4. Die Laplacesche Gleichverteilung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "4. Die Laplacesche Gleichverteilung"

Transkript

1 Universität Basel Wirtschaftswissenschaftliches Zentrum Grundlagen der Stochastik Dr. Thomas Zehrt Inhalt: 1. Die Ereignismenge 2. Die Wahrscheinlichkeitsverteilung 3. Eigenschaften einer Wahrscheinlichkeitsverteilung 4. Die Laplacesche Gleichverteilung

2 2 Teil 1 Die Ereignismenge

3 3 Zufallsexperiment Ω die Menge aller möglichen Ausgänge des Experimentes und P : Ω [0,1] eine Wahrscheinlichkeitsverteilung

4 4 Zufallsexperiment: ein (theoretisch beliebig oft wiederholbarer) Vorgang, dessen Endzustand oder Ergebnis vom,,zufall abhängt. Die Menge aller überhaupt möglichen Ergebnisse sei soweit bekannt, dass wir jedem Ergebnis ein Element ω einer (mathematischen) Menge Ω, der sogenannten Ergebnismenge, zuordnen können.

5 Beispiele: 1. Werfen einer Münze: Ω = {Kopf,Zahl} Werfen eines Würfels: Ω = {1,2,3,4,5,6}. 3. Überprüfung von n Geräten, ob sie defekt (=0) oder intakt (=1) sind: Ω = {ω = (ω 1,...,ω n ) : ω i {0,1} für i = 1,...,n}. 4. n-maliges Werfen eines Würfels: Ω = {ω = (ω 1,...,ω n ) : ω i {1,...,6} für i = 1,...,n}. 5. Wert einer Aktie (heute um 19:00 Uhr): Ω = [0, ). Zulässig: Ω,,grösser als nötig zu wählen!!

6 6 Teilmengen A Ω heissen Ereignisse. Wir wollen sagen, dass das Ereignis A eingetroffen ist, wenn ein Ergebnis ω mit ω A aufgetreten ist. Beispiele: 1. Das Ereignis,,gerade Augenzahl beim Werfen eines Würfels ist A = {2,4,6} und A ist eingetroffen, wenn eine 2, 4 oder 6 gewürfelt wurde. 2. Das Ereignis,,höchstens drei der n geprüften Geräte sind defekt ist: A = { (ω 1,...,ω n ) : ω i {0,1} für i = 1,...,n und ω ω n 3 } 3. Das Ereignis,,die Aktie ist wertlos oder kostet zwischen 20.- und 50.- SFr. ist A = {0} [20,50].

7 Operationen mit Ereignismengen: 7 Darstellung Ereignis Erkärung A B A und B Alle Elemente aus Ω, die zu A und B gehören. A B A oder B Alle Elemente aus Ω, die zu A oder B gehören. A B A ohne B Alle Elemente aus Ω, A\B die zu A aber nicht zu B gehören. Ā nicht A Alle Elemente aus Ω, die nicht zu A gehören. Ω Ω heisst das sichere Ereignis und Ω (die leere Menge) das unmögliche Ereignis. Ereignisse A und B heissen unvereinbar, wenn A B = ist.

8 8 Die zufälligen Ereignisse A 1,A 2,...,A m heissen vollständiges System oder vollständige Zerlegung von Ω genau dann, wenn A 1 A 2... A m = Ω und A i A j = für alle i j. Beispiel: Einmaliger Würfelwurf die Elementarereignisse ω 1 = 1,...,ω 6 = 6 bilden stets eine vollständige Zerlegung, A 1 = {1,2,3} und A 2 = {4,5,6} A 1 = {1} und A 2 = {2,3,4,5,6}

9 Teil 2 Die Wahrscheinlichkeitsverteilung 9

10 10 Jeder Teilmenge A Ω muss ein charakteristischer Zahlenwert zuordnen werden, der ein Mass dafür darstellt, wie stark wir mit dem Eintreffen dieses Ereignisses zu rechnen haben. Mathematisch: Funktion P : P(Ω) [0,1] die jedem Ereignis A eine Zahl zwischen 0 und 1 (oder 0% und 100%) zuordnet. Mögliche Interpretation: Auf jedem Ereignis A Ω der Menge lastet ein Gewicht P(A).

11 Eine solche Funktion P heisst 11 Wahrscheinlichkeitsverteilung und wir erwarten, dass P die folgenden drei grundlegenden Eigenschaften hat: 1. P(Ω) = 1 (P ist normiert); 2. für alle A Ω gilt P(A) 0 und 3. sind A 1,A 2,... paarweise disjunkte Mengen (paarweise unvereinbare Ereignisse), so ist P = P(A i ) (P ist additiv). i=1 A i i=1 Das Paar (Ω,P) ist ein Wahrscheinlichkeitsraum.

12 12 Relative Häufigkeit /Wahrscheinlichkeit Der Ausgang eines einzelnen Zufallsexperimentes ist völlig offen. Führt man ein Experiment sehr oft aus (n-mal), und zählt dabei, wie oft ein bestimmtes Ereignis A eintritt (k-mal), so beobachtet man immer, dass die relative Häufigkeit f(a) von A mit wachsendem n gegen einen festen Wert p [0, 1] strebt: f(a) = k n p [0,1]. Dabei ist der Grenzwert nicht im mathematischen Sinne zu verstehen, sondern rein empirisch zu deuten.

13 Teil 3 Weitere Eigenschaften einer Wahrscheinlichkeitsverteilung 13

14 14 Für alle A,B,A 1,...,A n Ω gilt: P(Ā) A B = 1 P(A) P(A) P(B) P(A B) = P(A) P(A B) P( n i=1 A i) n i=1 P(A i ) P(A B) = P(A) + P(B) P(A B) P(B) = n i=1 P(B A i ) falls die Mengen A i eine vollständige Zerlegung von Ω bilden

15 15 Beweis für P(Ā) = 1 P(A) Für jede Teilmenge A Ω gilt A Ā = Ω und A Ā =. Mit den Eigenschaften 1 und 3 aus der Definition folgt P(Ω) = 1 = P(A) + P(Ā) und somit die Behauptung.

