Weitere Eigenschaften

Größe: px
Ab Seite anzeigen:

Download "Weitere Eigenschaften"

Transkript

1 Weitere Eigenschaften Erklärung der Subtraktion: x y := x + ( y) (5) Die Gleichung a + x = b hat die eindeutig bestimmte Lösung x = b a. Beweis: (a) Zunächst ist x = b a eine Lösung, denn a + x = a + (b a) = (a + ( a)) + b = 0 + b = b. (b) Sei umgekehrt a + x = b, so addiere auf beiden Seiten a. Es folgt ( a) + a + x = b a, also x = b a. (6) Es gilt (x + y) = ( x) + ( y). Beweis: Es ist (x + y) + (( x) + ( y)) = 0 nach (A1) und (A2), woraus die Behauptung folgt. 1

2 Axiome der Multiplikation (M1) Assoziativität: (xy)z = x(yz) (M2) Kommutativität: xy = yx (M3) Existenz einer Eins: Es gibt 1 R mit x 1 = x für alle x R. (M4) Existenz eines multiplikativ Inversen: Zu jedem x R, x 0, gibt es y R mit x y = 1. 2

3 Distributivgesetz Addition und Multiplikation sind verkoppelt durch die Distributivität: (x + y)z = xz + yz für alle x, y, z R. Bemerkung: Aus der Kommutativität folgt natürlich die Distributivität auch auf der anderen Seite. Entsprechender Hinweis hinsichtlich der Inversenbildung. 3

4 Eigenschaften der Multiplikation (1) Die Zahl 1 mit x 1 = x für alle x R ist eindeutig bestimmt : Betrachte dazu 1 1. Dieses Element ist zugleich 1 und 1. (2) Zu jedem x R, x 0, ist das multiplikativ Inverse eindeutig bestimmt. Schreibweise: x 1 := y Multipliziere dazu x y = 1 auf beiden Seiten mit Inversem y zu x. (3) 1 1 = 1 : Verwende 1 1 = 1 und berücksichtige die Definition des Inversen. (4) (x 1 ) 1 = x für alle x R, x 0: Es ist x x 1 = 1. Denke nun an die Definition des Inversen! 4

5 Eigenschaften Multiplikation II (5) (x y) 1 = x 1 y 1 : Beachte dazu xyx 1 y 1 = 1 und denke an Definition des Inversen. Schreibweise: An Stelle von x 1 schreiben wir auch 1 x. Ebenso y x := x 1 y = yx 1. (6) Die Gleichung a x = b, a 0, hat die eindeutig bestimmte Lösung x = a 1 b = b a. 5

6 Beweis. (a) x = a 1 b ist eine Lösung, denn a (a 1 b) = (a a 1 )b = 1 b = b. (b) Falls x der Gleichung a x = b genügt, multipliziere (von links) mit a 1. Dies liefert x = a 1 b. (7) 1 ( y x ) = x y für x, y 0 Beweis: Bei der linken Seite handelt es sich um (x 1 y) 1 = (x 1 ) 1 y 1 = x y 1 ; dies ist in anderer Schreibweise die rechte Seite von (7). (8) Es gilt x 0 = 0 für alle x R: Wir verwenden = 0 und multiplizieren mit x. Distributivität liefert: x 0 + x 0 = x 0. Addition von x 0 auf beiden Seiten liefert dann die Behauptung. 6

7 Bruchrechnen (1) (2) a b cd = a b = a c b d b, d 0 a d b d b, d 0 (3) a b + c d = a d+c b b d b, d 0 (4) 1 ab = b a a, b 0 7

8 Begründung Die Regeln ergeben sich automatisch, wenn wir Brüche a b in der Form ab 1 schreiben und die uns bekannten Regeln für Addition, Multiplikation, Distributivität verwenden: Zu (1): Zu (2): Zu (3): a b cd =ab 1 cd 1 = (ac)(b 1 d 1 ) = (ac)(bd) 1 = a c b d. a b = ab 1 = ab 1 (dd 1 ) = (ad)(bd) 1 = a d b d. a b + c d =ad bd + bc bd = =(ad)(bd) 1 +(bc)(bd) 1Distr. = (ad+bc)(bd) 1 = ad+bc bd. Zu (4): Hatten wir schon! 8

9 Erfolgstest: Mathematische Mustererkennung (a) Berechne (a + b) (c + d). (b) Berechne (a + b) 2. (c) Berechne (a + b) (a b). (d) Wann ist a b = c d? b, d 0 (e) Ermittle a bc d. b, c, d 0 9

10 Erfolgstest: Mathematische Mustererkennung (a) Berechne (a + b) (c + d) : Distributivgesetz 2-mal. (b) Berechne (a + b) 2. Spezialfall von (a). (c) Berechne (a + b) (a b). Spezialfall von (a). (d) Wann ist a b = c d? Genau wenn d a = b c. (Erweitere mit b d.) (e) Ermittle a bc d? Schreibe als Produkt eines Bruchs und eines inversen Bruchs. 10

11 Axiome der Anordnung Reelle Zahlen kann man nicht nur addieren und multiplizieren, zwischen ihnen ist auch der Größenvergleich, eine Anordnung, erklärt. In R sind gewisse Elemente als positiv gekennzeichnet (Schreibweise: x > 0 ), so dass gilt: (P1) Für jedes x R gilt genau eine der Beziehungen x > 0, x = 0, x > 0. (P2) Sind x, y > 0, so folgt x + y > 0. (P3) Sind x, y > 0, so folgt x y > 0. 11

12 Verabredungen, Schreibweisen Wir schreiben: a>b a b > 0 a b a > b oder a = b. Ferner: a<b definiert als b > a a b definiert als b a 12

