Kapitel 2 Mathematische Grundlagen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Kapitel 2 Mathematische Grundlagen"

Transkript

1 Kapitel 2 Mathematische Grundlagen Ziel: Einführung/Auffrischung einiger mathematischer Grundlagen 2.1 Mengen, Relationen, Ordnungen Definition: Eine Menge ist eine Zusammenfassung von wohlbestimmten und wohlunterschiedenen Objekten zu einem Ganzen (G. Cantor, 1883). Ein Objekt a einer Menge A heißt Element von A, a A Beispiele: {1, 2, 3, 4,... } (eine Menge mit unendlich vielen Elementen) { {a}, {a, b} } (eine Menge, deren Elemente Mengen sind) { } = Ø (leere Menge) {Ø} (eine Menge, deren einziges Element die leere Menge ist) AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 1 Spezielle Mengen: : natürliche Zahlen ohne Null 0 : natürliche Zahlen mit Null : ganze Zahlen n : {0, 1,, n-1}, endlicher Abschnitt der natürlichen Zahlen : rationale Zahlen : reelle Zahlen Die Anzahl der Elemente einer Menge M heißt Kardinalität oder Größe der Menge und wird mit M bezeichnet. AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 2 Objekte mit einer gemeinsamen Eigenschaft E(x) lassen sich zu einer Menge zusammenfassen. Schreibweise: { x E(x) } d.h. die Menge aller x, für die E(x) gilt { n k : k 2 = n } = {1, 4, 9, 16, 25,...} (Quadratzahlen) Operationen auf Mengen Definition: Seien A und B Mengen. Die Vereinigung von A und B ist die Menge A B = { x x A oder x B }. Der Durchschnitt von A und B ist die Menge A B = { x x A und x B }. Die Differenz von A und B ist die Menge A \ B = { x x A und x B }. Beispiele: {1, 3, 5} {1, 2, 3} = {1, 2, 3, 5} {1, 3, 5} {1, 2, 3} = {1, 3} {1, 3, 5} \ {1, 2, 3} = {5} Definition: Zwei Mengen A und B heißen disjunkt, wenn A B = Ø gilt, d.h. wenn ihr Durchschnitt die leere Menge ist. AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 3 AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 4

2 Rechenregeln Für alle Mengen A, B, C gilt: (A B) C = A (B C) (Assoziativität) (A B) C = A (B C) Die Potenzmenge einer endlichen Menge mit n Elementen hat 2 n Elemente. Die Potenzmenge der leeren Menge hat 2 0 = 1 Elemente. A B = B A und A B = B A (Kommutativität) A A = A und A A = A (Idempotenz) A (B C) = (A B) (A C) (Distributivität) A (B C) = (A B) (A C) Definition: Die Potenzmenge einer Menge A ist die Menge aller Teilmengen von A: P(A) = { M M A} = 2 A. AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 5 AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 6 Definition: Seien M, N Mengen. Dann heißt das kartesische (Mengen-) Produkt von M und N. Die Verallgemeinerung von M 1 x M 2 x M n ergibt sich analog. Definition: Eine zweistellige Relation R zwischen M und N ist eine Teilmenge von M x N, d.h. R M x N, Notation: arb, (a,b) R, R ist eine Menge geordneter Paare AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 7 AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 8

3 Eigenschaften auf Relationen Gegeben sei eine zweistellige Relation R M x M. Dann heißt R Reflexiv: a M: (a,a) R Symmetrisch: a,b M: (a,b) R impliziert (b,a) R Antisymmetrisch: a,b M: (a,b) R (b,a) R impliziert a=b Transitiv: a,b,c M: (a,b) R (b,c) R impliziert (a,c) R Beispiele: < auf : ist nicht reflexiv, aber transitiv Begründung: Weitere Beispiele: auf : ist reflexiv, transitiv und antisymmetrisch Begründung: auf : ist nicht reflexiv, nicht transitiv und symmetrisch Begründung AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 9 AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 10 Definition: Eine Relation R heißt partielle Ordnung bzw. Halbordnung, falls R reflexiv, antisymmetrisch und transitiv ist. Teilmengenrelation Es sind nur Elemente vergleichbar, die durch einen Pfad entlang der Pfeile (Richtung beachten) verbunden sind: {p,q,r,s} > {p} aber {p} und {q,r,s} sind nicht vergleichbar Definition: Eine partielle Ordnung R heißt totale Ordnung, falls alle Elemente miteinander vergleichbar sind. Definition: Eine Relation R heißt Äquivalenzrelation, wenn sie reflexiv, symmetrisch und transitiv ist. Eine Äquivalenzrelation auf einer Menge A zerlegt A in paarweise disjunkte Mengen, die Äquivalenzklassen. Beispiele: AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 11 AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 12

4 2.2 Abbildungen, Funktionen Definition: Seien A und B Mengen. Eine Abbildung/Funktion ist eine Relation R A x B mit: a A: {b B (a,b) R} = 1. Schreibweise: f: A B a a f(a) Urbild: f -1 (b):= {a A f(a) = b} Eigenschaften auf Funktionen/Abbildungen f heißt injektiv, wenn b B: f -1 (b) 1 f heißt surjektiv, wenn b B: f -1 (b) 1 f heißt bijektiv, wenn f injektiv und f surjektiv ist. Beispiele AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 13 AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 14 Definition: Eine Funktion f(n) heißt monoton steigend, wenn x y impliziert f(x) f(y). Eine Funktion f(n) heißt monoton fallend, wenn x y impliziert f(x) f(y). Auf- und Abrunden von Zahlen: Floor- und Ceil-Funktion Sei x eine reelle Zahl. x (floor) ist die größte ganze Zahl, die kleiner gleich x ist, und x (ceil) ist die kleinste ganze Zahl, die größer als x ist: x-1 < x x x < x 1 Bem.: für beliebige ganze Zahlen n gilt: n/2 + n/2 = n AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 15 AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 16