16 16 Beweis für A B P(A) P(B) Da A B gilt, ist B = A (B A) und diese Vereinigung ist disjunkt. Damit folgt mit Eigenschaften 3 und 2 aus der Definition: P(B) = P(A (B A)) = P(A) + P(B A) }{{} 0 P(A).

17 Beweis für P(A B) = P(A) P(A B) 17 Die Menge A kann auf die folgende Weise als disjunkte Vereinigung geschrieben werden: A = (A B) (A B) = (A B) (A B). Mit der Eigenschaft 3 aus der Definition folgt somit P(A) = P((A B) (A B)) = P(A B) + P(A B) und damit die Behauptung.

18 18 Beweis für P( n i=1 A i) n i=1 P(A i ) Diese Regel folgt durch Induktion aus der Eigenschaft 3 aus der Definition.

19 Beweis für P(A B) = P(A)+P(B) P(A B) 19 Wir nutzen die folgenden Darstellungen der Mengen A, B und A B als disjunkte Vereinigung: A = (A B) (A B) B = (B A) (A B) A B = (A B) (B A) (A B). Mit Eigenschaft 3 folgt nun einerseits P(A) = P(A B) + P(A B) P(B) = P(B A) + P(A B) also P(A) + P(B) = P(A B) + P(B A) +2 P(A B); und andererseits P(A B) = P(A B) + P(B A) +P(A B) und damit folgt die Behauptung.

20 20 Aufgabe 1: Seien A,B,C Ω beliebige Ereignisse. Zeigen Sie das die folgende Formel gilt: P(A B C) = P(A) + P(B) + P(C) P(A B) P(A C) P(B C) +P(A B C)

21 Teil 4 Die Laplacesche Gleichverteilung 21

22 22 Zufallsexperimente mit der Eigenschaft, dass alle Ausgänge,,gleichwahrscheinlich sind, heissen Laplace-Experimente. Sinnvoll: P(ω) = 1 Ω für alle Ergebnisse ω Ω (d.h. auf jedem Element der Menge Ω lastet das gleiche Gewicht). Für beliebige Ereignisse A Ω gilt P(A) = ω A P(ω) = ω A 1 Ω = A Ω = Anzahl günstiger Ergebnisse Anzahl möglicher Ergebnisse

23 Beispiele: Würfeln: Ω = {1,2,3,4,5,6}, P(i) = 1 6 für alle i = 1,...,6 und somit A = {2,4,6}, P(A) = 3 6 = Wir werfen zwei gleiche Münzen. Es gibt drei mögliche Ausgänge: ω 1 = {Kopf,Zahl} ω 2 = {Kopf,Kopf} ω 3 = {Zahl,Zahl} also Ω = {ω 1,ω 2,ω 3 } und es besteht doch kein Grund, einen dieser Ausgänge zu bevorzugen??! Somit gilt: P(ω 1 ) = P(ω 2 ) = P(ω 3 ) = 1 3!? Experiment: (für zu Hause!!) Machen Sie das Experiment 100 mal und bestimmen Sie die relativen Häufigkeiten der drei möglichen Ausgänge.

24 24 Aufgabe 2: Problem von Chevalier de Méré Man bestimme die Wahrscheinlichkeit dafür, 1. bei 4 Würfen mit einem Laplacewürfel mindestens einmal eine 6 zu erzielen und 2. bei 24 Würfen mit zwei Laplacewürfel mindestens einmal einen Sechserpasch (6, 6) zu erzielen. Chevalier de Méré glaubte beide Wahrscheinlichkeiten als 4/6 = 2/3 und 24/36 = 2/3 bestimmt zu haben.

25 Aufgabe 3: Bestimmen Sie die Wahrscheinlichkeit dafür, bei n Würfen mit einem Laplacewürfel mindestens einmal eine 6 zu erzielen. Für welche n ist die Wahrscheinlichkeit mindestens eine 6 zu erzielen grösser als 0.5? 25

26 26 Achtung: Die Intuition täuscht (manchmal)!! Würden Sie das folgende Spiel gegen mich spielen? Wir nehmen ein beliebiges Buch (z.b. die Bibel) und wählen darin zufällig eine Zahl aus (etwa die dritte von unten auf der 70-sten Seite). Ich gewinne 10. wenn die erste Ziffer dieser Zahl 1, 2 oder 3 ist und Sie gewinnen, wenn diese Ziffer 4, 5, 6, 7, 8 oder 9 ist. Es sollte (Gleichverteilung!?) gelten: P(erste Ziffer ist 1, 2 oder 3) = < P(erste Ziffer ist 3, 4,...,9) =

27 27 Sie sollten das Spiel nicht spielen!! Benfordsches Gesetz (Frank Benford, ): Ist d die erste Ziffer einer Dezimalzahl, so tritt sie in empirischen Datensätzen (,,natürlich enstandene ) mit der folgenden Wahrscheinlichkeit auf: ( P(erste Ziffer ist d ) = log ) d

28 28 Tabelle der Wahrcheinlichkeiten d P( erste Ziffer ist d ) = 30.1 % = 17.6 % = 12.5 % = 9.7 % = 7.9 % = 6.7 % = 5.8 % = 5.1 % = 4.6 %

29 Beweis des Benfordschen Gesetzes 29 Sei X eine Zahl. Dann ist die erste Ziffer dieser Zahl gleich d = 1, 2,... oder 9 falls d 10 n X < (d + 1) 10 n gilt. Daraus folgt durch Anwendung des dekadischen Logaritmus log = log 10 : log(d 10 n ) log(x) < log((d + 1) 10 n ) log(d) + n log(x) < log(d + 1) + n Beachte: Da d = 1, 2,... oder 9 ist, gilt: 0 log(d) < 1 und 0 < log(d + 1) 1.