13 Eigenschaften (1) Reflexivität: x x gilt für alle x R: x x bedeutet x < x oder x = x. (2) Transitivität: x < y und y < z = x < z : Wir haben y x > 0 und z y > 0, wegen (P2) daher auch (z y) + (y x) > 0, somit z x > 0 und folglich x < z. (2 ) Variante: x y und y z = x z (3) Antisymmetrie: Aus x y und y x folgt x = y : Annahme x y. Dann ist x < y und y < x, folglich x < x und daher 0 = x x > 0 im Widerspruch zu (P1). (4) Vollständigkeit: Für x, y R gilt x y oder y x. 13

14 Ordnung und Addition Ungleichungen lassen sich addieren: x < y und x < y = x + x < y + y Es ist nämlich y x > 0 und y x > 0, wegen (P2) dann auch (y x) + (y x ) > 0, somit (y + y ) (x + x ) > 0, was x + x < y + y bedeutet. Variante: x y und x y = x + x y + y 14

15 Ordnung und Multiplikation Hier ist Vorsicht angesagt! x < y und a>0 impliziert a x < a y Wir haben y x > 0 und a > 0, daher wegen (P3) auch a(y x) > 0, folglich ay ax > 0, was a x < a y bedeutet. Variante: x y und a 0 impliziert ax ay. Aber: x < y und a<0 impliziert a x > a y. Es ist y x > 0 und a > 0, daher (P3) (y x)( a) > 0. ax ay > 0 und folglich ax > ay. Es folgt 15

16 Weitere Ordnungsbeziehungen Variante: x y und a 0 = a x a y Quadrate positiv : Für jede reelle Zahl x gilt x 2 0. Die Fälle x < 0, x = 0 und x > 0 sind zu unterscheiden. In jedem Fall folgt die Behauptung aus früheren Aussagen. Folgerungen: (a) Es ist 1 > 0. (b) Es gibt keine reelle Zahl x mit x 2 = 1. 16

17 Übergang zum Inversen (1) x > 0 impliziert 1 x > 0. Annahme 1 < 0: Multiplikation mit x > 0 liefert x 1 = x 1 x < x 0 = 0, Widerspruch! (2) x < 0 impliziert 1 x < 0. Es ist x > 0, wende nun (1) an. (3) 0 < x < y impliziert 1 y < 1 x. Multipliziere x < y mit Faktor 1 xy > 0. 17

18 Natürliche, ganze und rationale Zahlen Zunächst haben die zum Zählen verwendeten natürlichen Zahlen 0, 1, 2, 3,... nichts mit den reellen Zahlen zu tun. Durch die ausgezeichnete reelle Zahl 1 (Maßeinheit!) bettet sich die Menge N der natürlichen Zahlen jedoch in die Menge R der reellen Zahlen per Zuordnung n n R = n-mal {}}{ ein. Wir identifizieren n mit n R. Somit N R. Die Menge Z der ganzen Zahlen besteht aus allen Differenzen m n mit m, n N. Somit Z R. Die Menge Q der rationalen Zahlen besteht aus allen Quotienten m n mit m, n Z, n 0. Somit Q R. 18

19 Das Archimedische Axiom Eine wichtige Eigenschaft der Anordnung der reellen Zahlen wird durch das Archimedische Axiom ausgedrückt: Zu jeder reellen Zahl x gibt es eine natürliche Zahl n mit. x n Das Axiom beschreibt, wie die Menge N der natürlichen Zahlen in derjenigen R der reellen Zahlen gelegen ist. 19

20 Folgerungen I (1) Zu jeder reellen Zahl x gibt es eine ganze Zahl n mit n x < n + 1. Es ist n durch x eindeutig bestimmt. Schreibweise: n =: [x]. Beweis: Wähle n Z minimal mit x < n + 1. (Warum geht dies?) (2) Sind x, y > 0, so existiert n N mit n x > y. Beweis: Wähle n N mit y x < n. y < n x. Multiplikation mit x > 0 zeigt 20

21 Folgerungen II Die n-te Potenz einer reellen Zahl a ist a n := n mal {}}{ a a a. (3) Sei a > 1, dann gibt es zu jedem reellen M > 0 eine natürliche Zahl n, so dass a n > M. Beweis: Schreibe a = 1+x mit x > 0 und wende die Bernoullische Ungleichung a n = (1 + x) n 1 + n x an, welche für x 1 gilt. (Beweis vorführen.) Wegen (2) gibt es ein n N mit n x > M 1. Es folgt a n 1 + n x > M. 21

22 Rückschau: Reelle Zahlen Fassen wir zusammen: Die reellen Zahlen bilden eine Menge R zusammen mit zwei Verknüpfungen + und, so dass (R, +,.) den Eigenschaften (A1) (A4) für die Addition, (M1) (M4) für die Multiplikation und dem Distributivgesetz (D) genügt. Ferner ist auf R eine mit Addition und Multiplikation verträgliche vollständige Ordnung erklärt, die also den Eigenschaften (P1) (P3) genügt. Mit anderen Worten: (R, +,, <) bildet einen angeordneten Körper. Gleichfalls bildet (Q, +,, <) einen angeordneten Körper. Um die Eigenschaften der reellen Zahlen vollständig festzulegen reicht dann neben dem Archimedischen Axiom eine einzige weitere Zusatzanforderung, die Vollständigkeit, welche wir später diskutieren. 22

23 Elementare Kombinatorik Aufgabe der Kombinatorik ist das systematische Bestimmen der Elementanzahl, der Kardinalität, M einer endlichen Menge M. M = n bedeutet daher, dass M genau n verschiedene Elemente hat. Etwas vornehmer ausgedrückt: M = n gilt genau dann, wenn es eine bijektive Abbildung f : {1, 2,..., n} M gibt. 23

24 Einschub: Verknüpfung von Abbildungen Die Verknüpfung (Komposition) zweier Abbildungen f : M N und g : N P ist durch g f : M P, m g(f(m)) erklärt. (Die zuerst auszuführende Abbildung steht rechts.) Satz Die Verknüpfung von zwei bijektiven (injektiven, surjektiven) Abbildungen ist wieder bijektiv (bzw. injektiv, surjektiv). Beweis. Es ist leicht zu sehen, dass die Verknüpfung von zwei injektiven (surjektiven) Abbildungen wieder injektiv (bzw. surjektiv) ist. Der Rest folgt. 24