5 Definition: Modulo-Arithmetik Sei a, n \ {0}. a mod n ist der Rest der Division a / n, d. h. a mod n = a - a / n n Wir sagen, dass zwei ganze Zahlen a, b äquivalent modulo n sind, a b (mod n), wenn gilt, (a mod n) = (b mod n) d.h. a und b liefern beim Teilen durch n den gleichen Rest. Die Relation modulo partitioniert die Menge in genau n viele Äquivalenzklassen, wobei n := {0,1,...,n-1} ein Repräsentantensystem ist. Rechenregeln für Modul-Rechnung Für alle a,b,c,d,n mit n 2 gilt: aus a b (mod n) und c d (mod n) folgt a + c b + d (mod n) und a *c b* d (mod n) AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 17 AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 18 Definition: Polynome Gegeben sei eine positive ganze Zahl d. Ein Polynom in n vom Grad d ist eine Funktion p(n) der Form p(n) = a 0 n 0 + a 1 n 1 + a 2 n 2 + a 3 n a d n d Die a i heißen Koeffizienten, a d 0. Dezimalzahl ist Zahldarstellung als Polynom Exponentialfunktion Für alle reelle Zahlen a>0, m und n gelten die Rechenregeln: a 0 = 1 a 1 = a a -1 = 1/a (a m ) n = a mn (a m ) n = (a n ) m a m a n = a m+n Bem.: Jede Exponentialfunktion mit Basis a > 1 wächst schneller als jedes Polynom. (Wichtig für Komplexitätsbetrachtungen von Algorithmen) AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 19 AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 20

6 Funktionale Iteration Mit der Notation f (i) (n) wird die i-malige Anwendung der Funktion f auf einen Funktionswert n bezeichnet. Sei f(n) eine Funktion und i eine nichtnegative ganze Zahl. Dann gilt: f (i) (n) = n falls i = 0 f(f (i-1) (n)) falls i > 0 Definition: Folge Sei A eine Menge. Unter einer Folge versteht man eine Abbildung a : 0 A, i a a i Eine endliche Folge ist eine Abbildung a : {0,..., n-1} A, mit n 0. n ist die Länge der Folge. Schreibweisen für endliche Folgen: a = a 0,..., a n-1 oder als n-tupel (a 0,..., a n-1 ), d.h. als Elemente des kartesischen Produktes A n. Beispiel AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 21 AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 22 Definition: Permutation Eine Permutation ist eine bijektive Abbildung p : {0,..., n-1} {0,..., n-1}, n 0. Definition: Zahlendarstellung zur Basis b Eine positive ganze Zahl X zur Basis b, b > 1 wird dargestellt als eine endliche Folge x n-1,...,x 0 wobei x i Ziffern sind und für die Zahl X folgendes gilt: X = x n-1 b n x 0 b 0 Zahlensystem mit der Basis b=10 (Dezimalsystem) (23) 10 = 2* *10 0 Zahlensystem mit der Basis b = 2 (Binärsystem) (11) 10 = (1011) 2 = AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 23 AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 24

7 Berechnung der Darstellung zur Basis b X = 11, b = 2 11 : 2 = 5 Rest 1 5 : 2 = 2 Rest 1 2 : 2 = 1 Rest 0 1 : 2 = 0 Rest 1 X = 11, b = 3 11 : 3 = 3 Rest 2 3 : 3 = 1 Rest 0 1 : 3 = 0 Rest 1 Resultat: 1011 Resultat: 102 AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor Alphabete, Wörter Definitionen: A sei eine endliche, nichtleere Menge. A := Anzahl der Elemente von A, A heißt Zeichenvorrat oder Alphabet, Das Paar (A, <) heißt geordnetes Alphabet, wenn < eine totale Ordnung auf A ist. Beispiele Menge der Dezimalziffern ID = {0,..., 9} Lat. Großbuchstaben {A, B,..., Z} mit der natürlichen Ordnung A < B <... < Z Geordnete binäre Zeichenvorräte IB = {0, 1} mit 0 < 1, oder {true, false} mit false < true AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 26 Definitionen: A sei Alphabet mit Ordnung <. Wort über A: endliche Folge w = a 1 a 2... a k (a i A, k IN 0 ) Bem.: wir schreiben w = a 1 a 2... a k statt w = a 1, a 2,..., a k Länge des Wortes w: w = k leeres Wort: ε, ε = 0 A k := {w w ist ein Wort über A, w = k}, für k IN 0 oder rekursiv: A 0 := {ε}, A k := {ua u A k-1, a A} w = uv, dann heißen u, v Teilworte von w. A * := {w w Wort über A} = A k k = 0 A + := {w w nichtleeres Wort über A} = k = 1 AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 27 A k Lexikographische Ordnung auf A * ist die von < induzierte totale Ordnung auf A * (analog zur Reihenfolge im Lexikon), d.h. für w, v A * : w < v: entweder: v=wv, mit v A *, oder: w = uaw, v = ubv, mit a, b A, u,w,v A * und a < b, a b. Lexikographische Ordnung auf der Menge der Dezimalzahlen: z.b. 13 < 132 < 1324 < 2 < 29 < 8 (entspricht nicht der numerischen Ordnung!) AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 28