30 30 Die Ungleichung log(d) + n log(x) < log(d + 1) + n ist nun genau dann erfüllt, wenn die erste Nachkommastelle von log(x) (nennen wir sie Z), zwischen log(d) und log(d + 1) liegt: log(d) Z < log(d + 1) Annahme: Die Wahrscheinlichkeit, dass Z in ein bestimmtes Intervall [ log(d), log(d+1) ) fällt, ist proportional zur Länge des Intervalls d.h. 0 1 log(1) log(2) log(5) log(9) P(erste Ziffer von X ist d) = P(log(d) Z < log(d + 1)) = log(d ( + 1) log(d) = log ) d

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt Universität Basel Wirtschaftswissenschaftliches Zentrum Zufallsvariablen Dr. Thomas Zehrt Inhalt: 1. Einführung 2. Zufallsvariablen 3. Diskrete Zufallsvariablen 4. Stetige Zufallsvariablen 5. Erwartungswert

Mehr

Teil II. Wahrscheinlichkeitsrechnung

Teil II. Wahrscheinlichkeitsrechnung Teil II Wahrscheinlichkeitsrechnung Deskriptive Statistik und Wahrscheinlichkeitsrechnung (SS 2014) Folie 129 5 Zufallsexperimente Inhaltsverzeichnis (Ausschnitt) 5 Zufallsexperimente Ergebnisse Ereignisse

Mehr

Teil II. Wahrscheinlichkeitsrechnung. Inhaltsverzeichnis (Ausschnitt) Zufallsexperimente (Zufallsvorgänge) Ergebnisse

Teil II. Wahrscheinlichkeitsrechnung. Inhaltsverzeichnis (Ausschnitt) Zufallsexperimente (Zufallsvorgänge) Ergebnisse 5 Zufallsexperimente Inhaltsverzeichnis (Ausschnitt) Teil II Wahrscheinlichkeitsrechnung 5 Zufallsexperimente Ergebnisse Ereignisse Wahrscheinlichkeiten Deskriptive Statistik und Wahrscheinlichkeitsrechnung

Mehr

Kapitel ML:IV. IV. Statistische Lernverfahren. Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen

Kapitel ML:IV. IV. Statistische Lernverfahren. Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen Kapitel ML:IV IV. Statistische Lernverfahren Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen ML:IV-1 Statistical Learning c STEIN 2005-2011 Definition 1 (Zufallsexperiment,

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 . Grundlagen der Wahrscheinlichkeitstheorie. Zufallsereignisse, Ereignisraum und Ereignismenge Zufallsexperiment: nach einer bestimmten Vorschrift ausgeführter, unter gleichen edingungen beliebig oft wiederholbarer

Mehr

Kapitel 5 Stochastische Unabhängigkeit

Kapitel 5 Stochastische Unabhängigkeit Kapitel 5 Stochastische Unabhängigkeit Vorlesung Wahrscheinlichkeitsrechnung I vom SoSe 2009 Lehrstuhl für Angewandte Mathematik 1 FAU 5.1 Das Konzept der stochastischen Unabhängigkeit. 1 Herleitung anhand

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 1. und 2. Vorlesung - 2017 Im Alltag... Laut den meteorologischen Vorhersagen wird es morgen regnen. Ob ich riskiere und die Wette verlieren werde? Ich werde mit Sicherheit gewinnen! Ist das wirklich unmöglich?

Mehr

Wahrscheinlichkeitsrechnung [probability]

Wahrscheinlichkeitsrechnung [probability] Wahrscheinlichkeitsrechnung [probability] Hinweis: Die Wahrscheinlichkeitsrechnung ist nicht Gegenstand dieser Vorlesung. Es werden lediglich einige Begriffsbildungen bereitgestellt und an Beispielen erläutert,

Mehr

Kapitel 2 Wahrscheinlichkeitsrechnung

Kapitel 2 Wahrscheinlichkeitsrechnung Motivation bisher: Beschreibung von Datensätzen = beobachteten Merkmalsausprägungen Frage: Sind Schlußfolgerungen aus diesen Beobachtungen möglich? Antwort: Ja, aber diese gelten nur mit einer bestimmten

Mehr

Satz 18 (Satz von der totalen Wahrscheinlichkeit)

Satz 18 (Satz von der totalen Wahrscheinlichkeit) Ausgehend von der Darstellung der bedingten Wahrscheinlichkeit in Gleichung 1 zeigen wir: Satz 18 (Satz von der totalen Wahrscheinlichkeit) Die Ereignisse A 1,..., A n seien paarweise disjunkt und es gelte

Mehr

Interaktives Skriptum: Elementare Wahrscheinlichkeitsrechnung

Interaktives Skriptum: Elementare Wahrscheinlichkeitsrechnung Interaktives Skriptum: Elementare Wahrscheinlichkeitsrechnung 1. Grundbegriffe Würfeln, Werfen einer Münze, Messen der Lebensdauer einer Glühbirne Ausfall/Ausgang: Würfeln: Augenzahlen 1, 2, 3, 4, 5, 6

Mehr

Satz 16 (Multiplikationssatz)

Satz 16 (Multiplikationssatz) Häufig verwendet man die Definition der bedingten Wahrscheinlichkeit in der Form Damit: Pr[A B] = Pr[B A] Pr[A] = Pr[A B] Pr[B]. (1) Satz 16 (Multiplikationssatz) Seien die Ereignisse A 1,..., A n gegeben.

Mehr

Wahrscheinlichkeit (Teschl/Teschl 2, Kap. 26)

Wahrscheinlichkeit (Teschl/Teschl 2, Kap. 26) Wahrscheinlichkeit (Teschl/Teschl 2, Kap. 26) Gegeben Menge Ω (Wahscheinlichkeitsraum, Menge aller möglichen Ausgänge eines Zufallsexperiments), Abbildung P : P(Ω) [0, 1] (Wahrscheinlichkeit): Jeder Teilmenge

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

Kapitel 2. Wahrscheinlichkeit (wird heute behandelt) Kapitel 2. Wahrscheinlichkeit

Kapitel 2. Wahrscheinlichkeit (wird heute behandelt) Kapitel 2. Wahrscheinlichkeit Teil I: Wahrscheinlichkeitstheorie 1 Kapitel 2. Wahrscheinlichkeit (wird heute behandelt) Kapitel 3: Bedingte Wahrscheinlichkeit Kapitel 4: Zufallsvariablen Kapitel 5: Erwartungswerte, Varianz, Kovarianz

Mehr

2.2 Ereignisse und deren Wahrscheinlichkeit

2.2 Ereignisse und deren Wahrscheinlichkeit 2.2 Ereignisse und deren Wahrscheinlichkeit Literatur: [Papula Bd., Kap. II.2 und II.], [Benning, Kap. ], [Bronstein et al., Kap. 1.2.1] Def 1 [Benning] Ein Zufallsexperiment ist ein beliebig oft wiederholbarer,