25 Die Umkehrabbildung einer bijektiven Abbildung Wir erinnern uns: Eine Abbildung f : M N heißt bijektiv, wenn es zu jedem n N genau ein m M mit f(m) = n gibt. Dies ermöglicht die Definition der Umkehrabbildung zu f. Die Umkehrabbildung g : N M der bijektiven Abbildung f : M N ordnet jedem n N das (wegen der Bijektivität von f) eindeutig bestimmte Urbild m M mit f(m) = n zu. Schreibweise: f 1 := g. Die Umkehrabbildung einer bijektiven Abbildung f : M N ist wieder bijektiv. Warum? Eigenschaften: (a) (f 1 ) 1 = f (b) (g f) 1 = g 1 f 1. 25

26 Zählformeln I (Z1) M = N Es gibt eine bijektive Abbildung f : M N. Beweis. Verwende, dass Verknüpfungen von bijektiven Abbildungen und Umkehrabbildungen wieder bijektiv sind. (Z2) M N = M + N, falls M und N disjunkt sind, d.h. M N = gilt. Beweis. Zähle erst die Elemente von M, dann die von N ab. (Z3) M N = M N. Schreibe M N als disjunkte Vereinigung der Teilmengen {m} N, mit m M, und zähle ab. 26

Natürliche, ganze und rationale Zahlen

Natürliche, ganze und rationale Zahlen Natürliche, ganze und rationale Zahlen Zunächst haben die zum Zählen verwendeten natürlichen Zahlen 0, 1, 2, 3,... nichts mit dem reellen Zahlen zu tun. Durch die ausgezeichnete reelle Zahl 1 (Maßeinheit!)

Mehr

2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z).

2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z). 17 Wir setzen in diesem Buch die reellen Zahlen als gegeben voraus. Um auf sicherem Boden zu stehen, werden wir in diesem und den folgenden Paragraphen einige Axiome formulieren, aus denen sich alle Eigenschaften

Mehr

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen Kapitel 2 Die reellen Zahlen Die reellen Zahlen werden zunächst und vorübergehend als Dezimalzahlen eingeführt. Die wichtigsten Eigenschaften werden aus dieser Darstellung hergeleitet, mit denen dann die

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlagen der Mathematik, WS 2014/15 Thomas Timmermann 26. November 2014 Was kommt nach den natürlichen Zahlen? Mehr als die natürlichen Zahlen braucht man nicht, um einige der schwierigsten

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2016 Prof. Manfred Einsiedler Philipp Wirth. Lösung 3

D-MATH, D-PHYS, D-CHAB Analysis I HS 2016 Prof. Manfred Einsiedler Philipp Wirth. Lösung 3 D-MATH, D-PHYS, D-CHAB Analsis I HS 016 Prof Manfred Einsiedler Philipp Wirth Lösung 3 Diese Woche werden nur Lösungen zu den Aufgaben 4, 5 und 6 zur Verfügung gestellt 4 a Nach Folgerung (i aus den Axiomen

Mehr

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen Kapitel 2 Die reellen Zahlen Die reellen Zahlen werden zunächst und vorübergehend als Dezimalzahlen eingeführt. Die wichtigsten Eigenschaften werden aus dieser Darstellung hergeleitet, mit denen dann die

Mehr

Vektorräume und Lineare Abbildungen

Vektorräume und Lineare Abbildungen Lineare Algebra Kapitel 9. Vektorräume Der Körper der reellen Zahlen Der Vektorraumbegriff, Beispiele Rechnen in Vektorräumen Linearkombinationen und Erzeugendensysteme Lineare Abhängigkeit und Unabhängigkeit

Mehr

Analysis für Informatiker

Analysis für Informatiker Analysis für Informatiker Wintersemester 2017/2018 Carsten.Schneider@risc.jku.at 1 Bemerkung: Dies ist kein Skript, welches den gesamten Inhalt der Vorlesung abdeckt. Es soll den Studierenden aber während

Mehr

MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/ OKTOBER 2016

MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/ OKTOBER 2016 MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/17 MARK HAMILTON LMU MÜNCHEN 1.1. Grundbegriffe zu Mengen. 1. 17. OKTOBER 2016 Definition 1.1 (Mengen und Elemente). Eine Menge ist die Zusammenfassung

Mehr

Mengen und Abbildungen

Mengen und Abbildungen Mengen und Abbildungen Der Mengenbegriff Durchschnitt, Vereinigung, Differenzmenge Kartesisches Produkt Abbildungen Prinzip der kleinsten natürlichen Zahl Vollständige Induktion Mengen und Abbildungen

Mehr

24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN

24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN 24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN x 2 = 0+x 2 = ( a+a)+x 2 = a+(a+x 2 ) = a+(a+x 1 ) = ( a+a)+x 1 = x 1. Daraus folgt dann, wegen x 1 = x 2 die Eindeutigkeit. Im zweiten Fall kann man für a 0 schreiben

Mehr

Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe

Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe Kapitel 5 Abbildungen 5.1 Definition: (Abbildung) Eine Abbildung zwischen zwei Mengen M und N ist eine Vorschrift f : M N, die jedem Element x M ein Element f(x) N zuordnet. Schreibweise: x f(x) 5. Beispiel:

Mehr

$Id: korper.tex,v /05/10 12:25:27 hk Exp $

$Id: korper.tex,v /05/10 12:25:27 hk Exp $ $Id: korper.tex,v 1.17 2012/05/10 12:25:27 hk Exp $ 4 Körper In der letzten Sitzung hatten wir den Körperbegriff eingeführt und einige seiner elementaren Eigenschaften vorgeführt. Insbesondere hatten wir

