Beispiele zur UE Wirtschaftsstatistik 1 bei Nagel

Größe: px
Ab Seite anzeigen:

Download "Beispiele zur UE Wirtschaftsstatistik 1 bei Nagel"

Transkript

1 Beispiele zur UE Wirtschaftsstatistik 1 bei Nagel 1 Ereignisse und Wahrscheinlichkeiten 1. Ein Würfel wird zweimal geworfen, der Stichprobenraum Ω ist Ihnen nicht neu. Versuchen Sie, den Stichprobenraum in einem 6x6 - Punkteraster darzustellen. Was sind die folgenden Ereignisse? (a) A: Die Augenzahl der beiden Würfel ist ident. (b) B: Die Augenzahl der beiden Würfel unterscheidet sich um 1. (c) C: Die Augenzahl der beiden Würfel unterscheidet sich um 2. (d) Was sind die Wahrscheinlichkeiten dafür? 2. In einer Urne sind 6 Kugeln, die mit den Zahlen 1 bis 6 beschriftet sind. Zwei Kugeln werden ohne Zurücklegen gezogen. Versuchen Sie, den Stichprobenraum Ω in einem 6x6 - Punkteraster darzustellen. Was sind die folgenden Ereignisse? (a) A: Die Augenzahl der beiden Würfel ist ident. (b) B: Die Augenzahl der beiden Würfel unterscheidet sich um 1. (c) C: Die Augenzahl der beiden Würfel unterscheidet sich um 2. (d) Was sind die Wahrscheinlichkeiten dafür? (e) Was hätte sich geändert, wenn die Ziehung mit Zurücklegen der Kugeln durchgeführt worden wäre % aller Männer verfolgen regelmäßig die Formel 1 im Fernsehen, bei der Fußball-Champions-League sind es 30%. 6% verfolgen beide Sportereignisse. (a) Wieviel Prozent der Männer verfolgen zumindest eine der beiden Sportveranstaltungen? (b) Wieviel Prozent der Männer verfolgen keine der beiden Sportveranstaltungen? 4. In einer Ortschaft wurden alle arbeitenden und arbeitsuchenden Personen erhoben und eine Aufteilung bezüglich Geschlecht ergab folgende Tabelle: Weiblich Männlich Beschäftigt Arbeitslos Die Ereignisse A, B, W, M seien für zufällig ausgewählte Personen wie folgt definiert: A... die Person ist arbeitslos B... die Person ist beschäftigt W... die Person ist weiblich M... die Person ist männlich (a) Berechnen Sie die Wahrscheinlichkeiten für das Eintreten der jeweiligen Ereignisse. (b) Berechnen Sie p(a W ) und p(w A). Sind A und W unabhängig? (c) Geben Sie die Frauenarbeitslosigkeit als bedingte Wahrscheinlichkeit an. (d) In Ö1 wurde in einem Journal-Panorama über die Region Braunau der folgende Satz geäußert: Die Arbeitslosenrate liegt bei 8% und ist bei Frauen und Männern in etwa gleich, nämlich ca. 4%. Was ist an dieser Aussage vom statistischen Standpunkt aus ein Schwachsinn? 1

2 5. In einem Unternehmen wird ein Produkt an drei unterschiedlich alten Maschinen gefertigt; die alte Maschine I wird nur mehr bei Produktionsengpässen eingesetzt, die zweitälteste Maschine (II) wird noch regelmäßig eingesetzt, die neueste Maschine (III) ist aber schneller und verlässlicher. Dies kommt in der folgenden Übersicht zum Vorschein. Maschine Produktionsanteil (in %) Ausschussrate (in %) I 10 5 II 40 2 III 50 1 (a) Man bestimme die Ausschussrate der Produktion. (b) Mit welcher Wahrscheinlichkeit wurde ein defektes Stück an der alten Maschine produziert? 6. In einer Bevölkerung beträgt die Wahrscheinlichkeit, älter als 70 Jahre zu werden, 0.9 und die Wahrscheinlichkeit, älter als 80 zu werden, 0.4. Wie groß ist die Wahrscheinlichkeit, dass eine Person, die soeben 70 Jahre alt wurde, ihren 80. Geburtstag noch erlebt? 7. Eine Zeitschrift hat in Altersgruppen unterschiedliche Leseranteile, die in folgender Tabelle enthalten sind. Altersgruppe Bevölkerungsanteil (in %) Leseranteil (in %) (a) Wie hoch ist der Leseranteil in der Gesamtbevölkerung? (b) Mit welcher Wahrscheinlichkeit stammt ein Leser der Zeitschrift aus der jüngsten Altersgruppe? 8. In einer Stadt werden Diebstähle von Fahrzeugen untersucht. In Abhängigkeit vom Fahrzeugtyp sind Daten zu Diebstahl und Aufklärungsrate in folgender Tabelle enthalten. Fahrzeug Anteil an Aufklärungs- Diebstählen (in %) rate (in %) Auto (incl. LKW) Motorrad, Mofa Fahrrad 65 9 (a) Wie hoch ist die Aufklärungsrate insgesamt bei Fahrzeugdiebstählen? (b) Eine Polizeistreife ertappt einen Dieb direkt beim Diebstahl eines Fahrzeugs. Mit welcher Wahrscheinlichkeit wollte der Dieb ein Auto stehlen? 9. In einem Zeitungsartikel lautete ein Zwischentitel: Jede vierte Frau ist Führungskraft. Welche zwei bedingten Wahrscheinlichkeiten wurden dabei wohl verwechselt? 10. Was wird in R nach dem letzten Befehl der jeweiligen Befehlssequenz angezeigt? (a) a <- c(2, 4, -6) b <- a**2 b (b) a <- -10:10 sum(a) (c) a <- 0:5 aa <- a*a aa[5] 2

