Modellbildung und Simulation

Größe: px
Ab Seite anzeigen:

Download "Modellbildung und Simulation"

Transkript

1 Modellbildung und Simulation 5. Vorlesung Wintersemester 2007/2008 Klaus Kasper

2 Value at Risk (VaR)

3 Glossar Portfolio: In der Ökonomie bezeichnet der Begriff Portfolio ein Bündel von Investitionen, das im Besitz einer Institution oder eines Individuums ist. Quantil: Quantile sind Punkte einer sortierten Messreihe. Der Wert des p-quantils einer Verteilung gibt an, welcher Wert die unteren p-% der Datenwerte von den oberen (1 - p)-% trennt. Wenn man etwa das 5%-Quantil einer Verteilung angibt, so besagt dies, dass 5% aller Datenwerte kleiner sind als der betreffende Datenwert und 95% größer oder gleich diesem Wert WS 2007/2008 Modellbildung und Simulation 3

4 Value at Risk (VaR) VaR bezeichnet ein Risikomaß, das den geschätzten, maximalen (Marktwert-)Verlust eines Portfolios nach einer vorgegebenen Haltedauer angibt, der mit einer bestimmten Wahrscheinlichkeit unter üblichen Marktbedingungen nicht überschritten wird. Mit anderen Worten: Der VaR ist als derjenige Portfolioverlust definiert, der innerhalb eines bestimmten Zeitraumes nur mit vorgegebener Wahrscheinlichkeit noch höher ausfallen kann. Cremers, Heinz; Value at Risk-Konzepte für Marktrisiken; Hochschule für Bankwirtschaft. WS 2007/2008 Modellbildung und Simulation 4

5 Entwicklung des Konzepts Dennis Weatherstone verlangte während seiner Zeit als Vorsitzender der USamerikanischen Investmentbank J.P. Morgan täglich um Uhr einen einseitigen Risiko-Bericht, in dem das gesamte Portfolio des Handelsbestandes der Bank sowie eine Schätzung der maximal möglichen Verluste in den folgenden 24 Stunden dargestellt waren. Weatherstone war es einfach leid, dass die Marktrisiken der verschiedenen Finanzinstrumente mit unterschiedlichen Methoden gemessen wurden. Sein bisheriger Report enthielt eine Unmenge von Beta-Faktoren und Volatilitäten, gearing factors, Deltas, Gammas und Thetas. Er wollte ein einheitliches Risiko-Maß für alle Finanzinstrumente haben. Dies war die Geburtsstunde des Report 4.15 (1994). Dieser Report basiert auf einer Methodik, die als Value at Risk bezeichnet wird. Quelle: WS 2007/2008 Modellbildung und Simulation 5

6 Value at Risk WS 2007/2008 Modellbildung und Simulation 6

7 VaR im Einsatz Wir berechnen den Value-at-risk sowohl für interne als auch externe Meldezwecke mit einem Konfidenzniveau von 99%, gemäß den Bestimmungen der Bank für Internationalen Zahlungsausgleich (BIZ). Für interne Meldezwecke legen wir eine Haltedauer von einem Tag zu Grunde. Für aufsichtsrechtliche Meldezwecke beträgt die Haltedauer zehn Tage. Die statistischen Parameter, die für die Value-at-risk-Berechnung erforderich sind, werden auf Basis einer Beobachtungszeitreihe über die letzten 261 Handelstage (was mindestens einem Kalenderjahr entspricht) bestimmt, wobei jede Beobachtung gleich gewichtet wird. Generell benutzen wir zur Value-at-risk-Berechnung das Monte Carlo-Simulationsverfahren, wobei wir annehmen, dass Änderungen in den Risikofaktoren einer Normalverteilung oder logarithmischen Normalverteilung folgen. Die Informationen sind Teil des Konzernabschlusses der Deutschen Bank zum (http://geschaeftsbericht.deutsche-bank.de/2004/gb/risikobericht/marktrisiko/value-at-risk-analyse.php) WS 2007/2008 Modellbildung und Simulation 7

8 Berechnung des VaR Monte Carlo Simulation Sammlung und Analyse historischer Daten. Modellierung der Verteilung. Simulation von Kursentwicklungen gemäß der modellierten Verteilung. Große Zahl an Simulationen. Prognose von Kursentwicklungen. Berechnung des monetären Risikos für die Entwicklung des Portfolios. WS 2007/2008 Modellbildung und Simulation 8

9 Monte Carlo Simulation In den 1940er Jahren im Kontext der Atomforschung für die Abschätzung der Wechselwirkung zwischen Neutronen und Materie entwickelt. Einsatz zur Lösung analytisch nicht lösbarer Probleme. Basis ist die Durchführung von Zufallsexperimenten. Der Name geht auf die berühmte Spielbank zurück. Prinzipiell könnten Zufallszahlen auch mit einem Roulette erzeugt werden. WS 2007/2008 Modellbildung und Simulation 9

10 Verteilung von Zufallsvariablen Roulette wie sind die Zahlen des Roulette verteilt? Gleichverteilt, da jede Zahl gleich wahrscheinlich ist. Wie ist die Größe erwachsener Frauen eines Kulturkreises verteilt? Normalverteilt eine mittlere Größe wird relativ häufig gefunden während Extremwerte sehr selten auftreten. WS 2007/2008 Modellbildung und Simulation 10

11 Mittelwert, Varianz, Standardabweichung Mittelwert: µ x T = t = 1 x( t)/ T Varianz: T 2 2 x = x t x t = 1 σ ( ( ) µ ) / T Standardabweichung: σ x = σ 2 x WS 2007/2008 Modellbildung und Simulation 11

12 Statistische Kenngrößen einer Stichprobe (empirisch) Erwartungswert: µ x N = i = 1 x i / N Empirische Varianz: N 2 2 σ x = ( xi µ x ) /( N 1) i = 1 Empirische Standardabweichung: 2 x = σ x σ WS 2007/2008 Modellbildung und Simulation 12

13 Berechnung der empirischen Standardabweichung N ( ) 2 N 2 N X X i = 1 i i = 1 i σ x = N ( N 1) Besonderheit: Erwartungswert muss vorab nicht berechnet werden WS 2007/2008 Modellbildung und Simulation 13

