Motivation. Jede Messung ist mit einem sogenannten Fehler behaftet, d.h. einer Messungenauigkeit

Größe: px
Ab Seite anzeigen:

Download "Motivation. Jede Messung ist mit einem sogenannten Fehler behaftet, d.h. einer Messungenauigkeit"

Transkript

1 Fehlerrechnung Inhalt: 1. Motivation 2. Was sind Messfehler, statistische und systematische 3. Verteilung statistischer Fehler 4. Fehlerfortpflanzung 5. Graphische Auswertung und lineare Regression 6. Erklärungen / weitere Beispiele

2 Motivation Jede Messung ist mit einem sogenannten Fehler behaftet, d.h. einer Messungenauigkeit Zwei Messungen derselben Größe werden nie auf beliebig viele Nachkommstellen übereinstimmen Die Reproduzierbarkeit von Messergebnissen ist nur überprüfbar, wenn der Fehlerbalken / die Toleranz bekannt ist

3 Beispiel der Spin eines Elektrons bewirkt ein magnetisches Moment klassische Erklärung: das Elektron dreht sich um sich selbst (= Spin), dies erzeugt einen Kreisstrom und damit ein magnetisches Moment das Kreisen des Elektrons bewirkt zusammen mit seiner Masse einen Drehimpuls Drehimpuls und magnetisches Moment stehen in fester Relation zueinander, die nur durch Naturkonstanten gegeben ist:

4 Einstein de-haas beide Größen sind zwar im festen Verhältnis, aber es ergibt sich noch ein dimensionsloser Vorfaktor g klassische Erklärung: g = 1 Einstein de-haas: gemessen g = 1.03 und g =1.45, publiziert g = 1.03 später gemessen: g 2 Dirac: relativistische quantenmechanische Beschreibung des Elektrons; einfachste Näherung: g = 2 (genau 2) Quanten-Elektrodynamik: g = (53) (NIST)

5 Fehler Abweichung einer Messung vom wahren Wert zu unterscheiden: systematische und statistische Fehler statistischer Fehler systematischer Fehler Messwerte Messgröße x wahrer Wert Messgröße x

6 Systematische Fehler Ursachen: instrumentelle Einflüsse z.b. ungenaue Justierung, falsche Kalibrierung, thermische Ausdehnung von Metallteilen, Parallaxenfehler persönliche Fehler z.b. Reaktionszeit beim Stoppen von Zeiten, schräges Ablesen von Skalen Versuchsinhärent z.b. unsymmetrische Wirkungen von Temperatur, Verschmutzung von Oberflächen Problem: auch nach beliebiger Wiederholung der Messung und Mittelung der Werte bleibt eine Abweichung!

7 Statistische Fehler Statistische Fehler: Zufallsfehler, Variation der Messwerte unvorhersagbar in Größe und Richtung Erwartungswert ist Null, d.h. bei Wiederholung der Messung und Mittelung der Werte strebt der Messwert asympotisch auf den wahren Wert. statistische Fehler können verringert werden, jedoch nie völlig eliminiert Bsp: Rauschen

8 Statistische Fehler Umgang mit statistischen Fehlern: wiederholte Bestimmung des Wertes bei konstanten Bedingungen arithmetischer Mittelwert identischer Messungen Fehlerrechnung: Abschätzung der Messunsicherheit

9 Verteilung statistischer Fehler statistische Fehler sind in der Regel gaußverteilt! kommen viele einzelne statistische Ungenauigkeiten zusammen, so ist der resultierende Fehler immer gaußverteilt (zentraler Grenzwertsatz)

10 Gauß- oder Normalverteilung

11 Gauß- oder Normalverteilung

12 Gauß- oder Normalverteilung Wahrscheinlichkeitsvert. P(x) Messgröße x wahrer Wert (x 0 )

13 Gauß- oder Normalverteilung Wahrscheinlichkeitsvert. P(x) Messgröße x wahrer Wert (x 0 ) Die Standardabweichung σ beschreibt die Breite der Normalverteilung.

14 Gauß- oder Normalverteilung Wahrscheinlichkeitsvert. P(x) Messgröße x wahrer Wert (x 0 ) Die Standardabweichung σ beschreibt die Breite der Normalverteilung. Im Intervall x 0 -σ bis x 0 +σ sind 68% aller Messwerte

15 Gauß- oder Normalverteilung Wahrscheinlichkeitsvert. P(x) Messgröße x wahrer Wert (x 0 ) Die Standardabweichung σ beschreibt die Breite der Normalverteilung. Im Intervall x 0-2σ bis x 0 +2σ sind 95% aller Messwerte

16 Gauß- oder Normalverteilung Wahrscheinlichkeitsvert. P(x) Messgröße x wahrer Wert (x 0 ) Die Standardabweichung σ beschreibt die Breite der Normalverteilung. Im Intervall x 0-3σ bis x 0 +3σ sind 99.7% aller Messwerte

17 Praktisches Man benötigt wiederholte Messungen eines Messwertes, um den statistischen Fehler anzugeben Der Erwartungswert einer Messung ist der, gegen den der Mittelwert bei unendlicher Wiederholung konvergieren würde. Den Mittelwert einer endlichen Messreihe von Messwerten bezeichnet man auch als den Erwartungswert. x = 1 N N i= 1 x i Die Standardabweichung ergibt sich aus σ = 1 N N i= 1 x i x 2 Wir geben zunächst den mittleren absoluten Fehler an: x = 1 N N i= 1 x i x

18 Praktisches Als Ergebnis einer Messung schreibt man: x = x ± x 1 z.b.: x = ( 7.3± 0.7)m (der Fehler soll im Endergebnis nur einstellig angegeben werden!) relativer mittlerer Fehler: γ = x x Bsp: Einstein de Haas: gemessen g = 1.03 und g =1.45 korrekte Messwertangabe: g = 1.24 ± 0.3