3 2 Diskrete Zufallsvariablen und ihre Momente 1. Gegeben Sei eine diskrete Verteilung auf den Punkten 1,2,3 und 4. Die Wahrscheinlichkeiten der einzelnen Punkte sind p 1 = 0.1, p 2 = 0.5, p 3 = 0.15 und p 4 =?. (a) Berechnen und skizzieren Sie die (kumulative) Verteilungsfunktion! (b) Berechnen Sie Erwartungswert und Varianz! 2. Zwei Zufallsvariablen X 1 und X 2 folgen derselben Wahrscheinlichkeitsverteilung: x F (x) Es seien X 1 und X 2 unabhängig und X = X 1 + X 2. (a) Berechnen und skizzieren Sie die (kumulative) Verteilungsfunktion von X! (b) Berechnen Sie Erwartungswert und Varianz von X! 3. Ein Würfel wird zweimal geworfen, die Augenzahlen der beiden Würfe sind X 1 und X 2. Man bildet M = max(x 1, X 2 ). (a) Welche Werte kann M annehmen? Berechnen Sie die Wahrscheinlichkeiten dafür, dass diese Werte angenommen werden und bestimmen Sie die Verteilungsfunktion von M! (b) Berechnen Sie den Erwartungswert von M! 4. In England und Amerika wurde auf Jahrmärkten das folgende Glücksspiel (Chuck a luck) gerne gespielt: Ein Spieler wählt eine Zahl zwischen 1 und 6 und wirft dann drei Würfel. Zeigen alle drei Würfel die angesagte Zahl, erhält er drei Pfund (bzw. Dollar); zeigen zwei Würfel diese Zahl, erhält er zwei Pfund (Dollar); zeigt ein Würfel diese Zahl, erhält er ein Pfund (Dollar). Nur wenn kein Würfel diese Zahl anzeigt, muss der Spieler ein Pfund zahlen. (a) Der Gewinn des Spielers ist eine Zufallsvariable G. Welche Werte kann G annehmen? Berechnen Sie die Wahrscheinlichkeiten dafür, dass diese Werte angenommen werden und bestimmen Sie die Verteilungsfunktion von G! (b) Berechnen Sie den erwarteten Gewinn des Spielers! 5. Eine Münze wird dreimal geworfen. X ist die Zufallsvariable dafür, wie oft Kopf gefallen ist. Beschreiben Sie X durch die Verteilungsfunktion und passende Kennzahlen! 6. In einem neu eröffneten Einkaufszentrum wird als Attraktion folgendes Glücksspiel veranstaltet: Zu jeder vollen Stunde (täglich von 11 bis 18 Uhr, also 8-mal) wird am zentralen Platz des Einkaufszentrums eine Person zufällig ausgewählt, die ein Glücksrad (mit den Zahlen 1 bis 10) drehen kann. Jede Zahl gewinnt einen Sachpreis, die 10 gewinnt zusätzlich 500 Euro. (a) Sei X die Anzahl Spieler, die an einem Tag den Geldpreis gewinnen. Berechnen Sie Erwartungswert und Varianz von X! (b) Wie groß ist die Wahrscheinlichkeit, dass an einem Tag mindestens 2 Spieler einen Geldpreis gewinnen? (c) Sei Y die Summe Geldes, die an einem Tag von den Teilnehmern an diesem Spiel gewonnen wird. Berechnen Sie Erwartungswert und Varianz von Y! 7. Eine Würfel wird solange geworfen, bis eine Augenzahl kleiner 3 erscheint. Es sei X die Anzahl der Fehlversuche, die bis zum Wurf einer Augenzahl kleiner 3 notwendig waren. (a) Welche Werte kann X annehmen? Berechnen Sie die Wahrscheinlichkeit dafür, dass mindestens 2 Fehlversuche auftreten! (b) Berechnen Sie E(X)! 3

4 8. Eine Münze wird solange geworfen, bis die Seite Kopf erscheint. Es sei X die Anzahl der Versuche, die notwendig sind, bis Kopf erscheint. (a) Welche Werte kann X annehmen? Berechnen Sie die Wahrscheinlichkeiten dafür, dass diese Werte angenommen werden! (b) Berechnen Sie E(X)! 9. Für eine binomialverteilte Zufallsvariable X gilt: E(X) = 5 V ar(x) = 4. Welche Werte haben die Parameter n und p der Binomialverteilung? 10. Für eine Zufallsvariable X gelte: E(X) = 10 V ar(x) = 9. (a) Für welchen Wert von a in Y 1 = X a gilt: E(Y 1 ) = 0? (b) Für welchen Wert von b in Y 2 = X/b gilt: V ar(y 2 ) = 1? (c) Für welche Werte von a und b in Y = X a b gilt: E(Y ) = 0 und V ar(y ) = 1? 11. Was bewirken jeweils die folgenden R - Befehlssequenzen? (a) x <- 0:3 fx <- c( 1, 3, 3, 1)/8 Fx <- cumsum(fx) cbind( x, fx, Fx) EX <- sum(x*fx) EX (b) x <- seq(10, 40, 10) fx <- c( 0.4, 0.3, 0.2, 0.1) Fx <- cumsum(fx) cbind( x, fx, Fx) EX <- sum(x*fx) VarX <- sum(x**2*fx) - EX**2 (c) # 10 x wuerfeln n <- 10 p <- 1/6 k <- 0:n # anzahl 6er pk <- choose(n, k) * (p**k) * ((1-p)**(n-k)) (d) # 30 x muenzwurf n <- 30 p <- 1/2 k <- 0:n # anzahl kopf pk <- dbinom( k, n, p) barplot(pk) 4

5 3 Asymptotik und stetige Zufallsvariablen Abbildung 1: Dichten und Verteilungen 1. X sei gleichverteilt auf dem Intervall [0, 7]. Berechnen Sie: (a) p(x < 1) (b) p(x > 6) (c) p(x 5) (d) p(x 3) 2. Eine Münze wird 100-mal geworfen. X ist die Zufallsvariable dafür, wie oft Kopf gefallen ist. (a) Welcher Verteilung folgt X? Berechnen Sie E(X) und V ar(x). (b) Was kann nach der Tschebyscheff Ungleichung für den folgenden Ausdruck abgeleitet werden? p( X 50 > 10) (c) Welcher Wert gilt exakt für den obigen Ausdruck? (d) Was kann nach der Tschebyscheff Ungleichung zu folgender Frage gesagt werden? Mit welcher Wahrscheinlichkeit werden mindestens 35 aber höchstens 65 Köpfe geworfen? 3. In Abbildung 1 sind oben Dichtefunktionen und unten Verteilungsfunktionen abgebildet, nicht notwendig direkt untereinander. Ordnen Sie Dichte- und Verteilungsfunktionen richtig zu. 4. In Abbildung 2 sind die Dichtefunktionen von Normalverteilungen abgebildet. Ihre Varianzen sind entweder 1 oder 4. Geben Sie jeweils die Parameter µ und σ für die drei Plots an! 5. In Abbildung 3 sind die Dichtefunktionen von Exponentialverteilungen abgebildet. Ihre Parameter sind 1, 1/2 und 1/3. Geben Sie jeweils die Parameter für die drei Plots an! 5