Mehr

Dr. H. Grunert Einführung in die Wahrscheinlichkeitsrechnung Vorlesungscharts. Vorlesung 1. Grundbegriffe der Wahrscheinlichkeitsrechnung

Dr. H. Grunert Einführung in die Wahrscheinlichkeitsrechnung Vorlesungscharts. Vorlesung 1. Grundbegriffe der Wahrscheinlichkeitsrechnung Vorlesungscharts Vorlesung 1 Grundbegriffe der Wahrscheinlichkeitsrechnung Zufallsvorgänge und Zufallsereignisse Definitionen der Wahrscheinlichkeit Seite 1 von 11 Chart 1: Vorgänge deterministisch zufällig

Mehr

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente Mehrstufige Zufallsexperimente Inhalt 6.1 6.1 Mehrstufige Experimente 6.2 6.2 Bedingte Wahrscheinlichkeiten Seite 2 6.1 Mehrstufige Experimente Grundvorstellung: Viele Viele Experimente werden der der

Mehr

Einführung in die Wahrscheinlichkeitsrechnung

Einführung in die Wahrscheinlichkeitsrechnung Marco Cattaneo Institut für Statistik Ludwig-Maximilians-Universität München Sommersemester 2011 1. Wahrscheinlichkeitsrechnung 2. Diskrete Zufallsvariable 3. Stetige Zufallsvariable 4. Grenzwertsätze

Mehr

1. Grundlagen der Wahrscheinlichkeitsrechnung

1. Grundlagen der Wahrscheinlichkeitsrechnung 1. Grundlagen der Wahrscheinlichkeitsrechnung Ereignisse und Wahrscheinlichkeiten Zufälliger Versuch: Vorgang, der (zumindest gedanklich) beliebig oft wiederholbar ist und dessen Ausgang innerhalb einer

Mehr

1. Grundlagen. R. Albers, M. Yannik Skript zur Vorlesung Stochastik (Elementarmathematik)

1. Grundlagen. R. Albers, M. Yannik Skript zur Vorlesung Stochastik (Elementarmathematik) 1. Grundlagen 1.1 Zufallsexperimente, Ergebnisse Grundlage für alle Betrachtungen zur Wahrscheinlichkeitsrechnung sind Zufallsexperimente. Ein Zufallsexperiment ist ein Vorgang, der - mehrere mögliche

Mehr

= 7! = 6! = 0, 00612,

= 7! = 6! = 0, 00612, Die Wahrscheinlichkeit, dass Prof. L. die Wette verliert, lässt sich wie folgt berechnen: Ω = {(i 1,..., i 7 ) : i j {1... 7}, j = 1... 7}, wobei i, j für den Wochentag steht, an dem die Person j geboren

Mehr

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy. R. Brinkmann http://brinkmann-du.de Seite 08..2009 Von der relativen Häufigkeit zur Wahrscheinlichkeit Es werden 20 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 20 Schülern

Mehr

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung lausthal Begriffe Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Definition: Unter einem Zufallsexperiment versteht man einen,

Mehr

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung lausthal Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Begriffe Definition: Unter einem Zufallsexperiment versteht man einen,

Mehr

Gründe für die Behandlung von stochastischen Problemen (nach KÜTTING)

Gründe für die Behandlung von stochastischen Problemen (nach KÜTTING) Vorlesung 03.01.09 Stochastik Gründe für die Behandlung von stochastischen Problemen (nach KÜTTING) Der Mathematikunterricht der Schule hat die Aufgabe, eine Grundbildung zu vermitteln, die auf ein mathematisches

Mehr

Bei 10 dieser Würfe wurde gleichzeitig eine 1 gewürfelt. Bei 25 dieser Würfe wurde gleichzeitig eine Augenzahl größer als 2 gewürfelt.

Bei 10 dieser Würfe wurde gleichzeitig eine 1 gewürfelt. Bei 25 dieser Würfe wurde gleichzeitig eine Augenzahl größer als 2 gewürfelt. 3 Wahrscheinlichkeiten 1 Kapitel 3: Wahrscheinlichkeiten A: Beispiele Beispiel 1: Ein Experiment besteht aus dem gleichzeitigen Werfen einer Münze und eines Würfels. Nach 100 Wiederholungen dieses Experiments

Mehr

15 Wahrscheinlichkeitsrechnung und Statistik

15 Wahrscheinlichkeitsrechnung und Statistik 5 Wahrscheinlichkeitsrechnung und Statistik Alles, was lediglich wahrscheinlich ist, ist wahrscheinlich falsch. ( Descartes ) Trau keiner Statistik, die du nicht selbst gefälscht hast. ( Churchill zugeschrieben

Mehr

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Wichtige Tatsachen und Formeln zur Vorlesung Mathematische Grundlagen für das Physikstudium 3 Franz Embacher http://homepage.univie.ac.at/franz.embacher/

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 2

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 2 TUM, Zentrum Mathematik Lehrstuhl für Mathematische Physik WS 2013/14 Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weidner Tutoraufgaben: Einführung in die Wahrscheinlichkeitstheorie svorschläge

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 27. Oktober 2010 Teil III Wahrscheinlichkeitstheorie 1 Zufallsereignisse Vorüberlegungen Der Ereignisraum Konstruktionen

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 1

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 1 TUM, Zentrum Mathematik Lehrstuhl für Mathematische Physik WS 2013/ Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weidner Tutoraufgaben: Einführung in die Wahrscheinlichkeitstheorie svorschläge zu

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 1. Vorlesung - 7.10.2016 Im Alltag... Laut den meteorologischen Vorhersagen wird es morgen regnen. Ob ich riskiere und die Wette verlieren werde? Ich werde mit Sicherheit gewinnen! Ist das wirklich unmöglich?