19 Praktisches Ist die Messung eine diskrete Anzahl N von Ereignissen (z.b. radioaktive Zerfälle), so ist die Standardabweichung der Messung σ = N

20 Fehlerfortpflanzung Frage: Wie groß ist der Fehler z einer Größe z, die aus der Summe zweier Größen hervorgeht: z = x + y, wenn die Fehler x und y von x und y bekannt sind? Die Abweichungen in einer einzelnen Messung können sich sogar zum Teil ausgleichen! Die Quadrate der absoluten Fehler x 2 und y 2 addieren sich: z 2 = x 2 + y 2 bzw. z = 2 2 x + y

21 Fehlerfortpflanzung Funktion einer Variablen Frage: Wie groß ist der Fehler f einer Funktion f(x), wenn der Fehler x von x bekannt ist? Beispiel 1: Volumen V(r) einer Kugel mit Radius r V = 4 r 3 3 π m Allgemein gilt für Funktionen der Form f ( x) = α x : γ = f f = 1 α x m m α x m 1 x = m x x

22 Fehlerfortpflanzung Also: bei Funktionen einer Variablen wird mit relativen Fehlern gerechnet! Es gilt daher für die Kugel: V 4 V = r 3 π = 3 3 V r r Oder ganz allgemein: Steht die Variable r in der n-ten Potenz, so ist der relative Fehler der Potenz das n-fache des relativen Fehlers von r.

23 Fehlerfortpflanzung Beispiel 2: Welchen Weg legt ein Körper im freien Fall nach der Zeit t zurück? (g sei als Ortsfaktor fest vorgegeben) x 1 2 = gt ; γ t 2 = 9% γ x = x x = t 2 = 2 9% = 18% t

24 Fehlerfortpflanzung Aus den bisherigen Beziehungen kann man folgende Regeln ableiten: 1. Der absolute Fehler einer Summe oder Differenz von Größen ist die Wurzel aus der Quadratsumme der absoluten einzelnen Fehler z = 2 2 x + y 2. Der relative Fehler eines Produkts oder Quotienten von Größen ist die Summe der relativen einzelnen Fehler unter Berücksichtigung der jeweiligen Potenzen f ( x) = α x m γ = x m x

25 Graphische Darstellung 1. Lineare Gesetze x = x 0 + vt Bsp: Bewegung konstanter Geschwindigkeit t x Geradengleichung: v: Steigung x 0 : Achsenabschnitt

26 Graphische Fehlerermittlung 1. Lineare Gesetze x = x 0 + vt Messwerte mit Fehlerbalken mögliche Fehler bei a) Zeitmessung - Reaktionszeit - Ablesefehler - b) Wegmessung - Instrumentenfehler - Ablesefehler - äußere Einflüsse (Temperatur) - Abschätzung ergibt Fehler zu: t = 0.3 s x = 10 cm Geradengleichung: v: Steigung x 0 : Achsenabschnitt

27 Graphische Fehlerermittlung x x + vt = 0 1. Lineare Gesetze Prinzipiell gilt: Ausgleichsgerade herzhaft nach Augenmaß Extremalgeraden nach Augenmaß durch alle Fehlerbalken (größte und kleinste Steigung) 3 Steigungen asymmetrische Fehler möglich Ergebnis: v = ( )m/s

28 Graphische Fehlerermittlung x x + vt = 0 1. Lineare Gesetze Sonderfall: Wenn die Ausgleichsgerade eine Ursprungsgerade ist, gehen auch die Extremalgeraden durch den Ursprung t x

29 Graphische Fehlerermittlung 2. Nichtlineare Gesetze Bsp: Freier Fall y = a 2 t 2 Problem: Parabel kann schlecht abgeschätzt und ausgewertet werden

30 Graphische Fehlerermittlung 2. Nichtlineare Gesetze Bsp: Freier Fall y = a 2 t 2 Lösung: Zurückführung auf einen linearen Zusammenhang y = a 2 t 2 2 T: = t y = a 2 T

31 Graphische Fehlerermittlung 3. Logarithmische Gesetze y = y 0 bx e Bsp: Amplitude einer gedämpften Schwingung

32 Graphische Fehlerermittlung 3. Logarithmische Gesetze y = y 0 bx e Bsp: Amplitude einer gedämpften Schwingung Lösung: logarithmieren führt zu linearer Darstellung y bt ln y0 e ln y = ln = 0 ( y ) + bt

33 Graphische Fehlerermittlung 4. Potenzgesetze y = a n x Bsp: Wirkungsquerschnitt der Rayleigh-Streuung Lösung: logarithmieren führt zu linearer Darstellung y = a x n log log y = log a + n log x

34 Graphische Darstellung So sollen Ihre Diagramme NICHT ausschauen!

35 eine Reihe von Messungen kann auch rein mathematisch durch eine Ausgleichsgerade ausgewertet werde. Wie? Funktionsansatz einer Geraden Abweichungen aller Messwerte von dieser Geraden berechnen Abweichungen aufsummieren Minimum der Summe finden (Ableiten, Null setzen) funktioniert auch für andere Funktionen lineare Regression x = x 0 + vt

Anleitung zur Fehlerrechnung

Anleitung zur Fehlerrechnung Anleitung zur Fehlerrechnung Grundsätzlich ist jedes Messergebnis mit einem Fehler behaftet. Ein wie auch immer ermittelter Messwert einer physikalischen Größe weicht immer vom idealen, wahren Wert der

Mehr

Kurzanleitung. Auswertung, Fehlerrechnung und Ergebnisdarstellung. Praktikum Physikalisch-Chemische Experimente

Kurzanleitung. Auswertung, Fehlerrechnung und Ergebnisdarstellung. Praktikum Physikalisch-Chemische Experimente Kurzanleitung zur Auswertung, Fehlerrechnung und Ergebnisdarstellung im Praktikum Physikalisch-Chemische Experimente Dr. Markus Braun Institut für Physikalische und Theoretische Chemie Goethe-Universität

Mehr

AUSWERTUNG: LASER B TOBIAS FREY, FREYA GNAM

AUSWERTUNG: LASER B TOBIAS FREY, FREYA GNAM AUSWERTUNG: LASER B TOBIAS FREY, FREYA GNAM 6. FOURIER-TRANSFORMATION In diesem Versuch ging es darum, mittels Fouriertransformation aus dem Beugungsbild eines Einfachspaltes auf dessen Breite zu schließen.