14 Normalverteilung (Gauß-Verteilung) Johann Carl Friedrich Gauß ( ) Die Normalverteilung (Gauß-Verteilung) ist die wichtigste kontinuierliche Wahrscheinlichkeitsverteilung. Ihre Wahrscheinlichkeitsdichte wird als Gaußdichte oder Glockenkurve bezeichnet. Der zentrale Grenzwertsatz besagt, dass eine Summe von n unabhängigen, gleichverteilten Zufallsvariablen in der Grenze n gegen unendlich normalverteilt ist. Eine Normalverteilung wird durch Mittelwert und Varianz vollständig definiert. WS 2007/2008 Modellbildung und Simulation 14

15 Gaußdichte Gaußdichte der Normalverteilung: f ( x) = 1 2π σ x e 2 2 x ( x µ ) / 2σ x Gaußdichte der Standardnormalverteilung: f ( x) = 1 e 2π x 2 / 2 WS 2007/2008 Modellbildung und Simulation 15

16 Beispiele Interaktive Demo: WS 2007/2008 Modellbildung und Simulation 16

17 Charakteristische Wertebereiche 68,27% aller Werte einer normalverteilten Zufallsvariablen liegen innerhalb des Intervalls µ σ x µ + σ 95,45% aller Werte einer normalverteilten Zufallsvariablen liegen innerhalb des Intervalls µ (2 σ ) x µ + (2 σ ) WS 2007/2008 Modellbildung und Simulation 17

18 Beispiel Quelle: WS 2007/2008 Modellbildung und Simulation 18

19 Beispiel (IQ) Ein Intelligenztest sei so normiert, dass der mittlere IQ 100 beträgt und eine Varianz von 225 gemessen wird. Für einen Probanden wird ein IQ von 130 ermittelt. Schätzen Sie bitte den Anteil der Untersuchungsgruppe ab, der einen geringeren IQ im Test erreichen wird. Ca. 97,7% der Probanden erreichen einen IQ unter 130. WS 2007/2008 Modellbildung und Simulation 19

20 Glossar multivariat: Die gemeinsame Verteilung mehrerer Zufallsvariablen wird als multivariate Zufallsverteilung bezeichnet. univariat: Die Verteilung einer einzelnen Zufallsvariablen wird als univariate Zufallsverteilung bezeichnet. WS 2007/2008 Modellbildung und Simulation 20

21 Erwartungsvektor und empirische Kovarianzmatrix µ x N = n= 1 x( n)/ N cov X cov( x1, x1) cov( x1, xm ) = cov( xm, x1) cov( xm, xm ) N cov( x, x ) = ( x µ )( x µ )/( N 1) = cov( x, x ) i j i i j j j i n= 1 WS 2007/2008 Modellbildung und Simulation 21

22 Korrelation Die Korrelation ist ein Maß für die Beziehung zwischen zwei Zufallsvariablen. Hinweis: Eine starke Korrelation lässt keine Aussage über den kausalen Zusammenhang zwischen Zufallsvariablen zu. Die Komponente cov( xi, x j ) der Kovarianzmatrix der multivariaten Normalverteilung einer Modellgröße ist ein Maß für die Korrelation der i-ten Komponente der Modellgröße mit der j-ten Komponente der Modellgröße. WS 2007/2008 Modellbildung und Simulation 22

23 Scheinkausalität Der Rückgang der Störche korreliert stark mit dem Rückgang der Geburtenrate. Daher sind Störche doch für unsere Fortpflanzung zuständig. Diese Folgerung ist nicht zulässig. Erklärung: Die fortschreitende Industrialisierung hat sowohl zu einem Rückgang der Störche als auch zu einem Rückgang der Geburtenrate geführt. WS 2007/2008 Modellbildung und Simulation 23

24 Berechnung des Korrelationskoeffizienten ρ ( x, x ) 1 2 = σ cov( x, x ) 1 2 ( x ) ( x ) σ 1 2 ρ ( x, x ) = 0 : 1 2 Unabhängigkeit der beiden Variablen ρ ( x, x ) = 1: 1 2 exakte positive lineare Abhängigkeit ρ ( x, x ) = 1: 1 2 exakte negative lineare Abhängigkeit WS 2007/2008 Modellbildung und Simulation 24

25 Mehrdimensionale Gaußdichte f ( x) = n 1 (2 π ) det(cov ) x e 1 ( ) T (cov ) 1 x µ x x ( x µ x ) 2 WS 2007/2008 Modellbildung und Simulation 25

26 Multivariate Normalverteilung (2-dimensional) Interaktive Demo: WS 2007/2008 Modellbildung und Simulation 26

27 Glossar Modellgröße: Die zu modellierende Größe. Beispiel: Wert bzw. Preis der Bestandteile des Portfolios (Rohdaten). eine sinnvolle Parametrisierung ist die Berechnung relativer Änderungen. empirisch: Die Prognose wird aus historischen Beobachtungen, Simulationen oder subjektiven Einschätzungen gewonnen. parametrisch: Die Prognose wird auf der Basis der Annahme des Typs der zu Grunde liegenden Verteilung und der Schätzung der erforderlichen Parameter der Verteilung gewonnen. WS 2007/2008 Modellbildung und Simulation 27

28 Konzepte zur Berechnung des VaR Historische Simulation Monte Carlo Simulation WS 2007/2008 Modellbildung und Simulation 28

29 Historische Simulation Verfahren: historisch/empirisch Historische Beobachtungen der Modellgrößen werden gesammelt. Aus den historischen Beobachtungen werden Wertänderungen des aktuellen Portfolio berechnet. Aus der geordneten (empirischen) Messreihe der berechneten Änderungen des Portfolio wird das Quantil bestimmt. Hinweis: Für die Anwendung der historischen Simulation muss keine Annahme über die zu Grunde liegende Verteilung getroffen werden. WS 2007/2008 Modellbildung und Simulation 29