6 Dichte 1 Dichte 2 Dichte Abbildung 2: Normalverteilungen Dichte 1 Dichte 2 Dichte Abbildung 3: Exponentialverteilungen 6

7 6. Die Dichtefunktion f einer Zufallsvariablen X ist durch 0 : x < 0 f(x) = ax : 0 x 4 0 : x > 4 gegeben. (a) Bestimmen Sie a so, dass f tatsächlich eine Dichtefunktion ist! (b) p(x 3) (c) p(x > 6) (d) p(1 X < 3) (e) Berechnen Sie den E(X)! Plot 1 Plot 2 Plot Abbildung 4: Chi-Quadrat-Verteilungen 7. Abbildung 4 zeigt die Dichtefunktionen für χ 2 -Verteilungen mit 3, 5 und 7 Freiheitsgraden. (a) Welcher Plot gehört zu welcher χ 2 -Verteilung? (b) Wie groß sind die jeweiligen Erwartungswerte und Varianzen? (c) Bei wieviel Freiheitsgraden ist die Varianz kleiner als der Erwartungswert? 8. Von einer Chi-Quadrat-verteilten Zufallsvariablen X ist bekannt, dass E(X 2 ) = 80. Bestimmen Sie die Freiheitsgrade von X! 9. Abbildung 5 zeigt die Dichtefunktionen für t-verteilungen mit 3, 5 und 10 Freiheitsgraden. (a) Welcher Plot gehört zu welcher t-verteilung? (b) Wie groß sind die jeweiligen Erwartungswerte und Varianzen? (c) Bei wieviel Freiheitsgraden ist die Varianz <1? 10. Der Intelligenzquotient IQ in der Bevölkerung ist normalverteilt mit µ = 100 und σ = 10, also IQ N(100, 100). (a) Mit welcher Wahrscheinlichkeit liegt der IQ einer zufällig ausgewählten Person über 110? (b) Wie ist IQ s = (IQ 100)/10 verteilt? (c) Wie ist die Summe von zwei zufällig ausgewählten Personen verteilt? (d) Wie ist der mittlere IQ von 4 zufällig ausgewählten Personen verteilt? Mit welcher Wahrscheinlichkeit liegt dieser mittlere IQ über 110? 7

8 Plot 1 Plot 2 Plot Abbildung 5: t-verteilungen (e) Wie ist der mittlere IQ von 25 zufällig ausgewählten Personen verteilt? Mit welcher Wahrscheinlichkeit liegt dieser mittlere IQ über 110? 11. Was bewirken jeweils die folgenden R - Befehlssequenzen? (a) Standardnormalverteilung N(0,1) x <- seq(0, 3, 0.1) Fx <- pnorm(x) cbind( x, Fx) (b) Normalverteilung N(mu, sigma**2) mu <- 10 sigma <- 3 x <- seq(0, 3, 0.1) Fx <- pnorm(x, mean=mu, sd=sigma) cbind( x, Fx) (c) Normalverteilung N(mu, sigma**2) mu <- 100 sigma <- 10 x <- seq(0, 1, 0.1) Qx <- qnorm(x, mean=mu, sd=sigma) cbind( x, Qx) (d) Exponentialverteilungen x <- seq(0, 3, 0.2) Ex1 <- pexp(x, rate=2) Ex2 <- pexp(x, rate=1/2) cbind( x, Ex1, Ex2) (e) IQ - Beispiel iq <- 110 piq110 <- 1 - pnorm(iq, mean = 100, sd = 10) 8

9 4 Schätzen 1. Gegeben ist die gemeinsame Wahrscheinlichkeitsfunktion (Dichtefunktion) von zwei diskreten Zufallsvariablen X und Y : Y X 1 1/24 2/24 3/24 2 2/24 4/24 6/24 3 1/24 2/24 3/24 (a) Bestimmen Sie die gemeinsame Verteilungsfunktion! (b) Bestimmen Sie die eindimensionalen Randverteilungen, also auch die Wahrscheinlichkeitsfunktionen von X und Y! (c) Sind X und Y unabhängig? (d) Bestimmen Sie die Kovarianz von X und Y! 2. Gegeben ist die gemeinsame Wahrscheinlichkeitsfunktion (Dichtefunktion) von zwei diskreten Zufallsvariablen X und Y : Y X (a) Bestimmen Sie die gemeinsame Verteilungsfunktion! (b) Bestimmen Sie die eindimensionalen Randverteilungen, also auch die Wahrscheinlichkeitsfunktionen von X und Y! (c) Sind X und Y unabhängig? 3. Von zwei Zufallsvariablen X und Y sind die Varianzen mit V ar(x) = 4 und V ar(y ) = 6 gegeben. Weiters ist V ar(x + Y ) = 14 bekannt. Wie groß ist die Kovarianz σ XY? 4. Für die Renditen X 1 und X 2 von zwei Wertpapieren gelte: V ar(x 1 ) = 4 V ar(x 2 ) = 6 σ XY = 2 (a) Die einseitigen Veranlagungen (zu 100% auf eines der beiden Wertpapiere) P = 1X 1 + 0X 2 bzw. P = 0X 1 + 1X 2 führen zu Portfolios, deren Varianz V ar(p ) leicht zu bestimmen sind. (b) Wie groß ist die Varianz von: P = 0.3X X 2? (c) Spezialaufgabe: Wie wäre die Aufteilung zwischen X 1 und X 2 in einem Portfolio mit minimaler Varianz? Also α so, dass P = αx 1 + (1 α)x 2 mit V ar(p ) min. 5. Von einer Zufallsvariablen X wissen wir: X Exp(τ) E(X) = 2 (a) Welchen Wert nimmt τ an? (b) Wie groß ist V ar(x)? 9