Mehr

Einführung Physik-Praktikum

Einführung Physik-Praktikum Seite1 von 18 Messunsicherheit und Fehlerfortpflanzung Messunsicherheit Die Messung einer physikalischen Größe (Masse, Spannung, Strom, Zeit,...) ist in der Regel mit einer gewissen Unsicherheit behaftet.

Mehr

QM: Prüfen -1- KN16.08.2010

QM: Prüfen -1- KN16.08.2010 QM: Prüfen -1- KN16.08.2010 2.4 Prüfen 2.4.1 Begriffe, Definitionen Ein wesentlicher Bestandteil der Qualitätssicherung ist das Prüfen. Sie wird aber nicht wie früher nach der Fertigung durch einen Prüfer,

Mehr

Mathematisches und physisches Pendel Harmonische und anharmonische Schwingungen

Mathematisches und physisches Pendel Harmonische und anharmonische Schwingungen Ausarbeitung zum Versuch Mathematisches und physisches Pendel Harmonische und anharmonische Schwingungen Versuch 24 des physikalischen Grundpraktikums Kurs I, Teil II an der Universität Würzburg Sommersemester

Mehr

1 Messfehler. 1.1 Systematischer Fehler. 1.2 Statistische Fehler

1 Messfehler. 1.1 Systematischer Fehler. 1.2 Statistische Fehler 1 Messfehler Jede Messung ist ungenau, hat einen Fehler. Wenn Sie zum Beispiel die Schwingungsdauer eines Pendels messen, werden Sie - trotz gleicher experimenteller Anordnungen - unterschiedliche Messwerte

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Fehlerrechnung und Statistik (FR) Herbstsemester 2015

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Fehlerrechnung und Statistik (FR) Herbstsemester 2015 Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Fehlerrechnung und Statistik (FR) Herbstsemester 2015 Physik-Institut der Universität Zürich Inhaltsverzeichnis 12 Fehlerrechnung und Statistik

Mehr

Anerkannte, gleiche und reproduzierbare Größen sind (auch außerhalb der Physik) notwendig: Handel, Grundbesitz, Navigation, Dosierung...!

Anerkannte, gleiche und reproduzierbare Größen sind (auch außerhalb der Physik) notwendig: Handel, Grundbesitz, Navigation, Dosierung...! . Mechanik. Grundgrößen und Einheiten Anerkannte, gleiche und reproduzierbare Größen sind (auch außerhalb der Physik) notwendig: Handel, Grundbesitz, Navigation, Dosierung...! Beispiel Navigation: historisch:

Mehr

Teil III. Wahrscheinlichkeitsrechnung und Statistik

Teil III. Wahrscheinlichkeitsrechnung und Statistik Teil III Wahrscheinlichkeitsrechnung und Statistik 145 Kapitel 7 Grundlagen aus der Wahrscheinlichkeitsrechnung 7.1 Die Begriffe Zufallsvariable, Messmethode, Experiment Die Abhängigkeit einer Variablen

Mehr

Physikalisches Grundpraktikum Fehlerrechnung

Physikalisches Grundpraktikum Fehlerrechnung Fachrichtungen der Physik UNIVERSITÄT DES SAARLANDES Physikalisches Grundpraktikum Fehlerrechnung WWW-Adresse Grundpraktikum Physik: http://grundpraktikum.physik.uni-saarland.de/ Kontaktadressen der Praktikumsleiter:

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Was ist Physik? Modell der Natur universell es war schon immer so

Was ist Physik? Modell der Natur universell es war schon immer so Was ist Physik? Modell der Natur universell es war schon immer so Kultur Aus was sind wir gemacht? Ursprung und Aufbau der Materie Von wo/was kommen wir? Ursprung und Aufbau von Raum und Zeit Wirtschaft

Mehr

SC Saccharimetrie. Inhaltsverzeichnis. Konstantin Sering, Moritz Stoll, Marcel Schmittfull. 25. April 2007. 1 Einführung 2

SC Saccharimetrie. Inhaltsverzeichnis. Konstantin Sering, Moritz Stoll, Marcel Schmittfull. 25. April 2007. 1 Einführung 2 SC Saccharimetrie Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik und Wellenoptik.......... 2 2.2 Linear polarisiertes Licht.................

Mehr

Eingangstest Mathematik Musterlösungen

Eingangstest Mathematik Musterlösungen Fakultät für Technik Eingangstest Mathematik Musterlösungen 00 Fakultät für Technik DHBW Mannheim . Arithmetik.. (4 Punkte) Vereinfachen Sie folgende Ausdrücke durch Ausklammern, Ausmultiplizieren und

Mehr

Fehlerrechnung. Aufgaben

Fehlerrechnung. Aufgaben Fehlerrechnung Aufgaben 2 1. Ein digital arbeitendes Längenmeßgerät soll mittels eines Parallelendmaßes, das Normalcharakter besitzen soll, geprüft werden. Während der Messung wird die Temperatur des Parallelendmaßes

Mehr

F 23 Beta-Zähler. Inhaltsverzeichnis. Wolfgang Unger, Robert Wagner 25. Juni 2003

F 23 Beta-Zähler. Inhaltsverzeichnis. Wolfgang Unger, Robert Wagner 25. Juni 2003 F 23 Beta-Zähler Wolfgang Unger, Robert Wagner 25. Juni 2003 Inhaltsverzeichnis 1 Auswertung 2 1.1 Eichung des Proportionalzählers mit 55 F e............. 2 1.2 Energieverlust von 40K im Zählrohr................