30 Monte Carlo Simulation Verfahren: parametrisch/empirisch An Hand empirischer Daten werden die Parameter einer zu Grunde gelegten Verteilung der Modellgrößen geschätzt. Es werden zufällig Werte (Wertänderungen) erzeugt, die der geschätzten Verteilung gehorchen. Für jede zufällig erzeugte Wertänderung wird die Auswirkung auf das aktuelle Portfolio berechnet. Aus der geordneten (empirischen) Messreihe der simulierten Änderungen des Portfolio wird das Quantil bestimmt. WS 2007/2008 Modellbildung und Simulation 30

31 Zufallsprozesse Radioaktiver atomarer Zerfall Thermisches Rauschen (Widerstand) Zufallsprozesse sind reale physikalische Prozesse. Zur Durchführung von Simulationen werden häufig Zufallszahlen benötigt. Nur sehr selten werden zur Erzeugung von Zufallszahlen reale Zufallsprozesse beobachtet. WS 2007/2008 Modellbildung und Simulation 31

32 Zufallsgeneratoren Meist werden für Simulationen Zufallsgeneratoren eingesetzt, die algorithmisch Zufallszahlen erzeugen. Hierbei handelt es sich um deterministische Pseudo-Zufallszahlen, die sich periodisch wiederholen. Es werden also immer die selben Zufallszahlen aufeinander folgen. WS 2007/2008 Modellbildung und Simulation 32

33 Beispiel rand() unter BSD-Unix (Linear Kongruenter Generator LCG) x( n) = ( a x( n 1) + c) mod m a c m = = = 2 31 Periode: 2 31 x ist die aktuell berechnete Zufallszahl, die von der vorher berechneten eindeutig abhängt. Daher ist die Initialisierung von x von großer Bedeutung. WS 2007/2008 Modellbildung und Simulation 33

34 Anwendung Initialisierung erfolgt über einen Seed (Saat)-Wert. Häufig wird die aktuelle Systemzeit verwendet. srand( time(0)) Der von rand() generierte Wert liegt im Bereich: 0 x m Für die Erzeugung von Zufallszahlen aus einem speziellen Wertebereich sollte das Ergebnis von rand() sollte mit m und dem gewünschten Wertebereich skaliert werden. Üblicherweise kann m als Konstante abgefragt werden. WS 2007/2008 Modellbildung und Simulation 34

35 Erzeugung normalverteilter Zufallszahlen Eine Normalverteilung N ist mit einer Kovarianzmatrix cov und einem Erwartungsvektor µ x x vollständig definiert. Zufallsvektoren y, die der Normalverteilung N genügen, können durch folgende Operation erzeugt werden: y = Du + µ x, wobei u ein Zufallsvektor ist, der einer Standardnormalverteilung folgt, und D die untere Dreiecksmatrix der Cholesky-Zerlegung der Kovarianzmatrix ist. WS 2007/2008 Modellbildung und Simulation 35

36 Cholesky-Zerlegung B sei die Kovarianzmatrix cov. x B T = DD wird als Cholesky-Zerlegung bezeichnet. Die Koeffizienten d ij der Matrix D können in folgender Weise berechnet werden: 0 für i < j i 1 2 dij = bii d ik für i = j k= 1 > d j 1 1 b ij d ik d jk für i j jj k= 1 WS 2007/2008 Modellbildung und Simulation 36

37 Erzeugung standardisierter normalverteilter Zufallszahlen 1. Erzeugung zweier gleichverteilter unabhängiger Zufallszahlen x 1 und x 2 zwischen 0 und Umformungen: v = 2x 1, v = 2x 1, s = v + v Falls s 1, zurück zu 1. u = v (2/ s)ln( s), u = v (2/ s)ln( s) u 1 und u 2 sind zwei unabhängige Zufallszahlen, die der Standardnormalverteilung folgen. WS 2007/2008 Modellbildung und Simulation 37

38 Zusammenfassung 1. Berechnung von Kovarianzmatrix und Erwartungsvektor. 2. Berechnung der Cholesky-Zerlegung der Kovarianzmatrix. 3. Erzeugung von Zufallsvektoren, die der Standardnormalverteilung folgen. 4. Auf Basis des Erwartungsvektors und der Cholesky-Zerlegung der Kovarianzmatrix kann für jeden erzeugten Zufallsvektor aus 3. ein Zufallsvektor generiert werden, der der Normalverteilung folgt, die durch die in 1. berechneten Parameter definiert wird. WS 2007/2008 Modellbildung und Simulation 38

39 Berechnung des VaR mit einer Monte Carlo Simulation An Hand historischer Daten werden der Erwartungsvektor und die empirische Kovarianzmatrix für den Vektor der Kursänderungen geschätzt. Wobei der Vektor die Kurse der Papiere enthält, die im aktuellen Portfolio enthalten sind. Es wird eine große Zahl von Zufallsvektoren erzeugt, die der geschätzten Normalverteilung der Kursänderungen der Werte des Portfolios folgen. Für jede zufällig erzeugte Wertänderung wird die Auswirkung auf das aktuelle Portfolio berechnet. Aus der geordneten (empirischen) Messreihe der simulierten Änderungen des Portfolio wird das Quantil bestimmt. WS 2007/2008 Modellbildung und Simulation 39

40 Berechnung des VaR Monte Carlo Simulation Sammlung und Analyse historischer Daten. Modellierung der Verteilung. Simulation von Kursentwicklungen gemäß der modellierten Verteilung. Große Zahl an Simulationen. Prognose von Kursentwicklungen. Berechnung des monetären Risikos für die Entwicklung des Portfolios. WS 2007/2008 Modellbildung und Simulation 40

Monte Carlo Simulation (Grundlagen)

Monte Carlo Simulation (Grundlagen) Der Titel des vorliegenden Beitrages wird bei den meisten Lesern vermutlich Assoziationen mit Roulette oder Black Jack hervorrufen. Allerdings haben das heutige Thema und die Spieltische nur den Namen

Mehr

Commercial Banking. Kreditportfoliosteuerung

Commercial Banking. Kreditportfoliosteuerung Commercial Banking Kreditportfoliosteuerung Dimensionen des Portfoliorisikos Risikomessung: Was ist Kreditrisiko? Marking to Market Veränderungen des Kreditportfolios: - Rating-Veränderung bzw. Spreadveränderung

