Die Bestimmung von Value-at-Risk-Werten mit Hilfe der Monte-Carlo-Simulation

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Die Bestimmung von Value-at-Risk-Werten mit Hilfe der Monte-Carlo-Simulation"

Transkript

1 Die Bestimmung von Value-at-Risk-Werten mit Hilfe der Monte-Carlo-Simulation Studiengang Informatik Jens Schiborowski 8. Januar 2009 Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik 1

2 Abstract In dieser Arbeit wird an Hand der Bestimmung von Value-at-Risk-Werten die Funktionsweise der Monte-Carlo-Simulation dargelegt. Dazu erläutere ich zuerst die Grundlagen, auf denen die Monte-Carlo-Simulation beruht und gebe einige Anwendungsbeispiele an. Anschließend gehe ich auf den Value-at-Risk ein, indem ich die Berechnungsgrundlagen für sie erläutere. Danach zeige ich die Anwendung der Monte-Carlo-Simulation zur Berechnung der Value-at-Risk-Werten von zwei Aktienkursen. Abschließend gehe ich dann auf die Vor- und Nachteile der MonteCarlo-Simulation ein. 2

3 Inhaltsverzeichnis 1 Einführung 4 2 Monte-Carlo-Simulation Definition von Monte-Carlo-Simulation Einsatzgebiete für Monte-Carlo-Simulation 7 3 Value-at-Risk Definition von Value-at-Risk Bestimmen von Value-at-Risk-Werten 7 4 Anwendungsbeispiel 9 5 Zusammenfassung/Fazit 11 6 Literaturverzeichnis 12 3

4 1 Einführung Der Begriff der Monte-Carlo-Simulation wurde in den 1940er Jahren geprägt, das Verfahren auf dem sie beruht ist, an sich jedoch ist schon einige Jahrhunderte in Verwendung. Ihren Namen hat die Monte-Carlo-Simulation von der monegassischen Stadt Monte-Carlo, da die Zufälligkeit und die sich wiederholende Natur der Experimente viele Analogien zu Glücksspielen aufweist und Monte Carlo sehr bekannte für seine Kasinos ist. Eine Anwendung für die Monte-Carlo-Simulation ist die Möglichkeit der Bestimmung von Value-at-Risk-Werten. Diese Werte dienen dem Risikomanagement, also dem Einschätzen von Risiken von zum Beispiel Aktienkursen. Dem Risikomanagement kommt heut zu Tage eine hohe Bedeutung zu, da sich alle Risiken direkt auf das Eigenkapital und somit auch auf den Wert eines Unternehmens auswirken. Um nun effizient auf die Risiken Rücksicht nehmen zu können, muss natürlich zu erst festgestellt werden, welche Einzelrisiken den größten Einfluss auf das gesamte Risikomaß haben. Ich werde mich in dieser Arbeit auf die Berechnung des Value-at-Risk von Aktienkursen beschränken und im nun folgenden Kapitel die Grundlagen der Monte-Carlo-Simulation näher bringen. 2 Monte-Carlo-Simulation 2.1 Definition von Monte-Carlo-Simulation Als Grundlage für die Monte-Carlo-Simulation dient das Gesetz der großen Zahl. Dieses besagt simpel formuliert, dass sich die relative Häufigkeit eines Zufallsergebnisses immer stärker an seine Wahrscheinlichkeit annähert, je häufiger das Zufallsexperiment durchgeführt wird.zur mathematischen Beschreibung des Sachverhalts wählt man sich zunächst eine Zufallsgröße Ẍ(n). Abb. 1: Zufallsgröße Ẍ(n) Diese Variable wird zur Mittelbildung der Häufigkeit genutzt und hat den Erwartungswert μ. Das Gesetz der großen Zahl lässt sich in zwei andere Gesetze aufteilen. Zum einen in das schwache Gesetz der großen Zahlen, dass besagt, dass die Folge der arithmetischen Mittel Ẍ(n) in Wahrscheinlichkeit gegen μ konvergiert, d.h. für jedes ε >0 gilt Abb. 2: Schwaches Gesetz der großen Zahlen 4

5 Zum anderen in das starke Gesetz der großen Zahlen, welches besagt, dass die Folge der arithmetischen Mittel Ẍ(n) fast sicher gegen μ konvergiert, d.h. es gilt Abb. 3: Starkes Gesetz der großen Zahlen Die Richtigkeit dieser Gesetze möchte ich kurz an einem allgemein bekannten Beispiel, dem Werfen einer Münze, demonstrieren. Abb. 4: Relative Häufigkeit des Werfens von "Kopf" Diese Grafik demonstriert die Häufigkeit für das Werfen von Kopf. Wie man erkennen kann, schwankt die ersten 200 Würfe die Häufigkeit noch sehr stark, jedoch ab ca. 700 Würfen hat sich die Häufigkeit auf etwa den Wert 0,5 eingependelt, was der Wahrscheinlichkeit dieses Ereignisses entspricht. 5

6 Zu der Monte-Carlo-Methode im Allgemeinen ist nun zu sagen, dass es nicht eine spezielle Methode gibt, sondern eher ein Muster nach dem die Monte-Carlo-Methode arbeitet. Dieses Muster beinhaltet vier Schritte. Zuerst wird ein Bereich für mögliche Eingaben festgelegt. Anschließend werden zufällig aus diesem Bereich Eingaben gewählt und diese mit Hilfe eines deterministischen Algorithmus verarbeitet. Am Ende werden die Ergebnisse die mit dem Algorithmus gewonnen wurden, in das Endergebnis überführt. Ein gutes Beispiel für diese Methodik ist die Möglichkeit der Berechnung von Π. Als Eingabebereich wird ein Rechteck mit einem Innenkreis gewählt. Die Eingabe besteht hier in Punkten im Rechteck und als Algorithmus wird die Anzahl der Punkte im Kreis mit vier multipliziert und anschließend durch die Gesamtanzahl der Objekte geteilt. Abb. 5: Verteilung der Ergebnisse eines Experiments zur Berechnung von Π Eine mögliche Verteilung für diese Ergebnisse in Abhängigkeit zur Objektanzahl zeigt diese Grafik. Zunächst entstehen noch starke Abweichungen zwischen den einzelnen Ergebnissen, jedoch pendeln sich die Ergebnisse sehr oft in den Bereich um 3,14, welches auch das erwartete Endergebnis darstellt. 6