Mehr

A.2 Ermittlung von Messabweichung und Messergebnis

A.2 Ermittlung von Messabweichung und Messergebnis A. Ermittlung von Messabweichung und Messergebnis 515 A ANHANG: Fehlerrechnung (Messabweichungen) A.1 Arten und Ursachen von Messabweichungen Jeder Messwert ist mit einer mehr oder weniger großen Messabweichung

Mehr

Versuch 11 Einführungsversuch

Versuch 11 Einführungsversuch Versuch 11 Einführungsversuch I Vorbemerkung Ziel der Einführungsveranstaltung ist es Sie mit grundlegenden Techniken des Experimentierens und der Auswertung der Messdaten vertraut zu machen. Diese Grundkenntnisse

Mehr

( ) als den Punkt mit der gleichen x-koordinate wie A und der

( ) als den Punkt mit der gleichen x-koordinate wie A und der ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der

Mehr

Physikalisches Praktikum 5. Semester

Physikalisches Praktikum 5. Semester Torsten Leddig 22.Dezember 2005 Mathias Arbeiter Betreuer: Toralf Ziems Physikalisches Praktikum 5. Semester - Zeeman-Effekt - Inhaltsverzeichnis 1 Aufgabenstellung 3 2 Normaler Zeeman-Effekt 3 3 Messung

Mehr

Praktikum Physik. Freier Fall

Praktikum Physik. Freier Fall Praktikum Physik Kommentiertes Musterprotokoll zum Versuch 1 Freier Fall Durchgeführt am 24.12.2008 von Gruppe 42 Anton Student und Berta Studentin (anton.student@uni-ulm.de) (berta.studentin@uni-ulm.de)

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichungen Ungleichungen. Lineare Gleichungen Sei die Gleichung ax = b gegeben, wobei x die Unbekannte ist a, b reelle Zahlen sind. Diese Gleichung hat als Lösung die einzige reelle Zahl x = b, falls

Mehr

Strom - Spannungscharakteristiken

Strom - Spannungscharakteristiken Strom - Spannungscharakteristiken 1. Einführung Legt man an ein elektrisches Bauelement eine Spannung an, so fließt ein Strom. Den Zusammenhang zwischen beiden Größen beschreibt die Strom Spannungscharakteristik.

Mehr

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen

Mehr

MUSTER 2 FÜR DIE ABITURPRÜFUNG AM BERUFLICHEN GYMNASIUM AB DEM SCHULJAHR 2016/2017. Teil 1: Keine Hilfsmittel zugelassen.

MUSTER 2 FÜR DIE ABITURPRÜFUNG AM BERUFLICHEN GYMNASIUM AB DEM SCHULJAHR 2016/2017. Teil 1: Keine Hilfsmittel zugelassen. MINISTERIUM FÜR KULTUS, JUGEND UND SPORT BADEN-WÜRTTEMBERG MUSTER 2 FÜR DIE ABITURPRÜFUNG AM BERUFLICHEN GYMNASIUM AB DEM SCHULJAHR 21/217 Hauptprüfung LÖSUNGSVORSCHLAG FÜR DAS FACH Arbeitszeit Hilfsmittel

Mehr

Verbesserung der Auswertung. Laser B. Versuchsdatum: 24.04.2012. 1 Fouriertransformation 2

Verbesserung der Auswertung. Laser B. Versuchsdatum: 24.04.2012. 1 Fouriertransformation 2 Verbesserung der Auswertung Laser B Carsten Röttele Stefan Schierle Versuchsdatum: 24.04.2012 Inhaltsverzeichnis 1 Fouriertransformation 2 2 Michelson-Interferometer 2 2.1 Magnetostriktive Längenabhängigkeit/Magnetostriktionskoeffizient....

Mehr

Grundlagen der Monte Carlo Simulation

Grundlagen der Monte Carlo Simulation Grundlagen der Monte Carlo Simulation 10. Dezember 2003 Peter Hofmann Inhaltsverzeichnis 1 Monte Carlo Simulation.................... 2 1.1 Problemstellung.................... 2 1.2 Lösung durch Monte

Mehr

1. Lineare Regression (Ausgleichsgerade)

1. Lineare Regression (Ausgleichsgerade) Carl-Engler-Schule Karlsruhe Lineare Regression 1 (6) 1. Lineare Regression (Ausgleichsgerade) 1.1 Was ist eine Ausgleichsgerade? Die Ausgleichsgerade ist ein Ausgleichs-Verfahren zur Kurvenanpassung (Approximation).