10 (c) Die Verteilungsfunktion einer exponentialverteilten Zufallsvariablen kann mit F (x) = 1 e x/τ angegeben werden. Wie groß ist der Median von X? 6. In Abbildung 6 sind Verteilungsfunktionen abgebildet. Bestimmen Sie jeweils grafisch den Median! Verteilung 1 Verteilung 2 Verteilung Abbildung 6: Verteilungsfunktionen 10

11 5 Testen 1. Die Morde in New Jersey im Jahr 2003 nach Wochentagen aufgegeliedert, gibt die folgende Tabelle wieder: So Mo Di Mi Do Fr Sa Man führe einen Test durch, ob für Morde jeder Wochentag gleich wahrscheinlich ist. 2. An einem Department werden Prüfungsmodalitäten geändert. Die Vertretung der Studierenden erhebt bei einigen Prüfungen die erreichten Noten und kommt zu folgender Verteilung: Noten frühere Anteile (in %) Stichprobe (absolut) Hat sich durch die neuen Prüfungsmodalitäten eine Veränderung in der Notenverteilung ergeben? 3. In regelmäßigen Abständen tauchen Ergebnisse von Meinungsumfragen zur sog. Sonntagsfrage auf. Im hypothetischen Land Demokrastan hat eine Meinungsumfrage (n = 500) vier Wochen vor der Wahl folgendes Ergebnis gebracht: Partei absolut letzte Wahl (%) AP BP CP DP (a) Kann man auf eine Veränderung in der Parteipräferenz schließen? (b) Wird man auf eine Veränderung bei der Partei CP schließen? 4. Eine Sportwissenschaftlerin untersucht die Laufwege von Fußballspielern. Bei sechs Außenverteidigern beobachtete sie in sechs Spielen der nationalen Meisterschft folgende Laufstrecken (in km): (a) Bestimmen Sie Mittelwert und Standardabweichung in der Stichprobe! (b) Kann man aufgrund der Stichprobe schließen, dass die durchschnittliche Laufleistung von Außenverteidigern über 11km liegt? 5. Was kann man aus dem folgenden R-Output ablesen? One Sample t-test data: laufl t = , df = 5, p-value = alternative hypothesis: true mean is greater than percent confidence interval: Inf sample estimates: mean of x Die Log-Returns einer Aktie sind über einen längeren Zeitraum betrachtet durchschnittlich x = 0.022, die Standardabweichung ist s = (n = 77). (a) Kann man aufgrund der Stichprobe schließen, dass die Log-Returns positiv sind? (b) Kann man aufgrund der Stichprobe schließen, dass im Durchschnitt die Log-Returns über 2% sind? 11

12 7. Was bewirken jeweils die folgenden R - Befehlssequenzen? (a) Morde in New Jersey morde <- c(53, 42, 51, 45, 36, 37, 65) chisq.test(morde) (b) Sonntagsfrage umfrage <- c(240, 120, 95, 45) zuletzt <- c(0.4, 0.3, 0.2, 0.1) chisq.test(umfrage, p = zuletzt) (c) Laufleistungen laufl <- c(13, 12, 14, 10, 11, 12) lauflmw <- mean(laufl) lauflsd <- sd(laufl) testst <- sqrt(6)*(lauflmw - 11) / lauflsd pwert <- 1 - pt(testst, df=5) (d) Laufleistungen Kurzversion laufl <- c(13, 12, 14, 10, 11, 12) t.test(laufl, mu=11, alternative="greater") 12

13 6 Regression In den folgenden Beispielen wird angenommen, dass die Fehler U 1,..., U n i.i.d. mit Erwartungswert 0 und Varianz σ 2 > 0 sind. Weiters nehmen wir an, dass X t nicht zufällig sind, dass X t 0 für ein t = 1,..., n und dass X t X s für mindestens ein Paar t s gilt. 1. Betrachten Sie das lineare Regressionsmodell Y t = a + U t, t = 1,..., n. (a) Bestimmen Sie den Kleinst-Quadrate Schätzer für a. (b) Ist der Kleinst-Quadrate Schätzer unverzerrt? 2. Betrachten Sie das homogene lineare Regressionsmodell Y t = bx t + U t, t = 1,..., n. (a) Bestimmen Sie den Kleinst-Quadrate Schätzer für b. (b) Ist der Kleinst-Quadrate Schätzer unverzerrt? 3. Von einem einfachen Regressionsmodell kennen wir: erklärende Var x w abhängige Var y???? Residuen e -1 v 1 1 Man bestimme v und w! 4. In einem Regressionsmodell Y t = a + b t + c t 3 + u t für t = 1, 2,..., 16 seien U i iid mit U i N(0, 9). Unter H 0 : b = c = 0 ist die Teststatistik des F-Tests F (r, s). Man bestimme r und s! 5. Betrachten Sie das lineare Regressionsmodell Y t = a + bx t + U t t = 1,..., 6. Gegeben seien die folgenden Daten: x: y: (a) Erstellen Sie ein Streudiagramm (x-y-diagramm)! (b) Berechnen Sie die Kleinst-Quadrate-Schätzer â und ˆb! (c) Veranschaulichen Sie die Einpassung der Regressionsgeraden im Streudiagramm! (d) Ermitteln und interpretieren Sie die Stichprobenkorrelation r x,y. 6. Wir nehmen das Beispiel von vorhin und verändern X t und Y t leicht. (a) Welchen Effekt für â und ˆb hätte eine Addition von 10 bei Y t? (b) Welchen Effekt hätte diese Addition für r x,y? (c) Welchen Effekt für â und ˆb hätte eine Multiplikation mit 5 bei Y t? (d) Welchen Effekt hätte diese Multiplikation für r x,y? (e) Welchen Effekt für â und ˆb hätte eine Addition von 2 bei X t. (f) Welchen Effekt hätte diese Addition für r x,y? (g) Welchen Effekt für â und ˆb hätte eine Multiplikation mit 4 bei X t? (h) Welchen Effekt hätte diese Multiplikation für r x,y? 13