7 2.2 Einsatzgebiete für Monte-Carlo-Simulation Neben der schon erwähnten Berechnung von Π bietet die Monte-Carlo-Simulation noch viele andere Anwendungsgebiete, wie zum Beispiel die Vereinfachung der Berechnung von Integralen, um unter anderem die Fläche oder das Volumen von Körpern zu bestimmen. Während diese beiden Problemstellungen den mathematischen Problemen zugeordnet sind, kann man auch Probleme, die die Verteilungseigenschaften von Zufallsvariablen unbekannten Verteilungstyps mit Hilfe der Monte-Carlo-Simulation lösen. Zu diesen Problemen zählen unter anderem die Bestimmung der Eigenschaften von Schätzfunktionen, wenn diese sogenannte Ausreißer, also Werte, die nicht den erwarteten Werten entsprechen, enthalten, da in einem solchen Fall das arithmetische Mittel nicht mehr die optimale Schätzmöglichkeit für den Erwartungswert darstellt. Eine andere wichtige Anwendungszweig für die Monte-Carlo-Simulation ist die Teilchenphysik. Dort wird mit Hilfe von Monte-Carlo-Simulation unter anderen die Kollisionen an Teilchenbeschleunigern, mit deren Hilfe neue, instabile Teilchen nachgewiesen werden können. Die Berechnung von Value-at-Risk-Werten, auf die ich im nächsten Kapitel eingehen werde, stellt ein weiteres Anwendungsgebiet für die Monte-CarloSimulation dar. 3 Value-at-Risk 3.1 Definition von Value-at-Risk Die Abschätzung von Marktrisiken, insbesondere das Abschätzen von Aktienkursrisikos, ist heut zu Tage wichtiger denn je, da eine Fehleinschätzung Milliardenverluste nach sich ziehen kann. Zunächst einmal eine kurze Erläuterung des Begriffs Aktienkursrisiko. Unter dem Aktienkursrisiko versteht man das durch Kursschwankungen hervorgerufene Risiko, also die kalkulierte Prognose eines möglichen Verlustes, eines Portfolios aus Aktien. Die am weitesten verbreitete Methode zur Darstellung des Aktienkursrisikos stellt das sogenannte Value-at-Risk dar. Value-at-Risk ist definiert als die in Währungseinheiten ausgedrückte maximale ungünstige Abweichung des tatsächlichen Werts einer erwarteten Position von ihrem erwarteten Wert innerhalb eines definierten Zeitraums. Auf die Vorgehensweise zur Berechnung des Value-at-Risk-Wertes möchte ich nun im nächsten Kapitel näher eingehen. 3.2 Bestimmen von Value-at-Risk-Werten Die Grundlage der Bestimmung von Value-at-Risk-Werten ist der Wert des Aktienportfolios zum Zeitpunkt i pi. Der zukünftige Wert des Portfolios zu dem Zeitpunkt i+τ ist gegeben durch pi+τ. Dem entsprechend ist der Value-at-Risk eine Abschätzung für die nächsten τ Tage. Daraus ergibt sich folgende Formel: P(pi-pi+τ > VaR(α)τ i) = α. 7

8 Ein weiterer wichtiger Wert ist die Portfoliorendite τi zum Zeitpunkt i. Dieser Variable beschreibt die Effektivverzinsung der Wertpapiere, die sich aus dessen Kurs ableiten lässt. Dargestellt wird die Portfoliorendite durch folgende Formel: τi = ln(pi/pi-1). Da ein Portfolio aber aus m Wertpapieren besteht, stellt man die Rendite eines Wertpapiers τk,i analog zur einfachen Portfoliorendite berechnen. Der letzte wichtige Wert der zur Berechnung des Value-at-Risk benötigt wird, ist q(α)τ i das α-quantil der bedingten Verteilung von τi+τ, wobei ein Quantil einen Punkt einer nach Rang oder Größe sortierten statistischen Verteilung darstellt. Die Formel für das α-quantil lautet wie folgt: P( τi+τ < q(α) τ i) = α Mit Hilfe dieser Gleichungen lässt sich nun der Value-at-Risk des Aktienportfolios für die Zeitperiode τ wie folgt darstellen: VaR(α)τ i = pi(1-exp(q(α)τ i). Der Knackpunkt in der Berechnung des Value-at-Risks stellt nun die Bestimmung des α-quantil dar. Die generelle Vorgehensweise besteht aus drei Schritten: Die Bewertung des aktuelle Portfolios, die Schätzung der Verteilung der Portfoliorenditen und abschließend die Berechnung des Value-at-Risk des Portfolios. Zur Schätzung der Verteilung der Portfoliorenditen existieren nun unterschiedliche Ansätze, die sich in der Berechnung des α-quantils. Da wäre zum Ersten der nicht-parametrische Ansatz, bei dem das α-quantil direkt aus der bekannten historischen Verteilung geschätzt. Wesentlich bei diesem Ansatz ist die Festlegung des Zeitfensters, da dieses den ermittelten Value-at-Risk stark beeinflussen. Extreme Ereignisse, wie zum Beispiel Terroranschläge beeinflussen das komplette Zeitfenster. Der augenscheinliche Vorteil dieses Ansatzes ist die geringe Komplexität der Berechnung, kritisiert wird jedoch, dass eine Normalverteilung der Renditewerte angenommen wird, die jedoch in zahlreichen Studien widerlegt wurde, da Renditewerte in Wirklichkeit eine starke Volatilität, also positive und negative Schwankungen aufweisen können. Der zweite Ansatz ist der parametrische Ansatz, bei dem eine angenommene Normalverteilung der Portfoliorenditen mit der Annahme einer konstanten Schwankung im Zeitverlauf angenommen wird. Der Vorteil dieses Ansatzes liegt in der Möglichkeit stärker und effizienter auf empirische Sachverhalte eingehen zu können, was mit dem ersten Ansatz nicht möglich war. Die Schwachstelle dieses Ansatzes liegt in der oftmals sehr hohen Anzahl von Parametern, was die Gefahr einer Fehlspezifikation der Modellierung beinhaltet. Der dritte Ansatz ist eine Kombination der vorangegangen Ansätze. Hier werden nicht alle Abschnitte der Renditeverteilung parametrisch beschrieben, sondern nur ausgewählte Teilabschnitte. Die verbleibenden Abschnitte werden mit Hilfe des nichtparametrischen Ansatzes beschrieben. Vorteil ist, dass die Berechnung sehr genau erfolgt, jedoch ist die Berechnung wesentlich aufwendiger als bei dem nichtparametrischen und dem parametrischen Ansatz. 8

