P (X = 2) = 1/36, P (X = 3) = 2/36,...

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "P (X = 2) = 1/36, P (X = 3) = 2/36,..."

Transkript

1 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel wenn ein Würfel fünf Augen zeigt, wird dem Ergebnis die reelle Zahl fünf zugewiesen. Mit Ereignissen wie blaue Augen, grüne Augen und graue Augen ist das etwas schwieriger - hier würde man jedem der drei Ereignisse eine Zahl, z.b. 1 für blaue Augen, 2 für grüne Augen und 3 für graue Augen, zuordnen. Insgesamt wird die Behandlung von Zufallsereignissen auf diese Weise einfacher zu handhaben und die Einführung von sogenannten Zufallsvariablen erleichtert die praktische Anwendung von stochastischen Modellen. Als Beispiel: Beim viermaligen Münzwurf besteht der Ereignisraum aus den 2 4 = 16 Kombinationen aus Kopf und Zahl. Wenn wir uns aber nur für die Anzahl Kopf interessieren, ist das Ergebnis des zugrundeliegenden Zufalleperiments nicht von Interesse und wir können uns auf den Zufallsraum {0, 1, 2, 3, 4} beschränken. Eine solche Vereinfachung bietet die Zufallsvariable. Definition (Zufallsvariable) Eine Zufallsvariable ist eine Funktion, die jedem Elementarereignis e eine reelle Zahl = X(e), zuweist, d.h. X : Ω R. Dabei kann man auch mehrere Elementarereignisse auf die gleiche Zahl abbilden. Die möglichen Werte, die eine Zufallsvariable X annimmt, heißen Realisationen der Zufallsvariablen. Beispiel Sei X eine Zufallsvariable, welche die Anzahl Kopf beim viermaligen Münzwurf zählt. Für e = (Z, Z, K, K) gilt z.b. X(e) = 2. Sei {X = 2} = Es tritt zweimal Kopf auf. Dies entspricht allen Elemtarereignissen e, sodass X(e) = 2 also {(Z, Z, K, K), (Z, K, Z, K), (Z, K, K, Z), (K, K, Z, Z), (K, Z, K, Z), (K, Z, Z, K)}. Beispiel. Wir werfen mit zwei Würfeln. Der Ereignisraum besteht also aus allen Zahlenpaaren mit Zahlen zwischen Eins und Sechs, Ω = {(1, 1), (1, 2),..., (6, 6) } Wenn wir uns nur für die Summe der Augenzahlen interessieren, betrachten wir die Zufallsvariable X, die durch X = Summe der Augenzahlen = für ( 1, 2 ) Ω gegeben ist. Wir finden z.b. P (X = 2) = 1/36, P (X = 3) = 2/36,... Oft tritt der Charakter der Zufallsvariable als Funktion in den Hintergrund und man betrachtet als Ergebnisraum oft direkt den Wertebereich der Zufallsvariablen. Das heißt im Beispiel mit den Augenfarben: Angenommen die Zufallsvariable Y gibt die Augenfarbe einer Person an, dann würden wir auch Y = blau schreiben, anstatt die zugrundeliegende Kodierung Y = 1 zu benutzen. Ebenso wie in Kapitel 1 werden die Begriffe zu Skaleniveaus einer Messung und die Unterscheidung in diskrete und stetige Merkmale auf Zufallsvariablen übertragen. Stetige Zufallsvariablen sind somit meistens metrisch skaliert, während diskrete Zufallsvariablen nominal- oder ordinalskaliert sind. Beispiele für diskrete Zufallsvariablen sind z.b. Würfelzahlen und Populationsgröße. Das Gewicht oder die Größe eines Individuums wird mit einer stetigen Zufallsvariable dargestellt. 55