14 7. Was bewirken jeweils die folgenden R - Befehlssequenzen? (a) Ausgangsbeispiel x <- 1:6 y <- c(2, 1, 4, 3, 6, 5) yx <- lm(y~x) summary(yx) plot(x,y) abline(yx) (b) Transformationen y + 10 y10 <- y + 10 y10x <- lm(y10~x) summary(y10x) (c) Transformationen y * 5 y5 <- y * 5 y5x <- lm(y5~x) summary(y5x) (d) Transformationen x + 2 x2 <- x + 2 yx2 <- lm(y~x2) summary(yx2) (e) Transformationen x * 4 x4 <- x * 4 yx4 <- lm(y~x4) summary(yx4) 14

Beispiel für metrische Daten

Beispiel für metrische Daten Beispiel für metrische Daten Alter der 44 US-Präsidenten bei Amtsantritt Einzeldaten 57 61 57 58 58 57 61 54 68 51 49 64 50 58 65 52 56 46 54 49 50 47 55 55 54 42 51 56 55 51 54 51 60 62 43 55 56 61 52

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch 6 Stetige Verteilungen 1 Kapitel 6: Stetige Verteilungen A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch dargestellt. 0.2 6

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8 . Aufgabe: Für zwei verschiedene Aktien wurde der relative Kurszuwachs (in % beobachtet. Aus den jeweils 20 Quartaldaten ergaben sich die folgenden Box-Plots. Box-and-Whisker Plot Aktie Aktie 2-0,2 0,8,8

Mehr

Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005

Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005 Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005 Aufgabe 1: Grundzüge der Wahrscheinlichkeitsrechnung 19 P. Als Manager eines großen

Mehr

Klausur Statistik Lösungshinweise

Klausur Statistik Lösungshinweise Klausur Statistik Lösungshinweise Prüfungsdatum: 1. Juli 2015 Prüfer: Etschberger, Heiden, Jansen Studiengang: IM und BW Aufgabe 1 14 Punkte Ein Freund von Ihnen hat über einen Teil seiner Daten, die er

Mehr

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen

Mehr

DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 2006/07 28.02.2007

DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 2006/07 28.02.2007 Wirtschaftswissenschaftliches Prüfungsamt DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 006/07 8.0.007 Lösung Prof. Dr. R Friedmann / Dr. R. Hauser Hinweise für die Klausurteilnehmer

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen 5. Der zwei-stichproben-t-test. und der Wilcoxon-Test

Wahrscheinlichkeitsrechnung und Statistik für Biologen 5. Der zwei-stichproben-t-test. und der Wilcoxon-Test Wahrscheinlichkeitsrechnung und Statistik für Biologen 5. Der zwei-stichproben-t-test (t-test für ungepaarte Stichproben) und der Wilcoxon-Test Dirk Metzler 22. Mai 2015 Inhaltsverzeichnis 1 Wiederholung:

Mehr

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008 Aufgabe 1 Ihnen liegt

Mehr

Statistische Auswertung der Daten von Blatt 13

Statistische Auswertung der Daten von Blatt 13 Statistische Auswertung der Daten von Blatt 13 Problemstellung 1 Graphische Darstellung der Daten 1 Diskussion der Normalverteilung 3 Mittelwerte und deren Konfidenzbereiche 3 Signifikanz der Behandlung

Mehr

Teil I Beschreibende Statistik 29

Teil I Beschreibende Statistik 29 Vorwort zur 2. Auflage 15 Vorwort 15 Kapitel 0 Einführung 19 0.1 Methoden und Aufgaben der Statistik............................. 20 0.2 Ablauf statistischer Untersuchungen..............................

Mehr

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst.

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst. Aufgabe 1 (2 + 4 + 2 + 1 Punkte) Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen X und Y : { 2x + 2y für 0.5 x 0.5, 1 y 2 f(x, y) = 3 0 sonst. a) Berechnen

Mehr

Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test

Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test 1/29 Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test (t-test für ungepaarte Stichproben) Matthias Birkner http://www.staff.uni-mainz.de/birkner/biostatistik1516/ 11.12.2015 2/29 Inhalt 1 t-test

Mehr

Stetige Verteilungen Rechteckverteilung

Stetige Verteilungen Rechteckverteilung Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a

Mehr

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5 4 Verteilungen und ihre Kennzahlen 1 Kapitel 4: Verteilungen und ihre Kennzahlen A: Beispiele Beispiel 1: Eine diskrete Zufallsvariable X, die nur die Werte 1,, 3, 4, 5 mit positiver Wahrscheinlichkeit

Mehr

Überblick über die Tests

Überblick über die Tests Anhang A Überblick über die Tests A.1 Ein-Stichproben-Tests A.1.1 Tests auf Verteilungsannahmen ˆ Shapiro-Wilk-Test Situation: Test auf Normalverteilung H 0 : X N(µ, σ 2 ) H 1 : X nicht normalverteilt

Mehr

Eine Einführung in R: Statistische Tests

Eine Einführung in R: Statistische Tests Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws12/r-kurs/

Mehr

B 2. " Zeigen Sie, dass die Wahrscheinlichkeit, dass eine Leiterplatte akzeptiert wird, 0,93 beträgt. (genauerer Wert: 0,933).!:!!