8 2.4 Summenformeln und Eigenschaften Gegeben sei eine Zahlenfolge a 1,.., a n. Die endliche Summe n a 1 + a a n schreiben wir auch in der Form ai Die Summe n k = n ist eine arithmetische Reihe. k= 1 Sie hat die Werte k = ½ * n(n + 1) k= 1 Es gelten die Summenformeln: n i= Logarithmus Definition des Logarithmus zur Basis b x= log b a a= b x log 2 16 = x 2 x = 16, d.h. x=4 Logarithmus-Gesetze 1. Produkt: log b (x*y) = log b x + log b y 2. Quotient: log b (x/y) = log b x - log b y 3. Potenzen: sei r eine reelle Zahl log b (x r ) = rlog b x für r=-1: log b (1/x) = -log b x AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 29 AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor Wahrscheinlichkeiten Ein Ereignisraum S ist Menge, deren Elemente als Elementarereignisse bezeichnet werden. Ein Elementarereignis kann als Ausgang eines Experiments interpretiert werden. Werfen zweier unterscheidbarer Münzen, wobei jeder Münzwurf in Kopf(Ko) oder Zahl(Za) endet. S = {KoKo,KoZa,ZaKo,KoKo} Ein Ereignis ist eine Teilmenge des Ereignisraums S. Ein Elementarereignis s S bezeichnet das Ereignis {s}. Ereignis S wird sicheres Ereignis genannt, Ereignis Ø als unmögliches Ereignis. AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 31 Wahrscheinlichkeitsverteilung Pr{} über einem Ereignisraum S ist eine Funktion von einer Menge von Ereignissen aus S in das Intervall [0,1] der reellen Zahlen, Pr : 2 S [0,1], wobei folgende Axiome erfüllt sind: Pr{A} 0, für jedes Ereignis A Pr{S} = 1 Pr{A B} = Pr{A} + Pr{B} für zwei sich gegenseitig ausschließende Ereignisse A und B Für unmögliches Ereignis Ø gilt: Pr{Ø} = 0. Aus A B folgt Pr{A} Pr{B} Komplement eines Ereignisses A wird als Ā bezeichnet. Es gilt Pr{Ā} = 1-Pr{A} AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 32

9 Eine (diskrete) Zufallsvariable X ist eine Funktion von einem endlichen oder abzählbar unendlichen Ereignisraum S in die Menge der reellen Zahlen. Sie ordnet jedem möglichen Ausgang eines Experiments eine reelle Zahl zu. Für eine Zufallsvariable X und eine reelle Zahl x definieren wir das Ereignis X=x als { s S : X(s) = x }, so dass gilt: Pr{X = x} = Pr{ s} s S: X ( s ) = x Funktion f(x) = Pr{X=x} ist die Wahrscheinlichkeitsdichtefunktion der Zufallsvariable X. Aus den Wahrscheinlichkeitsaxiomen folgt Pr{X = x} 0, Pr{ X = x} = 1 x AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 33 Erwartungswert: Gegeben sei eine diskrete Zufallsvariable X. Der Erwartungswert (oder Mittelwert) von X ist: E[X] = x Pr{ X = x} x AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 34 Das Experiment sei das Werfen eines Butterbrots. Der Ereignisraum S ist gegeben durch: S = {Butterseite oben, Butterseite unten}. Wir nehmen an, dass wir: 2 Euro erhalten, wenn die Butterseite nach oben zeigt und 1 Euro verlieren, wenn die Brutterseite nach unten zeigt. Die Wahrscheinlichkeiten für die Elementarereignisse aus S seien: Pr{Butterseite oben} = 1/4 und Pr{Butterseite unten} = 3/4. Frage: Wie ist der Erwartungswert der Zufallsvariable X, die einen Gewinn darstellt? AuD, Kapitel 2 Mathematische Grundlagen, WS11/12, C. Eckert & Th Stibor 35

Kapitel 2 Mathematische Grundlagen

Kapitel 2 Mathematische Grundlagen Kapitel 2 Mathematische Grundlagen Ziel: Einführung/Auffrischung einiger mathematischer Grundlagen 2.1 Mengen, Relationen, Ordnungen Definition: Eine Menge ist eine Zusammenfassung von wohlbestimmten und

Mehr

Technische Universität München

Technische Universität München Stand der Vorlesung Kapitel 2: Auffrischung einiger mathematischer Grundlagen Mengen, Potenzmenge, Kreuzprodukt (Paare, Tripel, n-tupel) Relation: Teilmenge MxN Eigenschaften: reflexiv, symmetrisch, transitiv,

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen)

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit Mengen! Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor)! Notation 1. Aufzählung aller Elemente: {

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Mathematische Grundbegriffe Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr,

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

Einführung in die Wahrscheinlichkeitsrechnung

Einführung in die Wahrscheinlichkeitsrechnung Marco Cattaneo Institut für Statistik Ludwig-Maximilians-Universität München Sommersemester 2011 1. Wahrscheinlichkeitsrechnung 2. Diskrete Zufallsvariable 3. Stetige Zufallsvariable 4. Grenzwertsätze

Mehr

2 Mengen und Abbildungen

2 Mengen und Abbildungen 2.1 Mengen Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen. Die Objekte heiÿen Elemente. Ist M eine Menge und x ein Element von M so schreiben wir x M. Wir sagen auch:

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Grundlagen der Mathematik Übungsaufgaben zu Kapitel 1 Einführung 1.1.1 Für reelle Zahlen a und b gilt (a+b) (a-b) = a 2 -b 2. Was ist die Voraussetzung? Wie lautet die Behauptung? Beweisen Sie die Behauptung.

Mehr

Mengen (siehe Teschl/Teschl 1.2)

Mengen (siehe Teschl/Teschl 1.2) Mengen (siehe Teschl/Teschl 1.2) Denition nach Georg Cantor (1895): Eine Menge ist eine Zusammenfassung von bestimmten und wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens zu einem

Mehr

Mathematik für Ökonomen 1

Mathematik für Ökonomen 1 Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Herbstemester 2008 Mengen, Funktionen und Logik Inhalt: 1. Mengen 2. Funktionen 3. Logik Teil 1 Mengen

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen

Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen Susanna Pohl Vorkurs Mathematik TU Dortmund 10.03.2015 Mengen und Relationen Mengen Motivation Beschreibung von Mengen Mengenoperationen