2 2 Wahrscheinlichkeitstheorie Diskrete Zufallsvariablen Für Zufallsvariablen werden nun einige Begriffe eingeführt, die in ähnlicher Weise schon in Kapitel 1 diskutiert wurden. Auch Zufallsvariablen werden durch Lageparameter wie Mittelwert, Streuungsparameter wie Varianz sowie Darstellungen wie Histogramm und Verteilungsfunktion beschrieben. Angenommen die diskrete Zufallsvariable X kann die Werte 1, 2,... annehmen. Die Wahrscheinlichkeitsverteilung von X ist durch die Wahrscheinlichkeiten P (X = i ) gegeben. Die Wahrscheinlichkeit, dass X einen Wert aus einer Teilmenge A von 1, 2,... annimmt ist P (X A) = A P (X = ). Die Wahrscheinlichkeitsfunktion f() einer diskreten Zufallsvariable X ist für R definiert durch { P (X = i ) falls { f() = 1, 2,..., } 0 sonst. Ähnlich wie relative Häufigkeiten lassen sich Wahrscheinlichkeitsverteilungen durch Stabdiagramme darstellen (siehe z.b. Abb. 2.2), wobei für jede mögliche Realisation i die Stabhöhe gleich P (X = i ) ist. Werden mehrere Werte zusammengefasst und Stäbe anstatt dessen mit Rechtecken gezeichnet, erhält man das Analogon zum Histogramm. f(x=) blau grün grau X= Abbildung 2.2: Wahrscheinlichkeitsfunktion für die die Zufallsvariable X, die die Augenfarbe einer Person beschreibt. Es gilt P (X = blau) = 0.5, P (X = grün) = 0.2 und P (X = grau) = 0.3. Auch die Verteilungsfunktion lässt sich für eine diskrete Zufallsvariable definieren. Dabei setzen wir voraus, dass X mindestens ordinalskaliert ist, und dass die i schon der Größe nach geordnet sind: F () = P (X ) = i f( i ). 56

3 2.3 Zufallsvariablen Wie in Abschnitt ist die Verteilungsfunktion für eine diskrete Zufallsvariable eine Treppenfunktion. Die Sprungstellen liegen an den möglichen Realisationen von X, d.h. die Funktion ist rechtsseitig stetig. Siehe auch Abb Auch die Definition von Unabhängigkeit von Ereignissen lässt sich auf Zufallsvariablen übertragen. Definition (Unabhängige Zufallsvariablen) Zwei Zufallsvariablen X, Y heißen unabhängig, falls für jede mögliche Realisation von X und y von Y gilt, dass P (X =, Y = y) = P (X = ) P (Y = y) Erwartungswert und Varianz Definition (Erwartungswert) Sei X eine Zufallsvariable und i die Werte, die sie annehmen kann. Der Erwartungswert E(X) K! einer Zufallsvariable ist gegeben durch E(X) = i i f( i ). Bemerkung. Wenn wir eine Funktion g : R R gegeben haben, können wir auch die Zufallsvariable Y = g(x) betrachten. Diese Zufallsvariable nimmt die Werte g( i ) mit der Wahrscheinlichkeit P (X = i ) an, d.h. wir erhalten E(g(X)) = i g( i ) f( i ). Falls g() = a + b eine lineare Funktion ist, so finden wir E(a X + b) = i (a i + b) f( i ) = i a i f( i ) + i b f( i ) Für zwei Zufallsvariablen X und Y gilt, dass = a i f( i ) + b f( i ) = ae(x) + b. i i } {{ } =1 E(X + Y ) = E(X) + E(Y ). (2.1) Diese Formel gilt egal, ob X und Y abhängig oder unabhängig sind. Falls X und Y unabhängig sind, gilt auch E(X Y ) = E(X) E(Y ). Definition (Varianz) Die Varianz einer Zufallsvariablen X ist definiert durch Var(X) = i ( i E(X)) 2 f( i ). 57

4 2 Wahrscheinlichkeitstheorie Bemerkung. Sei g() = ( E(X)) 2. Dann können wir auch schreiben Var(X) = i ( i E(X)) 2 f( i ) = E((X E(X)) 2 ) = E(X 2 2 X E(X) + E(X) 2 ) = E(X 2 ) E(2 X E(X)) + E(E(X) 2 ) = E(X 2 ) 2 E(X) E(X) + E(E(X) 2 ) = E(X 2 ) E(X) 2 Dies wird auch der Varianzverschiebungssatz genannt und kann mit der Formel für die empirische K! Varianz aus (1.1) auf Seite 15 verglichen werden. Dieser Zusammenhang kommt daher, dass wir die Eigenschaften der relativen Häufigkeiten mit der Varianz nachgebaut haben. Für eine lineare Transformation Y = ax + b einer Zufallsvariablen X mit a, b R gilt Var(aX + b) = a 2 Var(X). (2.2) Sind zwei Zufallsvariablen unabhängig, gilt auch Var(X + Y ) = Var(X) + Var(Y ). (2.3) Bei Abhängigkeit gilt dieser Zusammenhang nicht mehr - denn hier muss noch die Kovarianz zwischen X und Y berücksichtigt werden. Die Kovarianz zwischen zwei Zufallsvariablen ist die theoretische Größe hinter der in Kapitel 1 benutzten empirischen Kovarianz. Eine sinnvolle Definition bedarf jedoch der Erklärung von mehrdimensionalen Zufallsvariablen, weswegen wir uns in dieser Vorlesung nur auf den Fall unabhängiger Zufallsvariablen beschränken. Weitere Lageparameter Die Definition weiterer Lageparameter erfolgt in Analogie zu den entsprechenden Definitionen für empirische Verteilungen aus Abschnitt Überall werden empirische Verteilungen und relative Häufigkeiten einfach durch Wahrscheinlichkeiten ersetzt. Zum Beispiel ist der Modalwert M X einer Zufallsvariablen X der Wert, für den die Wahrscheinlichkeitsfunktion f() von X maimal wird. Die Berechnung von Median bzw. Quantilen einer Zufallsvariablen setzt, wie schon in Abschnitt 1.4.1, eine mindestens ordinale Skala voraus. Für q (0, 1) definiert man das q-quantil einer Zufallsvariablen X als den Wert q, sodass { } q = min { 1, 2,...} : F () q. Das heißt q ist die kleinste mögliche Realisation von X für die gilt P (X q ) = F ( q ) q. Abbildung 2.3 illustriert die Bestimmung des q = 0.5-Quantils, d.h. des Medians, für eine Zufallsvariable X anhand der Verteilungsfunktion F (). Drei wichtige diskrete Wahrscheinlichkeitsverteilungen sind die Bernoulli-Verteilung, die Binomial- Verteilung und die Poisson-Verteilung. Für diese Verteilungen werden im Folgenden Wahrscheinlichkeitsfunktion, Verteilungsfunktion, Erwartungswert und Varianz betrachtet. 58

