Einführung in die Geostatistik (7) Fred Hattermann (Vorlesung), Michael Roers (Übung),

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Einführung in die Geostatistik (7) Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam."

Transkript

1 Einführung in die Geostatistik (7) Fred Hattermann (Vorlesung), Michael Roers (Übung), 1

2 Gliederung 7 Weitere Krigingverfahren 7.1 Simple-Kriging 7.2 Indikator-Kriging 7.3 Blockkriging 7.4 External-Drift-Kriging 7.5 Universal-Kriging 8 Weitere Verfahren der Variogrammschätzung 9 Geostatistische Simulation 2

3 7 Robuste Variogrammschätzung Schätzer nach Cressie and Hawkins: Im Vergleich zum Momentenschätzer haben grosse Differenzen einen kleineren Einfluss auf den Summanden, weil sie nur mit der Potenz 1/2 zur Summe beitragen. Der Cressie-Hawkins-Schätzer ist aber nicht optimal, weil ein einziger, extrem stark abweichender Messwert die Schätzung immer noch stark beeinflussen kann. Weitere Alternative: Median der Entfernungsklasse 3

4 Vergleich der Variogrammschätzverfahren 4

5 7 Maximum-Likelihood-Schätzung ML Bisher haben wir die Autokorrelation von z(u i ) mit dem Stichprobenvariogramm der Least Squares Residuen geschätzt. Man kann zeigen, dass dies keine erwartungstreue Schätzung der Autokorrelation des Fehlerprozesses ergibt (v.a. die Grösse des Sills des Variogramms wird dabei unterschätzt, vgl. Cressie, 1993). Maximum Likelihood Schätzung bieten hier einen Ausweg: Sie erlaubt, die Drift- und die Kovarianzparameter in einem Schritt zu berechnen, ohne für die Schätzung der Autokorrelation auf die Residuen des Regressionsmodells zurückgreifen zu müssen. Dazu werden die Daten nicht in Distanzklassen eingeteilt, sondern die Parameter der Modelle (z.b. des Sphärischen Modells) werden (iterativ) so geschätzt, dass sie die Daten maximal erklären. Für die Iteration müssen Anfangsparameter gesetzt werden. 5

6 Maximum Likelihood Schätzung ML Voraussetzungen: Normalverteilung der Residuen Erwartungswert der Residuen gleich Null Varianzhomogenität 6

7 Restricted ML -> REML Aber im Fall einer Drift p+1 Regressionsparameter für Schätzung der zufälligen Effekte bekannt Schätzung der festen Effekte Nur noch die zufälligen Effekte mittels REML zu schätzen (Varianzen) => Restriktionen des Modells beachtet 7

8 Vergleich LS / REML 8

9 Variogrammunsicherheit / Größe des Datenumfangs Schwarz: wahres Variogramm Gelb: Mit diesem Variogramm generiertes Datenfeld mit 100 bzw Messpunkten, daraus experimentelles Variogramm berechnet 9

10 Möglichkeit zur Überprüfung der Güte des Variogramms 1. Kreuzvalidierung 2. Kreuzvalidierung und Berechnung des Bias mit z(x) dem wahren Wert, Z*(x) dem geschätzten Wert am Ort 2 x und σ k,x der Krigevarianz. Der Median der Θ(x) sollte um liegen (Median der χ-verteilung mit einem Freiheitsgrad). 10

11 8.1 Geostatistische Simulation Problem: Kriging liefert ein Ergebnis mit geglätteter Realität (wegen der Minimierung der Schätzfehler); Verlust an Varianz. Lösung: geostatistische Simulation Es werden durch Monte-Carlo-Simulation viele gleichwahrscheinliche Realisationen erzeugt, welche jeweils das Variogramm, den Mittelwert und die Varianz sowie die Häufigkeitsverteilung wiedergeben. Beispiel: Beide Realisationen links sind aufgrund der Bohrinformation möglich, Standard- Krigingverfahren würden allerdings nur eine Realisation der Wirklichkeit ergeben. 11

12 Einschub: Monte Carlo Simulation Verfahren aus der Stochastik; Grundlage ist das Gesetz der großen Zahlen, und es wird versucht, durch sehr häufig durchgeführte Zufallsexperimente analytisch nicht oder nur schwer/ aufwändig lösbare Probleme numerisch zu lösen; Häufige Anwendung: Zufälliges ziehen aus einer bekannten Verteilung. Dabei kann die Untersuchte Variable ein Modellparameter sein, von dem man (z.b. aus empirischen Versuchen) die Verteilung kennt. 12