B 2.  Zeigen Sie, dass die Wahrscheinlichkeit, dass eine Leiterplatte akzeptiert wird, 0,93 beträgt. (genauerer Wert: 0,933).!:!! Das folgende System besteht aus 4 Schraubenfedern. Die Federn A ; B funktionieren unabhängig von einander. Die Ausfallzeit T (in Monaten) der Federn sei eine weibullverteilte Zufallsvariable mit den folgenden

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus

Mehr

Aufgabe 1 10 ECTS. y i x j gering mittel hoch n i Hausrat 200 25 0 225 KFZ 0 10 75 85 Unfall 20 35 90 145 Reiserücktritt 40 5 0 45 n j 260 75 165 500

Aufgabe 1 10 ECTS. y i x j gering mittel hoch n i Hausrat 200 25 0 225 KFZ 0 10 75 85 Unfall 20 35 90 145 Reiserücktritt 40 5 0 45 n j 260 75 165 500 Aufgabe 1 Für die Securance-Versicherung liegen Ihnen die gemeinsamen absoluten Häugkeiten der Merkmale X: Schadenshöhe und Y : Versicherungsart für die letzten 500 gemeldeten Schäden vor. 1. Interpretieren

Mehr

Der Trainer einer Fußballmannschaft stellt die Spieler seiner Mannschaft auf. Insgesamt besteht der Kader seiner Mannschaft aus 23 Spielern.

Der Trainer einer Fußballmannschaft stellt die Spieler seiner Mannschaft auf. Insgesamt besteht der Kader seiner Mannschaft aus 23 Spielern. Aufgabe 1 (2 + 1 + 2 + 2 Punkte) Der Trainer einer Fußballmannschaft stellt die Spieler seiner Mannschaft auf. Insgesamt besteht der Kader seiner Mannschaft aus 23 Spielern. a) Wieviele Möglichkeiten hat

Mehr

(8 + 2 Punkte) = = 0.75

(8 + 2 Punkte) = = 0.75 Aufgabe 1 (8 + 2 Punkte) Von 20 Teilnehmern einer Bergwanderung geben 8 Personen an Knieschmerzen zu haben. 6 Teilnehmer leiden an Sonnenbrand. 8 Teilnehmer blieben unversehrt. a) Wie groß ist die Wahrscheinlichkeit,

Mehr

Übungen zur Mathematik für Pharmazeuten

Übungen zur Mathematik für Pharmazeuten Blatt 1 Aufgabe 1. Wir betrachten den Ereignisraum Ω = {(i,j) 1 i,j 6} zum Zufallsexperiment des zweimaligem Würfelns. Sei A Ω das Ereignis Pasch, und B Ω das Ereignis, daß der erste Wurf eine gerade Augenzahl

Mehr

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Die Poisson-Verteilung Jianmin Lu RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Ausarbeitung zum Vortrag im Seminar Stochastik (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In der Wahrscheinlichkeitstheorie

Mehr

Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff

Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff Zufallsgrößen 2.5 Zufallsgrößen 2.5.1 Verteilungsfunktion einer Zufallsgröße 2.5.2 Wahrscheinlichkeits- und Dichtefunktion Wahrscheinlichkeitsfunktion einer diskreten Zufallsgröße Dichtefunktion einer

Mehr

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1 1. Aufgabe: Der E-Commerce-Umsatz (in Millionen Euro) der fünf größten Online- Shopping-Clubs liegt wie folgt vor: Club Nr. Umsatz 1 120 2 72 3 54 4 30 5 24 a) Bestimmen Sie den Ginikoeffizienten. b) Zeichnen

Mehr

3.3. Aufgaben zur Binomialverteilung

3.3. Aufgaben zur Binomialverteilung .. Aufgaben zur Binomialverteilung Aufgabe 1: Ziehen mit Zurücklegen und Binomialverteilung Ein sechsseitiger Würfel wird zehnmal geworfen. a) Wie groß ist die Wahrscheinlichkeit, nur beim ersten Mal die

Mehr

Übungsblatt 9. f(x) = e x, für 0 x

Übungsblatt 9. f(x) = e x, für 0 x Aufgabe 1: Übungsblatt 9 Basketball. Ein Profi wirft beim Training aus einer Entfernung von sieben Metern auf den Korb. Er trifft bei jedem Wurf mit einer Wahrscheinlichkeit von p = 1/2. Die Zufallsvariable

Mehr

Kenngrößen von Zufallsvariablen

Kenngrößen von Zufallsvariablen Kenngrößen von Zufallsvariablen Die Wahrscheinlichkeitsverteilung kann durch die sogenannten Kenngrößen beschrieben werden, sie charakterisieren sozusagen die Verteilung. Der Erwartungswert Der Erwartungswert

Mehr

Melanie Kaspar, Prof. Dr. B. Grabowski 1

Melanie Kaspar, Prof. Dr. B. Grabowski 1 7. Hypothesentests Ausgangssituation: Man muss sich zwischen 2 Möglichkeiten (=Hypothesen) entscheiden. Diese Entscheidung soll mit Hilfe von Beobachtungen ( Stichprobe ) getroffen werden. Die Hypothesen

Mehr

Monty Hall-Problem. Wochen 3 und 4: Verteilungen von Zufallsvariablen. Lernziele. Diskrete Verteilungen

Monty Hall-Problem. Wochen 3 und 4: Verteilungen von Zufallsvariablen. Lernziele. Diskrete Verteilungen Monty Hall-Problem Wochen 3 und 4: Verteilungen von Zufallsvariablen US-amerikanische Fernseh-Show Let s make a deal, moderiert von Monty Hall: WBL 15/17, 04.05.2015 Alain Hauser

Mehr

Name:... Matrikel-Nr.:... 3 Aufgabe Handyklingeln in der Vorlesung (9 Punkte) Angenommen, ein Student führt ein Handy mit sich, das mit einer Wahrscheinlichkeit von p während einer Vorlesung zumindest

Mehr

Übungsaufgaben, Statistik 1

Übungsaufgaben, Statistik 1 Übungsaufgaben, Statistik 1 Kapitel 3: Wahrscheinlichkeiten [ 4 ] 3. Übungswoche Der Spiegel berichtet in Heft 29/2007 von folgender Umfrage vom 3. und 4. Juli 2007:,, Immer wieder werden der Dalai Lama

Mehr

Dipl.-Volksw. Markus Pullen Wintersemester 2012/13

Dipl.-Volksw. Markus Pullen Wintersemester 2012/13 Statistische Auswertungen mit R Universität Kassel, FB 07 Wirtschaftswissenschaften Dipl.-Volksw. Markus Pullen Wintersemester 2012/13 Beispiele 8. Sitzung Konfidenzintervalle, Hypothesentests > # Anwendungsbeispiel