9 4 Anwendungsbeispiel Um nun an einem Beispiel zu zeigen, wie man mit Hilfe der Monte-Carlo-Simulation den Value-at-Risk eines Aktienportfolios bestimmt, erstelle ich ein Szenario aufbauend auf folgenden Schritten. Zuerst wird das Portfolio auf vorgegebene Aktien abgebildet. Aufgrund dieser Daten wird nun die Korrelationsmatrix R, die den Zusammenhang zwischen den Daten darstellt, von n verschieden Aktien auf der Basis von bekannten Korrelations- und Volatilitätsdaten. Das Ziel der Monte-CarloSimulation ist es nun, n verschiedene Reihen zu simulieren, deren Korrelationen kongruent sind. Dazu ist es erforderlich, die Matrix R mit Hilfe der CholeskyZerlegung in die Form einer unteren Dreiecksmatrix zu bringen. Abb. 6: Cholesky-Zerlegung Nun werden unabhängige, normalverteilte Zufallsvariablen Yi (1 i n) generiert. Unter Verwendung dieser Variablen und der Cholesky Matrix A werden anschließend multivariate, also mehrere Unbekannte enthaltende, normalverteilte Zufallsvariablen Zi (1 i n) abgeleitet. Abschließend werden nun die Preise für die Aktien simuliert und aus ihnen ein Portfolio gebildet. Daraus ergibt sich nun die Wahrscheinlichkeitsverteilung des ursprünglichen Portfolios und damit auch des Value-at-Risk. Nun werde ich mich konkret einem Beispiel zuwenden, in welchem ich für zwei Aktienkurse den Value-at-Risk berechne. Der zwei Aktienkurse sind zum einen der 5Y EUR Zerobond und zum anderen der DAX. Zunächst wähle ich mir zufällige Werte für die Korrelationsmatrix R und deren Cholesky-Matrix: Abb. 7: Beispielwerte für R und A Anschließend werden in 260 Simulationen verschiedene Werte für Y1 und Y2 generiert: Abb. 8: Simulationen für die Zufallsvariablen Y1 und Y2 9

10 Mit Hilfe dieser Werte und der Matrix A erstelle ich nun die Zufallsvariablen Z1 und Z2 nach der Formel aus Abbildung 9 und erhalte die in Abbildung 10 dargestellten Werte. Abb. 10: Berechnungsgrundlage für Zufallsvariablen Z1 und Z2 Abb.9: Simulationen für die Zufallsvariablen Z1 und Z2 Setzt man nun für die täglichen Volatilitäten für den 5Y EUR Zerobond einen Wert von 0,37% und für den DAX einen Wert von 1,39% lassen sich die simulierten Aktienkurse für den ersten Simulationsschritt wie folgt berechnen: Abb. 11: Berechnung des Wertes des Aktienkurs für Simulation 1 Analog werden nun die Aktienkurse für die restlichen 259 Simulationsschritte berechnet, woraus sich folgende Tabelle ergibt: Abb. 12: Simulationen für die Aktienkurse des 5Y EUR Zerobond und des DAX Diese Tabelle kann wie folgt interpretiert werden: Als Wert des 5Y EUR Zerobond liegt der Wert von 81,52% und der Wert des DAX liegt als 5260 vor (Stand 12. August 1999). Im ersten Simulationsschritt sinkt nun der Wert des 5Y EUR Zerobond auf 81,12 % und der Wert des DAX auf Die mit Hilfe dieser Simulationen berechnete Volatilität liegt mit 0,391% bzw. 1,404% sehr nah an den gegebenen Werten von 0,37% bzw. 1,39%. Eine steigende Anzahl der Simulationen verbessert dieses Ergebnis. 10

11 Abb. 13: Simulationen für den Wert der Portfolios aus beiden Positionen Der Wert des gegebenen Portfolios beträgt 1'559'380 und der Anteil des 5Y EUR Zerobond beträgt 137% und der Anteil des DAX beträgt -37%. Aufgrund der Werte aus Abbildung 12 lassen sich nun die Portfoliowerte für die einzelnen Simulationsschritte bestimmen. Nach der Berechnung der Werte werden diese der Größe nach geordnet, wobei dem dreizehnten Wert besondere Beachtung geschenkt wird, da von einer Irrtumswahrscheinlichkeit von 5% ausgegangen wird. Der dreizehnte Wert des Portfolios beträgt 1'536'830 und liegt damit 22'550. Dieser Wert stellt den maximalen Verlust für den nächsten Handelstag und damit das gesuchte Value-at-Risk dar. 5 Fazit In dieser Arbeit wurde dargelegt, wie mit Hilfe der Monte-Carlo-Simulation der Value-at-Risk eines Aktienportfolios bestimmt werden kann, indem zuerst die Grundlagen der Monte-Carlo-Simulation und des Value-at-Risk gegeben wurden. Die Anwendung dieser Grundlagen wurde anschließend in einem Beispiel zur Berechnung des Value-at-Risk des Portfolios aus DAX und 5Y EUR Zerobond gezeigt. Der Vorteil der Monte-Carlo-Simulation bei der Berechnung von Value-at-RiskWerten im Vergleich zu anderen Methoden liegt zum einen in der relativ hohen Genauigkeit des Ergebnisses, die größer wird, je mehr Simulationen durchgeführt werden. Da zum anderen keine bestimmte Verteilung der Ergebnisse angenommen werden muss, bietet diese Methode eine gut verwendbare Möglichkeit zur Bestimmung von Value-at-Risks. Ein Nachteil ist der zum Teil mögliche hohe Rechenaufwand durch eine sehr hohe Anzahl von Simulationen, wobei man diesem Nachteil zwar entgegen wirken kann, indem weniger Simulationen durchgeführt werden, jedoch hat das zur Folge, dass das Ergebnis an Genauigkeit verliert. 11