Mehr

Zusammenfassung Stochastik

Zusammenfassung Stochastik Zusammenfassung Stochastik Die relative Häufigkeit Ein Experiment, dessen Ausgang nicht vorhersagbar ist, heißt Zufallsexperiment (ZE). Ein Würfel wird 40-mal geworfen, mit folgendem Ergebnis Augenzahl

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜBUNG - LÖSUNGEN. Zweimaliges Werfen eines Würfels mit Berücksichtigung der Reihenfolge a. Ergebnismenge (Ereignisraum)

Mehr

Ereignis E: ist ein oder sind mehrere Ergebnisse zusammen genommen. Bsp. E = {2; 4; 6}

Ereignis E: ist ein oder sind mehrere Ergebnisse zusammen genommen. Bsp. E = {2; 4; 6} Laplace-Experimente Begriffsklärung am Beispiel eines Laplace-Würfel mit Augenzahlen (AZ) 1-6: Ergebnis: ist jeder Ausgang eines Zufallsexperimentes heißt ein Ergebnis ω dieses Zufallsexperimentes. Die

Mehr

Stochastik - Kapitel 2

Stochastik - Kapitel 2 " k " h(a) n = bezeichnet man als die relative Häufigkeit des Ereignisses A bei n Versuchen. n (Anmerkung: für das kleine h wird in der Literatur häufig auch ein r verwendet) k nennt man die absolute Häufigkeit

Mehr

Kapitel 5. Kapitel 5 Wahrscheinlichkeit

Kapitel 5. Kapitel 5 Wahrscheinlichkeit Wahrscheinlichkeit Inhalt 5.1 5.1 Grundbegriffe Ω, Ω, X, X,...... 5.2 5.2 Wahrscheinlichkeitsräume (Ω, (Ω, P) P) 5.3 5.3 Das Das Laplace-Modell P(A) P(A) = A / Ω 5.4 5.4 Erwartungswert E(X) E(X) Literatur:

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 6 5 Hilfsmittel aus der Kombinatorik 7 1 Vorbemerkungen

Mehr

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen 3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen 3.1 Einführung Bsp. 19 (3-maliges Werfen einer Münze) Menge der Elementarereignisse: Ω {zzz,zzw,zwz,wzz,zww,wzw,wwz,www}. Ω 2 3 8 N Wir definieren

Mehr

6: Diskrete Wahrscheinlichkeit

6: Diskrete Wahrscheinlichkeit Stefan Lucks Diskrete Strukturen (WS 2009/10) 219 6: Diskrete Wahrscheinlichkeit 6: Diskrete Wahrscheinlichkeit Stefan Lucks Diskrete Strukturen (WS 2009/10) 220 Wahrscheinlichkeitsrechnung Eines der wichtigsten

Mehr

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung 2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von

Mehr

Einführung. Wahrscheinlichkeit. 1 Wahrscheinlichkeit: Definition und Interpretation. 2 Elementare Wahrscheinlichkeitsrechnung, bedingte

Einführung. Wahrscheinlichkeit. 1 Wahrscheinlichkeit: Definition und Interpretation. 2 Elementare Wahrscheinlichkeitsrechnung, bedingte Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2 Elementare Wahrscheinlichkeitsrechnung, bedingte Wahrscheinlichkeit Axiome nach Kolmogorov Gegeben sei ein Zufallsexperiment mit Ergebnisraum

Mehr

htw saar 1 KAPITEL 4 BEDINGTE WAHRSCHEINLICHKEIT UND STOCHASTISCHE UNABHÄNGIGKEIT Hans-Peter Hafner WS 2016/2017

htw saar 1 KAPITEL 4 BEDINGTE WAHRSCHEINLICHKEIT UND STOCHASTISCHE UNABHÄNGIGKEIT Hans-Peter Hafner WS 2016/2017 htw saar 1 KAPITEL 4 BEDINGTE WAHRSCHEINLICHKEIT UND STOCHASTISCHE UNABHÄNGIGKEIT htw saar 2 Gliederung 25.01. Bedingte Wahrscheinlichkeit: Motivation und Definition Multiplikationssatz Stochastische Unabhängigkeit:

Mehr

Rumpfskript. Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen

Rumpfskript. Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen Rumpfskript Elementare Wahrscheinlichkeitsrechnung Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen Vorbemerkung Vorbemerkung Das vorliegende Skript heißt nicht nur Rumpf skript, sondern

Mehr

9. Elementare Wahrscheinlichkeitsrechnung

9. Elementare Wahrscheinlichkeitsrechnung 9. Elementare Wahrscheinlichkeitsrechnung I. Zufällige Ereignisse Beispiel (Einmaliges Würfeln): Alle möglichen Ausgänge 1, 2,, 6 des Experiments werden zur Ergebnismenge Ω ( Ergebnisraum ) zusammengefasst.

Mehr

Wahrscheinlichkeitstheorie

Wahrscheinlichkeitstheorie Kapitel 2 Wahrscheinlichkeitstheorie Josef Leydold c 2006 Mathematische Methoden II Wahrscheinlichkeitstheorie 1 / 24 Lernziele Experimente, Ereignisse und Ereignisraum Wahrscheinlichkeit Rechnen mit Wahrscheinlichkeiten

Mehr

Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26)

Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26) Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26 Ein Wahrscheinlichkeitsraum (Ω, P ist eine Menge Ω (Menge aller möglichen Ausgänge eines Zufallsexperiments: Ergebnismenge versehen mit einer Abbildung

Mehr

Diskrete Strukturen. Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds16/ 1. Februar 2017 Vorlesung 21

Diskrete Strukturen. Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds16/ 1. Februar 2017 Vorlesung 21 Diskrete Strukturen Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds16/ 1. Februar 2017 Vorlesung 21 Quasiendliche Wahrscheinlichkeitsräume Definition quasiendlicher Wahrscheinlichkeitsraum

Mehr

Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus,

Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus, V. Stochastik ================================================================== 5.1 Zählprinzip Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein

Mehr

2 Zufallsvariable und Verteilungsfunktionen

2 Zufallsvariable und Verteilungsfunktionen 8 2 Zufallsvariable und Verteilungsfunktionen Häufig ist es so, dass den Ausgängen eines Zufallexperiments, d.h. den Elementen der Ereignisalgebra, eine Zahl zugeordnet wird. Das wollen wir etwas mathematischer

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung. Semester Begleitendes Skriptum zur Vorlesung im FH-Masterstudiengang Technisches Management von Günther Karigl FH Campus Wien 206/7 Inhaltsverzeichnis. Semester: Wahrscheinlichkeitsrechnung

Mehr

Kapitel 2. Zufällige Versuche und zufällige Ereignisse. 2.1 Zufällige Versuche

Kapitel 2. Zufällige Versuche und zufällige Ereignisse. 2.1 Zufällige Versuche Kapitel 2 Zufällige Versuche und zufällige Ereignisse In diesem Kapitel führen wir zunächst anschaulich die grundlegenden Begriffe des zufälligen Versuchs und des zufälligen Ereignisses ein und stellen

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Stochastik. 1. Wahrscheinlichkeitsräume

Stochastik. 1. Wahrscheinlichkeitsräume Stochastik 1. Wahrscheinlichkeitsräume Ein Zufallsexperiment ist ein beliebig oft und gleichartig wiederholbarer Vorgang mit mindestens zwei verschiedenen Ergebnissen, bei dem der Ausgang ungewiß ist.