Mehr

Die komplexen Zahlen

Die komplexen Zahlen Die komplexen Zahlen Wir haben gesehen, dass die Menge R der reellen Zahlen einen angeordneten Körper bildet und dass für die Menge Q der rationalen Zahlen entsprechendes gilt. In beiden Körpern sind Gleichungen

Mehr

Grundkurs Mathematik I

Grundkurs Mathematik I Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 19 Kommutative Ringe Wir erfassen die in der letzten Vorlesung etablierten algebraischen Eigenschaften der ganzen Zahlen mit

Mehr

Reelle Zahlen, Gleichungen und Ungleichungen

Reelle Zahlen, Gleichungen und Ungleichungen 9 2. Vorlesung Reelle Zahlen, Gleichungen und Ungleichungen 4 Zahlenmengen und der Körper der reellen Zahlen 4.1 Zahlenmengen * Die Menge der natürlichen Zahlen N = {0,1,2,3,...}. * Die Menge der ganzen

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Die reellen Zahlen als Dedekindsche Schnitte. Iwan Otschkowski

Die reellen Zahlen als Dedekindsche Schnitte. Iwan Otschkowski Die reellen Zahlen als Dedekindsche Schnitte Iwan Otschkowski 14.12.2016 1 1 Einleitung In dieser Ausarbeitung konstruieren wir einen vollständig geordneten Körper aus gewissen Teilmengen von Q, den Dedekindschen

Mehr

0 Mengen und Abbildungen, Gruppen und Körper

0 Mengen und Abbildungen, Gruppen und Körper 0 Mengen und Abbildungen, Gruppen und Körper In diesem Paragrafen behandeln wir einige für die Lineare Algebra und für die Analysis wichtige Grundbegriffe. Wir beginnen mit dem Begriff der Menge. Auf Cantor

Mehr

Brückenkurs Mathematik 2015

Brückenkurs Mathematik 2015 Technische Universität Dresden Fachrichtung Mathematik, Institut für Analysis Dr.rer.nat.habil. Norbert Koksch Brückenkurs Mathematik 2015 1. Vorlesung Logik, Mengen und Funktionen Ich behaupte aber, dass

Mehr

Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen. Steven Klein

Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen. Steven Klein Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen Steven Klein 04.01.017 1 In dieser Ausarbeitung konstruieren wir die reellen Zahlen aus den rationalen Zahlen. Hierzu denieren wir zunächst

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Zahlen und elementares Rechnen

Zahlen und elementares Rechnen und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3

Mehr

Reelle Zahlen. 2-a Die Körperaxiome

Reelle Zahlen. 2-a Die Körperaxiome 2 Reelle Zahlen Die reellen Zahlen bilden das Fundament der gesamten Analysis. Es ist daher sinnvoll, sich zunächst Klarheit über dieses Fundament zu verschaffen. Der konstruktive und historisch korrekte

Mehr

Axiomatische Beschreibung der ganzen Zahlen

Axiomatische Beschreibung der ganzen Zahlen Axiomatische Beschreibung der ganzen Zahlen Peter Feigl JKU Linz peter.feigl@students.jku.at 0055282 Claudia Hemmelmeir JKU Linz darja@gmx.at 0355147 Zusammenfassung Wir möchten in diesem Artikel die ganzen

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlagen der Mathematik, WS 0/ Thomas Timmermann 8. Januar 0 Kardinalzahlen und die Mächtigkeit von Mengen Gleichmächtigkeit von Menge Zur Erinnerung: Wir wollen unendlich große Mengen hinsichtlich

Mehr

2.2 Konstruktion der rationalen Zahlen

2.2 Konstruktion der rationalen Zahlen 2.2 Konstruktion der rationalen Zahlen Wie wir in Satz 2.6 gesehen haben, kann man die Gleichung a + x = b in Z jetzt immer lösen, allerdings die Gleichung a x = b im allgemeinen immer noch nicht. Wir

Mehr

Konstruktion der reellen Zahlen

Konstruktion der reellen Zahlen Konstruktion der reellen Zahlen Zur Wiederholung: Eine Menge K (mit mindestens zwei Elementen) heißt Körper, wenn für beliebige Elemente x, y K eindeutig eine Summe x+y K und ein Produkt x y K definiert

Mehr

Rationale, irrationale und reelle Zahlen. 4-E Vorkurs, Mathematik

Rationale, irrationale und reelle Zahlen. 4-E Vorkurs, Mathematik Rationale, irrationale und reelle Zahlen 4-E Vorkurs, Mathematik Rationale Zahlen Der Grund für die Einführung der rationalen Zahlen ist der, dass wir mit ihnen auch Gleichungen der Form q x = p lösen

Mehr

Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die kontinuierlich ablaufende Zeit.

Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die kontinuierlich ablaufende Zeit. Kapitel 4 Reelle Zahlen 4.1 Die reellen Zahlen (Schranken von Mengen; Axiomatik; Anordnung; Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die

Mehr

Charakterisierung der reellen Zahlen Die reellen Zahlen bilden einen vollständigen angeordneten Körper, der mit R bezeichnet wird.

Charakterisierung der reellen Zahlen Die reellen Zahlen bilden einen vollständigen angeordneten Körper, der mit R bezeichnet wird. 2 Reelle Zahlen Die reellen Zahlen bilden das Fundament der gesamten Analysis. Es ist daher sinnvoll, sich zunächst Klarheit über dieses Fundament zu verschaffen. Der konstruktive und historisch korrekte

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 2 Körper Wir werden nun die Eigenschaften der reellen Zahlen besprechen. Grundlegende Eigenschaften von mathematischen Strukuren

Mehr

4. Weitere Eigenschaften der reellen Zahlen: Geordnete Körper

4. Weitere Eigenschaften der reellen Zahlen: Geordnete Körper 40 Andreas Gathmann 4. Weitere Eigenschaften der reellen Zahlen: Geordnete Körper Wir haben bisher von den reellen Zahlen nur die Körpereigenschaften, also die Eigenschaften der vier Grundrechenarten ausgenutzt