Mehr

Die Bestimmung von Value-at-Risk-Werten mit Hilfe der Monte-Carlo-Simulation

Die Bestimmung von Value-at-Risk-Werten mit Hilfe der Monte-Carlo-Simulation Die Bestimmung von Value-at-Risk-Werten mit Hilfe der Monte-Carlo-Simulation Studiengang Informatik Jens Schiborowski 8. Januar 2009 Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik 1 Abstract

Mehr

Value at Risk Einführung

Value at Risk Einführung Value at Risk Einführung Veranstaltung Risk Management & Computational Finance Dipl.-Ök. Hans-Jörg von Mettenheim mettenheim@iwi.uni-hannover.de Institut für Wirtschaftsinformatik Leibniz Universität Hannover

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011

Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011 Kevin Schellkes und Christian Hendricks 29.08.2011 Inhalt Der herkömmliche Ansatz zur Simulation logarithmischer Renditen Ansatz zur Simulation mit Copulas Test und Vergleich der beiden Verfahren Fazit

Mehr

Risikomessung und Value at Risk Wintersemester 2013/14

Risikomessung und Value at Risk Wintersemester 2013/14 Risikomessung und Value at Risk Wintersemester 2013/14 Walter Sanddorf-Köhle Statistik und Ökonometrie Foliensatz Nr. 11 Version vom 24. Januar 2014 1 / 45 6.5.1 Bisherige Vorgehensweise zur Berechnung

Mehr

5. Schließende Statistik. 5.1. Einführung

5. Schließende Statistik. 5.1. Einführung 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

Neue Anforderungen an Risikomessung bei kollektiven Kapitalanlagen in der Schweiz. 31. Mai 2007 Dimitri Senik

Neue Anforderungen an Risikomessung bei kollektiven Kapitalanlagen in der Schweiz. 31. Mai 2007 Dimitri Senik Neue Anforderungen an Risikomessung bei kollektiven Kapitalanlagen in der Schweiz Dimitri Senik Agenda Risikomanagement bei Fonds: neue regulatorische Vorschriften Risikomessung gemäss KKV-EBK Risikomanagement

Mehr

Statistischer Mittelwert und Portfoliorendite

Statistischer Mittelwert und Portfoliorendite 8 Wahrscheinlichkeitsrechnung und Statistik Statistischer Mittelwert und Portfoliorendite Durch die immer komplexer werdenden Bündel von Investitionen stellen Investorinnen und Investoren eine Vielzahl

Mehr

Investition und Risiko. Finanzwirtschaft I 5. Semester

Investition und Risiko. Finanzwirtschaft I 5. Semester Investition und Risiko Finanzwirtschaft I 5. Semester 1 Gliederung Ziel Korrekturverfahren: Einfache Verfahren der Risikoberücksichtigung Sensitivitätsanalyse Monte Carlo Analyse Investitionsentscheidung

Mehr

Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko

Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko Jan Jescow Stoehr Gliederung 1. Einführung / Grundlagen 1.1 Ziel 1.2 CreditRisk+ und CreditMetrics 2. Kreditportfolio 2.1 Konstruktion

Mehr

Delta-Gamma-Verfahren als Standard- Risikomodell für Lebensversicherer

Delta-Gamma-Verfahren als Standard- Risikomodell für Lebensversicherer Delta-Gamma-Verfahren als Standard- Risikomodell für Lebensversicherer 1 Einleitung Im Rahmen des SST wird teilweise vereinfachend angenommen, dass der Zusammenhang zwischen der Veränderung des risikotragenden

Mehr

Statistik. R. Frühwirth. Statistik. fru@hephy.oeaw.ac.at. VO 142.090 http://tinyurl.com/tu142090. Februar 2010. R. Frühwirth Statistik 1/536

Statistik. R. Frühwirth. Statistik. fru@hephy.oeaw.ac.at. VO 142.090 http://tinyurl.com/tu142090. Februar 2010. R. Frühwirth Statistik 1/536 fru@hephy.oeaw.ac.at VO 142.090 http://tinyurl.com/tu142090 Februar 2010 1/536 Übersicht über die Vorlesung Teil 1: Deskriptive Teil 2: Wahrscheinlichkeitsrechnung Teil 3: Zufallsvariable Teil 4: Parameterschätzung

Mehr

Kapitel 4: Binäre Regression

Kapitel 4: Binäre Regression Kapitel 4: Binäre Regression Steffen Unkel (basierend auf Folien von Nora Fenske) Statistik III für Nebenfachstudierende WS 2013/2014 4.1 Motivation Ausgangssituation Gegeben sind Daten (y i, x i1,...,

Mehr

, dt. $+ f(x) = , - + < x < +, " > 0. " 2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) =

, dt. $+ f(x) = , - + < x < +,  > 0.  2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) = 38 6..7.4 Normalverteilung Die Gauß-Verteilung oder Normal-Verteilung ist eine stetige Verteilung, d.h. ihre Zufallsvariablen können beliebige reelle Zahlenwerte annehmen. Wir definieren sie durch die

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt. Stock, Nordflügel R. 0-49 (Persike) R. 0- (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de WS 008/009 Fachbereich

Mehr

Arnd Wiedemann. Risikotriade Zins-, Kredit- und operationelle Risiken. 2., überarbeitete Auflage

Arnd Wiedemann. Risikotriade Zins-, Kredit- und operationelle Risiken. 2., überarbeitete Auflage Arnd Wiedemann Risikotriade Zins-, Kredit- und operationelle Risiken 2., überarbeitete Auflage . XI 1 Einleitung: Risikomessung als Fundament der Rendite-/Risikosteuerung 1 2 Zinsrisiko 3 2.1 Barwertrisiko

Mehr

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Dozent: Volker Krätschmer Fakultät für Mathematik, Universität Duisburg-Essen, WS 2012/13 1. Präsenzübung Aufgabe T 1 Sei (Z 1,...,

Mehr

Monte-Carlo- Simulation. Seminar zur Vorlesung Teilchendetektoren und Experiment an ELSA

Monte-Carlo- Simulation. Seminar zur Vorlesung Teilchendetektoren und Experiment an ELSA Monte-Carlo- Simulation Seminar zur Vorlesung Teilchendetektoren und Experiment an ELSA Übersicht Einleitung Simulation mit Geant4 generierte Daten Zusammenfassung 2 Simulation Mathematische Modellierung

Mehr

Skriptum zur Veranstaltung. Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik. 1. Version (mehr Draft als Skriptum)

Skriptum zur Veranstaltung. Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik. 1. Version (mehr Draft als Skriptum) Skriptum zur Veranstaltung Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik 1. Version (mehr Draft als Skriptum) Anmerkungen, Aufzeigen von Tippfehlern und konstruktive Kritik erwünscht!!!