Mehr

1. Allgemeine Hinweise Alexander.Martin.Koenig@TU-Clausthal.de

1. Allgemeine Hinweise Alexander.Martin.Koenig@TU-Clausthal.de 1. Allgemeine Hinweise Alexander.Martin.Koenig@TU-Clausthal.de Man sollte eine Excel-Tabelle immer so übersichtlich wie möglich halten. Dazu empfiehlt es sich, alle benötigten Daten, Konstanten und Messwerte

Mehr

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X Praktikum Physik Protokoll zum Versuch 1: Viskosität Durchgeführt am 26.01.2012 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

Hinweise zur Fehlerrechnung im Grundpraktikum der Physik

Hinweise zur Fehlerrechnung im Grundpraktikum der Physik Grundpraktikum der Physik Hinweise zur Fehlerrechnung im Grundpraktikum der Physik Sascha Hankele sascha@hankele.com Patrick Paul patrick.paul@uni-ulm.de 11. Mai 2011 Inhaltsverzeichnis 1 Einführung und

Mehr

Kapitel 2. Fehlerrechnung

Kapitel 2. Fehlerrechnung Fehlerrechnung 1 Messungen => quantitative Aussagen Messungen müssen zu jeder Zeit und an jedem Ort zu den gleichen Ergebnissen führen Messungen sind immer mit Fehler behaftet. => Angabe des Fehlers! Bespiel

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Messwerte und deren Auswertungen

Messwerte und deren Auswertungen Thema: Messwerte und deren Auswertungen Vorlesung Qualitätsmanagement, Prof. Dr. Johann Neidl Seite 1 Stichproben vertrauen Die Genauigkeit von Voraussagen (Vertrauensniveau) einer Stichprobenprüfung hängt

Mehr

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1 .1 Dr. Jürgen Roth Fachbereich 6: Abteilung Didaktik der Mathematik Elemente der Algebra . Inhaltsverzeichnis Elemente der Algebra & Argumentationsgrundlagen, Gleichungen und Gleichungssysteme Quadratische

Mehr

Physik im Studium. Physik I - IV. Theoretische Vorlesungen. Praktika. Vorlesungen für Fortgeschrittene. Praktika für Fortgeschrittene

Physik im Studium. Physik I - IV. Theoretische Vorlesungen. Praktika. Vorlesungen für Fortgeschrittene. Praktika für Fortgeschrittene Physik im Studium Physik I - IV Übungen Theoretische Vorlesungen Praktika Vorlesungen für Fortgeschrittene Praktika für Fortgeschrittene Einführung in die Physik Teil I: Einführung: Philosophisches und

Mehr

Geometrische Optik mit ausführlicher Fehlerrechnung

Geometrische Optik mit ausführlicher Fehlerrechnung Protokoll zum Versuch Geometrische Optik mit ausführlicher Fehlerrechnung Kirstin Hübner Armin Burgmeier Gruppe 15 13. Oktober 2008 1 Brennweitenbestimmung 1.1 Kontrollieren der Brennweite Wir haben die

Mehr

UNIVERSITÄT BIELEFELD

UNIVERSITÄT BIELEFELD UNIVERSITÄT BIELEFELD Elektrizitätslehre GV: Gleichstrom Durchgeführt am 14.06.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger Philip Baumans Marius Schirmer E3-463 Inhaltsverzeichnis

Mehr

Brennweite von Linsen

Brennweite von Linsen Brennweite von Linsen Einführung Brennweite von Linsen In diesem Laborversuch soll die Brennweite einer Sammellinse vermessen werden. Linsen sind optische Bauelemente, die ein Bild eines Gegenstandes an

Mehr

Name: goerz. 1. Benutzungshinweise. 2. Einführung in die Fehlerrechnung. 3. Systematische und statistische Fehler

Name: goerz. 1. Benutzungshinweise. 2. Einführung in die Fehlerrechnung. 3. Systematische und statistische Fehler 1 of 10 0/1/05 14:5 Erstellungsdatum: 005-0-1 14:3:55 Name: goerz GP, Ferienkurs, Testat erforderlich, benotet Anforderungen für den ersten Praktikumstermin erfüllt Testat am: 005-0-1 14:3:35 Aktuelle

Mehr

$ % + 0 sonst. " p für X =1 $

$ % + 0 sonst.  p für X =1 $ 31 617 Spezielle Verteilungen 6171 Bernoulli Verteilung Wir beschreiben zunächst drei diskrete Verteilungen und beginnen mit einem Zufallsexperiment, indem wir uns für das Eintreffen eines bestimmten Ereignisses

Mehr

Kennlinie der Vakuum-Diode

Kennlinie der Vakuum-Diode Physikalisches Grundpraktikum Versuch 17 Kennlinie der Vakuum-Diode Praktikant: Tobias Wegener Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de a.osterkorn@stud.uni-goettingen.de Tutor:

Mehr

Einführung in Statistik und Messwertanalyse für Physiker

Einführung in Statistik und Messwertanalyse für Physiker Gerhard Böhm, Günter Zech Einführung in Statistik und Messwertanalyse für Physiker SUB Göttingen 7 219 110 697 2006 A 12486 Verlag Deutsches Elektronen-Synchrotron Inhalt sverzeichnis 1 Einführung 1 1.1

Mehr

Aussage: GPS liefert eine Lagegenauigkeit von etwa 10 Metern. Was heißt das eigentlich? Naheliegende Vermutung:

Aussage: GPS liefert eine Lagegenauigkeit von etwa 10 Metern. Was heißt das eigentlich? Naheliegende Vermutung: Genauigkeiten, Fehler, Ausgleichung Aussage: GPS liefert eine Lagegenauigkeit von etwa 10 Metern. Was heißt das eigentlich? Naheliegende Vermutung: Die x- und y-werte weichen um maximal +/- 10 Meter von

Mehr

Stromdurchossene Leiter im Magnetfeld, Halleekt

Stromdurchossene Leiter im Magnetfeld, Halleekt Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 2005/06 Jens Küchenmeister (1253810) Versuch: P1-73 Stromdurchossene Leiter im Magnetfeld, Halleekt - Vorbereitung - Inhaltsverzeichnis 1

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

B H 0 H definieren, die somit die Antwort des Ordnungsparameters auf eine Variation der dazu konjugierten