Mehr

4 Diskrete Wahrscheinlichkeitsverteilungen

4 Diskrete Wahrscheinlichkeitsverteilungen 4 Diskrete Wahrscheinlichkeitsverteilungen 4.1 Wahrscheinlichkeitsräume, Ereignisse und Unabhängigkeit Definition: Ein diskreter Wahrscheinlichkeitsraum ist ein Paar (Ω, Pr), wobei Ω eine endliche oder

Mehr

Lösungsskizzen zur Präsenzübung 04

Lösungsskizzen zur Präsenzübung 04 Lösungsskizzen zur Präsenzübung 04 Hilfestellung zur Vorlesung Anwendungen der Mathematik im Wintersemester 2015/2016 Fakultät für Mathematik Universität Bielefeld Veröffentlicht am 23. November 2015 von:

Mehr

2 Ereignisse. Für Ereignisse A und B kann durch Bildung des Durchschnitts (engl.: intersection) A B := {ω Ω : ω A oder ω B}

2 Ereignisse. Für Ereignisse A und B kann durch Bildung des Durchschnitts (engl.: intersection) A B := {ω Ω : ω A oder ω B} 5 2 Ereignisse ei einem stochastischen Vorgang interessiert oft nur, ob dessen Ergebnis zu einer gewissen Menge von Ergebnissen gehört. So kommt es zu eginn des Spiels Mensch-ärgere- Dich-nicht! nicht

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik. Mögliche Ergebnisse, auch Elementarereignisse bezeichnet

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik. Mögliche Ergebnisse, auch Elementarereignisse bezeichnet Kapitel 10 Zufall und Wahrscheinlichkeit 10.1. Grundbegriffe Wahrscheinlichkeitsrechnung Zufallsvorgang Klein-Omega ω Groß-Omega Ω Stellt Modelle bereit, die es erlauben zufallsabhängige Prozesse abzuschätzen

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

Grundbegriffe der Wahrscheinlichkeitstheorie

Grundbegriffe der Wahrscheinlichkeitstheorie KAPITEL 1 Grundbegriffe der Wahrscheinlichkeitstheorie 1. Zufallsexperimente, Ausgänge, Grundmenge In der Stochastik betrachten wir Zufallsexperimente. Die Ausgänge eines Zufallsexperiments fassen wir

Mehr

Laplace und Gleichverteilung

Laplace und Gleichverteilung Laplace und Gleichverteilung Aufgaben Aufgabe 1 An einem Computer, dessen Tastatur die 26 Tasten für die kleinen Buchstaben (a,b,c... z) hat, sitzt ein Nutzer (User) und tippt zufällige auf den Tasten

Mehr

Wahrscheinlichkeiten

Wahrscheinlichkeiten Wahrscheinlichkeiten Bestimmung der Wahrscheinlichkeit Bei einem Zufallsexperiment kann man nicht voraussagen, welches Ereignis eintritt, aber manche Ereignisse treten naturgemäß mit einer größeren Wahrscheinlichkeit

Mehr

Wahrscheinlichkeitsrechnung und Quantentheorie

Wahrscheinlichkeitsrechnung und Quantentheorie Physikalische Chemie II: Atombau und chemische Bindung Winter 2013/14 Wahrscheinlichkeitsrechnung und Quantentheorie Messergebnisse können in der Quantenmechanik ganz prinzipiell nur noch mit einer bestimmten

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 7. Übung SS 16: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 7. Übung SS 16: Woche vom Übungsaufgaben 7. Übung SS 16: Woche vom 23. 5. 27. 5.. 2016 Stochastik I: Klassische Wkt.-Berechnung Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/... (SS16).html

Mehr

Satz 16 (Multiplikationssatz)

Satz 16 (Multiplikationssatz) Haug verwendet man die Denition der bedingten Wahrscheinlichkeit in der Form Damit: Pr[A \ B] = Pr[BjA] Pr[A] = Pr[AjB] Pr[B] : (1) Satz 16 (Multiplikationssatz) Seien die Ereignisse A 1 ; : : : ; A n

Mehr

Statistik Einführung // Wahrscheinlichkeitstheorie 3 p.2/58

Statistik Einführung // Wahrscheinlichkeitstheorie 3 p.2/58 Statistik Einführung Wahrscheinlichkeitstheorie Kapitel 3 Statistik WU Wien Gerhard Derflinger Michael Hauser Jörg Lenneis Josef Leydold Günter Tirler Rosmarie Wakolbinger Statistik Einführung // Wahrscheinlichkeitstheorie

Mehr

Grundwissen Stochastik Grundkurs 23. Januar 2008

Grundwissen Stochastik Grundkurs 23. Januar 2008 GYMNSIUM MIT SCHÜLERHEIM PEGNITZ math.-technolog. u. sprachl. Gymnasium WILHELM-VON-HUMBOLDT-STRSSE 7 91257 PEGNITZ FERNRUF 09241/48333 FX 09241/2564 Grundwissen Stochastik Grundkurs 23. Januar 2008 1.

Mehr

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0.