12 6 Literaturnachweis Value-at-Risk Ansätze zur Abschätzung von Marktrisiken, Jens Fricke, Wiesbaden, 2006 Mathematik Wahrscheinlichkeitsrechnung und Statistik unter Einbeziehung von elektronischen Rechnern, Zufallszahlen, Monte-Carlo-Methode und Simulation, H. Gundel, P. Schupp, U. Schweizer Monte Carlo Simulation im Risikomanagement aus WiSt Heft 7 Juli 2000, Prof. Dr. Markus Rudolf Abbildungen 1 bis 5 aus Mathematik Wahrscheinlichkeitsrechnung und Statistik unter Einbeziehung von elektronischen Rechnern Abbildungen 6 bis 13 aus Monte Carlo Simulation im Risikomanagement 12

13 13

Die Bestimmung von Value-at-Risk- Werten mit Hilfe der Monte-Carlo- Simulation. Jens Schiborowski

Die Bestimmung von Value-at-Risk- Werten mit Hilfe der Monte-Carlo- Simulation. Jens Schiborowski Die Bestimmung von Value-at-Risk- Werten mit Hilfe der Monte-Carlo- Simulation Jens Schiborowski Gliederung Einführung Monte-Carlo-Simulation Definition von Monte-Carlo-Simulation Einsatzgebiete von Monte-Carlo-Simulation

Mehr

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde

Mehr

Fotios Filis. Monte-Carlo-Simulation

Fotios Filis. Monte-Carlo-Simulation Fotios Filis Monte-Carlo-Simulation Monte-Carlo-Methoden??? Spielcasino gibt Namen Monte Carlo war namensgebend für diese Art von Verfahren: Erste Tabellen mit Zufallszahlen wurden durch Roulette-Spiel-Ergebnisse

Mehr

Value at Risk Einführung

Value at Risk Einführung Value at Risk Einführung Veranstaltung Risk Management & Computational Finance Dipl.-Ök. Hans-Jörg von Mettenheim mettenheim@iwi.uni-hannover.de Institut für Wirtschaftsinformatik Leibniz Universität Hannover

Mehr

Risiko und Symmetrie. Prof. Dr. Andrea Wirth

Risiko und Symmetrie. Prof. Dr. Andrea Wirth Risiko und Symmetrie Prof. Dr. Andrea Wirth Gliederung 1. Einleitung Was ist eigentlich Risiko? 2. Risiko Mathematische Grundlagen 3. Anwendungsbeispiele Wo genau liegt der Schmerz des Risikos? 4. Sie

Mehr

Monte Carlo Simulation (Grundlagen)

Monte Carlo Simulation (Grundlagen) Der Titel des vorliegenden Beitrages wird bei den meisten Lesern vermutlich Assoziationen mit Roulette oder Black Jack hervorrufen. Allerdings haben das heutige Thema und die Spieltische nur den Namen

Mehr

Monte-Carlo-Simulation

Monte-Carlo-Simulation Modellierung und Simulation Monte-Carlo-Simulation Universität Hamburg Johannes Schlundt 7. Januar 2013 Monte-Carlo-Simulation Johannes S. 1/31 Inhalt Motivation Geschichtliche Entwicklung Monte-Carlo-Simulation

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel Ausarbeitung zum Proseminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn zum Thema Simulation des Anlagenpreismodels von Simon Uphus im WS 09/10 Zusammenfassung

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

Quantilsschätzung als Werkzeug zur VaR-Berechnung

Quantilsschätzung als Werkzeug zur VaR-Berechnung Quantilsschätzung als Werkzeug zur VaR-Berechnung Ralf Lister, Aktuar, lister@actuarial-files.com Zusammenfassung: Zwei Fälle werden betrachtet und die jeweiligen VaR-Werte errechnet. Im ersten Fall wird

Mehr

Ein möglicher Unterrichtsgang

Ein möglicher Unterrichtsgang Ein möglicher Unterrichtsgang. Wiederholung: Bernoulli Experiment und Binomialverteilung Da der sichere Umgang mit der Binomialverteilung, auch der Umgang mit dem GTR und den Diagrammen, eine notwendige

Mehr

Modellbildung und Simulation

Modellbildung und Simulation Modellbildung und Simulation 5. Vorlesung Wintersemester 2007/2008 Klaus Kasper Value at Risk (VaR) Glossar Portfolio: In der Ökonomie bezeichnet der Begriff Portfolio ein Bündel von Investitionen, das

Mehr

Numerische Optionsbepreisung durch Monte-Carlo-Simulation und Vergleich mit dem Black-Scholes-Modell

Numerische Optionsbepreisung durch Monte-Carlo-Simulation und Vergleich mit dem Black-Scholes-Modell Numerische Optionsbepreisung durch Monte-Carlo-Simulation und Vergleich mit dem Black-Scholes-Modell Bachelorarbeit zur Erlangung des akademischen Grades Bachelor of Science (B.Sc.) im Studiengang Wirtschaftswissenschaft

Mehr

AUTOMATISIERTE HANDELSSYSTEME

AUTOMATISIERTE HANDELSSYSTEME UweGresser Stefan Listing AUTOMATISIERTE HANDELSSYSTEME Erfolgreich investieren mit Gresser K9 FinanzBuch Verlag 1 Einsatz des automatisierten Handelssystems Gresser K9 im Portfoliomanagement Portfoliotheorie

Mehr

Monte-Carlo Simulation

Monte-Carlo Simulation Monte-Carlo Simulation Sehr häufig hängen wichtige Ergebnisse von unbekannten Werten wesentlich ab, für die man allerhöchstens statistische Daten hat oder für die man ein Modell der Wahrscheinlichkeitsrechnung

Mehr

Das Black-Scholes Marktmodell

Das Black-Scholes Marktmodell Das Black-Scholes Marktmodell Andreas Eichler Institut für Finanzmathematik Johannes Kepler Universität Linz 8. April 2011 1 / 14 Gliederung 1 Einleitung Fortgeschrittene Finanzmathematik einfach erklärt

Mehr

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Die Poisson-Verteilung Jianmin Lu RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Ausarbeitung zum Vortrag im Seminar Stochastik (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In der Wahrscheinlichkeitstheorie

Mehr

Vorlesung Gesamtbanksteuerung Mathematische Grundlagen III / Marktpreisrisiken Dr. Klaus Lukas Stefan Prasser

Vorlesung Gesamtbanksteuerung Mathematische Grundlagen III / Marktpreisrisiken Dr. Klaus Lukas Stefan Prasser Vorlesung Gesamtbanksteuerung Mathematische Grundlagen III / Marktpreisrisiken Dr. Klaus Lukas Stefan Prasser 1 Agenda Rendite- und Risikoanalyse eines Portfolios Gesamtrendite Kovarianz Korrelationen