Mehr

Konstruktion reeller Zahlen aus rationalen Zahlen

Konstruktion reeller Zahlen aus rationalen Zahlen Konstruktion reeller Zahlen aus rationalen Zahlen Wir nehmen an, daß der Körper der rationalen Zahlen bekannt ist. Genauer wollen wir annehmen: Gegeben ist eine Menge Q zusammen mit zwei Verknüpfungen

Mehr

Zahlen und elementares Rechnen (Teil 1)

Zahlen und elementares Rechnen (Teil 1) und elementares Rechnen (Teil 1) Dr. Christian Serpé Universität Münster 6. September 2010 Dr. Christian Serpé (Universität Münster) und elementares Rechnen (Teil 1) 6. September 2010 1 / 40 Gliederung

Mehr

Binomialkoeffizienten

Binomialkoeffizienten Binomialkoeffizienten ) = n! Die Anzahl ( n k der k-elementigen Teilmengen einer k!(n k)! n-elementigen Menge heißt Binomialkoeffizient n über k. Wichtig sind folgende Eigenschaften, welche die Berechnung

Mehr

p 2istirrational Satz 1.15 Beweis. Es gibt keine rationale Zahl x, diediegleichungx 2 =2erfüllt.

p 2istirrational Satz 1.15 Beweis. Es gibt keine rationale Zahl x, diediegleichungx 2 =2erfüllt. p 2istirrational Satz 1.15 Es gibt keine rationale Zahl x, diediegleichungx 2 =2erfüllt. Beweis. Annahme: Es existiert x 2 Q mit x 2 = 2. Wegen x 2 Q folgt x = p q und p und q sind teilerfremde ganze Zahlen.

Mehr

Kapitel III. Aufbau des Zahlensystems

Kapitel III. Aufbau des Zahlensystems Kapitel III. Aufbau des Zahlensystems 1 Addition und Multiplikation natürlicher Zahlen Wir wollen erklären, wie man natürliche Zahlen addiert und multipliziert und dabei nur den Begriff das Zählens verwenden.

Mehr

Axiomatik der reellen Zahlen

Axiomatik der reellen Zahlen Kapitel 13 Axiomatik der reellen Zahlen 13.1 Motivation Analysis beschäftigt sich mit Grenzwerten, Differentiation und Integration. Viele Phänomene in den Natur- und Ingenieurswissenschaften lassen sich

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Vorlesung. Funktionen/Abbildungen

Vorlesung. Funktionen/Abbildungen Vorlesung Funktionen/Abbildungen 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

b liegt zwischen a und c.

b liegt zwischen a und c. 2 DIE ANORDNUNGSAXIOME 5 (2.4) a, b, c R : (a < b 0 < c) ac < bc Monotoniegesetz der Multiplikation Bezeichnungen a > b : b < a (> wird gelesen: größer als ) a b : a < b oder a = b a b : a > b oder a =

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Sei G eine Gruppe. Zeige, dass ( 1 ) 1 = Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Arbeitsblatt 3 Die Pausenaufgabe Aufgabe 3.1. Formuliere die binomischen

Mehr

4. Funktionen und Relationen

4. Funktionen und Relationen Bestimmung der Umkehrfunktionen c) bei reellen Funktionen geometrisch durch Spiegelung des Funktionsgraphen an der Winkelhalbierenden y = x. y = x 3 y = x y = x y = (x+1)/2 y = x 1/3 y = 2x 1 Seite 27

Mehr

Skript und Übungen Teil II

Skript und Übungen Teil II Vorkurs Mathematik Herbst 2009 M. Carl E. Bönecke Skript und Übungen Teil II Das erste Semester wiederholt die Schulmathematik in einer neuen axiomatischen Sprache; es ähnelt damit dem nachträglichen Erlernen

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 21. Januar 2016 Definition 8.1 Eine Menge R zusammen mit zwei binären Operationen

Mehr

Kapitel 11. Dimension und Isomorphie

Kapitel 11. Dimension und Isomorphie Kapitel 11. Dimension und Isomorphie Bestimmung der Dimension Satz. Sei (v 1, v 2,..., v n ) ein minimales Erzeugendensystem von V, d.h. dieses System ist ein Erzeugendensystem von V, aber keines der nach

Mehr

4. Übung zur Linearen Algebra I -

4. Übung zur Linearen Algebra I - 4. Übung zur Linearen Algebra I - en Kommentare an Hannes.Klarner@Fu-Berlin.de FU Berlin. WS 2009-10. Aufgabe 13 Auf dem Cartesischen Produkt Z Z werden 2 Verknüpfungen, definiert durch: Man zeige: (a

Mehr

2 Die Menge der ganzen Zahlen. von Peter Franzke in Berlin

2 Die Menge der ganzen Zahlen. von Peter Franzke in Berlin Die Menge der ganzen Zahlen von Peter Franzke in Berlin Das System der natürlichen Zahlen weist einen schwerwiegenden Mangel auf: Es gibt Zahlen mn, derart, dass die lineare Gleichung der Form mx n keine

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 2 Körper Wir werden nun die Eigenschaften der reellen Zahlen besprechen. Grundlegende Eigenschaften von mathematischen Strukuren

Mehr

Denition 1 (Die Peanoschen Axiome). Es gibt eine Menge N und eine sogenannte Nachfolgefunktion S mit folgenden Eigenschaften.

Denition 1 (Die Peanoschen Axiome). Es gibt eine Menge N und eine sogenannte Nachfolgefunktion S mit folgenden Eigenschaften. In dieser Ausarbeitung handelt es sich es um die Menge der natürlichen Zahlen und deren Eigenschaften. In der Analysis werden häug zunächst die reellen Zahlen als vollständig geordneter Körper betrachtet

Mehr

Beispiel 85. Satz 86 Eine Unteralgebra (bzgl. ) einer Gruppe ist eine Untergruppe, falls sie unter der Inversenbildung 1 abgeschlossen ist.