13 8.1 Geostatistische Simulation Problem: Kriging liefert ein Ergebnis mit geglätteter Realität (wegen der Minimierung der Schätzfehler); Verlust an Varianz. Lösung: geostatistische Simulation Es werden durch Monte-Carlo-Simulation (zufälliges Ziehen aus einer bekannten Verteilung) viele gleichwahrscheinliche Realisationen erzeugt, welche jeweils das Variogramm, den Mittelwert und die Varianz sowie die Häufigkeitsverteilung wiedergeben. Wichtige Anwendungen: Generierung von Parameterfeldern für die Modellierung. 2 Fälle: - Bedingte Simulation (die Messwerte werden an den Messpunkten wiedergegeben); - Unbedingte Simulation (die Messwerte werden an den Messpunkten nicht wiedergegeben). Wichtigste Verfahren: - Turning Band; - Simulated Annealing; - Sequentielle (Indikator) Simulation. 13

14 8.1 Beispiel: Sequentielle Geostatistische Simulation 1. Schritt: Random Walk (Zufallsschritt). 2. Monte Carlo Simulation - Über die Krigevarianz oder die Indikatorwahrscheinlichkeiten ist die Verteilung am Ort bekannt. 3. Neuer Wert geht als Messwert in die Menge der bekannten Werte ein. 4. Nächster Zufallsschritt. Deutsch, C. V. and A. G. Journel (1997) GSLIB, Geostatistical Software Library and User's Guide. Oxford University Press, New York, Oxford, 384 pp. 14

15 8.1 Sequentielle (Indikator-) Simulation Indikatorkodierung Ein Variogramm pro Klasse Viele Realisationen des Untergrundes 15

16 Saale Weichsel 8.1 Sequentielle (Indikator-) Simulation Indikator für Hohe Durchlässigkeit Mittlere Durchlässigkeit Geringe Durchlässigkeit Hohe Durchlässigkeit Mittlere Durchlässigkeit Geringe Durchlässigkeit Indikator für 1 hohe Sicherheit geringe Sicherheit Gleichwahrscheinliche Realisationen Statistik über die Realisationen (hohe Sicherheit rot, niedrige blau) Abb. : Statistische Auswertung von hundert Realisationen mit fünf Indikatoren des Bereiches um die Förderbrunnen (4 km x 4 km). Oben der vollständige Aquifer 20-fach überhöht, unten ein Schnitt als Fenster in den Aquifer. Rot bedeutet hohe Sicherheit, blau geringe.. 16

17 Übergabe der interpolierten Geologie an das Grundwassermodell (hier: FEFLOW) 17

18 8.1 Ergebnis für die Grundwassermodellierung Weichsel Saale Indikator für Hohe Durchlässigkeit Mittlere Durchlässigkeit Geringe Durchlässigkeit Hohe Durchlässigkeit Mittlere Durchlässigkeit Geringe Durchlässigkeit Gleichwahrscheinliche Realisationen GW-Fließlinien in unterschiedlichen Realisationen 18

19 8.1 Ergebnis für die Grundwassermodellierung Wahrscheinlichkeit, dass das Einzugsgebiet eines GW- Förderbrunnens durch Kiesabbau beeinflusst wird 19

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

5. Schließende Statistik. 5.1. Einführung

5. Schließende Statistik. 5.1. Einführung 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Varianzanalyse Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr. Wolfgang

Mehr

Schätzverfahren ML vs. REML & Modellbeurteilung mittels Devianz, AIC und BIC. Referenten: Linda Gräfe & Konstantin Falk

Schätzverfahren ML vs. REML & Modellbeurteilung mittels Devianz, AIC und BIC. Referenten: Linda Gräfe & Konstantin Falk Schätzverfahren ML vs. REML & Modellbeurteilung mittels Devianz, AIC und BIC Referenten: Linda Gräfe & Konstantin Falk 1 Agenda Schätzverfahren ML REML Beispiel in SPSS Modellbeurteilung Devianz AIC BIC

Mehr

Hauptseminar. Monte-Carlo-Methoden, stochastische Schätzungen und deren Unsicherheit. Robert John 2.11.2011

Hauptseminar. Monte-Carlo-Methoden, stochastische Schätzungen und deren Unsicherheit. Robert John 2.11.2011 Hauptseminar Monte-Carlo-Methoden, stochastische Schätzungen und deren Unsicherheit Robert John 1 Inhalt Herkunft Stochastische Schätzung Monte-Carlo-Methode Varianzreduktion Zufallszahlen Anwendungsgebiete

Mehr

Business Value Launch 2006

Business Value Launch 2006 Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

Eine Einführung in R: Statistische Tests

Eine Einführung in R: Statistische Tests Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws12/r-kurs/

Mehr

Toleranzberechnung/-Simulation

Toleranzberechnung/-Simulation Summenhäufigkeit zufallsgeneriert Toleranzberechnung/-Simulation Einführung Das Ziel ist es die Auswirkung von vielen Einzeltoleranzen auf ein Funktionsmaß zu ermitteln. Bekanntlich ist das addieren der

Mehr

Einführung in Statistik und Messwertanalyse für Physiker

Einführung in Statistik und Messwertanalyse für Physiker Gerhard Böhm, Günter Zech Einführung in Statistik und Messwertanalyse für Physiker SUB Göttingen 7 219 110 697 2006 A 12486 Verlag Deutsches Elektronen-Synchrotron Inhalt sverzeichnis 1 Einführung 1 1.1