Mehr

Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip. KLAUSUR Statistik B

Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip. KLAUSUR Statistik B Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip Sommersemester 2010 KLAUSUR Statistik B Hinweise zur Bearbeitung: Bei allen Teilaufgaben

Mehr

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen:

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 Diskrete Verteilungen 1 Kapitel 5: Diskrete Verteilungen A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 0.6 x 0.4 5 x (i) P x (x)

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Zufallsvariable Erinnerung: Merkmal, Merkmalsausprägung Deskriptive Statistik:

Mehr

, dt. $+ f(x) = , - + < x < +, " > 0. " 2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) =

, dt. $+ f(x) = , - + < x < +,  > 0.  2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) = 38 6..7.4 Normalverteilung Die Gauß-Verteilung oder Normal-Verteilung ist eine stetige Verteilung, d.h. ihre Zufallsvariablen können beliebige reelle Zahlenwerte annehmen. Wir definieren sie durch die

Mehr

Statistik im Bachelor-Studium der BWL und VWL

Statistik im Bachelor-Studium der BWL und VWL Max C. Wewel Statistik im Bachelor-Studium der BWL und VWL Methoden, Anwendung, Interpretation Mit herausnehmbarer Formelsammlung ein Imprint von Pearson Education München Boston San Francisco Harlow,

Mehr

Skriptum zur Veranstaltung. Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik. 1. Version (mehr Draft als Skriptum)

Skriptum zur Veranstaltung. Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik. 1. Version (mehr Draft als Skriptum) Skriptum zur Veranstaltung Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik 1. Version (mehr Draft als Skriptum) Anmerkungen, Aufzeigen von Tippfehlern und konstruktive Kritik erwünscht!!!

Mehr

Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006

Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006 1 3.34 1.1 Angabe Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006 U sei auf dem Intervall (0, 1) uniform verteilt. Zeigen

Mehr

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE Statistik mit Excel für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE INHALTS- VERZEICHNIS Vorwort 13 Schreiben Sie uns! 15 1 Statistische Untersuchungen 17 Wozu Statistik? 18

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Übung 1: Wiederholung Wahrscheinlichkeitstheorie

Übung 1: Wiederholung Wahrscheinlichkeitstheorie Übung 1: Wiederholung Wahrscheinlichkeitstheorie Ü1.1 Zufallsvariablen Eine Zufallsvariable ist eine Variable, deren numerischer Wert solange unbekannt ist, bis er beobachtet wird. Der Wert einer Zufallsvariable

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 12.02.2010 Fakultät für Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

P( X µ c) Var(X) c 2. mit. In der Übung wurde eine alternative, äquivalente Formulierung verwendet: P( X µ < c) 1 Var(X)

P( X µ c) Var(X) c 2. mit. In der Übung wurde eine alternative, äquivalente Formulierung verwendet: P( X µ < c) 1 Var(X) Ich habe eine Frage zur Tschebyschew Ungleichung. In der Aufgabe 4 des Übungsblattes 3 benötigt man ja die Ungleichung. In diesem Falle war der Bereich (0, 20) symmetrisch um den Erwartungswert µ = 5.

Mehr

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses.

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses. XI. Binomialverteilung ================================================================== 11.1 Definitionen -----------------------------------------------------------------------------------------------------------------

Mehr

Hypothesentests mit R Ashkan Taassob Andreas Reisch 21.04.09 1

Hypothesentests mit R Ashkan Taassob Andreas Reisch 21.04.09 1 Hypothesentests mit R Ashkan Taassob Andreas Reisch 21.04.09 1 Inhalt Programmiersprache R Syntax Umgang mit Dateien Tests t Test F Test Wilcoxon Test 2 Test Zusammenfassung 2 Programmiersprache R Programmiersprache

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen 6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Bisher: Diskrete Zufallsvariablen,

Mehr

Zeigen Sie mittles vollständiger Induktion, dass für jede natürliche Zahl n 1 gilt: k = n (n + 1) 2

Zeigen Sie mittles vollständiger Induktion, dass für jede natürliche Zahl n 1 gilt: k = n (n + 1) 2 Aufgabe 1. (5 Punkte) Zeigen Sie mittles vollständiger Induktion, dass für jede natürliche Zahl n 1 gilt: n k = k=1 n (n + 1). 2 Aufgabe 2. (5 Punkte) Bestimmen Sie das folgende Integral mithilfe partieller

Mehr

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE. Markt+Technik

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE. Markt+Technik Statistik mit Excel für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE Markt+Technik Vorwort Schreiben Sie uns! 13 15 Statistische Untersuchungen 17 Wozu Statistik? 18 Wirtschaftliche

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

Jetzt lerne ich Stochastik für die Oberstufe

Jetzt lerne ich Stochastik für die Oberstufe Jetzt lerne ich Stochastik für die Oberstufe von Dr. rer. nat. Marco Schuchmann, Dipl.-Math. - 2 - - 3 - Vorwort In diesem Buch werden Anwendungen der Stochastik in der Oberstufe mit vielen Beispielen

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg : Gliederung 1 Einführung 2 Deskriptive Statistik

Mehr

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +

Mehr

$ % + 0 sonst. " p für X =1 $

$ % + 0 sonst.  p für X =1 $ 31 617 Spezielle Verteilungen 6171 Bernoulli Verteilung Wir beschreiben zunächst drei diskrete Verteilungen und beginnen mit einem Zufallsexperiment, indem wir uns für das Eintreffen eines bestimmten Ereignisses

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10

Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10 Analytische Statistik I Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10 Testen Anpassungstests (goodness of fit) Weicht eine gegebene Verteilung signifikant von einer bekannten

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Statistik im Versicherungs- und Finanzwesen

Statistik im Versicherungs- und Finanzwesen Springer Gabler PLUS Zusatzinformationen zu Medien von Springer Gabler Grimmer Statistik im Versicherungs- und Finanzwesen Eine anwendungsorientierte Einführung 2014 1. Auflage Übungsaufgaben zu Kapitel

Mehr

1.3 Die Beurteilung von Testleistungen

1.3 Die Beurteilung von Testleistungen 1.3 Die Beurteilung von Testleistungen Um das Testergebnis einer Vp zu interpretieren und daraus diagnostische Urteile ableiten zu können, benötigen wir einen Vergleichsmaßstab. Im Falle des klassischen

Mehr

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen David Geier und Sven Middelberg RWTH Aachen, Sommersemester 27 Inhaltsverzeichnis Information 2 Aufgabe 4 Aufgabe 2 6 4 Aufgabe

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

Übungsscheinklausur,

Übungsscheinklausur, Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten.