Beispiel 85. Satz 86 Eine Unteralgebra (bzgl. ) einer Gruppe ist eine Untergruppe, falls sie unter der Inversenbildung 1 abgeschlossen ist. 5.4 Untergruppen Definition 84 Eine Unteralgebra T,, 1 einer Gruppe G = S,, 1 heißt Untergruppe von G, falls T,, 1 eine Gruppe ist. Bemerkung: Nicht jede Unteralgebra einer Gruppe ist eine Untergruppe!

Mehr

Reelle Zahlen. J. Pöschel, Etwas Analysis, DOI / _2, Springer Fachmedien Wiesbaden 2014

Reelle Zahlen. J. Pöschel, Etwas Analysis, DOI / _2, Springer Fachmedien Wiesbaden 2014 2 Reelle Zahlen Die reellen Zahlen bilden das Fundament der gesamten Analysis. Es ist daher sinnvoll, sich zunächst Klarheit über dieses Fundament zu verschaffen. Der konstruktive und historisch korrekte

Mehr

Elemente der Algebra

Elemente der Algebra Prof. Dr. H. Brenner Osnabrück SS 2015 Elemente der Algebra Vorlesung 1 Der Gruppenbegriff Definition 1.1. Eine Verknüpfung auf einer Menge M ist eine Abbildung : M M M, (x,y) (x,y) = x y. Statt (x,y)

Mehr

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Anordnung. Definition 2.1 Man nennt eine Anordnung für K, wenn: 1. Für jeden a K gilt a a (Reflexivität).

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Anordnung. Definition 2.1 Man nennt eine Anordnung für K, wenn: 1. Für jeden a K gilt a a (Reflexivität). Analysis 1, Woche 2 Reelle Zahlen 2.1 Anordnung Definition 2.1 Man nennt eine Anordnung für K, wenn: 1. Für jeden a K gilt a a (Reflexivität). 2. Für jeden a, b K mit a b und b a gilt a = b (Antisymmetrie).

Mehr

Teilbarkeitslehre und Restklassenarithmetik

Teilbarkeitslehre und Restklassenarithmetik Vorlesung Teilbarkeitslehre und Restklassenarithmetik.1 Gruppentheorie WiewirinVorlesung2gesehenhaben,hatdieMengeZmitderAdditiongewisse Eigenschaften. Wir fassen nun bestimmte Eigenschaften zusammen und

Mehr

Mathematik für Informatiker I. Musterlösungen zum Hausübungsblatt 5. Aufgabe 1. Christoph Eisinger Wintersemester 2010/11

Mathematik für Informatiker I. Musterlösungen zum Hausübungsblatt 5. Aufgabe 1. Christoph Eisinger Wintersemester 2010/11 Mathematik für Informatiker I Christoph Eisinger Wintersemester 2010/11 Musterlösungen zum Hausübungsblatt 5 Aufgabe 1 (a) Additionstafel in Z 7 : + [0] [1] [2] [3] [4] [5] [6] [0] [0] [1] [2] [3] [4]

Mehr

Analysis für Ingenieure

Analysis für Ingenieure Analysis für Ingenieure Prof. Dr. Wolfram Koepf Universität Kassel http://www.mathematik.uni-kassel.de/~koepf SS 2011 Überblick 0. Einleitung 1. Umgang mit Mengen 2. Die natürlichen Zahlen und das Prinzip

Mehr

1 Körper. Wir definieren nun, was wir unter einem Körper verstehen, und sehen dann, dass es noch andere, ganz kleine Körper gibt:

1 Körper. Wir definieren nun, was wir unter einem Körper verstehen, und sehen dann, dass es noch andere, ganz kleine Körper gibt: 1 Körper Sie kennen bereits 2 Beispiele von Zahlkörpern: (Q, +, ) (R, +, ) die rationalen Zahlen mit ihrer Addition und Multiplikation die reellen Zahlen mit ihrer Addition und Multiplikation Vielleicht

Mehr

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale Kapitel I Reelle Zahlen 1 Axiomatische Charakterisierung der reellen Zahlen R 2 Angeordnete Körper 3 Die natürlichen, die ganzen und die rationalen Zahlen 4 Das Vollständigkeitsaxiom und irrationale Zahlen

Mehr

3. Diskrete Mathematik

3. Diskrete Mathematik Diophantos von Alexandria um 250 Georg Cantor 1845-1918 Pythagoras um 570 v. Chr Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 3: Diskrete Mathematik 3.1 Zahlentheorie: Abzählbarkeit,

Mehr

FU Berlin: WiSe (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5. Aufgabe 18. Aufgabe 20. (siehe Musterlösung Zettel 4)

FU Berlin: WiSe (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5. Aufgabe 18. Aufgabe 20. (siehe Musterlösung Zettel 4) FU Berlin: WiSe 13-14 (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5 Aufgabe 18 (siehe Musterlösung Zettel 4) Aufgabe 20 In der Menge R der reellen Zahlen sei die Relation 2 R 2 definiert durch: x 2 y :

Mehr

Vollständige Induktion. Analysis I. Guofang Wang. Universität Freiburg

Vollständige Induktion. Analysis I. Guofang Wang. Universität Freiburg Universität Freiburg 26.10.2011 Vollständige Induktion Wir unterbrechen jetzt die Diskussion der Axiome der reellen Zahlen, um das Beweisverfahren der vollständigen Induktion kennenzulernen. Wir setzen

Mehr

(1.18) Def.: Eine Abbildung f : M N heißt

(1.18) Def.: Eine Abbildung f : M N heißt Zurück zur Mengenlehre: Abbildungen zwischen Mengen (1.17) Def.: Es seien M, N Mengen. Eine Abbildung f : M N von M nach N ist eine Vorschrift, die jedem x M genau ein Element f(x) N zuordnet. a) M = N

Mehr

Lineare Algebra 6. Übungsblatt

Lineare Algebra 6. Übungsblatt Lineare Algebra 6. Übungsblatt Fachbereich Mathematik M. Schneider 16.05.01 Konstantin Pertschik, Daniel Körnlein Gruppenübung Aufgabe G19 Berechnen Sie das inverse Element bzgl. Multiplikation in der

Mehr

1. Gruppen. 1. Gruppen 7

1. Gruppen. 1. Gruppen 7 1. Gruppen 7 1. Gruppen Wie schon in der Einleitung erläutert wollen wir uns in dieser Vorlesung mit Mengen beschäftigen, auf denen algebraische Verknüpfungen mit gewissen Eigenschaften definiert sind.