Mehr

Monte-Carlo Simulation

Monte-Carlo Simulation Monte-Carlo Simulation Sehr häufig hängen wichtige Ergebnisse von unbekannten Werten wesentlich ab, für die man allerhöchstens statistische Daten hat oder für die man ein Modell der Wahrscheinlichkeitsrechnung

Mehr

Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006

Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006 1 3.34 1.1 Angabe Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006 U sei auf dem Intervall (0, 1) uniform verteilt. Zeigen

Mehr

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen 4. Datenanalyse und Modellbildung Deskriptive Statistik 2-1 2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen Für die Auswertung einer Messreihe, die in Form

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Die Monte-Carlo-Methode mit Pseudo- und Quasi-Zufallszahlen

Die Monte-Carlo-Methode mit Pseudo- und Quasi-Zufallszahlen Die Monte-Carlo-Methode mit Pseudo- und Quasi-Zufallszahlen Marco A. Harrendorf Hauptseminar Methoden der experimentellen Teilchenphysik WS 2011/2012 Karlsruhe Institut für Technologie (KIT) 25.11.2011

Mehr

Teil I Beschreibende Statistik 29

Teil I Beschreibende Statistik 29 Vorwort zur 2. Auflage 15 Vorwort 15 Kapitel 0 Einführung 19 0.1 Methoden und Aufgaben der Statistik............................. 20 0.2 Ablauf statistischer Untersuchungen..............................

Mehr

Von den Grundlagen der Monte-Carlo-Methode zur Simulation von Teilchenreaktionen und Teilchendetektoren

Von den Grundlagen der Monte-Carlo-Methode zur Simulation von Teilchenreaktionen und Teilchendetektoren Von den Grundlagen der Monte-Carlo-Methode zur Simulation von Teilchenreaktionen und Teilchendetektoren Michael Unrau HS WS 08/09 14 November 2008 HS 08/09 Monte-Carlo Methoden 14 November 2008 1 / 24

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

Nachholklausur STATISTIK II

Nachholklausur STATISTIK II Nachholklausur STATISTIK II Name, Vorname: Matrikel-Nr.: Die Klausur enthält zwei Typen von Aufgaben: T e i l A besteht aus Fragen mit mehreren vorgegebenen Antwortvorschlägen, von denen mindestens eine

Mehr

Monte Carlo Simulationen

Monte Carlo Simulationen Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt Stefan Wunsch 31. Mai 2014 INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK (IEKP) KIT Universität des Landes Baden-Württemberg und

Mehr

1.3 Die Beurteilung von Testleistungen

1.3 Die Beurteilung von Testleistungen 1.3 Die Beurteilung von Testleistungen Um das Testergebnis einer Vp zu interpretieren und daraus diagnostische Urteile ableiten zu können, benötigen wir einen Vergleichsmaßstab. Im Falle des klassischen

Mehr

Melanie Kaspar, Prof. Dr. B. Grabowski 1

Melanie Kaspar, Prof. Dr. B. Grabowski 1 7. Hypothesentests Ausgangssituation: Man muss sich zwischen 2 Möglichkeiten (=Hypothesen) entscheiden. Diese Entscheidung soll mit Hilfe von Beobachtungen ( Stichprobe ) getroffen werden. Die Hypothesen

Mehr

Kreditrisiko bei Swiss Life. Carl-Heinz Meyer, 13.06.2008

Kreditrisiko bei Swiss Life. Carl-Heinz Meyer, 13.06.2008 Kreditrisiko bei Swiss Life Carl-Heinz Meyer, 13.06.2008 Agenda 1. Was versteht man unter Kreditrisiko? 2. Ein Beisiel zur Einführung. 3. Einige kleine Modelle. 4. Das grosse kollektive Modell. 5. Risikoberechnung

Mehr

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen

Mehr

Multivariate Statistik

Multivariate Statistik Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

Statistik II für Betriebswirte Vorlesung 2

Statistik II für Betriebswirte Vorlesung 2 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 2 21. Oktober 2014 Verbundene Stichproben Liegen zwei Stichproben vor, deren Werte einander

Mehr

Einführung in Statistik und Messwertanalyse für Physiker

Einführung in Statistik und Messwertanalyse für Physiker Gerhard Böhm, Günter Zech Einführung in Statistik und Messwertanalyse für Physiker SUB Göttingen 7 219 110 697 2006 A 12486 Verlag Deutsches Elektronen-Synchrotron Inhalt sverzeichnis 1 Einführung 1 1.1

Mehr

Commercial Banking. Kreditgeschäft 2. Bedingte marginale und kumulative Ausfallwahrscheinlichkeit

Commercial Banking. Kreditgeschäft 2. Bedingte marginale und kumulative Ausfallwahrscheinlichkeit Commercial Banking Kreditgeschäft Bedingte marginale und kumulative Ausfallwahrscheinlichkeit Bedingte Marginale Ausfallwahrscheinlichkeit (BMAW t ) (Saunders: MMR ) prob (Ausfall in Periode t kein Ausfall

Mehr

Einführung in die Geostatistik (7) Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam.