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0. 1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem Folg. 2 Sei (Ω, E, P) W.-raum. Seien A, B,A 1,...,A n Ereignisse. Es gelten die folgenden Aussagen: 1. P(A) = 1 P(A). 2. Für das unmögliche Ereignis gilt:

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück STOCHASTISCHE UNABHÄNGIGKEIT Annika Pohlmann Philipp Oel Wilhelm Dück 1 GLIEDERUNG 1) Bedingte Wahrscheinlichkeiten 2) Unabhängigkeit für mehr als zwei Ereignisse 3) Unabhängigkeit für Zufallsvariable

Mehr

Mathematische Grundlagen der Computerlinguistik Wahrscheinlichkeit

Mathematische Grundlagen der Computerlinguistik Wahrscheinlichkeit Mathematische Grundlagen der Computerlinguistik Wahrscheinlichkeit Dozentin: Wiebke Petersen 8. Foliensatz Wiebke Petersen math. Grundlagen 1 Motivation Bsp.: In vielen Bereichen der CL kommt Wahrscheinlichkeitstheorie

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 3. Vorlesung - 21.10.2016 Bedingte Wahrscheinlichkeit In einer Urne sind 2 grüne und 3 blaue Kugeln. 2 Kugeln werden ohne Zürücklegen gezogen. Welches ist die Wahrscheinlichkeit, dass : a) man eine grüne

Mehr

Statistik I für Humanund Sozialwissenschaften

Statistik I für Humanund Sozialwissenschaften Statistik I für Humanund Sozialwissenschaften 3. Übung Lösungsvorschlag Gruppenübung G 8 a) Ein Professor möchte herausfinden, welche 5 seiner insgesamt 8 Mitarbeiter zusammen das kreativste Team darstellen.

Mehr

Population und Stichprobe: Wahrscheinlichkeitstheorie

Population und Stichprobe: Wahrscheinlichkeitstheorie Population und Stichprobe: Wahrscheinlichkeitstheorie SS 2001 4. Sitzung vom 15.05.2001 Wahrscheinlichkeitstheorie in den Sozialwissenschaften: Stichprobenziehung: Aussagen über Stichprobenzusammensetzung

Mehr

Basiswissen Daten und Zufall Seite 1 von 8 1 Zufallsexperiment Ein Zufallsexperiment ist ein Versuchsaufbau mit zufälligem Ausgang, d. h. das Ergebnis kann nicht vorhergesagt werden. 2 Ergebnis (auch Ausgang)

Mehr

Kapitel I Diskrete Wahrscheinlichkeitsräume

Kapitel I Diskrete Wahrscheinlichkeitsräume Kapitel I Diskrete Wahrscheinlichkeitsräume 1. Grundlagen Definition 1 1 Ein diskreter Wahrscheinlichkeitsraum ist durch eine Ergebnismenge Ω = {ω 1, ω 2,...} von Elementarereignissen gegeben. 2 Jedem

Mehr

a) (A B) tritt ein = A tritt ein oder B tritt ein. = Mindestens eines der Ereignisse A, B tritt ein.

a) (A B) tritt ein = A tritt ein oder B tritt ein. = Mindestens eines der Ereignisse A, B tritt ein. Lösungsvorschläge zu den Aufgaben von Blatt 6: 43) 7 Telefonzellen ( 7 Kugeln in der Urne); 3 davon sind von je einem Benutzer besetzt ( 3 Kugeln in die Stichprobe). Die Telefonzellen werden nicht mehrfach

Mehr

Mathe-Camp 2017 Stochastik: Geometrische Wahrscheinlichkeiten

Mathe-Camp 2017 Stochastik: Geometrische Wahrscheinlichkeiten Mathe-Camp 2017 Stochastik: Geometrische Wahrscheinlichkeiten Jo rn Saß, sass@mathematik.uni-kl.de Fachbereich Mathematik, TU Kaiserslautern Arbeitsgruppe Stochastische Steuerung und Finanzmathematik Kaiserslautern

Mehr

8. Formelsammlung. Pr[ ] = 0. 0 Pr[A] 1. Pr[Ā] = 1 Pr[A] A B = Pr[A] Pr[B] DWT 8.1 Gesetze zum Rechnen mit Ereignissen 203/467 Ernst W.

8. Formelsammlung. Pr[ ] = 0. 0 Pr[A] 1. Pr[Ā] = 1 Pr[A] A B = Pr[A] Pr[B] DWT 8.1 Gesetze zum Rechnen mit Ereignissen 203/467 Ernst W. 8. Formelsammlung 8.1 Gesetze zum Rechnen mit Ereignissen Im Folgenden seien A und B, sowie A 1,..., A n Ereignisse. Die Notation A B steht für A B und zugleich A B = (disjunkte Vereinigung). A 1... A

Mehr

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal Beispiel 37 Wir werfen eine Münze so lange, bis zum ersten Mal Kopf erscheint. Dies geschehe in jedem Wurf unabhängig mit Wahrscheinlichkeit p. Wir definieren dazu die Zufallsvariable X := Anzahl der Würfe.

Mehr

Leseprobe. Robert Galata, Sandro Scheid. Deskriptive und Induktive Statistik für Studierende der BWL. Methoden - Beispiele - Anwendungen

Leseprobe. Robert Galata, Sandro Scheid. Deskriptive und Induktive Statistik für Studierende der BWL. Methoden - Beispiele - Anwendungen Leseprobe Robert Galata, Sandro Scheid Deskriptive und Induktive Statistik für Studierende der BWL Methoden - Beispiele - nwendungen Herausgegeben von Robert Galata, Markus Wessler ISBN (Buch): 978-3-446-43255-0

Mehr

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen.

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen. Dieses Quiz soll Ihnen helfen, Kapitel 2.5-2. besser zu verstehen. Frage Wir betrachten ein Würfelspiel. Man wirft einen fairen, sechsseitigen Würfel. Wenn eine oder eine 2 oben liegt, muss man 2 SFr zahlen.

Mehr

Übungen zur Wahrscheinlichkeitstheorie und Statistik

Übungen zur Wahrscheinlichkeitstheorie und Statistik Übungen zur Wahrscheinlichkeitstheorie und Statistik Prof. Dr. C. Löh/M. Blank Blatt 0 vom 16. April 2012 Aufgabe 1 (Wahrscheinlichkeitsräume). Welche der folgenden Aussagen sind wahr? Begründen Sie jeweils

Mehr

Welche Axiome sind Grundlage der axiomatischen Wahrscheinlichkeitsdefinition von Kolmogoroff?