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten. Statistik für Kommunikationswissenschaftler Wintersemester 2009/200 Vorlesung Prof. Dr. Helmut Küchenhoff Übung Cornelia Oberhauser, Monia Mahling, Juliane Manitz Thema 4 Homepage zur Veranstaltung: http://www.statistik.lmu.de/~helmut/kw09.html

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 15.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 0.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne

Mehr

Prüfen von Mittelwertsunterschieden: t-test

Prüfen von Mittelwertsunterschieden: t-test Prüfen von Mittelwertsunterschieden: t-test Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) t-test

Mehr

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s X. Zufallsgrößen ================================================================= 10.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2010 Aufgabe 1 Die Inhaberin

Mehr

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung 2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von

Mehr

Kursthemen 12. Sitzung. Spezielle Verteilungen: Warteprozesse. Spezielle Verteilungen: Warteprozesse

Kursthemen 12. Sitzung. Spezielle Verteilungen: Warteprozesse. Spezielle Verteilungen: Warteprozesse Kursthemen 12. Sitzung Folie I - 12-1 Spezielle Verteilungen: Warteprozesse Spezielle Verteilungen: Warteprozesse A) Die Geometrische Verteilung (Folien 2 bis 7) A) Die Geometrische Verteilung (Folien

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Motivation. Wilcoxon-Rangsummentest oder Mann-Whitney U-Test. Wilcoxon Rangsummen-Test Voraussetzungen. Bemerkungen

Motivation. Wilcoxon-Rangsummentest oder Mann-Whitney U-Test. Wilcoxon Rangsummen-Test Voraussetzungen. Bemerkungen Universität Karlsruhe (TH) Forschungsuniversität gegründet 825 Wilcoxon-Rangsummentest oder Mann-Whitney U-Test Motivation In Experimenten ist die Datenmenge oft klein Daten sind nicht normalverteilt Dann

Mehr

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Dozent: Volker Krätschmer Fakultät für Mathematik, Universität Duisburg-Essen, WS 2012/13 1. Präsenzübung Aufgabe T 1 Sei (Z 1,...,

Mehr

Schleswig-Holstein 2011. Kernfach Mathematik

Schleswig-Holstein 2011. Kernfach Mathematik Aufgabe 6: Stochastik Vorbemerkung: Führen Sie stets geeignete Zufallsvariablen und Namen für Ereignisse ein. Machen Sie auch Angaben über die Verteilung der jeweiligen Zufallsvariablen. Eine repräsentative

Mehr

Klausur Stochastik und Statistik 31. Juli 2012

Klausur Stochastik und Statistik 31. Juli 2012 Klausur Stochastik und Statistik 31. Juli 2012 Prof. Dr. Matthias Schmid Institut für Statistik, LMU München Wichtig: ˆ Überprüfen Sie, ob Ihr Klausurexemplar vollständig ist. Die Klausur besteht aus fünf

Mehr

Gesucht: wie viele Mitarbeiter sind max. durch Ziffernfolge unterscheidbar. Lösung: Möglichkeiten; Reihenfolge und MIT Zurücklegen- also = = 6561

Gesucht: wie viele Mitarbeiter sind max. durch Ziffernfolge unterscheidbar. Lösung: Möglichkeiten; Reihenfolge und MIT Zurücklegen- also = = 6561 1 Bettina Kietzmann Februar 2013 Numerische Aufgaben Statistik 1D 1. Kombinatorik Für die Lösung dieser Aufgaben ist die Tabelle der Formelsammlung S. 10 relevant. Geht es darum Möglichkeiten zu errechnen

Mehr

R-WORKSHOP II. Inferenzstatistik. Johannes Pfeffer

R-WORKSHOP II. Inferenzstatistik. Johannes Pfeffer R-WORKSHOP II Inferenzstatistik Johannes Pfeffer Dresden, 25.1.2011 01 Outline Lösung der Übungsaufgabe Selbstdefinierte Funktionen Inferenzstatistik t-test Kruskal-Wallis Test Übungsaufgabe TU Dresden,

Mehr

5 Erwartungswerte, Varianzen und Kovarianzen

5 Erwartungswerte, Varianzen und Kovarianzen 47 5 Erwartungswerte, Varianzen und Kovarianzen Zur Charakterisierung von Verteilungen unterscheidet man Lageparameter, wie z. B. Erwartungswert ( mittlerer Wert ) Modus (Maximum der Wahrscheinlichkeitsfunktion,

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungen stetiger Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

29. Mai 2006. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt.

29. Mai 2006. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt. L. Fahrmeir, C. Belitz Department für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik 29. Mai 2006 Hinweise:

Mehr

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandelt die Verteilung einer Variablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

3.8 Wahrscheinlichkeitsrechnung III

3.8 Wahrscheinlichkeitsrechnung III 3.8 Wahrscheinlichkeitsrechnung III Inhaltsverzeichnis ufallsgrössen Der Erwartungswert 3 3 Die Binomialverteilung 6 4 Die kumulierte Binomialverteilung 8 4. Die Tabelle im Fundamentum (oder Formeln und

Mehr

Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist

Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist Frage Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist k a F (x) =1 k>0,x k x Finden Sie den Erwartungswert und den Median der Dichte für a>1. (Bei

Mehr

Kapitel VII - Funktion und Transformation von Zufallsvariablen

Kapitel VII - Funktion und Transformation von Zufallsvariablen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VII - Funktion und Transformation von Zufallsvariablen Markus Höchstötter Lehrstuhl

Mehr