Einführung in die Geostatistik (7) Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam. Einführung in die Geostatistik (7) Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam.de 1 Gliederung 7 Weitere Krigingverfahren 7.1 Simple-Kriging 7.2 Indikator-Kriging

Mehr

Risikoanalyse und optimale Portfolios

Risikoanalyse und optimale Portfolios Seminar "Quantitative Finance" Universität des Saarlandes 03. 06. 2009 Gliederung 1 Risikoanalyse 2 Variety Asymmetrie 3 Gliederung 1 Risikoanalyse 2 Variety Asymmetrie 3 Volatilität Logarithmischer Ertrag

Mehr

Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min

Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Klausur, Multivariate Verfahren, SS 2006, 6 Kreditpunkte, 90 min 1 Prof. Dr. Fred Böker 08.08.2006 Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Gesamtpunkte: 39 Aufgabe

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

Business Value Launch 2006

Business Value Launch 2006 Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

Risiko und Symmetrie. Prof. Dr. Andrea Wirth

Risiko und Symmetrie. Prof. Dr. Andrea Wirth Risiko und Symmetrie Prof. Dr. Andrea Wirth Gliederung 1. Einleitung Was ist eigentlich Risiko? 2. Risiko Mathematische Grundlagen 3. Anwendungsbeispiele Wo genau liegt der Schmerz des Risikos? 4. Sie

Mehr

Computational Finance

Computational Finance Computational Finance Kapitel 2.1: Einführung in die Simulation Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring 4

Mehr

Quantilsschätzung als Werkzeug zur VaR-Berechnung

Quantilsschätzung als Werkzeug zur VaR-Berechnung Quantilsschätzung als Werkzeug zur VaR-Berechnung Ralf Lister, Aktuar, lister@actuarial-files.com Zusammenfassung: Zwei Fälle werden betrachtet und die jeweiligen VaR-Werte errechnet. Im ersten Fall wird

Mehr

12. Vergleich mehrerer Stichproben

12. Vergleich mehrerer Stichproben 12. Vergleich mehrerer Stichproben Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Häufig wollen wir verschiedene Populationen, Verfahren, usw. miteinander vergleichen. Beipiel: Vergleich

Mehr

Monty Hall-Problem. Wochen 3 und 4: Verteilungen von Zufallsvariablen. Lernziele. Diskrete Verteilungen

Monty Hall-Problem. Wochen 3 und 4: Verteilungen von Zufallsvariablen. Lernziele. Diskrete Verteilungen Monty Hall-Problem Wochen 3 und 4: Verteilungen von Zufallsvariablen US-amerikanische Fernseh-Show Let s make a deal, moderiert von Monty Hall: WBL 15/17, 04.05.2015 Alain Hauser

Mehr

Monte-Carlo-Simulation

Monte-Carlo-Simulation Modellierung und Simulation Monte-Carlo-Simulation Universität Hamburg Johannes Schlundt 7. Januar 2013 Monte-Carlo-Simulation Johannes S. 1/31 Inhalt Motivation Geschichtliche Entwicklung Monte-Carlo-Simulation

Mehr

Binäre abhängige Variablen

Binäre abhängige Variablen Binäre abhängige Variablen Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Einführung Oft wollen wir qualitative Variablen

Mehr

Risikotriade - Teil Messung von Zins-, Kreditund operationellen Risiken

Risikotriade - Teil Messung von Zins-, Kreditund operationellen Risiken Arnd Wiedemann Risikotriade - Teil Messung von Zins-, Kreditund operationellen Risiken 3., überarbeitete Auflage Inhaltsübersicht Band I X[ Inhaltsübersicht Band I Zins-, Kredit- und operationeile Risiken

Mehr

Risikomanagement und Statistik. Raimund Kovacevic

Risikomanagement und Statistik. Raimund Kovacevic Risikomanagement und Statistik Raimund Kovacevic Dieses Werk ist Urheberrechtlich geschützt. Jede Vervielfältigung ohne Einverständnis des Autors ist verboten. Risiko hazard, a chance of bad consequences,

Mehr

Die Ökonomie von Glücksspielen

Die Ökonomie von Glücksspielen Die Ökonomie von Glücksspielen Teil II: Risiko, Unsicherheit, EVF-Model Dr. Ingo Fiedler 09.04.2013 Organisatorisches Keine Verschiebung der Veranstaltung Eventuell: Beginn bereits um 16Uhr? Erinnerung:

Mehr

Faktorisierung ganzer Zahlen mittels Pollards ρ-methode (1975)

Faktorisierung ganzer Zahlen mittels Pollards ρ-methode (1975) Dass das Problem, die Primzahlen von den zusammengesetzten zu unterscheiden und letztere in ihre Primfaktoren zu zerlegen zu den wichtigsten und nützlichsten der ganzen Arithmetik gehört und den Fleiss

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

MA Projekt: Langfristige Kapitalmarktsimulation

MA Projekt: Langfristige Kapitalmarktsimulation MA Projekt: Langfristige Kapitalmarktsimulation Einführung in die Simulation Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring

Mehr

AUTOMATISIERTE HANDELSSYSTEME

AUTOMATISIERTE HANDELSSYSTEME UweGresser Stefan Listing AUTOMATISIERTE HANDELSSYSTEME Erfolgreich investieren mit Gresser K9 FinanzBuch Verlag 1 Einsatz des automatisierten Handelssystems Gresser K9 im Portfoliomanagement Portfoliotheorie

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Statistik im Bachelor-Studium der BWL und VWL

Statistik im Bachelor-Studium der BWL und VWL Max C. Wewel Statistik im Bachelor-Studium der BWL und VWL Methoden, Anwendung, Interpretation Mit herausnehmbarer Formelsammlung ein Imprint von Pearson Education München Boston San Francisco Harlow,

Mehr

Korrelation - Regression. Berghold, IMI

Korrelation - Regression. Berghold, IMI Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines

Mehr

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14.