Welche Axiome sind Grundlage der axiomatischen Wahrscheinlichkeitsdefinition von Kolmogoroff? 2. Übung: Wahrscheinlichkeitsrechnung Aufgabe 1 Welche Axiome sind Grundlage der axiomatischen Wahrscheinlichkeitsdefinition von Kolmogoroff? a) P ist nichtnegativ. b) P ist additiv. c) P ist multiplikativ.

Mehr

Wahrscheinlichkeitsrechnung Teil 1

Wahrscheinlichkeitsrechnung Teil 1 Wahrscheinlichkeitsrechnung Teil Einführung in die Grundbegriffe Sekundarstufe Datei Nr 30 Stand September 2009 Friedrich W Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK wwwmathe-cdde Inhalt Zufallsexperimente,

Mehr

Diagnose. Statistische Diagnose. Statistische Diagnose. Statistische Diagnose. Einordnung: Diagnose Problemklasse Analyse

Diagnose. Statistische Diagnose. Statistische Diagnose. Statistische Diagnose. Einordnung: Diagnose Problemklasse Analyse Statistische Einordnung: Problemklasse Analyse Kernfrage bzgl. der Modellierung: Wieviel ist bekannt über das zu diagnostizierende System? Begriffe der : System. Ausschnitt aus der realen Welt. Hier: System

Mehr

WAHRSCHEINLICHKEITSRECHNUNG

WAHRSCHEINLICHKEITSRECHNUNG WAHRSCHEINLICHKEITSRECHNUNG Mathematischer Teil In der Wahrscheinlichkeitsrechnung haben wir es mit Zufallsexperimenten zu tun, d.h. Ausgang nicht vorhersagbar. Grundbegriffe Zufallsexperiment und Ergebnisse

Mehr

Allgemeine diskrete Wahrscheinlichkeitsräume II. Beispiel II. Beispiel I. Definition 6.3 (Diskreter Wahrscheinlichkeitsraum)

Allgemeine diskrete Wahrscheinlichkeitsräume II. Beispiel II. Beispiel I. Definition 6.3 (Diskreter Wahrscheinlichkeitsraum) Allgemeine diskrete Wahrscheinlichkeitsräume I Allgemeine diskrete Wahrscheinlichkeitsräume II Verallgemeinerung von Laplaceschen Wahrscheinlichkeitsräumen: Diskrete Wahrscheinlichkeitsräume Ω endlich

Mehr

Wirtschaftsstatistik I [E1]

Wirtschaftsstatistik I [E1] 040571-1 WMS: Wirtschaftsstatistik 1 :: WiSe07/08 Wirtschaftsstatistik I [E1] Schwab, Harald 1 harald.schwab@univie.ac.at http://homepage.univie.ac.at/harald.schwab October 7, 2007 1 Sprechstunde: MO 17-18h

Mehr

3. Kombinatorik und Wahrscheinlichkeit

3. Kombinatorik und Wahrscheinlichkeit 3. Kombinatorik und Wahrscheinlichkeit Es geht hier um die Bestimmung der Kardinalität endlicher Mengen. Erinnerung: Seien A, B, A 1,..., A n endliche Mengen. Dann gilt A = B ϕ: A B bijektiv Summenregel:

Mehr

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit 3 Bedingte Wahrscheinlichkeit, Unabhängigkeit Bisher : (Ω, A, P) zur Beschreibung eines Zufallsexperiments Jetzt : Zusatzinformation über den Ausgang des Experiments, etwa (das Ereignis) B ist eingetreten.

Mehr

KAPITEL 5. Erwartungswert

KAPITEL 5. Erwartungswert KAPITEL 5 Erwartungswert Wir betrachten einen diskreten Wahrscheinlichkeitsraum (Ω, P) und eine Zufallsvariable X : Ω R auf diesem Wahrscheinlichkeitsraum. Die Grundmenge Ω hat also nur endlich oder abzählbar

Mehr

9. Elementare Wahrscheinlichkeitsrechnung

9. Elementare Wahrscheinlichkeitsrechnung 9. Elementare Wahrscheinlichkeitsrechnung Beispiel (Einmaliges Würfeln): verbal mengentheoretisch I. Zufällige Ereignisse Beispiel (Einmaliges Würfeln): Alle möglichen Ausgänge 1,,, 6 des Experiments werden

Mehr

Das Ziegenproblem. Nils Schwinning und Christian Schöler Juni 2010

Das Ziegenproblem. Nils Schwinning und Christian Schöler  Juni 2010 Das Ziegenproblem Nils Schwinning und Christian Schöler http://www.esaga.uni-due.de/ Juni 2010 Die Formulierung Obwohl das sogenannte Ziegenproblem in der Mathematik allgegenwärtig erscheint, wurde es

Mehr

Sachrechnen/Größen WS 14/15-

Sachrechnen/Größen WS 14/15- Kapitel Daten & Wahrscheinlichkeit 3.1 Kombinatorische Grundlagen 3.2 Kombinatorik & Wahrscheinlichkeit in der Grundschule 3.3 Daten Darstellen 3.1 Kombinatorische Grundlagen Verschiedene Bereiche der

Mehr

Kapitel II Kontinuierliche Wahrscheinlichkeitsräume

Kapitel II Kontinuierliche Wahrscheinlichkeitsräume Kapitel II Kontinuierliche Wahrscheinlichkeitsräume 1. Einführung 1.1 Motivation Interpretation der Poisson-Verteilung als Grenzwert der Binomialverteilung. DWT 1.1 Motivation 211/476 Beispiel 85 Wir betrachten

Mehr

1 Grundbegriffe der Wahrscheinlichkeitsrechnung

1 Grundbegriffe der Wahrscheinlichkeitsrechnung 4 1 Grundbegriffe der Wahrscheinlichkeitsrechnung 1.1 Grundlegende Begriffe Der Begriff wahrscheinlich wird im Alltag in verschiedenen Situationen verwendet, hat dabei auch unterschiedliche Bedeutung.

Mehr

Wie hoch ist das Risiko, dass ein System, das aus mehreren Komponenten besteht, ausfällt?

Wie hoch ist das Risiko, dass ein System, das aus mehreren Komponenten besteht, ausfällt? In diesem Kapitel werden wir den egriff Wahrscheinlichkeit und die Grundlagen der Wahrscheinlichkeitsrechnung kennenlernen, um z.. folgende Fragestellungen zu beantworten. Wie hoch ist das Risiko, dass

Mehr