Mehr

W-Rechnung und Statistik für Ingenieure Übung 11

W-Rechnung und Statistik für Ingenieure Übung 11 W-Rechnung und Statistik für Ingenieure Übung 11 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) Mathematikgebäude Raum 715 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) W-Rechnung und Statistik

Mehr

Webergänzung zu Kapitel 10

Webergänzung zu Kapitel 10 Webergänzung zu Kapitel 10 10.1.4 Varianzanalyse (ANOVA: analysis of variance) Im Kapitel 10 haben wir uns hauptsächlich mit Forschungsbeispielen beschäftigt, die nur zwei Ergebnissätze hatten (entweder

Mehr

Monte Carlo Methoden in Kreditrisiko-Management

Monte Carlo Methoden in Kreditrisiko-Management Monte Carlo Methoden in Kreditrisiko-Management P Kreditportfolio bestehend aus m Krediten; Verlustfunktion L = n i=1 L i; Die Verluste L i sind unabhängig bedingt durch einen Vektor Z von ökonomischen

Mehr

Grundlagen der Monte Carlo Simulation

Grundlagen der Monte Carlo Simulation Grundlagen der Monte Carlo Simulation 10. Dezember 2003 Peter Hofmann Inhaltsverzeichnis 1 Monte Carlo Simulation.................... 2 1.1 Problemstellung.................... 2 1.2 Lösung durch Monte

Mehr

Inhalt 1 Einführung... 1 2 Ausgewählte Begriffe... 10 3 Vorgehensweise im Überblick... 14

Inhalt 1 Einführung... 1 2 Ausgewählte Begriffe... 10 3 Vorgehensweise im Überblick... 14 VII 1 Einführung... 1 1.1 Warum Versuche?... 1 1.2 Warum Statistik?... 1 1.3 Warum Versuchsplanung?... 4 1.4 Welche Art von Ergebnissen kann man erwarten?... 6 1.5 Versuche oder systematische Beobachtung?...

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

Inhalt. Vorwort... 1 Einführung... 1. 2 Ausgewählte Begriffe... 11. 3 Vorgehensweise im Überblick... 17

Inhalt. Vorwort... 1 Einführung... 1. 2 Ausgewählte Begriffe... 11. 3 Vorgehensweise im Überblick... 17 Inhalt Vorwort.................................................................. V Inhalt.................................................................... VII 1 Einführung..........................................................

Mehr

Die Momentenmethode. Vorteil: Oft einfach anwendbar. Nachteil: Güte kann nur schwer allgemein beurteilt werden; liefert zum Teil unbrauchbare

Die Momentenmethode. Vorteil: Oft einfach anwendbar. Nachteil: Güte kann nur schwer allgemein beurteilt werden; liefert zum Teil unbrauchbare 17.1.3 Die Momentenmethode Vorteil: Oft einfach anwendbar. Nachteil: Güte kann nur schwer allgemein beurteilt werden; liefert zum Teil unbrauchbare Lösungen. Sei ϑ = (ϑ 1,...,ϑ s ) der unbekannte, s-dimensionale

Mehr

Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse

Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse Yannik Behr Gliederung 1 Stochastische Prozesse Stochastische Prozesse Ein stochastischer Prozess ist ein Phänomen, dessen

Mehr

Monte-Carlo-Simulation

Monte-Carlo-Simulation Modellierung und Simulation Monte-Carlo-Simulation Universität Hamburg Johannes Schlundt 7. Januar 2013 Monte-Carlo-Simulation Johannes S. 1/31 Inhalt Motivation Geschichtliche Entwicklung Monte-Carlo-Simulation

Mehr

Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011

Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011 Kevin Schellkes und Christian Hendricks 29.08.2011 Inhalt Der herkömmliche Ansatz zur Simulation logarithmischer Renditen Ansatz zur Simulation mit Copulas Test und Vergleich der beiden Verfahren Fazit

Mehr

Analyseschritte ROOT Zusammenfassung. Offline-Analyse. Seminar Teilchendetektoren und Experiment an ELSA. Karsten Koop 19.12.

Analyseschritte ROOT Zusammenfassung. Offline-Analyse. Seminar Teilchendetektoren und Experiment an ELSA. Karsten Koop 19.12. 1 / 32 Offline-Analyse Seminar Teilchendetektoren und Experiment an ELSA Karsten Koop 19.12.2007 2 / 32 Gliederung 1 2 Software 3 / 32 Einzelne Ereignisse, Events Bestimmung detektierter Teilchen aus Daten

Mehr

Monte-Carlo Simulation

Monte-Carlo Simulation Monte-Carlo Simulation Sehr häufig hängen wichtige Ergebnisse von unbekannten Werten wesentlich ab, für die man allerhöchstens statistische Daten hat oder für die man ein Modell der Wahrscheinlichkeitsrechnung

Mehr

Einführung in die Geostatistik (2) Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam.