B H 0 H definieren, die somit die Antwort des Ordnungsparameters auf eine Variation der dazu konjugierten In Anwesenheit eines äußeren magnetischen Felds B entsteht in der paramagnetischen Phase eine induzierte Magnetisierung M. In der ferromagnetischen Phase führt B zu einer Verschiebung der Magnetisierung

Mehr

Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( )

Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( ) 1.1 Der Kreis Der Kreis Umfang Flächeninhalt Der Kreissektor (Kreisausschnitt) mit Mittelpunktswinkel Bogenlänge Flächeninhalt Grundwissen 10. Klasse Mathematik Wie ändert sich der Flächeninhalt eines

Mehr

Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy

Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy Dr. Raimund Horn a Dipl. Chem. Barbara Bliss b Dipl. Phys. Lars Lasogga c a Fritz Haber Institut der Max Planck Gesellschaft

Mehr

1.3 Die Beurteilung von Testleistungen

1.3 Die Beurteilung von Testleistungen 1.3 Die Beurteilung von Testleistungen Um das Testergebnis einer Vp zu interpretieren und daraus diagnostische Urteile ableiten zu können, benötigen wir einen Vergleichsmaßstab. Im Falle des klassischen

Mehr

Informatik Aufgaben. 1. Erstelle ein Programm zur Berechnung der Summe der Zahlen von 1 bis n, z.b. n = 100.

Informatik Aufgaben. 1. Erstelle ein Programm zur Berechnung der Summe der Zahlen von 1 bis n, z.b. n = 100. Informatik Aufgaben 1. Erstelle ein Programm zur Berechnung der Summe der Zahlen von 1 bis n, z.b. n = 100. 2. Erstelle ein Programm, das die ersten 20 (z.b.) ungeraden Zahlen 1, 3, 5,... ausgibt und deren

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

Versuch a - Gleichmäßig beschleunigte Bewegung

Versuch a - Gleichmäßig beschleunigte Bewegung UNIVERSITÄT REGENSBURG Naturwissenschaftliche Fakultät II - Physik Anleitung zum Grundlagenpraktikum A für Bachelor of Nanoscience Versuch a - Gleichmäßig beschleunigte Bewegung 23. überarbeitete Auflage

Mehr

Einfache Differentialgleichungen

Einfache Differentialgleichungen Differentialgleichungen (DGL) spielen in der Physik eine sehr wichtige Rolle. Im Folgenden behandeln wir die grundlegendsten Fälle 1, jeweils mit einer kurzen Herleitung der Lösung. Dann schliesst eine

Mehr

Mathematik für Techniker

Mathematik für Techniker Mathematik für Techniker 5. Auflage mit 468 Bildern, 531 Beispielen und 577 Aufgaben mit Lösungen rs Fachbuchverlag Leipzig im Carl Hanser Verlag Inhaltsverzeichnis 1 Rechenoperationen 15 1.1 Grundbegriffe

Mehr

Blut- und Atemalkohol- Messungen im statistischen Vergleich

Blut- und Atemalkohol- Messungen im statistischen Vergleich Blut- und Atemalkohol- Messungen im statistischen Vergleich von Prof. Dr. Andreas Slemeyer FH Giessen-Friedberg / Fachbereich Elektrotechnik 1, Wiesenstr. 14 * 3539 Giessen Tel.: 641-39-1913 Fax: 641-39-291

Mehr

1.2 Einführung der Zahl Dominik Schomas Clemens Blank

1.2 Einführung der Zahl Dominik Schomas Clemens Blank 1.2 Einführung der Zahl Dominik Schomas Clemens Blank Die Zahl wird über den konstanten Quotienten eingeführt. Der Umfang sowie der Durchmesser werden von den Schülern experimentell gemessen mit und in

Mehr

Skriptum zur Veranstaltung. Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik. 1. Version (mehr Draft als Skriptum)

Skriptum zur Veranstaltung. Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik. 1. Version (mehr Draft als Skriptum) Skriptum zur Veranstaltung Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik 1. Version (mehr Draft als Skriptum) Anmerkungen, Aufzeigen von Tippfehlern und konstruktive Kritik erwünscht!!!

Mehr

Survival of the Fittest Wie statistische Modelle an Daten angepasst werden

Survival of the Fittest Wie statistische Modelle an Daten angepasst werden Tag der Mathematik 2009 Survival of the Fittest Wie statistische Modelle an Daten angepasst werden Thomas Kneib Fakultät für Mathematik und Naturwissenschaften Carl von Ossietzky Universität Oldenburg

Mehr

Einführungsseminar S1 Elemente der Fehlerrechnung. Physikalisches Praktikum der Fakultät für Physik und Astronomie Ruhr-Universität Bochum

Einführungsseminar S1 Elemente der Fehlerrechnung. Physikalisches Praktikum der Fakultät für Physik und Astronomie Ruhr-Universität Bochum Einführungsseminar S1 Elemente der Fehlerrechnung Physikalisches Praktikum der Fakultät für Physik und Astronomie Ruhr-Universität Bochum Literatur Wolfgang Kamke Der Umgang mit experimentellen Daten,

Mehr

Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen

Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen Dr. Abebe Geletu Ilmenau University of Technology Department of Simulation and Optimal Processes

Mehr

Freier Fall. 1 Versuchsbeschreibung

Freier Fall. 1 Versuchsbeschreibung Freier Fall 1 Versuchsbeschreibung Materialliste lange Stativstange (etwa 2,5m) Frequenzgenerator(1MHz) und -zähler 2 kürzere Stativstangen zur Stabilisierung Spannungsquelle (9V) Muen, Halterungen für

Mehr

4. Erstellen von Klassen

4. Erstellen von Klassen Statistik mit Tabellenkalkulation 4. Erstellen von Klassen Mit einem einfachen Befehl lässt sich eine Liste von Zahlen auf die Häufigkeit der einzelnen Werte untersuchen. Verwenden Sie dazu den Befehl

Mehr

BL Brennweite von Linsen

BL Brennweite von Linsen BL Brennweite von Linsen Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik................... 2 2.2 Dünne Linse........................