Mehr

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund Lineare Algebra 1 Detlev W. Hoffmann WS 2013/14, TU Dortmund 1 Mengen und Zahlen 1.1 Mengen und Abbildungen Eine Menge ist eine Zusammenfassung wohlunterscheidbarer Objekte unserer Anschauung/unseres Denkens/unserer

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Mengen, Funktionen und Logik

Mengen, Funktionen und Logik Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Mengen, Funktionen und Logik Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen

mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen Einführung in die Logik - 6 mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen Modelltheoretische / Denotationelle Semantik der Prdikatenlogik Ein Modell ist ein künstlich geschaffenes

Mehr

1 Mengen. 1.1 Definition

1 Mengen. 1.1 Definition 1 Mengen 1.1 Definition Eine Menge M ist nach dem Begründer der Mengenlehre Georg Cantor eine Zusammenfassung von wohlunterschiedenen(verschiedenen) Elementen. Eine Menge lässt sich durch verschiedene

Mehr

3. Relationen Erläuterungen und Schreibweisen

3. Relationen Erläuterungen und Schreibweisen 3. Relationen Eine Relation ist allgemein eine Beziehung, die zwischen Dingen bestehen kann. Relationen im Sinne der Mathematik sind ausschließlich diejenigen Beziehungen, bei denen stets klar ist, ob

Mehr

Mathematik 1 für Informatik Inhalt Grundbegrie

Mathematik 1 für Informatik Inhalt Grundbegrie Mathematik 1 für Informatik Inhalt Grundbegrie Mengen, speziell Zahlenmengen Aussagenlogik, Beweistechniken Funktionen, Relationen Kombinatorik Abzählverfahren Binomialkoezienten Komplexität von Algorithmen

Mehr

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2 1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba

Mehr

Einführung in die Mengenlehre

Einführung in die Mengenlehre Einführung in die Mengenlehre D (Menge von Georg Cantor 845-98) Eine Menge ist eine Zusammenfassung bestimmter wohlunterschiedener Objekte unseres Denkens oder unserer Anschauung zu einem Ganzen wobei

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

3. Kombinatorik und Wahrscheinlichkeit

3. Kombinatorik und Wahrscheinlichkeit 3. Kombinatorik und Wahrscheinlichkeit Es geht hier um die Bestimmung der Kardinalität endlicher Mengen. Erinnerung: Seien A, B, A 1,..., A n endliche Mengen. Dann gilt A = B ϕ: A B bijektiv Summenregel:

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik für die Studiengänge Ingenieur-Informatik berufsbegleitendes Studium Lehramt Informatik (Sekundar- und Berufsschule) http://theo.cs.uni-magdeburg.de/lehre04s/ Lehrbeauftragter:

Mehr

Theoretische Informatik

Theoretische Informatik Mathematische Grundlagen Patrick Horster Universität Klagenfurt Informatik Systemsicherheit WS-2007-Anhang-1 Allgemeines In diesem einführenden Kapitel werden zunächst elementare Grundlagen kurz aufgezeigt,

Mehr

Teil II. Wahrscheinlichkeitsrechnung

Teil II. Wahrscheinlichkeitsrechnung Teil II Wahrscheinlichkeitsrechnung Deskriptive Statistik und Wahrscheinlichkeitsrechnung (SS 2014) Folie 129 5 Zufallsexperimente Inhaltsverzeichnis (Ausschnitt) 5 Zufallsexperimente Ergebnisse Ereignisse

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

Kapitel 2 MENGENLEHRE

Kapitel 2 MENGENLEHRE Kapitel 2 MENGENLEHRE In diesem Kapitel geben wir eine kurze Einführung in die Mengenlehre, mit der man die ganze Mathematik begründen kann. Wir werden sehen, daßjedes mathematische Objekt eine Menge ist.

Mehr

Mengen und Abbildungen

Mengen und Abbildungen 1 Mengen und bbildungen sind Hilfsmittel ( Sprache ) zur Formulierung von Sachverhalten; naive Vorstellung gemäß Georg Cantor (1845-1918) (Begründer der Mengenlehre). Definition 1.1 Eine Menge M ist eine

Mehr

2 Modellierung mit Wertebereichen

2 Modellierung mit Wertebereichen 2 Modellierung mit Wertebereichen Mod-2.1 In der Modellierung von Systemen, Aufgaben, Lösungen kommen Objekte unterschiedlicher Art und Zusammensetzung vor. Für Teile des Modells wird angegeben, aus welchem

Mehr

1.1 Mengen und Abbildungen

1.1 Mengen und Abbildungen Lineare Algebra I WS 2015/16 c Rudolf Scharlau 3 1.1 Mengen und Abbildungen In diesem Abschnitt stellen wir die grundlegende mathematische Sprache und Notation zusammen, die für jede Art von heutiger Mathematik

Mehr

Diskrete Mathematik für Informatiker

Diskrete Mathematik für Informatiker Diskrete Mathematik für Informatiker Markus Lohrey Universität Siegen Wintersemester 2014/2015 Lohrey (Universität Siegen) Diskrete Mathematik Wintersem. 2014/2015 1 / 344 Organisatorisches zur Vorlesung

Mehr

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung lausthal Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Begriffe Definition: Unter einem Zufallsexperiment versteht man einen,

Mehr

5. Äquivalenzrelationen

5. Äquivalenzrelationen 5. Äquivalenzrelationen 35 5. Äquivalenzrelationen Wenn man eine große und komplizierte Menge (bzw. Gruppe) untersuchen will, so kann es sinnvoll sein, zunächst kleinere, einfachere Mengen (bzw. Gruppen)

Mehr

4 Diskrete Wahrscheinlichkeitsverteilungen

4 Diskrete Wahrscheinlichkeitsverteilungen 4 Diskrete Wahrscheinlichkeitsverteilungen 4.1 Wahrscheinlichkeitsräume, Ereignisse und Unabhängigkeit Definition: Ein diskreter Wahrscheinlichkeitsraum ist ein Paar (Ω, Pr), wobei Ω eine endliche oder