Einführung in die Geostatistik (2) Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam. Einführung in die Geostatistik () Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam.de Gliederung Allgemeine Statistik. Deskriptive Statistik. Wahrscheinlichkeitstheorie.3

Mehr

Statistik Einführung // Lineare Regression 9 p.2/72

Statistik Einführung // Lineare Regression 9 p.2/72 Statistik Einführung Lineare Regression Kapitel 9 Statistik WU Wien Gerhard Derflinger Michael Hauser Jörg Lenneis Josef Ledold Günter Tirler Rosmarie Wakolbinger Statistik Einführung // Lineare Regression

Mehr

Statistik II für Betriebswirte Vorlesung 2

Statistik II für Betriebswirte Vorlesung 2 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 2 21. Oktober 2014 Verbundene Stichproben Liegen zwei Stichproben vor, deren Werte einander

Mehr

Skriptum zur Veranstaltung. Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik. 1. Version (mehr Draft als Skriptum)

Skriptum zur Veranstaltung. Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik. 1. Version (mehr Draft als Skriptum) Skriptum zur Veranstaltung Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik 1. Version (mehr Draft als Skriptum) Anmerkungen, Aufzeigen von Tippfehlern und konstruktive Kritik erwünscht!!!

Mehr

Non-Deterministische CFD Simulationen in FINE /Turbo

Non-Deterministische CFD Simulationen in FINE /Turbo Non-Deterministische CFD Simulationen in FINE /Turbo Dipl.-Ing. (FH) Peter Thiel Dr.-Ing. Thomas Hildebrandt NUMECA Ingenieurbüro NUMECA, a New Wave in Fluid Dynamics Überblick 1. Motivation: Warum non-deterministische

Mehr

1 Statistische Grundlagen

1 Statistische Grundlagen Konzepte in Empirische Ökonomie 1 (Winter) Hier findest Du ein paar Tipps zu den Konzepten in Empirische 1. Wenn Du aber noch etwas Unterstützung kurz vor der Klausur brauchst, schreib uns eine kurze Email.

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678 Lösungsvorschläge zu Blatt 8 X binomialverteilt mit p = 0. und n = 10: a PX = = 10 q = 1 p = 0.8 0. 0.8 10 = 0, 1,..., 10 PX = PX = 0 + PX = 1 + PX = 10 10 = 0. 0 0.8 10 + 0. 1 0.8 9 + 0 1 10 = 0.8 8 [

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt. Stock, Nordflügel R. 0-49 (Persike) R. 0- (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de WS 008/009 Fachbereich

Mehr

3 Monte-Carlo-Simulationen

3 Monte-Carlo-Simulationen 3 Monte-Carlo-Simulationen In diesem Kapitel soll mit der so genannten Monte-Carlo-Methode ein wichtiges Anwendungsgebiet des in Kapitel 2 erarbeiteten Begriffs- und Methodenapparats detaillierter beleuchtet

Mehr

Regression mit Gretl Eine erste Einführung 1

Regression mit Gretl Eine erste Einführung 1 Kurzeinführung in Gretl S. 1 Regression mit Gretl Eine erste Einführung 1 Installation: Gretl für das entsprechende Betriebssystem herunterladen und die Setup-Datei ausführen. Hinweis: Für die Benutzung

Mehr

Statistische Auswertung der Daten von Blatt 13

Statistische Auswertung der Daten von Blatt 13 Statistische Auswertung der Daten von Blatt 13 Problemstellung 1 Graphische Darstellung der Daten 1 Diskussion der Normalverteilung 3 Mittelwerte und deren Konfidenzbereiche 3 Signifikanz der Behandlung

Mehr

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen

Mehr

8. Februar 2007. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt.

8. Februar 2007. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt. L. Fahrmeir, C. Belitz Department für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik 8. Februar 2007 Hinweise:

Mehr

Abitur 2007 Mathematik GK Stochastik Aufgabe C1

Abitur 2007 Mathematik GK Stochastik Aufgabe C1 Seite 1 Abiturloesung.de - Abituraufgaben Abitur 2007 Mathematik GK Stochastik Aufgabe C1 Eine Werbeagentur ermittelte durch eine Umfrage im Auftrag eines Kosmetikunternehmens vor Beginn einer Werbekampagne

Mehr

Regressionsanalysen. Zusammenhänge von Variablen. Ziel der Regression. ( Idealfall )

Regressionsanalysen. Zusammenhänge von Variablen. Ziel der Regression. ( Idealfall ) Zusammenhänge von Variablen Regressionsanalysen linearer Zusammenhang ( Idealfall ) kein Zusammenhang nichtlinearer monotoner Zusammenhang (i.d.regel berechenbar über Variablentransformationen mittels

Mehr

Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10

Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10 Analytische Statistik I Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10 Testen Anpassungstests (goodness of fit) Weicht eine gegebene Verteilung signifikant von einer bekannten

