Bauart gemessen:

Messtechnik. Gedächnisprotokoll Klausur 2012 24. März 2012. Es wurde die Kapazität von 10 Kondensatoren gleicher Bauart gemessen: Messtechnik Gedächnisprotokoll Klausur 2012 24. März 2012 Dokument erstellt von: mailto:snooozer@gmx.de Aufgaben Es wurde die Kapazität von 10 Kondensatoren gleicher Bauart gemessen: Index k 1 2 3 4 5

Mehr

Klausur Mathematik 2

Klausur Mathematik 2 Mathematik für Ökonomen WS 2014/15 Campus Duisburg PD Dr. V. Krätschmer, Fakultät für Mathematik Klausur Mathematik 2 17.02.2015, 12:30-14:30 Uhr (120 Minuten) Erlaubte Hilfsmittel: Nur reine Schreib-

Mehr

Computational Finance

Computational Finance Computational Finance Kapitel 2.2: Monte Carlo Simulation Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring 4 / WiWi-Gebäude

Mehr

ARCH- und GARCH-Modelle

ARCH- und GARCH-Modelle ARCH- und GARCH-Modelle Thomas Simon Analyse und Modellierung komplexer Systeme 04.11.2009 homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle 04.11.2009 1 / 27 Ausgangssituation

Mehr

Bochum, den. geb. am: in Matr. Nr.:

Bochum, den. geb. am: in Matr. Nr.: Anmeldung zur Betr.: Diplomvorprüfung in Mathematik Ich beantrage die Zulassung zur Diplomvorprüfung im Fach Mathematik. Ich studiere das Fach Mathematik seit dem SS/WS und bin im Diplomstudiengang Mathematik

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )

Mehr

Molekularfeldtheorie (MFT)

Molekularfeldtheorie (MFT) 29.06.2006 Motivation Anwendungen der MFT MFT-Herleitung mittels Variationsansatz und Anwendung Grenzen der Anwendung der MFT Motivation Meisten Probleme nur unter Berücksichtigung von Wechselwirkungen

Mehr

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses.

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses. XI. Binomialverteilung ================================================================== 11.1 Definitionen -----------------------------------------------------------------------------------------------------------------

Mehr

Prüfung eines Datenbestandes

Prüfung eines Datenbestandes Prüfung eines Datenbestandes auf Abweichungen einzelner Zahlen vom erwarteten mathematisch-statistischen Verhalten, die nicht mit einem Zufall erklärbar sind (Prüfung auf Manipulationen des Datenbestandes)

Mehr

Statistiktraining im Qualitätsmanagement

Statistiktraining im Qualitätsmanagement Gerhard Linß Statistiktraining im Qualitätsmanagement ISBN-0: -446-75- ISBN-: 978--446-75-4 Leserobe Weitere Informationen oder Bestellungen unter htt://www.hanser.de/978--446-75-4 sowie im Buchhandel

Mehr

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r )

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r ) Definition B : Menge der binären Bäume, rekursiv definiert durch die Regeln: ist ein binärer Baum sind t l, t r binäre Bäume, so ist auch t =, t l, t r ein binärer Baum nur das, was durch die beiden vorigen

Mehr

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel Ausarbeitung zum Proseminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn zum Thema Simulation des Anlagenpreismodels von Simon Uphus im WS 09/10 Zusammenfassung

Mehr

Schriftliche Ausarbeitung zum Vortrag Monte-Carlo-Simulation

Schriftliche Ausarbeitung zum Vortrag Monte-Carlo-Simulation Schriftliche Ausarbeitung zum Vortrag Monte-Carlo-Simulation Universität Hamburg Fachbereich Informatik Johannes Schlundt 20. März 2013 Inhaltsverzeichnis 1 Motivation 2 2 Geschichte 2 3 Monte Carlo Simulation

Mehr