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Übung (13) dx 3, 2x 1 dx arctan(x3 1).

Übung (13) dx 3, 2x 1 dx arctan(x3 1). Übung (3) () Bilden Sie folgende Ableitungen: d xe x dx x ln x, d dx +cos (x), d d dx 3, x dx arctan(x3 ). () Geben Sie die Näherung. Ordnung für den Ausdruck / p v /c für v

Mehr

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR.

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Weitere Files findest du auf www.semestra.ch/files DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Messung von c und e/m Autor: Noé Lutz Assistent:

Mehr

Grundlagen der Statistik und Fehlerrechnung

Grundlagen der Statistik und Fehlerrechnung Physikalisches Grundpraktikum Teil 1 WS 2010/2011 Grundlagen der Statistik und Fehlerrechnung Stefan Diehl 28.02.2011 12.30 13.30 HS I 01.03.2011 12.30 13.30 CHEG18 Inhalt Grundbegriffe der Statistik Wahrscheinlichkeitsverteilungen

Mehr

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort: Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung

Mehr

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Die Poisson-Verteilung Jianmin Lu RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Ausarbeitung zum Vortrag im Seminar Stochastik (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In der Wahrscheinlichkeitstheorie

Mehr

Thermische Ausdehnung. heißt Volumenausdehnungskoeffizient. Betrachtet man nur eine Dimension, erhält man den Längenausdehnungskoeffizienten

Thermische Ausdehnung. heißt Volumenausdehnungskoeffizient. Betrachtet man nur eine Dimension, erhält man den Längenausdehnungskoeffizienten W1 Thermische Ausdehnung ie Volumenausdehnung von Flüssigkeiten und die Längenänderung von festen Körpern in Abhängigkeit von der Temperatur sollen nachgewiesen. 1. Theoretische Grundlagen 1.1 Allgemeines

Mehr

Vorkurs Mathematik für Informatiker 3 Logarithmen

Vorkurs Mathematik für Informatiker 3 Logarithmen 3 Logarithmen Michael Bader, Thomas Huckle, Stefan Zimmer 1. 9. Oktober 2008 Kap. 3: Logarithmen 1 Logarithmen: Definition Definition: Zu x > 0 und b > 0, b 1 sei der Logarithmus von x zur Basis b folgende

Mehr

Genauigkeit der TLD-Dosimetrie zur Bestimmung von Patientendosen bei Röntgenuntersuchungen

Genauigkeit der TLD-Dosimetrie zur Bestimmung von Patientendosen bei Röntgenuntersuchungen Genauigkeit der TLD-Dosimetrie zur Bestimmung von Patientendosen bei Röntgenuntersuchungen Looe, H. K. 1, Eenboom, F. 1, Chofor, N. 1, Pfaffenberger, A. 1, Sering, M. 1, Rühmann, A. 1, Poplawski, A. 1,

Mehr

5. Schließende Statistik. 5.1. Einführung

5. Schließende Statistik. 5.1. Einführung 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

Statistik - Fehlerrechnung - Auswertung von Messungen

Statistik - Fehlerrechnung - Auswertung von Messungen 2013-11-13 Statistik - Fehlerrechnung - Auswertung von Messungen TEIL I Vorbereitungskurs F-Praktikum B (Physik), RWTH Aachen Thomas Hebbeker Literatur Eindimensionaler Fall: Grundbegriffe Wahrscheinlichkeitsverteilungen:

Mehr

Kinetische Gastheorie

Kinetische Gastheorie Kinetische Gastheorie Mikroskopischer Zugang zur Wärmelehre ausgehend on Gesetzen aus der Mechanik. Ziel: Beschreibung eines Gases mit ielen wechselwirkenden Atomen. Beschreibung mit Mitteln der Mechanik:

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Versuch A02: Thermische Ausdehnung von Metallen

Versuch A02: Thermische Ausdehnung von Metallen Versuch A02: Thermische Ausdehnung von Metallen 13. März 2014 I Lernziele Wechselwirkungspotential im Festkörper Gitterschwingungen Ausdehnungskoezient II Physikalische Grundlagen Die thermische Längen-

Mehr

Der Dampfdruck von Wasser

Der Dampfdruck von Wasser Physikalisches Grundpraktikum Versuch 8 Der Dampfdruck von Wasser Praktikant: Tobias Wegener Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de a.osterkorn@stud.uni-goettingen.de Tutor:

Mehr

Elektrischer Widerstand

Elektrischer Widerstand In diesem Versuch sollen Sie die Grundbegriffe und Grundlagen der Elektrizitätslehre wiederholen und anwenden. Sie werden unterschiedlichen Verfahren zur Messung ohmscher Widerstände kennen lernen, ihren

Mehr

Analyse der Risiken fehlerhafter Entscheidungen bei Konformitätsbewertungen mittels Software

Analyse der Risiken fehlerhafter Entscheidungen bei Konformitätsbewertungen mittels Software Analyse der Risiken fehlerhafter Entscheidungen bei Konformitätsbewertungen mittels Software QMSys GUM Enterprise, Professional Software zur Analyse der Messunsicherheit Einführung Normen und Richtlinien

Mehr

Protokoll Grundpraktikum I: M5 - Oberflächenspannung

Protokoll Grundpraktikum I: M5 - Oberflächenspannung Protokoll Grundpraktiku I: M5 - Oberflächenspannung Sebastian Pfitzner 28. April 2013 Durchführung: Sebastian Pfitzner (553983), Anna Andrle (550727) Arbeitsplatz:!!Platz!! Betreuer: Stefan Weideann Versuchsdatu:

Mehr

R-C-Kreise. durchgeführt am 07.06.2010. von Matthias Dräger und Alexander Narweleit

R-C-Kreise. durchgeführt am 07.06.2010. von Matthias Dräger und Alexander Narweleit R-C-Kreise durchgeführt am 07.06.200 von Matthias Dräger und Alexander Narweleit PHYSIKALISCHE GRUNDLAGEN Physikalische Grundlagen. Kondensator Ein Kondensator ist ein passives elektrisches Bauelement,

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Versuch P1-42 Lichtgeschwindigkeit Auswertung mit Fehlerrechnung

Versuch P1-42 Lichtgeschwindigkeit Auswertung mit Fehlerrechnung Versuch P1-42 Lichtgeschwindigkeit Auswertung mit Fehlerrechnung Gruppe Mo-19 Yannick Augenstein Patrick Kuntze Versuchsdurchführung: 31. Oktober 2011 1 Inhaltsverzeichnis 1 Drehspiegelmethode 3 1.1 Messung.....................................

Mehr

TEACHER SCIENTIST PARTNERSHIPS

TEACHER SCIENTIST PARTNERSHIPS Das Projekt TEACHER SCIENTIST PARTNERSHIPS 129289-CP-1-2006-1-DE-COMENIUS-C21 Institut für Energie- und Umwelttechnik Modul Kalibrierung Gliederung: 1. Einführung 2. Theoretische Grundlagen 2.1 Methodik

Mehr

- Eine typische Ausfallrate, wie sie bei vielen technischen Anwendungen zu sehen ist hat die Form einer Badewanne, deshalb nennt man diese Kurve auch

- Eine typische Ausfallrate, wie sie bei vielen technischen Anwendungen zu sehen ist hat die Form einer Badewanne, deshalb nennt man diese Kurve auch 1 2 - Eine typische Ausfallrate, wie sie bei vielen technischen Anwendungen zu sehen ist hat die Form einer Badewanne, deshalb nennt man diese Kurve auch Badewannenkurve. -mit der Badewannenkurve lässt

Mehr

Business Value Launch 2006

Business Value Launch 2006 Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung

Mehr

Kleine Einführung in die lineare Regression mit Excel

Kleine Einführung in die lineare Regression mit Excel Kleine Einführung in die lineare Regression mit Excel Grundoperationen mit Excel Werte mit Formeln berechnen Bsp.: Mittelwert und Standardabweichung Das $-Zeichen Beispielauswertung eines Versuches Daten

Mehr

Bandabstand von Germanium

Bandabstand von Germanium von Germanium Stichworte: Leitfähigkeit, Bändermodell der Halbleiter, Eigenleitung, Störstellenleitung, Dotierung Einführung und Themenstellung Sehr reine, undotierte Halbleiter verhalten sich bei sehr

Mehr

Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00.

Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00. 1 Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00. Bitte unbedingt beachten: a) Gewertet werden alle 9 gestellten Aufgaben. b) Lösungswege sind anzugeben. Die Angabe des Endergebnisses

Mehr

Überblick über die Verfahren für Ordinaldaten

Überblick über die Verfahren für Ordinaldaten Verfahren zur Analyse ordinalskalierten Daten 1 Überblick über die Verfahren für Ordinaldaten Unterschiede bei unabhängigen Stichproben Test U Test nach Mann & Whitney H Test nach Kruskal & Wallis parametrische

Mehr

Trägheit, Masse, Kraft Eine systematische Grundlegung der Dynamik

Trägheit, Masse, Kraft Eine systematische Grundlegung der Dynamik Trägheit, Masse, Kraft Eine systematische Grundlegung der Dynamik Die grundlegenden Gesetze der Physik sind Verallgemeinerungen (manchmal auch Extrapolationen) von hinreichend häufigen und zuverlässigen

Mehr

Fehler- und Ausgleichsrechnung

Fehler- und Ausgleichsrechnung Fehler- und Ausgleichsrechnung Daniel Gerth Daniel Gerth (JKU) Fehler- und Ausgleichsrechnung 1 / 12 Überblick Fehler- und Ausgleichsrechnung Dieses Kapitel erklärt: Wie man Ausgleichsrechnung betreibt

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 04 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 04 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens

8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens phys4.013 Page 1 8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens phys4.013 Page 2 8.6.3 Beispiel: Orts- und Impuls-Erwartungswerte für

Mehr

Protokollbuch. Friedrich-Schiller-Universität Jena. Physikalisch-Astronomische Fakultät SS 2008. Messtechnikpraktikum

Protokollbuch. Friedrich-Schiller-Universität Jena. Physikalisch-Astronomische Fakultät SS 2008. Messtechnikpraktikum Friedrich-Schiller-Universität Jena Physikalisch-Astronomische Fakultät SS 2008 Protokollbuch Messtechnikpraktikum Erstellt von: Christian Vetter (89114) Helena Kämmer (92376) Christian.Vetter@Uni-Jena.de

Mehr

Marion Pucher Membrantechnik S26 Matthias Steiger. Membrantechnik. Betreuer: Univ. Prof. Dr. Anton Friedl. Durchgeführt von:

Marion Pucher Membrantechnik S26 Matthias Steiger. Membrantechnik. Betreuer: Univ. Prof. Dr. Anton Friedl. Durchgeführt von: Membrantechnik Betreuer: Univ. Prof. Dr. Anton Friedl Durchgeführt von: Marion Pucher Mtk.Nr.:0125440 Kennzahl: S26 Mtk.Nr.:0125435 Kennzahl: Datum der Übung: 17.3.2004 Seite 1/11 1. Ziel der Übung Mithilfe

Mehr