Mehr

17 R E L AT I O N E N

17 R E L AT I O N E N 17 R E L AT I O N E N 17.1 äquivalenzrelationen 17.1.1 Definition In Abschnitt 11.2.1 hatten wir schon einmal erwähnt, dass eine Relation R M M auf einer Menge M, die reflexiv, symmetrisch und transitiv

Mehr

Was bisher geschah: Formale Sprachen

Was bisher geschah: Formale Sprachen Was bisher geschah: Formale Sprachen Alphabet, Wort, Sprache Operationen und Relationen auf Wörtern und Sprachen Darstellung unendlicher Sprachen durch reguläre Ausdrücke (Syntax, Semantik, Äquivalenz)

Mehr

Eine Menge A ist die Zusammenfassung gleichartiger Elemente zu einer Gesamtheit. Eine Menge kann definiert werden durch

Eine Menge A ist die Zusammenfassung gleichartiger Elemente zu einer Gesamtheit. Eine Menge kann definiert werden durch 1.2 Mengenlehre Grundlagen der Mathematik 1 1.2 Mengenlehre Definition: Menge, Element, Variablenraum Eine Menge A ist die Zusammenfassung gleichartiger Elemente zu einer Gesamtheit. Eine Menge kann definiert

Mehr

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik Centrum für Informations- und Sprachverarbeitung (CIS) 10. Juni 2014 Table of Contents 1 2 Äquivalenz Der Begriff der Äquivalenz verallgemeinert den Begriff der Gleichheit. Er beinhaltet in einem zu präzisierenden

Mehr

Einführung in die Computerorientierte Mathematik

Einführung in die Computerorientierte Mathematik Einführung in die Computerorientierte Mathematik Wintersemester 2014/15 Thomas Gerstner Institut für Mathematik Goethe-Universität Frankfurt 28. Oktober 2014 Inhaltsverzeichnis Inhaltsverzeichnis ii 1

Mehr

Weitere Eigenschaften

Weitere Eigenschaften Weitere Eigenschaften Erklärung der Subtraktion: x y := x + ( y) (5) Die Gleichung a + x = b hat die eindeutig bestimmte Lösung x = b a. Beweis: (a) Zunächst ist x = b a eine Lösung, denn a + x = a + (b

Mehr

6 Übungsaufgaben. 6.1 Übungsaufgaben zu Kapitel ÜBUNGSAUFGABEN

6 Übungsaufgaben. 6.1 Übungsaufgaben zu Kapitel ÜBUNGSAUFGABEN 0 6 ÜBUNGSAUFGABEN 6 Übungsaufgaben In diesem Kapitel sind Übungsaufgaben zusammengestellt, die den Stoff der Vorlesung vertiefen und die für Prüfungen erforderliche Praxis und Schnelligkeit vermitteln

Mehr

4. Die Laplacesche Gleichverteilung

4. Die Laplacesche Gleichverteilung Universität Basel Wirtschaftswissenschaftliches Zentrum Grundlagen der Stochastik Dr. Thomas Zehrt Inhalt: 1. Die Ereignismenge 2. Die Wahrscheinlichkeitsverteilung 3. Eigenschaften einer Wahrscheinlichkeitsverteilung

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Sommersemester 2010 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax = b

Mehr

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Saskia Klaus 07.10.016 1 Motivation In den ersten beiden Vorträgen des Vorkurses haben wir gesehen, wie man aus schon bekannten Wahrheiten

Mehr

Grundlagen der Mengenlehre

Grundlagen der Mengenlehre mathe plus Grundlagen der Mengenlehre Seite 1 1 Grundbegriffe Grundlagen der Mengenlehre Def 1 Mengenbegriff nach Georg Cantor (1845-1918) Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener

Mehr

Dezimalzahlen. Analysis 1

Dezimalzahlen. Analysis 1 Dezimalzahlen Definition. Eine endliche Dezimalzahl besteht aus - einem Vorzeichen +,, oder 0 - einer natürlichen Zahl d 0 - einer endlichen Folge von Ziffern d 1,...,d l von 0 bis 9. Die Länge l kann

Mehr

Satz 18 (Satz von der totalen Wahrscheinlichkeit)

Satz 18 (Satz von der totalen Wahrscheinlichkeit) Ausgehend von der Darstellung der bedingten Wahrscheinlichkeit in Gleichung 1 zeigen wir: Satz 18 (Satz von der totalen Wahrscheinlichkeit) Die Ereignisse A 1,..., A n seien paarweise disjunkt und es gelte

Mehr

Dr. H. Grunert Einführung in die Wahrscheinlichkeitsrechnung Vorlesungscharts. Vorlesung 1. Grundbegriffe der Wahrscheinlichkeitsrechnung

Dr. H. Grunert Einführung in die Wahrscheinlichkeitsrechnung Vorlesungscharts. Vorlesung 1. Grundbegriffe der Wahrscheinlichkeitsrechnung Vorlesungscharts Vorlesung 1 Grundbegriffe der Wahrscheinlichkeitsrechnung Zufallsvorgänge und Zufallsereignisse Definitionen der Wahrscheinlichkeit Seite 1 von 11 Chart 1: Vorgänge deterministisch zufällig

Mehr

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK 1. ALPHABETE, WÖRTER, SPRACHEN. Prof. Dr. Klaus Ambos-Spies. Sommersemester 2011

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK 1. ALPHABETE, WÖRTER, SPRACHEN. Prof. Dr. Klaus Ambos-Spies. Sommersemester 2011 EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK Prof. Dr. Klaus Ambos-Spies Sommersemester 2011 1. ALPHABETE, WÖRTER, SPRACHEN Theoretische Informatik (SoSe 2011) 1. Alphabete, Wörter, Sprachen 1 / 25 Vorbemerkung:

Mehr

Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen

Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen Dozentin: Wiebke Petersen 2. Foliensatz Wiebke Petersen math. Grundlagen 25 n-tupel und Cartesisches Produkt Mengen sind ungeordnet,

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung SS 16: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung SS 16: Woche vom Übungsaufgaben 8. Übung SS 16: Woche vom 30. 5. 3.6. 2016 Stochastik II: Klassische Wkt.-Berechnung; Unabhängigkeit Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

Georg Ferdinand Ludwig Philipp Cantor geb in St. Petersburg, gest in Halle

Georg Ferdinand Ludwig Philipp Cantor geb in St. Petersburg, gest in Halle Kapitel 1 Mengen, Relationen, Abbildungen 1.1 Mengen Georg Cantor, der Begründer der Mengenlehre, hat 1895 in [1] eine Menge folgendermaßen definiert: Unter einer Menge verstehen wir jede Zusammenfassung

Mehr

Logik, Mengen und Abbildungen

Logik, Mengen und Abbildungen Kapitel 1 Logik, Mengen und bbildungen Josef Leydold Mathematik für VW WS 2016/17 1 Logik, Mengen und bbildungen 1 / 26 ussage Um Mathematik betreiben zu können, sind ein paar Grundkenntnisse der mathematischen

Mehr

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale Kapitel I Reelle Zahlen 1 Axiomatische Charakterisierung der reellen Zahlen R 2 Angeordnete Körper 3 Die natürlichen, die ganzen und die rationalen Zahlen 4 Das Vollständigkeitsaxiom und irrationale Zahlen

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

$Id: gruppen.tex,v /04/24 15:25:02 hk Exp $ $Id: ring.tex,v /04/24 15:35:17 hk Exp $

$Id: gruppen.tex,v /04/24 15:25:02 hk Exp $ $Id: ring.tex,v /04/24 15:35:17 hk Exp $ $Id: gruppen.tex,v 1.13 2012/04/24 15:25:02 hk Exp $ $Id: ring.tex,v 1.11 2012/04/24 15:35:17 hk Exp $ 2 Gruppen 2.3 Zyklische Gruppen Wir hatten am Ende der letzten Sitzung bewiesen, dass in einer endlichen

Mehr

A N A L Y S I S I F Ü R T P H, U E ( ) 1. Übungstest (FR, ) (mit Lösung )

A N A L Y S I S I F Ü R T P H, U E ( ) 1. Übungstest (FR, ) (mit Lösung ) Institut für Analysis und Scientific Computing TU Wien W. Auzinger WS 05/6 A N A L Y S I S I F Ü R T P H, U E (03.088). Übungstest (FR, 6..05) (mit Lösung ) Aufgabe. a ) Wandeln Sie die periodische Dezimalzahl

Mehr

ANALYSIS I FÜR TPH WS 2016/17 1. Übung Übersicht

ANALYSIS I FÜR TPH WS 2016/17 1. Übung Übersicht . Übung Übersicht Aufgaben zu Kapitel und 2 Aufgabe : Drei klassische Ungleichungen Aufgabe 2: ) Beweis einer Summenformel Induktion) Aufgabe : ) Teleskopsummen Aufgabe 4: Noch etwas Formelmanipulation

Mehr

Warum Mathe? IG/StV-Mathematik der KFU-Graz. 1 Mengen Mengenoperationen Rechenregeln Mengen 4. Funktionen 7

Warum Mathe? IG/StV-Mathematik der KFU-Graz. 1 Mengen Mengenoperationen Rechenregeln Mengen 4. Funktionen 7 Warum Mathe? IG/StV-Mathematik der KFU-Graz März 2011 Inhalt 1 Mengen 1 1.1 Mengenoperationen.............................. 2 1.2 Rechenregeln.................................. 3 2 Übungsbeispiele zum

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie Prof. Dr. Sebastian Iwanowski DM4 Folie 1 Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 4: Zahlentheorie Beutelspacher 5 Lang 7, Biggs 20, 22, 23 (jeweils teilweise,

Mehr

4.1 Definition. Gegeben: Relation f X Y f heißt Funktion (Abbildung) von X nach Y, wenn. = y 1. = y 2. xfy 1. xfy 2

4.1 Definition. Gegeben: Relation f X Y f heißt Funktion (Abbildung) von X nach Y, wenn. = y 1. = y 2. xfy 1. xfy 2 4.1 Definition Gegeben: Relation f X Y f heißt Funktion (Abbildung) von X nach Y, wenn xfy 1 xfy 2 = y 1 = y 2 Y heißt Zielbereich oder Zielmenge von f. Statt (x, y) f oder xfy schreibt man y = f(x). Vollständige

Mehr

Mengen und Abbildungen

Mengen und Abbildungen Mengen und Abbildungen Der Mengenbegriff Durchschnitt, Vereinigung, Differenzmenge Kartesisches Produkt Abbildungen Prinzip der kleinsten natürlichen Zahl Vollständige Induktion Mengen und Abbildungen

Mehr

Formalisierung von Sudoku Formalisieren Sie das Sudoku-Problem:

Formalisierung von Sudoku Formalisieren Sie das Sudoku-Problem: Formalisierung von Sudoku Formalisieren Sie das Sudoku-Problem: 4 4 4 4 4 1 1 1 1 2 2 3 3 5 5 5 5 5 5 6 6 6 7 7 8 8 9 9 9 9 9 8 6 Verwenden Sie dazu eine atomare Formel A[n, x, y] für jedes Tripel (n,

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 6 5 Hilfsmittel aus der Kombinatorik 7 1 Vorbemerkungen

Mehr

Natürliche, ganze und rationale Zahlen

Natürliche, ganze und rationale Zahlen Natürliche, ganze und rationale Zahlen Zunächst haben die zum Zählen verwendeten natürlichen Zahlen 0, 1, 2, 3,... nichts mit dem reellen Zahlen zu tun. Durch die ausgezeichnete reelle Zahl 1 (Maßeinheit!)