Mehr

Vergleich verschiedener Optimierungsansätze

Vergleich verschiedener Optimierungsansätze Vergleich verschiedener Optimierungsansätze Inhaltsverzeichnis 1 Einleitung... 2 2 Welchen Nutzen schafft munio?... 3 3 Analysen... 3 3.1 Schritt 1: Optimierung anhand von Indizes... 3 3.2 Schritt 2: Manuell

Mehr

Webergänzung zu Kapitel 10

Webergänzung zu Kapitel 10 Webergänzung zu Kapitel 10 10.1.4 Varianzanalyse (ANOVA: analysis of variance) Im Kapitel 10 haben wir uns hauptsächlich mit Forschungsbeispielen beschäftigt, die nur zwei Ergebnissätze hatten (entweder

Mehr

Ausarbeitung des Seminarvortrags zum Thema

Ausarbeitung des Seminarvortrags zum Thema Ausarbeitung des Seminarvortrags zum Thema Anlagepreisbewegung zum Seminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn von Imke Meyer im W9/10 Anlagepreisbewegung

Mehr

Hauptseminar. Monte-Carlo-Methoden, stochastische Schätzungen und deren Unsicherheit. Robert John 2.11.2011

Hauptseminar. Monte-Carlo-Methoden, stochastische Schätzungen und deren Unsicherheit. Robert John 2.11.2011 Hauptseminar Monte-Carlo-Methoden, stochastische Schätzungen und deren Unsicherheit Robert John 1 Inhalt Herkunft Stochastische Schätzung Monte-Carlo-Methode Varianzreduktion Zufallszahlen Anwendungsgebiete

Mehr

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen

Mehr

Verteilungsmodelle. Verteilungsfunktion und Dichte von T

Verteilungsmodelle. Verteilungsfunktion und Dichte von T Verteilungsmodelle Verteilungsfunktion und Dichte von T Survivalfunktion von T Hazardrate von T Beziehungen zwischen F(t), S(t), f(t) und h(t) Vorüberlegung zu Lebensdauerverteilungen Die Exponentialverteilung

Mehr

Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011

Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011 Kevin Schellkes und Christian Hendricks 29.08.2011 Inhalt Der herkömmliche Ansatz zur Simulation logarithmischer Renditen Ansatz zur Simulation mit Copulas Test und Vergleich der beiden Verfahren Fazit

Mehr

Korrelationen, Portfoliotheorie von Markowitz, Capital Asset Pricing Model

Korrelationen, Portfoliotheorie von Markowitz, Capital Asset Pricing Model Korrelationen, Portfoliotheorie von Markowitz, Capital Asset Pricing Model Matthias Eltschka 13. November 2007 Inhaltsverzeichnis 1 Einleitung 3 2 Vorbereitung 4 2.1 Diversifikation...........................

Mehr

(1) Problemstellung. (2) Kalman Filter

(1) Problemstellung. (2) Kalman Filter Inhaltsverzeichnis (1) Problemstellung...2 (2) Kalman Filter...2 Funktionsweise... 2 Gleichungen im mehrdimensionalen Fall...3 Schätzung des Systemzustands...3 Vermuteter Schätzfehler... 3 Aktualisierung

Mehr

$ % + 0 sonst. " p für X =1 $

$ % + 0 sonst.  p für X =1 $ 31 617 Spezielle Verteilungen 6171 Bernoulli Verteilung Wir beschreiben zunächst drei diskrete Verteilungen und beginnen mit einem Zufallsexperiment, indem wir uns für das Eintreffen eines bestimmten Ereignisses

Mehr

Value-at-Risk. Kann man das Risiko steuern? Finanzwirtschaft VI Matthias Paesel Hochschule Magdeburg-Stendal (FH)

Value-at-Risk. Kann man das Risiko steuern? Finanzwirtschaft VI Matthias Paesel Hochschule Magdeburg-Stendal (FH) Value-at-Risk Kann man das Risiko steuern? Gliederung I. Was versteht man unter Value-at-Risk? II. Anwendung des Value-at-Risk III. Grenzen des Value-at-Risk IV. Fazit V. Literatur Was versteht man unter

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

ZERTIFIKATE spielend beherrschen

ZERTIFIKATE spielend beherrschen UDI ZAGST / MICHAEL HUBER RUDI ZAGST / MICHAEL HUBER ZERTIFIKATE ZERTIFIKATE spielend beherrschen spielend beherrschen Der Performance-Kick Der Performance-Kick für Ihr für Portfolio Ihr Portfolio inanzbuch

Mehr

Statistiktraining im Qualitätsmanagement

Statistiktraining im Qualitätsmanagement Gerhard Linß Statistiktraining im Qualitätsmanagement ISBN-0: -446-75- ISBN-: 978--446-75-4 Leserobe Weitere Informationen oder Bestellungen unter htt://www.hanser.de/978--446-75-4 sowie im Buchhandel

Mehr

Erfolg und Vermögensrückgänge angefertigt im Rahmen der Lehrveranstaltung Nachrichtentechnik von: Eric Hansen, eric-hansen@gmx.de am: 07.09.

Erfolg und Vermögensrückgänge angefertigt im Rahmen der Lehrveranstaltung Nachrichtentechnik von: Eric Hansen, eric-hansen@gmx.de am: 07.09. Abstract zum Thema Handelssysteme Erfolg und Vermögensrückgänge angefertigt im Rahmen der Lehrveranstaltung Nachrichtentechnik von: Eric Hansen, eric-hansen@gmx.de am: 07.09.01 Einleitung: Handelssysteme

Mehr

Kurzbeschreibung. Eingaben zur Berechnung. Das Optionspreismodell. Mit dem Eurex-OptionMaster können Sie

Kurzbeschreibung. Eingaben zur Berechnung. Das Optionspreismodell. Mit dem Eurex-OptionMaster können Sie Kurzbeschreibung Mit dem Eurex-OptionMaster können Sie - theoretische Optionspreise - Optionskennzahlen ( Griechen ) und - implizite Volatilitäten von Optionen berechnen und die errechneten Preise bei

Mehr

Business Value Launch 2006

Business Value Launch 2006 Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung

Mehr

Commercial Banking. Kreditportfoliosteuerung

Commercial Banking. Kreditportfoliosteuerung Commercial Banking Kreditportfoliosteuerung Dimensionen des Portfoliorisikos Risikomessung: Was ist Kreditrisiko? Marking to Market Veränderungen des Kreditportfolios: - Rating-Veränderung bzw. Spreadveränderung

Mehr

Kreditrisiko bei Swiss Life. Carl-Heinz Meyer, 13.06.2008

Kreditrisiko bei Swiss Life. Carl-Heinz Meyer, 13.06.2008 Kreditrisiko bei Swiss Life Carl-Heinz Meyer, 13.06.2008 Agenda 1. Was versteht man unter Kreditrisiko? 2. Ein Beisiel zur Einführung. 3. Einige kleine Modelle. 4. Das grosse kollektive Modell. 5. Risikoberechnung

Mehr

Tageserträge am Aktienmarkt. und die. 200-Tage-Linie. von. Dr. rer. nat. Hans Uhlig. Copyright 2009 - Dr. Hans Uhlig

Tageserträge am Aktienmarkt. und die. 200-Tage-Linie. von. Dr. rer. nat. Hans Uhlig. Copyright 2009 - Dr. Hans Uhlig Tageserträge am Aktienmarkt und die 200-Tage-Linie von Dr. rer. nat. Hans Uhlig Copyright 2009 - Dr. Hans Uhlig Copyright Hinweis Der Text und die Abildungen dieses Beitrages unterliegen dem Urheberrechtsschutz.

Mehr

Monte-Carlo- Simulation. Seminar zur Vorlesung Teilchendetektoren und Experiment an ELSA

Monte-Carlo- Simulation. Seminar zur Vorlesung Teilchendetektoren und Experiment an ELSA Monte-Carlo- Simulation Seminar zur Vorlesung Teilchendetektoren und Experiment an ELSA Übersicht Einleitung Simulation mit Geant4 generierte Daten Zusammenfassung 2 Simulation Mathematische Modellierung

Mehr

Simulation von Zinsentwicklungen und Bewertung von gängigen Finanzprodukten

Simulation von Zinsentwicklungen und Bewertung von gängigen Finanzprodukten Simulation von Zinsentwicklungen und Bewertung von gängigen Finanzprodukten Andreas Eichler Institut für Finanzmathematik Johannes Kepler Universität Linz 1. Februar 2010 1 / 7 Gliederung 1 Was ist Finanzmathematik

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

5. Schließende Statistik. 5.1. Einführung

5. Schließende Statistik. 5.1. Einführung 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

Einfluß von Wind bei Maximalfolgenmessungen

Einfluß von Wind bei Maximalfolgenmessungen 1 von 5 05.02.2010 11:10 Der Einfluß von Wind bei Maximalfolgenmessungen M. KOB, M. VORLÄNDER Physikalisch-Technische Bundesanstalt, Braunschweig 1 Einleitung Die Maximalfolgenmeßtechnik ist eine spezielle

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

6 Mehrstufige zufällige Vorgänge Lösungshinweise

6 Mehrstufige zufällige Vorgänge Lösungshinweise 6 Mehrstufige zufällige Vorgänge Lösungshinweise Aufgabe 6.: Begründen Sie, warum die stochastische Unabhängigkeit zweier Ereignisse bzw. zufälliger Vorgänge nur ein Modell der Realität darstellen kann.

Mehr

Modellbildungssysteme: Pädagogische und didaktische Ziele

Modellbildungssysteme: Pädagogische und didaktische Ziele Modellbildungssysteme: Pädagogische und didaktische Ziele Was hat Modellbildung mit der Schule zu tun? Der Bildungsplan 1994 formuliert: "Die schnelle Zunahme des Wissens, die hohe Differenzierung und

Mehr

Zwei einfache Kennzahlen für große Engagements

Zwei einfache Kennzahlen für große Engagements Klecksen nicht klotzen Zwei einfache Risikokennzahlen für große Engagements Dominik Zeillinger, Hypo Tirol Bank Die meisten Banken besitzen Engagements, die wesentlich größer sind als der Durchschnitt

Mehr

Risikodiversifikation. Birgit Hausmann

Risikodiversifikation. Birgit Hausmann diversifikation Birgit Hausmann Übersicht: 1. Definitionen 1.1. 1.2. diversifikation 2. messung 2.1. messung im Überblick 2.2. Gesamtaktienrisiko und Volatilität 2.3. Systematisches und Betafaktor 2.4.

Mehr

Die Monte-Carlo-Methode mit Pseudound Quasi-Zufallszahlen

Die Monte-Carlo-Methode mit Pseudound Quasi-Zufallszahlen Hauptseminar Methoden der experimentellen Teilchenphysik WS 2011/2012 Die Monte-Carlo-Methode mit Pseudound Quasi-Zufallszahlen Marco A. Harrendorf Karlsruhe Institut für Technologie, Bachelor Physik Vortrag

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

Toleranzberechnung/-Simulation

Toleranzberechnung/-Simulation Summenhäufigkeit zufallsgeneriert Toleranzberechnung/-Simulation Einführung Das Ziel ist es die Auswirkung von vielen Einzeltoleranzen auf ein Funktionsmaß zu ermitteln. Bekanntlich ist das addieren der

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

DIPLOM. Abschlussklausur der Vorlesung Bank I, II:

DIPLOM. Abschlussklausur der Vorlesung Bank I, II: Seite 1 von 9 Name: Matrikelnummer: DIPLOM Abschlussklausur der Vorlesung Bank I, II: Bankmanagement und Theory of Banking Seite 2 von 9 DIPLOM Abschlussklausur der Vorlesung Bank I, II: Bankmanagement

Mehr

Erster Prüfungsteil: Aufgabe 1

Erster Prüfungsteil: Aufgabe 1 Erster Prüfungsteil: Aufgabe Kriterien: Der Prüfling Lösung: Punkte: a) entscheidet sich für passenden Wert 8 000 000 b) wählt ein geeignetes Verfahren zur z. B. Dreisatz Berechnung gibt das richtige Ergebnis

Mehr

Bin Packing oder Wie bekomme ich die Klamotten in die Kisten?