Mehr

Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko

Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko Jan Jescow Stoehr Gliederung 1. Einführung / Grundlagen 1.1 Ziel 1.2 CreditRisk+ und CreditMetrics 2. Kreditportfolio 2.1 Konstruktion

Mehr

Value at Risk Einführung

Value at Risk Einführung Value at Risk Einführung Veranstaltung Risk Management & Computational Finance Dipl.-Ök. Hans-Jörg von Mettenheim mettenheim@iwi.uni-hannover.de Institut für Wirtschaftsinformatik Leibniz Universität Hannover

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 1 Multivariate Verfahren Musterlösung Aufgabe 1 (40 Punkte) Auf der dem Kurs beigelegten CD finden Sie im Unterverzeichnis Daten/Excel/ die Datei zahlen.xlsx. Alternativ können Sie

Mehr

Ein möglicher Unterrichtsgang

Ein möglicher Unterrichtsgang Ein möglicher Unterrichtsgang. Wiederholung: Bernoulli Experiment und Binomialverteilung Da der sichere Umgang mit der Binomialverteilung, auch der Umgang mit dem GTR und den Diagrammen, eine notwendige

Mehr

Mehrdimensionale Zufallsvariablen

Mehrdimensionale Zufallsvariablen Mehrdimensionale Zufallsvariablen Im Folgenden Beschränkung auf den diskreten Fall und zweidimensionale Zufallsvariablen. Vorstellung: Auswerten eines mehrdimensionalen Merkmals ( ) X Ỹ also z.b. ω Ω,

Mehr

12. Vergleich mehrerer Stichproben

12. Vergleich mehrerer Stichproben 12. Vergleich mehrerer Stichproben Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Häufig wollen wir verschiedene Populationen, Verfahren, usw. miteinander vergleichen. Beipiel: Vergleich

Mehr

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002)

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002) 6. Bayes-Klassifikation (Schukat-Talamazzini 2002) (Böhm 2003) (Klawonn 2004) Der Satz von Bayes: Beweis: Klassifikation mittels des Satzes von Bayes (Klawonn 2004) Allgemeine Definition: Davon zu unterscheiden

Mehr

Taschenbuch Versuchsplanung

Taschenbuch Versuchsplanung Wilhelm Kleppmann Taschenbuch Versuchsplanung Produkte und Prozesse optimieren Praxisreihe Qualitätswissen Herausgegeben von Franz J. Brunner Carl Hanser Verlag München Wien VII Inhalt 1 Einführung 1 1.1

Mehr

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren)

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Multiple Regression 1 Was ist multiple lineare Regression? Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Annahme: Der Zusammenhang

Mehr

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18 3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen

Mehr

Taschenbuch Versuchsplanung Produkte und Prozesse optimieren

Taschenbuch Versuchsplanung Produkte und Prozesse optimieren Wilhelm Kleppmann Taschenbuch Versuchsplanung Produkte und Prozesse optimieren ISBN-10: 3-446-41595-5 ISBN-13: 978-3-446-41595-9 Inhaltsverzeichnis Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-41595-9

Mehr

Einführung in statistische Analysen

Einführung in statistische Analysen Einführung in statistische Analysen Andreas Thams Econ Boot Camp 2008 Wozu braucht man Statistik? Statistik begegnet uns jeden Tag... Weihnachten macht Deutschen Einkaufslaune. Im Advent überkommt die

Mehr

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell Kapitel 8 Einfache Regression Josef Leydold c 2006 Mathematische Methoden VIII Einfache Regression 1 / 21 Lernziele Lineares Regressionsmodell Anpassen des linearen Regressionsmodells, OLS Eigenschaften

Mehr

Kapitel 4: Binäre Regression

Kapitel 4: Binäre Regression Kapitel 4: Binäre Regression Steffen Unkel (basierend auf Folien von Nora Fenske) Statistik III für Nebenfachstudierende WS 2013/2014 4.1 Motivation Ausgangssituation Gegeben sind Daten (y i, x i1,...,

Mehr

Interne und externe Modellvalidität

Interne und externe Modellvalidität Interne und externe Modellvalidität Interne Modellvalidität ist gegeben, o wenn statistische Inferenz bzgl. der untersuchten Grundgesamtheit zulässig ist o KQ-Schätzer der Modellparameter u. Varianzschätzer

Mehr

Numerische Optionsbepreisung durch Monte-Carlo-Simulation und Vergleich mit dem Black-Scholes-Modell

Numerische Optionsbepreisung durch Monte-Carlo-Simulation und Vergleich mit dem Black-Scholes-Modell Numerische Optionsbepreisung durch Monte-Carlo-Simulation und Vergleich mit dem Black-Scholes-Modell Bachelorarbeit zur Erlangung des akademischen Grades Bachelor of Science (B.Sc.) im Studiengang Wirtschaftswissenschaft