5 2.3 Zufallsvariablen F() Abbildung 2.3: Der Median 0.5 einer diskreten Zufallsvariablen mit 5 möglichen Realisationen Bernoulli-Zufallsvariable (0/1-Zufallsvariable) Wir betrachten den einmaligen Münzwurf und kodieren unsere Zufallsvariable X, sodass Kopf mit 0 und Zahl mit 1 gewertet wird. Somit erhalten wir eine Zufallsvariable X, deren möglichen Werte die Menge {0, 1} ist. Das Verhalten von X ist bestimmt durch die Angabe von denn daraus folgt automatisch P (X = 1) = p P (X = 0) = 1 P (X = 1) = 1 p. Man nennt X eine Bernoulli-Zufallsvariable und das zugehörige Zufallseperiment ein Bernoulli- Eperiment. Ist eine Zufallsvariable X Bernoulli verteilt mit Parameter p, so schreibt man X B(p), wobei das Symbol als ist verteilt als gelesen wird. Die Wahrscheinlichkeitsfunktion und Verteilungsfunktion einer Bernoulli-Zufallsvariablen sind: 1 p für = 0 f() = p für = 1 0 sonst 0 für < 0 F () = 1 p für [0, 1) 1 für 1 Abbildung 2.4 zeigt die beiden Funktionen. Sei X B(p). Der Erwartungswert von X ist K! E(X) = 1 f() = 0 P (X = 0) + 1 P (X = 1) = p. =0 59

6 2 Wahrscheinlichkeitstheorie (a) f() (b) F() 1 p 1 p 1 p 1 p Abbildung 2.4: Wahrscheinlichkeitsfunktion (a) und Verteilungsfunktion (b) einer Bernoulli- Zufallsvariablen. Die Varianz Var(X) lässt sich über den Varianzverschiebungssatz bestimmen. Dazu wird zunächst E(X 2 ) berechnet: E(X 2 ) = 1 2 f() = 0 2 P (X = 0) P (X = 1) = p, =0 Var(X) = E(X 2 ) E(X) 2 = p p 2 = p(1 p) Binomial-Verteilung Angenommen wir betrachten die n-malige Wiederholung eines Bernoulli-Eperiments mit gleichbleibender Wahrscheinlichkeit p für das interessierende Ereignis. Seien also X 1,..., X n unabhängige und identisch verteilte Bernoulli-Zufallsvariablen mit P (X i = 1) = p und sei Y die Summe der n Bernoulli-Zufallsvariablen, Y = n X i = X 1 + X X n. i=1 Somit zählt Y die Anzahl der Versuche, bei denen das interessierende Ereignis auftritt. Ein Beispiel ist das wiederholte Werfen einer Münze, wobei Y z.b. die Anzahl Kopf zählt. Man sagt: Y ist binomialverteilt mit Parametern n und p (Schreibweise: Y Bin(n, p)). Die K! möglichen Realisationen von Y sind 0, 1, 2,..., n und die Wahrscheinlichkeitsfunktion f(y) ist: ( ) n p y (1 p) n y für y {0, 1,..., n} f(y) = P (Y = y) = y (2.4) 0 sonst. Abbildung 2.5 zeigt die Wahrscheinlichkeitsfunktion für Y Bin(10, p) für drei verschiedene p. Wir motivieren (2.4) anhand des 10-maligen Münzwurfs mit Wahrscheinlichkeit p für Kopf: Betrachtet wird die Zufallsvariable Y, die die Anzahl Kopf zählt. Das Ereignis {Y = 4} ist die Menge aller Elementarereignisse e Ω, bei denen Y (e) = 4. Beispielsweise ist Y (e) = 4 für e = (K, K, K, K, Z, Z, Z, Z, Z, Z). Wegen der Unabhängigkeit der Eperimente ist für dieses e P (e) = p p p p (1 p) (1 p) (1 p) (1 p) (1 p) (1 p) = p 4 (1 p) 6 60