Bin Packing oder Wie bekomme ich die Klamotten in die Kisten? Bin Packing oder Wie bekomme ich die Klamotten in die Kisten? Ich habe diesen Sommer mein Abi gemacht und möchte zum Herbst mit dem Studium beginnen Informatik natürlich! Da es in meinem kleinen Ort keine

Mehr

6.2 Scan-Konvertierung (Scan Conversion)

6.2 Scan-Konvertierung (Scan Conversion) 6.2 Scan-Konvertierung (Scan Conversion) Scan-Konvertierung ist die Rasterung von einfachen Objekten (Geraden, Kreisen, Kurven). Als Ausgabemedium dient meist der Bildschirm, der aus einem Pixelraster

Mehr

Zwei Ziegen und ein Auto

Zwei Ziegen und ein Auto Prof. Dr. Ludwig Paditz 29.10.2002 Zwei Ziegen und ein Auto In der amerikanischen Spielshow "Let`s make a deal" ist als Hauptpreis ein Auto ausgesetzt. Hierzu sind auf der Bühne drei verschlossene Türen

Mehr

Seminar Finanzmathematik

Seminar Finanzmathematik Seminar Finanzmathematik Simulationen zur Black-Scholes Formel Seite 1 von 24 Zufallszahlen am Computer 3 Gleichverteilte Zufallszahlen 3 Weitere Verteilungen 3 Quadratische Verteilung 4 Normalverteilung

Mehr

Statische Versuchsplanung (DoE - Design of Experiments)

Statische Versuchsplanung (DoE - Design of Experiments) Statische Versuchsplanung (DoE - Design of Experiments) Übersicht Bei der statistischen Versuchsplanung wird die Wirkung von Steuerparametern unter dem Einfluss von Störparametern untersucht. Mit Hilfe

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

Statistische Auswertung der Daten von Blatt 13

Statistische Auswertung der Daten von Blatt 13 Statistische Auswertung der Daten von Blatt 13 Problemstellung 1 Graphische Darstellung der Daten 1 Diskussion der Normalverteilung 3 Mittelwerte und deren Konfidenzbereiche 3 Signifikanz der Behandlung

Mehr

24. Algorithmus der Woche Bin Packing Wie bekomme ich die Klamotten in die Kisten?

24. Algorithmus der Woche Bin Packing Wie bekomme ich die Klamotten in die Kisten? 24. Algorithmus der Woche Wie bekomme ich die Klamotten in die Kisten? Autor Prof. Dr. Friedhelm Meyer auf der Heide, Universität Paderborn Joachim Gehweiler, Universität Paderborn Ich habe diesen Sommer

Mehr

Name:... Matrikel-Nr.:... 3 Aufgabe Handyklingeln in der Vorlesung (9 Punkte) Angenommen, ein Student führt ein Handy mit sich, das mit einer Wahrscheinlichkeit von p während einer Vorlesung zumindest

Mehr

Statistik II für Betriebswirte Vorlesung 2

Statistik II für Betriebswirte Vorlesung 2 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 2 21. Oktober 2014 Verbundene Stichproben Liegen zwei Stichproben vor, deren Werte einander

Mehr

Internationale Finanzierung 6. Bewertung von Aktien

Internationale Finanzierung 6. Bewertung von Aktien Übersicht Kapitel 6: 6.1. Einführung 6.2. Aktienbewertung mittels Kennzahlen aus Rechnungswesen 6.3. Aktienbewertung unter Berücksichtigung der Wachstumschancen 6.4. Aktienbewertung mittels Dividenden

Mehr

, dt. $+ f(x) = , - + < x < +, " > 0. " 2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) =

, dt. $+ f(x) = , - + < x < +,  > 0.  2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) = 38 6..7.4 Normalverteilung Die Gauß-Verteilung oder Normal-Verteilung ist eine stetige Verteilung, d.h. ihre Zufallsvariablen können beliebige reelle Zahlenwerte annehmen. Wir definieren sie durch die

Mehr

Der Fristentransformationserfolg aus der passiven Steuerung

Der Fristentransformationserfolg aus der passiven Steuerung Der Fristentransformationserfolg aus der passiven Steuerung Die Einführung einer barwertigen Zinsbuchsteuerung ist zwangsläufig mit der Frage nach dem zukünftigen Managementstil verbunden. Die Kreditinstitute

Mehr

1.3 Die Beurteilung von Testleistungen

1.3 Die Beurteilung von Testleistungen 1.3 Die Beurteilung von Testleistungen Um das Testergebnis einer Vp zu interpretieren und daraus diagnostische Urteile ableiten zu können, benötigen wir einen Vergleichsmaßstab. Im Falle des klassischen

Mehr

Grundlagen der Inferenzstatistik

Grundlagen der Inferenzstatistik Grundlagen der Inferenzstatistik (Induktive Statistik oder schließende Statistik) Dr. Winfried Zinn 1 Deskriptive Statistik versus Inferenzstatistik Die Deskriptive Statistik stellt Kenngrößen zur Verfügung,

Mehr

LÖSUNG ZUR VORLESUNG MAKROÖKONOMIK I (SoSe 14) Aufgabenblatt 3

LÖSUNG ZUR VORLESUNG MAKROÖKONOMIK I (SoSe 14) Aufgabenblatt 3 Fakultät Wirtschafts- und Sozialwissenschaften Jun.-Prof. Dr. Philipp Engler, Michael Paetz LÖSUNG ZUR VORLESUNG MAKROÖKONOMIK I (SoSe 14) Aufgabenblatt 3 Aufgabe 1: Geldnachfrage I Die gesamtwirtschaftliche

Mehr

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Grundlagen der Betriebswirtschaftslehre, Kurs 00091, KE 4, 5 und 6, SS 2008 1 Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Lösungshinweise zur Einsendearbeit

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

einfache Rendite 0 145 85 1 160 90 2 135 100 3 165 105 4 190 95 5 210 110

einfache Rendite 0 145 85 1 160 90 2 135 100 3 165 105 4 190 95 5 210 110 Übungsbeispiele 1/6 1) Vervollständigen Sie folgende Tabelle: Nr. Aktie A Aktie B Schlusskurs in Schlusskurs in 0 145 85 1 160 90 2 135 100 3 165 105 4 190 95 5 210 110 Arithmetisches Mittel Standardabweichung

Mehr

R ist freie Software und kann von der Website. www.r-project.org

R ist freie Software und kann von der Website. www.r-project.org R R ist freie Software und kann von der Website heruntergeladen werden. www.r-project.org Nach dem Herunterladen und der Installation von R kann man R durch Doppelklicken auf das R-Symbol starten. R wird