Mehr

Modellbildung und Simulation

Modellbildung und Simulation Modellbildung und Simulation 5. Vorlesung Wintersemester 2007/2008 Klaus Kasper Value at Risk (VaR) Glossar Portfolio: In der Ökonomie bezeichnet der Begriff Portfolio ein Bündel von Investitionen, das

Mehr

Unsupervised Kernel Regression

Unsupervised Kernel Regression 9. Mai 26 Inhalt Nichtlineare Dimensionsreduktion mittels UKR (Unüberwachte KernRegression, 25) Anknüpfungspunkte Datamining I: PCA + Hauptkurven Benötigte Zutaten Klassische Kernregression Kerndichteschätzung

Mehr

Beispiel 6 (Einige Aufgaben zur Gleichverteilung)

Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Aufgabe (Anwendung der Chebyshev-Ungleichung) Sei X eine Zufallsvariable mit E(X) = µ und var(x) = σ a) Schätzen Sie die Wahrscheinlichkeit dafür, daß

Mehr

Weiterbildungskurs Stochastik

Weiterbildungskurs Stochastik Hansruedi Künsch Seminar für Statistik Departement Mathematik, ETH Zürich 24. Juni 2009 Inhalt STATISTIK DER BINOMIALVERTEILUNG 1 STATISTIK DER BINOMIALVERTEILUNG 2 Fragestellungen Typische Fragestellungen

Mehr

Angewandte Ökonometrie, WS 2012/13, 1. Teilprüfung am 6.12.2012 - Lösungen. Das folgende Modell ist ein GARCH(1,1)-Modell:

Angewandte Ökonometrie, WS 2012/13, 1. Teilprüfung am 6.12.2012 - Lösungen. Das folgende Modell ist ein GARCH(1,1)-Modell: Angewandte Ökonometrie, WS 2012/13, 1. Teilprüfung am 6.12.2012 - Lösungen LV-Leiterin: Univ.Prof.Dr. Sylvia Frühwirth-Schnatter 1 Wahr oder falsch? 1. Das folgende Modell ist ein GARCH(1,1)-Modell: Y

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Aufabe 7: Baum-Welch Algorithmus

Aufabe 7: Baum-Welch Algorithmus Effiziente Algorithmen VU Ausarbeitung Aufabe 7: Baum-Welch Algorithmus Florian Fest, Matr. Nr.0125496 baskit@generationfun.at Claudia Hermann, Matr. Nr.0125532 e0125532@stud4.tuwien.ac.at Matteo Savio,

Mehr

Taschenbuch Versuchsplanung

Taschenbuch Versuchsplanung Wilhelm Kleppmann 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Taschenbuch Versuchsplanung Produkte und Prozesse

Mehr

Computational Finance

Computational Finance Computational Finance Kapitel 2.2: Monte Carlo Simulation Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring 4 / WiWi-Gebäude

Mehr

Analyse und Simulation von Untergrundereignissen für den LFV-Zerfall mit dem ATLAS Experiment am LHC

Analyse und Simulation von Untergrundereignissen für den LFV-Zerfall mit dem ATLAS Experiment am LHC Analyse und Simulation von Untergrundereignissen für den LFV-Zerfall mit dem ATLAS Experiment am LHC Bericht über ein Praktikum am CERN im Juli/August 2008 Andreas Reiserer Gliederung Der Zerfall τ-produktion

Mehr

Simulation von Zinsentwicklungen und Bewertung von gängigen Finanzprodukten

Simulation von Zinsentwicklungen und Bewertung von gängigen Finanzprodukten Simulation von Zinsentwicklungen und Bewertung von gängigen Finanzprodukten Andreas Eichler Institut für Finanzmathematik Johannes Kepler Universität Linz 1. Februar 2010 1 / 7 Gliederung 1 Was ist Finanzmathematik

Mehr

Geostatistik und Anwendungen im Precision Farming

Geostatistik und Anwendungen im Precision Farming Geostatistik und Anwendungen im Precision Farming Irina Kuzyakova Institut für Pflanzenbau und Grünland Precision Farming Managementstrategie, die die räumlichen Informationstechnologien benutzt, um Entscheidungen

Mehr

Das Black-Scholes Marktmodell

Das Black-Scholes Marktmodell Das Black-Scholes Marktmodell Andreas Eichler Institut für Finanzmathematik Johannes Kepler Universität Linz 8. April 2011 1 / 14 Gliederung 1 Einleitung Fortgeschrittene Finanzmathematik einfach erklärt

Mehr

Wahrscheinlichkeitsrechnung und schließende Statistik

Wahrscheinlichkeitsrechnung und schließende Statistik Karl Mosler Friedrich Schmid Wahrscheinlichkeitsrechnung und schließende Statistik Vierte, verbesserte Auflage Springer Inhaltsverzeichnis 0 Einführung 1 1 Zufalls Vorgänge und Wahrscheinlichkeiten 5 1.1

Mehr

Monte-Carlo- Simulation. Seminar zur Vorlesung Teilchendetektoren und Experiment an ELSA