7 2.3 Zufallsvariablen Binomial Verteilung, n=10, p=0.9 f() Binomial Verteilung, n=10, p=0.5 f() Binomial Verteilung, n=10, p=0.1 f() Abbildung 2.5: Wahrscheinlichkeitsfunktion einer binomialverteilten Zufallsvariablen Bin(10, p); p wird variiert: p = 0.1, p = 0.5 und p = 0.9. Man erkennt, dass eine kleine Wahrscheinlichkeit p die Verteilung an den linken Rand drückt, eine große Wahrscheinlichkeit p die Wahrscheinlichkeitsfunktion an den rechten Rand drückt, und p = 0.5 ergibt ein symmetrisches Bild. 61

8 2 Wahrscheinlichkeitstheorie Jedoch tritt auch {Y = 4} auf, wenn 4 Mal Zahl und 6 Mal Kopf in irgendeiner Reihenfolge auftritt. Die Wahrscheinlichkeit ist dabei jedes Mal p 4 (1 p) 6 und wie wir in der Übung gelernt haben, gibt es genau ( 10 4 ) = 210 verschiedene derartige Reihenfolgen. Da eine Bin(n, p)-verteilte Zufallsvariable die Summe von n Bernoulli-Zufallsvariablen X i, i = 1,..., n (mit P (X i = 1) = p), ist, lässt sich der Erwartungswert durch (2.1) auf Seite 57 bestimmen: ( n ) E(Y ) = E X i i=1 (2.1) = E(X 1 ) E(X n ) = p p = n p. Die Varianz lässt sich wegen Unabhängigkeit der Eperimente durch (2.3) bestimmen: Var(Y ) = n Var(X i ) = i=1 n p(1 p) = n p (1 p). i=1 Abbildung 2.5 zeigt auch, dass der Modalwert einer Y Bin(n, 1 2 ) Zufallsvariablen gleich 1 2 n ist, falls n gerade ist. Ist n ungerade gilt ( ) ( ) 1 1 f 2 n 1 = f 2 n, d.h. der Modalwert ist in diesem Fall nicht eindeutig definiert. In R lässt sich die Wahrscheinlichkeitsfunktion f(y) einer Y Bin(n, p) Zufallsvariablen mit der Funktion dbinom(y, n, p) bestimmen. Desweiteren liefert qbinom(y,n,p) die Verteilungsfunktion F(y) und qbinom(q,n,p) das 0 q 1 Quantil von Y. Als Beispiel wird hier n = 10 und p = 1 2 benutzt: > dbinom(0:10, 10, 0.5) R Output [1] [9] > pbinom(0:10, 10, 0.5) R Output [1] [9] > qbinom(c(0.1, 0.5, 0.9), 10, 0.5) [1] R Output Poisson-Verteilung Die Poisson-Verteilung ist wie die Binomial-Verteilung eine diskrete Verteilung, um die Anzahl der Beobachtungen eines bestimmten Ereignisses in einem bestimmten Zeitraum oder in einem 62

P (A B) P (B) = P ({3}) P ({1, 3, 5}) = 1 3.