Mehr

Mathematik-Vorkurs für Informatiker (Wintersemester 2012/13) Übungsblatt 8 (Relationen und Funktionen)

Mathematik-Vorkurs für Informatiker (Wintersemester 2012/13) Übungsblatt 8 (Relationen und Funktionen) DEPENDABLE SYSTEMS AND SOFTWARE Fachrichtung 6. Informatik Universität des Saarlandes Christian Eisentraut, M.Sc. Julia Krämer Mathematik-Vorkurs für Informatiker (Wintersemester 0/3) Übungsblatt 8 (Relationen

Mehr

Kongruenzen und Restklassenringe. 2. Kongruenzen und Restklassenringe

Kongruenzen und Restklassenringe. 2. Kongruenzen und Restklassenringe 2. Kongruenzen und Restklassenringe Kongruenzen Definition: Wir sagen a ist kongruent zu b modulo m schreiben a b mod m, wenn m die Differenz b-a te Beispiel: Es gilt 2 19 mod 21, 10 0 mod 2. Reflexivität:

Mehr

In diesem Kapitel wiederholen wir Begriffe und Notationen für grundlegende mathematische

In diesem Kapitel wiederholen wir Begriffe und Notationen für grundlegende mathematische Kapitel 1 Mathematische Objekte In diesem Kapitel wiederholen wir Begriffe und Notationen für grundlegende mathematische Objekte wie Tupel, Mengen, Relationen und Funktionen. Außerdem erklären wir die

Mehr

2. Grundlegende Strukturen 2.1 Wertebereiche beschrieben durch Mengen

2. Grundlegende Strukturen 2.1 Wertebereiche beschrieben durch Mengen 2. Grundlegende Strukturen 2.1 Wertebereiche beschrieben durch Mengen In der Modellierung von Systemen, Aufgaben, Lösungen kommen Objekte unterschiedlicher Art und Zusammensetzung vor. Für Teile des Modells

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

Kapitel 2. Zufällige Versuche und zufällige Ereignisse. 2.1 Zufällige Versuche

Kapitel 2. Zufällige Versuche und zufällige Ereignisse. 2.1 Zufällige Versuche Kapitel 2 Zufällige Versuche und zufällige Ereignisse In diesem Kapitel führen wir zunächst anschaulich die grundlegenden Begriffe des zufälligen Versuchs und des zufälligen Ereignisses ein und stellen

Mehr

Stochastik. 1. Wahrscheinlichkeitsräume

Stochastik. 1. Wahrscheinlichkeitsräume Stochastik 1. Wahrscheinlichkeitsräume Ein Zufallsexperiment ist ein beliebig oft und gleichartig wiederholbarer Vorgang mit mindestens zwei verschiedenen Ergebnissen, bei dem der Ausgang ungewiß ist.

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich.

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich. 3.5 Ringe und Körper Gehen wir noch mal zu den ganzen Zahlen zurück. Wir wissen: (Z, + ist eine Gruppe, es gibt aber als Verknüpfung noch die Multiplikation, es gibt ein neutrales Element bezüglich, es

Mehr

Satz 16 (Multiplikationssatz)

Satz 16 (Multiplikationssatz) Häufig verwendet man die Definition der bedingten Wahrscheinlichkeit in der Form Damit: Pr[A B] = Pr[B A] Pr[A] = Pr[A B] Pr[B]. (1) Satz 16 (Multiplikationssatz) Seien die Ereignisse A 1,..., A n gegeben.

Mehr

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Dietmar A. Salamon ETH-Zürich 23. Februar 2015 1 Topologische Grundbegriffe Sei (X, d) ein metrischer Raum, d.h. X ist eine Menge und d : X X R ist

Mehr

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Wichtige Tatsachen und Formeln zur Vorlesung Mathematische Grundlagen für das Physikstudium 3 Franz Embacher http://homepage.univie.ac.at/franz.embacher/

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

Spickzettel Mathe C1

Spickzettel Mathe C1 Spickzettel Mathe C1 1 Mengenlehre 1.1 Potenzmenge Die Potenzmenge P (Ω) einer Menge Ω ist die Menge aller Teilmengen von Ω. Dabei gilt: P (Ω) := {A A Ω} card P (Ω) = 2 card Ω P (Ω) 1.2 Mengenalgebra Eine

Mehr

Naive Mengenlehre. ABER: Was ist eine Menge?

Naive Mengenlehre. ABER: Was ist eine Menge? Naive Mengenlehre Im Wörterbuch kann man unter dem Begriff Menge etwa die folgenden Bestimmungen finden : Ansammlung, Konglomerat, Haufen, Klasse, Quantität, Bündel,... usf. Die Mengenlehre ist der (gegenwärtig)

Mehr

Halbgruppen, Gruppen, Ringe

Halbgruppen, Gruppen, Ringe Halbgruppen-1 Elementare Zahlentheorie Einige Bezeichnungen Halbgruppen, Gruppen, Ringe Die Menge N 0 der natürlichen Zahlen 0, 1, 2, Die Menge N = N 1 der von Null verschiedenen natürlichen Zahlen Die

Mehr

1 Mengen. 1.1 Elementare Definitionen. Einige mathematische Konzepte

1 Mengen. 1.1 Elementare Definitionen. Einige mathematische Konzepte Einige mathematische Konzepte 1 Mengen 1.1 Elementare Definitionen Mengendefinition Die elementarsten mathematischen Objekte sind Mengen. Für unsere Zwecke ausreichend ist die ursprüngliche Mengendefinition

Mehr

Grundbegriffe der Wahrscheinlichkeitstheorie

Grundbegriffe der Wahrscheinlichkeitstheorie KAPITEL 1 Grundbegriffe der Wahrscheinlichkeitstheorie 1. Zufallsexperimente, Ausgänge, Grundmenge In der Stochastik betrachten wir Zufallsexperimente. Die Ausgänge eines Zufallsexperiments fassen wir