Monte-Carlo- Simulation. Seminar zur Vorlesung Teilchendetektoren und Experiment an ELSA Monte-Carlo- Simulation Seminar zur Vorlesung Teilchendetektoren und Experiment an ELSA Übersicht Einleitung Simulation mit Geant4 generierte Daten Zusammenfassung 2 Simulation Mathematische Modellierung

Mehr

Vorlesung: Lineare Modelle

Vorlesung: Lineare Modelle Vorlesung: Lineare Modelle Prof Dr Helmut Küchenhoff Institut für Statistik, LMU München SoSe 2014 5 Metrische Einflußgrößen: Polynomiale Regression, Trigonometrische Polynome, Regressionssplines, Transformationen

Mehr

Investition und Risiko. Finanzwirtschaft I 5. Semester

Investition und Risiko. Finanzwirtschaft I 5. Semester Investition und Risiko Finanzwirtschaft I 5. Semester 1 Gliederung Ziel Korrekturverfahren: Einfache Verfahren der Risikoberücksichtigung Sensitivitätsanalyse Monte Carlo Analyse Investitionsentscheidung

Mehr

Kaplan-Meier-Schätzer

Kaplan-Meier-Schätzer Kaplan-Meier-Schätzer Ausgangssituation Zwei naive Ansätze zur Schätzung der Survivalfunktion Unverzerrte Schätzung der Survivalfunktion Der Kaplan-Meier-Schätzer Standardfehler und Konfidenzintervall

Mehr

DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 2006/07 28.02.2007

DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 2006/07 28.02.2007 Wirtschaftswissenschaftliches Prüfungsamt DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 006/07 8.0.007 Lösung Prof. Dr. R Friedmann / Dr. R. Hauser Hinweise für die Klausurteilnehmer

Mehr

QM: Prüfen -1- KN16.08.2010

QM: Prüfen -1- KN16.08.2010 QM: Prüfen -1- KN16.08.2010 2.4 Prüfen 2.4.1 Begriffe, Definitionen Ein wesentlicher Bestandteil der Qualitätssicherung ist das Prüfen. Sie wird aber nicht wie früher nach der Fertigung durch einen Prüfer,

Mehr

Grundlagen der Inferenzstatistik

Grundlagen der Inferenzstatistik Grundlagen der Inferenzstatistik (Induktive Statistik oder schließende Statistik) Dr. Winfried Zinn 1 Deskriptive Statistik versus Inferenzstatistik Die Deskriptive Statistik stellt Kenngrößen zur Verfügung,

Mehr

n-gramm-modelle Vorlesung Computerlinguistische Techniken Alexander Koller 1. Dezember 2014

n-gramm-modelle Vorlesung Computerlinguistische Techniken Alexander Koller 1. Dezember 2014 n-gramm-modelle Vorlesung Computerlinguistische Techniken Alexander Koller 1. Dezember 2014 Wahrscheinlichkeit und Sprache Ausgangsfrage: Nächstes Wort vorhersagen. Sprache als Zufallsprozess: Für jede

Mehr

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde

Mehr

Computational Finance

Computational Finance Computational Finance Kapitel 2.1: Einführung in die Simulation Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring 4

Mehr

4. Erstellen von Klassen

4. Erstellen von Klassen Statistik mit Tabellenkalkulation 4. Erstellen von Klassen Mit einem einfachen Befehl lässt sich eine Liste von Zahlen auf die Häufigkeit der einzelnen Werte untersuchen. Verwenden Sie dazu den Befehl

Mehr

Modellanpassung und Parameterschätzung. A: Übungsaufgaben

Modellanpassung und Parameterschätzung. A: Übungsaufgaben 7 Modellanpassung und Parameterschätzung 1 Kapitel 7: Modellanpassung und Parameterschätzung A: Übungsaufgaben [ 1 ] Bei n unabhängigen Wiederholungen eines Bernoulli-Experiments sei π die Wahrscheinlichkeit

Mehr

Statistik II für Betriebswirte Vorlesung 3

Statistik II für Betriebswirte Vorlesung 3 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 3 5. November 2013 Beispiel: Aktiensplit (Aczel & Sounderpandan, Aufg. 14-28) Ein Börsenanalyst

Mehr

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Einfaktorielle Versuchspläne 27/40 Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Abweichung Einfach Differenz Helmert Wiederholt Vergleich Jede Gruppe mit Gesamtmittelwert

Mehr

Analyse von Querschnittsdaten. Regression mit Dummy-Variablen

Analyse von Querschnittsdaten. Regression mit Dummy-Variablen Analyse von Querschnittsdaten Regression mit Dummy-Variablen Warum geht es in den folgenden Sitzungen? Datum Vorlesung 9.0.05 Einführung 26.0.05 Beispiele 02..05 Forschungsdesigns & Datenstrukturen 09..05

Mehr

In konstanten Modellen wird davon ausgegangen, dass die zu prognostizierende Größe sich über die Zeit hinweg nicht verändert.