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

Black Jack - Kartenzählen

Black Jack - Kartenzählen Black Jack - Kartenzählen Michael Gabler 24.01.2012 Literatur: N. Richard Werthamer: Risk and Reward - The Science of Casino Blackjack, Springer Black Jack - Kartenzählen 1 Wie zähle ich Karten? Historisches

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678 Lösungsvorschläge zu Blatt 8 X binomialverteilt mit p = 0. und n = 10: a PX = = 10 q = 1 p = 0.8 0. 0.8 10 = 0, 1,..., 10 PX = PX = 0 + PX = 1 + PX = 10 10 = 0. 0 0.8 10 + 0. 1 0.8 9 + 0 1 10 = 0.8 8 [

Mehr

Die drei Kernpunkte der modernen Portfoliotheorie

Die drei Kernpunkte der modernen Portfoliotheorie Die drei Kernpunkte der modernen Portfoliotheorie 1. Der Zusammenhang zwischen Risiko und Rendite Das Risiko einer Anlage ist die als Varianz oder Standardabweichung gemessene Schwankungsbreite der Erträge

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

Tipp III: Leiten Sie eine immer direkt anwendbare Formel her zur Berechnung der sogenannten "bedingten Wahrscheinlichkeit".

Tipp III: Leiten Sie eine immer direkt anwendbare Formel her zur Berechnung der sogenannten bedingten Wahrscheinlichkeit. Mathematik- Unterrichts- Einheiten- Datei e. V. Klasse 9 12 04/2015 Diabetes-Test Infos: www.mued.de Blutspenden werden auf Diabetes untersucht, das mit 8 % in der Bevölkerung verbreitet ist. Dabei werden

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

Überprüfung der Zielgrösse der Wertschwankungsreserve

Überprüfung der Zielgrösse der Wertschwankungsreserve Aon Hewitt Investment Consulting Urheberrechtlich geschützt und vertraulich Überprüfung der Zielgrösse der Wertschwankungsreserve Pensionskasse XY, Januar 2015 Risk. Reinsurance. Human Resources. Inhaltsverzeichnis

Mehr

Grundlagen der Monte Carlo Simulation

Grundlagen der Monte Carlo Simulation Grundlagen der Monte Carlo Simulation 10. Dezember 2003 Peter Hofmann Inhaltsverzeichnis 1 Monte Carlo Simulation.................... 2 1.1 Problemstellung.................... 2 1.2 Lösung durch Monte

Mehr

PROSEMINAR ONLINE ALGORITHMEN

PROSEMINAR ONLINE ALGORITHMEN PROSEMINAR ONLINE ALGORITHMEN im Wintersemester 2000/2001 Prof. Dr. Rolf Klein, Dr. Elmar Langetepe, Dipl. Inform. Thomas Kamphans (Betreuer) Vortrag vom 15.11.2000 von Jan Schmitt Thema : Finden eines

Mehr

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 ische Ergänzung der für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 Ministerium für ildung und Wissenschaft des Landes Juni 2013 1 für Aufgabenpool 1 Analysis

Mehr

Lenstras Algorithmus für Faktorisierung

Lenstras Algorithmus für Faktorisierung Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit

Mehr

Statistischer Mittelwert und Portfoliorendite

Statistischer Mittelwert und Portfoliorendite 8 Wahrscheinlichkeitsrechnung und Statistik Statistischer Mittelwert und Portfoliorendite Durch die immer komplexer werdenden Bündel von Investitionen stellen Investorinnen und Investoren eine Vielzahl

Mehr

Lösungsmethoden gewöhnlicher Differentialgleichungen (Dgl.)

Lösungsmethoden gewöhnlicher Differentialgleichungen (Dgl.) Lösungsmethoden gewöhnlicher Dierentialgleichungen Dgl) Allgemeine und partikuläre Lösung einer gewöhnlichen Dierentialgleichung Eine Dierentialgleichung ist eine Gleichung! Zum Unterschied von den gewöhnlichen

Mehr

4. Wässrige Lösungen schwacher Säuren und Basen

4. Wässrige Lösungen schwacher Säuren und Basen 4. Wässrige Lösungen schwacher Säuren und Basen Ziel dieses Kapitels ist es, das Vorgehenskonzept zur Berechnung von ph-werten weiter zu entwickeln und ph-werte von wässrigen Lösungen einprotoniger, schwacher

Mehr

Data Mining: Einige Grundlagen aus der Stochastik

Data Mining: Einige Grundlagen aus der Stochastik Data Mining: Einige Grundlagen aus der Stochastik Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 21. Oktober 2015 Vorwort Das vorliegende Skript enthält eine Zusammenfassung verschiedener

Mehr

6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum

6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum 6 ALLGEMEINE THEORIE DES ELEKTROMAGNETISCHEN FELDES IM VAKUUM 25 Vorlesung 060503 6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum 6.1 Grundaufgabe der Elektrodynamik Gegeben: Ladungsdichte

Mehr

Korrigenda Handbuch der Bewertung

Korrigenda Handbuch der Bewertung Korrigenda Handbuch der Bewertung Kapitel 3 Abschnitt 3.5 Seite(n) 104-109 Titel Der Terminvertrag: Ein Beispiel für den Einsatz von Future Values Änderungen In den Beispielen 21 und 22 ist der Halbjahressatz

Mehr

Zuschauer beim Berlin-Marathon

Zuschauer beim Berlin-Marathon Zuschauer beim Berlin-Marathon Stefan Hougardy, Stefan Kirchner und Mariano Zelke Jedes Computerprogramm, sei es ein Betriebssystem, eine Textverarbeitung oder ein Computerspiel, ist aus einer Vielzahl

Mehr

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12 Grundlagen: Folge 19 - Bäume 19.1 Binärbäume - Allgemeines Unter Bäumen versteht man in der Informatik Datenstrukturen, bei denen jedes Element mindestens zwei Nachfolger hat. Bereits in der Folge 17 haben

Mehr

Oracle, Datenbank, PowerPoint, Dokumente, PPTX, Automatisierung, Prozess-Automatisierung, smaxt

Oracle, Datenbank, PowerPoint, Dokumente, PPTX, Automatisierung, Prozess-Automatisierung, smaxt Automatische Generierung serialisierter, individualisierter PowerPoint-Präsentationen aus Oracle Datenbanken Andreas Hansel Symax Business Software AG Parkstrasse 22, D-65189 Wiesbaden Schlüsselworte Oracle,

Mehr