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14. Aufgabe : einfacher T-Test Statistik bei einer Stichprobe Standardfehl Standardab er des Mittelwert weichung Mittelwertes 699 39.68 76.59 2.894 Test bei einer Sichprobe Testwert = 45.5 95% Konfidenzintervall

Mehr

Die Monte-Carlo-Methode mit Pseudound Quasi-Zufallszahlen

Die Monte-Carlo-Methode mit Pseudound Quasi-Zufallszahlen Hauptseminar Methoden der experimentellen Teilchenphysik WS 2011/2012 Die Monte-Carlo-Methode mit Pseudound Quasi-Zufallszahlen Marco A. Harrendorf Karlsruhe Institut für Technologie, Bachelor Physik Vortrag

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Eine Einführung in R: Statistische Tests

Eine Einführung in R: Statistische Tests Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws12/r-kurs/

Mehr

Vorlesung 7: Value-at-Risk für Kreditrisiken

Vorlesung 7: Value-at-Risk für Kreditrisiken Vorlesung 7: Value-at-Risk für Kreditrisiken 17. April 2015 Dr. Patrick Wegmann Universität Basel WWZ, Department of Finance patrick.wegmann@unibas.ch www.wwz.unibas.ch/finance Die Verlustverteilung im

Mehr

Statistische Auswertung der Daten von Blatt 13

Statistische Auswertung der Daten von Blatt 13 Statistische Auswertung der Daten von Blatt 13 Problemstellung 1 Graphische Darstellung der Daten 1 Diskussion der Normalverteilung 3 Mittelwerte und deren Konfidenzbereiche 3 Signifikanz der Behandlung

Mehr

Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10

Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10 Analytische Statistik I Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10 Testen Anpassungstests (goodness of fit) Weicht eine gegebene Verteilung signifikant von einer bekannten

Mehr

2. Korrelation, lineare Regression und multiple Regression

2. Korrelation, lineare Regression und multiple Regression multiple 2.2 Lineare 2.2 Lineare 1 / 130 2.2 Lineare 2 / 130 2.1 Beispiel: Arbeitsmotivation Untersuchung zur Motivation am Arbeitsplatz in einem Chemie-Konzern 25 Personen werden durch Arbeitsplatz zufällig

Mehr

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1 1. Aufgabe: Der E-Commerce-Umsatz (in Millionen Euro) der fünf größten Online- Shopping-Clubs liegt wie folgt vor: Club Nr. Umsatz 1 120 2 72 3 54 4 30 5 24 a) Bestimmen Sie den Ginikoeffizienten. b) Zeichnen

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 2 28.02.2008 1 Inhalt der heutigen Übung Beschreibende Statistik Gemeinsames Lösen der Übungsaufgaben 2.1: Häufigkeitsverteilung 2.2: Tukey Boxplot 25:Korrelation

Mehr

Planen mit mathematischen Modellen 00844: Computergestützte Optimierung. Autor: Dr. Heinz Peter Reidmacher

Planen mit mathematischen Modellen 00844: Computergestützte Optimierung. Autor: Dr. Heinz Peter Reidmacher Planen mit mathematischen Modellen 00844: Computergestützte Optimierung Leseprobe Autor: Dr. Heinz Peter Reidmacher 11 - Portefeuilleanalyse 61 11 Portefeuilleanalyse 11.1 Das Markowitz Modell Die Portefeuilleanalyse

Mehr

Risikoaggregation und allokation

Risikoaggregation und allokation 2. Weiterbildungstag der DGVFM Risikoaggregation und allokation Einführung in das Thema Prof. Dr. Claudia Cottin, FH Bielefeld Dr. Stefan Nörtemann, msg life Hannover, 21. Mai 2015 2. Weiterbildungstag

Mehr

Untersuchungen zum Thema Tracking Error

Untersuchungen zum Thema Tracking Error Untersuchungen zum Thema Tracking Error J. Fulmek 24. August 2003 1 Einleitung Im Folgenden werden folgende Punkte untersucht: 1. verschiedene in der Literatur übliche Definitionen des Tracking Errors

Mehr

3 Monte-Carlo-Simulationen

3 Monte-Carlo-Simulationen 3 Monte-Carlo-Simulationen In diesem Kapitel soll mit der so genannten Monte-Carlo-Methode ein wichtiges Anwendungsgebiet des in Kapitel 2 erarbeiteten Begriffs- und Methodenapparats detaillierter beleuchtet

Mehr

Operations Strategie und Management. - Projektmanagement - Helmut M. Dietl 1

Operations Strategie und Management. - Projektmanagement - Helmut M. Dietl 1 Operations Strategie und Management - Projektmanagement - Helmut M. Dietl 1 Lernziele Nach dieser Veranstaltung sollen Sie wissen, was man unter einem Projekt versteht was Projektmanagement bedeutet wie

Mehr

einfache Rendite 0 145 85 1 160 90 2 135 100 3 165 105 4 190 95 5 210 110

einfache Rendite 0 145 85 1 160 90 2 135 100 3 165 105 4 190 95 5 210 110 Übungsbeispiele 1/6 1) Vervollständigen Sie folgende Tabelle: Nr. Aktie A Aktie B Schlusskurs in Schlusskurs in 0 145 85 1 160 90 2 135 100 3 165 105 4 190 95 5 210 110 Arithmetisches Mittel Standardabweichung

Mehr

Abschlussklausur der Vorlesung Bank I, II:

Abschlussklausur der Vorlesung Bank I, II: Seite 1 von 23 Name: Matrikelnummer: Abschlussklausur der Vorlesung Bank I, II: Bankmanagement und Theory of Banking Hinweise: o Bitte schreiben Sie Ihren Namen und Ihre Matrikelnummer auf die Klausur

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Fehlerrechnung und Statistik (FR) Herbstsemester 2015

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Fehlerrechnung und Statistik (FR) Herbstsemester 2015 Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Fehlerrechnung und Statistik (FR) Herbstsemester 2015 Physik-Institut der Universität Zürich Inhaltsverzeichnis 12 Fehlerrechnung und Statistik

Mehr

Einführung in die Geostatistik (2) Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam.