Mehr

DIE SPRACHE DER WAHRSCHEINLICHKEITEN

DIE SPRACHE DER WAHRSCHEINLICHKEITEN KAPITEL 1 DIE SPRACHE DER WAHRSCHEINLICHKEITEN Es ist die Aufgabe der ersten drei Kapitel, eine vollständige Beschreibung des grundlegenden Tripels (Ω, A, P) und seiner Eigenschaften zu geben, das heutzutage

Mehr

Die Schreibweise x M bedeutet, dass das Objekt x in der Menge M liegt. Ist dies nicht der Fall, dann schreibt man

Die Schreibweise x M bedeutet, dass das Objekt x in der Menge M liegt. Ist dies nicht der Fall, dann schreibt man Die Schreibweise x M bedeutet, dass das Objekt x in der Menge M liegt. Ist dies nicht der Fall, dann schreibt man x / M. Man sagt, M ist Teilmenge von N und schreibt M N, wenn für jedes x M auch x N gilt.

Mehr

2 ZAHLEN UND VARIABLE

2 ZAHLEN UND VARIABLE Zahlen und Variable 2 ZAHLEN UND VARIABLE 2.1 Grundlagen der Mengenlehre Unter einer Menge versteht man die Zusammenfassung von unterscheidbaren Objekten zu einem Ganzen. Diese Objekte bezeichnet man als

Mehr

R = {(1, 1), (2, 2), (3, 3)} K 1 = {1} K 2 = {2} K 3 = {3}

R = {(1, 1), (2, 2), (3, 3)} K 1 = {1} K 2 = {2} K 3 = {3} Äquivalenzrelationen Aufgabe 1. Lesen Sie im Skript nach was eine Äquivalenzrelation und eine Äquivalenzklasse ist. Gegeben ist die Menge A = {1, 2, 3. Finden Sie 3 Äquivalenzrelationen auf A und geben

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 8 10. November 2009 Kapitel 2. Konvergenz von Folgen und Reihen Definition 27. Eine (reelle bzw. komplexe) Zahlenfolge ist eine R- bzw. C-wertige

Mehr

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen.

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen. Dieses Quiz soll Ihnen helfen, Kapitel 2.5-2. besser zu verstehen. Frage Wir betrachten ein Würfelspiel. Man wirft einen fairen, sechsseitigen Würfel. Wenn eine oder eine 2 oben liegt, muss man 2 SFr zahlen.

Mehr

Prädikate sind Funktionen. Prädikatenlogik. Quantoren. n stellige Prädikate. n stellige Prädikate:

Prädikate sind Funktionen. Prädikatenlogik. Quantoren. n stellige Prädikate. n stellige Prädikate: Aussagenlogik: Aussagen Ausssageformen Prädikatenlogik beschäftigt sich mit Aussagen sind Sätze die entweder wahr oder falsch sind sind Sätze mit Variablen, die beim Ersetzen dieser Variablen durch Elemente

Mehr

Formale Grundlagen 2008W. Vorlesung im 2008S Institut für Algebra Johannes Kepler Universität Linz

Formale Grundlagen 2008W. Vorlesung im 2008S  Institut für Algebra Johannes Kepler Universität Linz Formale Grundlagen Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Definition Sei A eine Menge und ɛ A A A eine zweistellige

Mehr

Mengenlehre. Yanhai Song. Proseminar Mathematische Modellierung. Fakultät für Informatik Technische Universität München. 12.Juni.

Mengenlehre. Yanhai Song. Proseminar Mathematische Modellierung. Fakultät für Informatik Technische Universität München. 12.Juni. Mengenlehre Yanhai Song songy@in.tum.de Proseminar Mathematische Modellierung Fakultät für Informatik Technische Universität München 12.Juni.2001 Zusammenfassung Die Mengenlehre gehört zu den vier Teilgebieten

Mehr

Formale Sprachen. Spezialgebiet für Komplexe Systeme. Yimin Ge. 5ahdvn. 1 Grundlagen 1. 2 Formale Grammatiken 4. 3 Endliche Automaten 5.

Formale Sprachen. Spezialgebiet für Komplexe Systeme. Yimin Ge. 5ahdvn. 1 Grundlagen 1. 2 Formale Grammatiken 4. 3 Endliche Automaten 5. Formale Sprachen Spezialgebiet für Komplexe Systeme Yimin Ge 5ahdvn Inhaltsverzeichnis 1 Grundlagen 1 2 Formale Grammatien 4 Endliche Automaten 5 4 Reguläre Sprachen 9 5 Anwendungen bei Abzählproblemen

Mehr

1.4 Äquivalenzrelationen

1.4 Äquivalenzrelationen 8 1.4 Äquivalenzrelationen achdem nun die axiomatische Grundlage gelegt ist, können wir uns bis zur Einführung der Kategorien das Leben dadurch erleichtern, daß wir bis dorthin, also bis auf weiteres,

Mehr

ELEMENTARE DISKRETE MATHEMATIK Kapitel 4: Mächtigkeit von Mengen

ELEMENTARE DISKRETE MATHEMATIK Kapitel 4: Mächtigkeit von Mengen ELEMENTARE DISKRETE MATHEMATIK Kapitel 4: Mächtigkeit von Mengen MAA.01011UB MAA.01011PH Vorlesung mit Übung im WS 2016/17 Christoph GRUBER Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen

Mehr

Lineare Algebra I. Auswahlaxiom befragen. (Wer schon im Internet danach sucht, sollte das auch mal mit dem Begriff

Lineare Algebra I. Auswahlaxiom befragen. (Wer schon im Internet danach sucht, sollte das auch mal mit dem Begriff Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik Lösungsblatt 2 Prof. Dr. Markus Schweighofer 11.11.2009 Aaron Kunert / Sven Wagner Lineare Algebra I Lösung 2.1: Behauptung:

Mehr