Mehr

Analysis I - Reelle Zahlen

Analysis I - Reelle Zahlen November 17, 2008 Algebraische Grundbegriffe und Körper Definition Sei M eine Menge. Jede Funktion f : M M M heißt eine (binäre, innere) Verknüpfung oder eine Operation auf M. Wir schreiben für (a, b)

Mehr

2 Mengen und Abbildungen

2 Mengen und Abbildungen 2.1 Mengen Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen. Die Objekte heiÿen Elemente. Ist M eine Menge und x ein Element von M so schreiben wir x M. Wir sagen auch:

Mehr

Vorlesung 27. Der projektive Raum. Wir werden den projektiven Raum zunehmend mit mehr Strukturen versehen.

Vorlesung 27. Der projektive Raum. Wir werden den projektiven Raum zunehmend mit mehr Strukturen versehen. Vorlesung 27 Der projektive Raum Definition 1. Sei K ein Körper. Der projektive n-dimensionale Raum P n K besteht aus allen Geraden des A n+1 K durch den Nullpunkt, wobei diese Geraden als Punkte aufgefasst

Mehr

30 Ringe und Körper Motivation Definition: Ring. Addition und eine. Häufig gibt es auf einer Menge zwei Verknüpfungen: eine

30 Ringe und Körper Motivation Definition: Ring. Addition und eine. Häufig gibt es auf einer Menge zwei Verknüpfungen: eine 30 Ringe und Körper 30.1 Motivation Häufig gibt es auf einer Menge zwei Verknüpfungen: eine Addition und eine Multiplikation. Beispiele: (Z, +, ) hier gibt es sogar noch eine Division mit Rest. (IR, +,

Mehr

Kapitel 1 Die natürlichen und die ganze Zahlen

Kapitel 1 Die natürlichen und die ganze Zahlen Kapitel 1 Die natürlichen und die ganze Zahlen Inhalt 1.1 1.1 Vollständige Induktion z.b. z.b. 1+ 1+ 2 + 3 +...... + n = n(n+1)/2 1.2 1.2 Die Die Peano-Axiome Ein Ein Axiomensystem für für die die natürlichen

Mehr

Vollständigkeit. 1 Konstruktion der reellen Zahlen

Vollständigkeit. 1 Konstruktion der reellen Zahlen Vortrag im Rahmen des Proseminars zur Analysis, 17.03.2006 Albert Zeyer Ziel des Vortrags ist es, die Vollständigkeit auf Basis der Konstruktion von R über die CAUCHY-Folgen zu beweisen und äquivalente

Mehr

Vorkurs Mathematik. Vorlesung 8. Angeordnete Körper

Vorkurs Mathematik. Vorlesung 8. Angeordnete Körper Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Vorkurs Mathematik Vorlesung 8 Angeordnete Körper Definition 8.1. Ein Körper K heißt angeordnet, wenn es eine totale Ordnung auf K gibt, die die beiden Eigenschaften

Mehr

3 Vollständige Induktion

3 Vollständige Induktion 3.1 Natürliche Zahlen In den vorherigen Kapiteln haben wir die Menge der natürlichen Zahlen schon mehrfach als Beispiel benutzt. Das Konzept der natürlichen Zahlen erscheint uns einfach, da wir es schon

Mehr

Terme und Formeln Grundoperationen

Terme und Formeln Grundoperationen Terme und Formeln Grundoperationen Die Vollständige Anleitung zur Algebra vom Mathematiker Leonhard Euler (*1707 in Basel, 1783 in Petersburg) prägte den Unterricht und die Lehrmittel für lange Zeit. Euler

Mehr

Vorkurs Mathematik 1

Vorkurs Mathematik 1 Vorkurs Mathematik 1 Einführung in die mathematische Notation Konstanten i komplexe Einheit i 2 + 1 = 0 e Eulersche Zahl Kreiszahl 2 Einführung in die mathematische Notation Bezeichner Primzahlen, Zähler

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} bzw. N 0 = {0, 1, 2,

Mehr

Kardinalzahlen. Bemerkung. Eine unendliche Kardinalzahl α muss eine Limesordinalzahl sein. (Beweis zur Übung)

Kardinalzahlen. Bemerkung. Eine unendliche Kardinalzahl α muss eine Limesordinalzahl sein. (Beweis zur Übung) Kardinalzahlen Kardinalzahlen sollen die Größe von Mengen messen, daher suchen wir eine Aussage der Form, dass jede Menge bijektiv auf eine Kardinalzahl abgebildet werden kann. Um eine brauchbare Theorie

Mehr

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. Aufgaben mit Musterlösung

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. Aufgaben mit Musterlösung Technische Universität München Ferienkurs Lineare Algebra 1 Mengenlehre, Aussagen, Relationen und Funktionen Aufgaben mit Musterlösung 21. März 2011 Tanja Geib 1 Aufgabe 1 Geben Sie zu B = {0, 2, 4} und

Mehr

5.9 Permutationsgruppen. Sei nun π S n. Es existiert folgende naive Darstellung: Kürzer schreibt man auch

5.9 Permutationsgruppen. Sei nun π S n. Es existiert folgende naive Darstellung: Kürzer schreibt man auch 5.9 Permutationsgruppen Definition 103 Eine Permutation ist eine bijektive Abbildung einer endlichen Menge auf sich selbst; o. B. d. A. sei dies die Menge U := {1, 2,..., n}. S n (Symmetrische Gruppe für

Mehr

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich.