In konstanten Modellen wird davon ausgegangen, dass die zu prognostizierende Größe sich über die Zeit hinweg nicht verändert. Konstante Modelle: In konstanten Modellen wird davon ausgegangen, dass die zu prognostizierende Größe sich über die Zeit hinweg nicht verändert. Der prognostizierte Wert für die Periode T+i entspricht

Mehr

Fotios Filis. Monte-Carlo-Simulation

Fotios Filis. Monte-Carlo-Simulation Fotios Filis Monte-Carlo-Simulation Monte-Carlo-Methoden??? Spielcasino gibt Namen Monte Carlo war namensgebend für diese Art von Verfahren: Erste Tabellen mit Zufallszahlen wurden durch Roulette-Spiel-Ergebnisse

Mehr

Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear":

Das Dialogfeld für die Regressionsanalyse (Lineare Regression) findet sich im Statistik- Menu unter Regression-Linear: Lineare Regression Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear": Im einfachsten Fall werden mehrere Prädiktoren (oder nur

Mehr

Entwicklung eines Distanzmaßes zwischen Bildern über dem Modell der Fields of Visual Words

Entwicklung eines Distanzmaßes zwischen Bildern über dem Modell der Fields of Visual Words Entwicklung eines Distanzmaßes zwischen Bildern über dem Modell der Fields of Visual Words André Viergutz 1 Inhalt Einführung. Einordnung der Arbeit in die zugrunde liegenden Konzepte Das Modell der Fields

Mehr

Die Monte-Carlo-Methode mit Pseudo- und Quasi-Zufallszahlen

Die Monte-Carlo-Methode mit Pseudo- und Quasi-Zufallszahlen Die Monte-Carlo-Methode mit Pseudo- und Quasi-Zufallszahlen Marco A. Harrendorf Hauptseminar Methoden der experimentellen Teilchenphysik WS 2011/2012 Karlsruhe Institut für Technologie (KIT) 25.11.2011

Mehr

Inferenz im multiplen Regressionsmodell

Inferenz im multiplen Regressionsmodell 1 / 29 Inferenz im multiplen Regressionsmodell Kapitel 4, Teil 1 Ökonometrie I Michael Hauser 2 / 29 Inhalt Annahme normalverteilter Fehler Stichprobenverteilung des OLS Schätzers t-test und Konfidenzintervall

Mehr

MA Projekt: Langfristige Kapitalmarktsimulation

MA Projekt: Langfristige Kapitalmarktsimulation MA Projekt: Langfristige Kapitalmarktsimulation Einführung in die Simulation Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring

Mehr

Tutorium zur Makroökonomik

Tutorium zur Makroökonomik Universität Ulm 89069 Ulm Germany Dipl. WiWi. Sabrina Böck Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Tutorium zur Makroökonomik

Mehr

Korrelation - Regression. Berghold, IMI

Korrelation - Regression. Berghold, IMI Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines

Mehr

6 Mehrstufige zufällige Vorgänge Lösungshinweise

6 Mehrstufige zufällige Vorgänge Lösungshinweise 6 Mehrstufige zufällige Vorgänge Lösungshinweise Aufgabe 6.: Begründen Sie, warum die stochastische Unabhängigkeit zweier Ereignisse bzw. zufälliger Vorgänge nur ein Modell der Realität darstellen kann.

Mehr

Statistik. R. Frühwirth. Statistik. VO Februar R. Frühwirth Statistik 1/536

Statistik. R. Frühwirth. Statistik. VO Februar R. Frühwirth Statistik 1/536 fru@hephy.oeaw.ac.at VO 142.090 http://tinyurl.com/tu142090 Februar 2010 1/536 Übersicht über die Vorlesung Teil 1: Deskriptive Teil 2: Wahrscheinlichkeitsrechnung Teil 3: Zufallsvariable Teil 4: Parameterschätzung

Mehr

Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression

Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression Speziell im Zusammenhang mit der Ablehnung der Globalhypothese werden bei einer linearen Einfachregression weitere Fragestellungen

Mehr

, dt. $+ f(x) = , - + < x < +, " > 0. " 2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) =

, dt. $+ f(x) = , - + < x < +,  > 0.  2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) = 38 6..7.4 Normalverteilung Die Gauß-Verteilung oder Normal-Verteilung ist eine stetige Verteilung, d.h. ihre Zufallsvariablen können beliebige reelle Zahlenwerte annehmen. Wir definieren sie durch die

Mehr

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel Ausarbeitung zum Proseminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn zum Thema Simulation des Anlagenpreismodels von Simon Uphus im WS 09/10 Zusammenfassung

Mehr

Nachholklausur STATISTIK II

Nachholklausur STATISTIK II Nachholklausur STATISTIK II Name, Vorname: Matrikel-Nr.: Die Klausur enthält zwei Typen von Aufgaben: T e i l A besteht aus Fragen mit mehreren vorgegebenen Antwortvorschlägen, von denen mindestens eine

Mehr