Einführung in die Geostatistik (2) Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam. Einführung in die Geostatistik () Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam.de Gliederung Allgemeine Statistik. Deskriptive Statistik. Wahrscheinlichkeitstheorie.3

Mehr

Monte Carlo Simulationen

Monte Carlo Simulationen Monte Carlo Simulationen Zahlreiche Vorgänge in der Natur werden durch stochastische Prozesse bestimmt. Beispiele: Diffusion Spin-Spin-Wechselwirkung (Magnetisierung eines Ferromagneten, Ising-Modell)

Mehr

DIPLOM. Abschlussklausur der Vorlesung Bank I, II:

DIPLOM. Abschlussklausur der Vorlesung Bank I, II: Seite 1 von 9 Name: Matrikelnummer: DIPLOM Abschlussklausur der Vorlesung Bank I, II: Bankmanagement und Theory of Banking Seite 2 von 9 DIPLOM Abschlussklausur der Vorlesung Bank I, II: Bankmanagement

Mehr

Gemischte Modelle. Fabian Scheipl, Sonja Greven. SoSe 2011. Institut für Statistik Ludwig-Maximilians-Universität München

Gemischte Modelle. Fabian Scheipl, Sonja Greven. SoSe 2011. Institut für Statistik Ludwig-Maximilians-Universität München Gemischte Modelle Fabian Scheipl, Sonja Greven Institut für Statistik Ludwig-Maximilians-Universität München SoSe 2011 Inhalt Amsterdam-Daten: LMM Amsterdam-Daten: GLMM Blutdruck-Daten Amsterdam-Daten:

Mehr

Einfache Statistiken in Excel

Einfache Statistiken in Excel Einfache Statistiken in Excel Dipl.-Volkswirtin Anna Miller Bergische Universität Wuppertal Schumpeter School of Business and Economics Lehrstuhl für Internationale Wirtschaft und Regionalökonomik Raum

Mehr

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren)

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Multiple Regression 1 Was ist multiple lineare Regression? Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Annahme: Der Zusammenhang

Mehr

Seminar Finanzmathematik

Seminar Finanzmathematik Seminar Finanzmathematik Simulationen zur Black-Scholes Formel Seite 1 von 24 Zufallszahlen am Computer 3 Gleichverteilte Zufallszahlen 3 Weitere Verteilungen 3 Quadratische Verteilung 4 Normalverteilung

Mehr

Credit Risk+: Eine Einführung

Credit Risk+: Eine Einführung Credit Risk+: Eine Einführung Volkert Paulsen December 9, 2004 Abstract Credit Risk+ ist neben Credit Metrics ein verbreitetes Kreditrisikomodell, dessen Ursprung in der klassischen Risikotheorie liegt.

Mehr

Einführung in statistische Analysen

Einführung in statistische Analysen Einführung in statistische Analysen Andreas Thams Econ Boot Camp 2008 Wozu braucht man Statistik? Statistik begegnet uns jeden Tag... Weihnachten macht Deutschen Einkaufslaune. Im Advent überkommt die

Mehr

Überblick über die Verfahren für Ordinaldaten

Überblick über die Verfahren für Ordinaldaten Verfahren zur Analyse ordinalskalierten Daten 1 Überblick über die Verfahren für Ordinaldaten Unterschiede bei unabhängigen Stichproben Test U Test nach Mann & Whitney H Test nach Kruskal & Wallis parametrische

Mehr

Hauptseminar. Monte-Carlo-Methoden, stochastische Schätzungen und deren Unsicherheit. Robert John 2.11.2011

Hauptseminar. Monte-Carlo-Methoden, stochastische Schätzungen und deren Unsicherheit. Robert John 2.11.2011 Hauptseminar Monte-Carlo-Methoden, stochastische Schätzungen und deren Unsicherheit Robert John 1 Inhalt Herkunft Stochastische Schätzung Monte-Carlo-Methode Varianzreduktion Zufallszahlen Anwendungsgebiete

Mehr

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur.

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur. Statistik Grundlagen Charakterisierung von Verteilungen Einführung Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsverteilungen Schätzen und Testen Korrelation Regression Einführung Die Analyse und modellhafte

Mehr

Motivation. Jede Messung ist mit einem sogenannten Fehler behaftet, d.h. einer Messungenauigkeit

Motivation. Jede Messung ist mit einem sogenannten Fehler behaftet, d.h. einer Messungenauigkeit Fehlerrechnung Inhalt: 1. Motivation 2. Was sind Messfehler, statistische und systematische 3. Verteilung statistischer Fehler 4. Fehlerfortpflanzung 5. Graphische Auswertung und lineare Regression 6.

Mehr

Ausarbeitung des Seminarvortrags zum Thema

Ausarbeitung des Seminarvortrags zum Thema Ausarbeitung des Seminarvortrags zum Thema Anlagepreisbewegung zum Seminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn von Imke Meyer im W9/10 Anlagepreisbewegung

Mehr

Seminar Finanzmathematik

Seminar Finanzmathematik Seminar Finanzmathematik Simulationen zur Black-Scholes Formel von Christian Schmitz Übersicht Zufallszahlen am Computer Optionspreis als Erwartungswert Aktienkurse simulieren Black-Scholes Formel Theorie

Mehr

Thema 3 Was ist Risiko?

Thema 3 Was ist Risiko? Thema 3 Was ist Risiko? Einflussfaktoren und Konzepte des Risikos! Nasan Aksoy! Massiullah Shamps Amiri! Verena Schwinde! Nadine Eppmann 1 1. Einführung Vortragsübersicht 2. Begriffsabgrenzung und Kategorisierung

Mehr

Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse

Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse Yannik Behr Gliederung 1 Stochastische Prozesse Stochastische Prozesse Ein stochastischer Prozess ist ein Phänomen, dessen

Mehr

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten.

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten. Statistik für Kommunikationswissenschaftler Wintersemester 2009/200 Vorlesung Prof. Dr. Helmut Küchenhoff Übung Cornelia Oberhauser, Monia Mahling, Juliane Manitz Thema 4 Homepage zur Veranstaltung: http://www.statistik.lmu.de/~helmut/kw09.html

Mehr

Beispiel 5 Europäische Call Option (ECO) in einer Aktie S mit Laufzeit T und Ausübungspreis (Strikepreis) K.

Beispiel 5 Europäische Call Option (ECO) in einer Aktie S mit Laufzeit T und Ausübungspreis (Strikepreis) K. Beispiel 5 Europäische Call Option (ECO) in einer Aktie S mit Laufzeit T und Ausübungspreis (Strikepreis) K. Wert der Call Option zum Zeitpunkt T: max{s T K,0} Preis der ECO zum Zeitpunkt t < T: C = C(t,

Mehr