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich. 3.5 Ringe und Körper Gehen wir noch mal zu den ganzen Zahlen zurück. Wir wissen: (Z, + ist eine Gruppe, es gibt aber als Verknüpfung noch die Multiplikation, es gibt ein neutrales Element bezüglich, es

Mehr

Lineare Algebra I. Anhang. A Relationen. Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA. Wintersemester 2009/10

Lineare Algebra I. Anhang. A Relationen. Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA. Wintersemester 2009/10 Fakultät für Mathematik Fachgebiet Mathematische Informatik Anhang Lineare Algebra I Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA Wintersemester 2009/10 A Relationen Definition A.1. Seien X, Y beliebige

Mehr

Proseminar Analysis Vollständigkeit der reellen Zahlen

Proseminar Analysis Vollständigkeit der reellen Zahlen Proseminar Analysis Vollständigkeit der reellen Zahlen Axel Wagner 18. Juli 2009 1 Voraussetzungen Zunächst wollen wir festhalten, was wir als bekannt voraussetzen: Es sei (Q, +, ) der Körper der rationalen

Mehr

< hergeleitet. < war nach 1.9 mit Hilfe von Rechenregeln für

< hergeleitet. < war nach 1.9 mit Hilfe von Rechenregeln für 2 Angeordnete Körper 2.1 Grundrechenregeln für < in einem angeordneten Körper 2.3 Weitere Rechenregeln für < und 2.4 Positive und negative Elemente 2.5 Ungleichung des arithmetischen Mittels 2.7 Betrag

Mehr

KAPITEL 1: ENDLICHE KÖRPER 1 ALLGEMEINES 2 GLEICHUNGEN ÜBER EINEM ENDLICHEN KÖRPER

KAPITEL 1: ENDLICHE KÖRPER 1 ALLGEMEINES 2 GLEICHUNGEN ÜBER EINEM ENDLICHEN KÖRPER RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG MATHEMATISCHES INSTITUT SEMINAR: QUADRATISCHE FORMEN ÜBER DEN RATIONALEN ZAHLEN SOMMERSEMESTER 2007 DOZENT: PROF. DR. KAY WINGBERG ASSISTENT: JOHANNES BARTELS KAPITEL

Mehr

Abbildungen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Abbildungen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Abbildungen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Abbildungen Die wichtigsten Relationen sind die Abbildungen: Eine Abbildung (A,B,f ) von A nach

Mehr

Die rationalen Zahlen. Caterina Montalto Monella

Die rationalen Zahlen. Caterina Montalto Monella Die rationalen Zahlen Caterina Montalto Monella 07.12.2016 1 1 Die Konstruktion der rationalen Zahlen In dieser Ausarbeitung konstruieren wir die rationalen Zahlen aus den ganzen und den natürlichen Zahlen.

Mehr

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr Bemerkung: Der folgende Abschnitt Boolesche Algebren ist (im WS 2010/11) nicht Teil des Prüfungsstoffs, soweit nicht Teile daraus in der Übung behandelt werden! Diskrete Strukturen 5.9 Permutationsgruppen

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} Ganze Zahlen : Aus

Mehr

2. Machen Sie sich klar, dass jede denkbare Festsetzung fur die noch fehlenden\ Dierenzen durch Werte in N 0 unschone\ Konsequenzen hat.

2. Machen Sie sich klar, dass jede denkbare Festsetzung fur die noch fehlenden\ Dierenzen durch Werte in N 0 unschone\ Konsequenzen hat. 3 Die ganzen Zahlen 3.1 Historisches Die { bisher noch nicht erklarte { Subtraktion ist in N 0 nicht uneingeschrankt durchfuhrbar. Die negativen Zahlen wurden noch zu Zeiten von Rene Descartes als falsche\

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 3 Gruppen In der linearen Algebra wird im Allgemeinen ein Grundkörper K zugrunde gelegt, über den sich

Mehr

Zahlen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Zahlen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Zahlen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Die natürlichen Zahlen Für eine beliebige Menge S definiert man den Nachfolger S + durch S + := S {S}.

Mehr

$Id: reell.tex,v /11/15 13:12:24 hk Exp $

$Id: reell.tex,v /11/15 13:12:24 hk Exp $ $Id: reell.tex,v.8 200//5 3:2:24 h Exp $ 4 Die reellen Zahlen 4.3 Das Vollständigeitsaxiom Wir hatten das Supremum einer Menge M R als die leinste obere Schrane von M definiert, sofern eine solche überhaupt

Mehr

4 Erweiterungen der natürlichen Zahlen

4 Erweiterungen der natürlichen Zahlen 4 Erweiterungen der natürlichen Zahlen 1. Ganze Zahlen Die arithmetischen Operationen der Addition und Multiplikation sind in den natürlichen Zahlen nur eingeschränkt umkehrbar. Will man zu jedem n ein

Mehr

2 Die reellen Zahlen. 2.1 IR als Körper

2 Die reellen Zahlen. 2.1 IR als Körper 16 2 Die reellen Zahlen Von den reellen Zahlen und ihren Eigenschaften haben wir bereits im vorigen Kapitel ausgiebig Gebrauch gemacht, gingen aber stillschweigend davon aus, dass der Leser auf eine intuitive

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 016/17 Fachbereich Mathematik Janko Latschev Lösungsskizzen 6 Grundlagen der Mathematik Präsenzaufgaben (P9) Die Ordnung der natürlichen Zahlen I Wir hatten in der Vorlesung

Mehr

Lineare Algebra, Teil I

Lineare Algebra, Teil I Lineare Algebra, Teil I (Folien zur Vorlesung) Joachim Stöckler Auszüge aus dem Vorlesungsskript von Prof. Rudolf Scharlau aus dem WS 2009/10 werden auf den Folien verwendet. Für die Bereitstellung dieses

Mehr