P (A B) P (B) = P ({3}) P ({1, 3, 5}) = 1 3. 2 Wahrscheinlichkeitstheorie Beispiel. Wie wahrscheinlich ist es, eine Zwei oder eine Drei gewürfelt zu haben, wenn wir schon wissen, dass wir eine ungerade Zahl gewürfelt haben? Dann ist Ereignis A das

Mehr

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s X. Zufallsgrößen ================================================================= 10.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

5 Erwartungswerte, Varianzen und Kovarianzen

5 Erwartungswerte, Varianzen und Kovarianzen 47 5 Erwartungswerte, Varianzen und Kovarianzen Zur Charakterisierung von Verteilungen unterscheidet man Lageparameter, wie z. B. Erwartungswert ( mittlerer Wert ) Modus (Maximum der Wahrscheinlichkeitsfunktion,

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Unabhängigkeit von Ereignissen A, B unabhängig:

Mehr

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten Zufallsgrößen Ergebnisse von Zufallsexperimenten werden als Zahlen dargestellt 0 Einführung Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Hypothesentests

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilung diskreter Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilung diskreter Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Modelle diskreter Zufallsvariablen

Modelle diskreter Zufallsvariablen Statistik 2 für SoziologInnen Modelle diskreter Zufallsvariablen Univ.Prof. Dr. Marcus Hudec Zufallsvariable Eine Variable (Merkmal) X, deren numerische Werte als Ergebnisse eines Zufallsvorgangs aufgefasst

Mehr

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung 2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Zufallsvariable Erinnerung: Merkmal, Merkmalsausprägung Deskriptive Statistik:

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik Kapitel 11 Diskrete Zufallsvariablen 11.1. Wahrscheinlichkeits- und diskret Wahrscheinlichkeitsverteilungen Wahrscheinlichkeitsfunktion von X Nimmt abzählbare Anzahl von Ausprägungen an (z.b. Zählvariablen)

Mehr

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit 3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

1.5 Erwartungswert und Varianz

1.5 Erwartungswert und Varianz Ziel: Charakterisiere Verteilungen von Zufallsvariablen durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere: a) durchschnittlicher Wert Erwartungswert, z.b.

Mehr

1.5 Erwartungswert und Varianz

1.5 Erwartungswert und Varianz Ziel: Charakterisiere Verteilungen von Zufallsvariablen (Bildbereich also reelle Zahlen, metrische Skala) durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere:

Mehr

Grundlagen der Wahrscheinlichkeitstheorie

Grundlagen der Wahrscheinlichkeitstheorie Priv.-Doz. Dr. H. Steinacker Wintersemester 2013/2014 Grundlagen der Wahrscheinlichkeitstheorie betrachte Wiederholungen eines Experimentes, gleicher Vorbereitung (z.b. Würfeln, Dart werfen, Doppelspaltexperiment,...)

Mehr

5.4 Verteilungsfunktion Verteilungsfunktion diskreten Zufallsvariablen stetigen Zufallsvariablen Verteilungsfunktion

5.4 Verteilungsfunktion Verteilungsfunktion diskreten Zufallsvariablen stetigen Zufallsvariablen Verteilungsfunktion 5. Verteilungsfunktion Die Verteilungsfunktion gibt an welche Wahrscheinlichkeit sich bis zu einem bestimmten Wert der Zufallsvarialben X kumuliert Die Verteilungsfunktion F() gibt an, wie groß die die

Mehr

Basiswissen Daten und Zufall Seite 1 von 8 1 Zufallsexperiment Ein Zufallsexperiment ist ein Versuchsaufbau mit zufälligem Ausgang, d. h. das Ergebnis kann nicht vorhergesagt werden. 2 Ergebnis (auch Ausgang)

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

2 Zufallsvariable und Verteilungsfunktionen

2 Zufallsvariable und Verteilungsfunktionen 8 2 Zufallsvariable und Verteilungsfunktionen Häufig ist es so, dass den Ausgängen eines Zufallexperiments, d.h. den Elementen der Ereignisalgebra, eine Zahl zugeordnet wird. Das wollen wir etwas mathematischer

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 11. November 2010 1 Erwartungswert und Varianz Erwartungswert Varianz und Streuung Rechenregeln Binomialverteilung

Mehr

Es wird aus einer Urne mit N Kugeln gezogen, die mit den Zahlen 1,..., N durchnummiert sind. (N n)! n! = N! (N n)!n! =

Es wird aus einer Urne mit N Kugeln gezogen, die mit den Zahlen 1,..., N durchnummiert sind. (N n)! n! = N! (N n)!n! = Übungsblatt Höhere Mathematik - Weihenstephan SoSe 00 Michael Höhle, Hannes Petermeier, Cornelia Eder Übung: 5.6.00 Die Aufgaben -3 werden in der Übung am Donnerstag (5.6. besprochen. Die Aufgaben -6 sollen

Mehr

Woche 2: Zufallsvariablen

Woche 2: Zufallsvariablen Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 17/19, 24.04.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Teil III Zufallsvariablen Wahrscheinlichkeit

Mehr

Kapitel 6. Verteilungsparameter. 6.1 Der Erwartungswert Diskrete Zufallsvariablen

Kapitel 6. Verteilungsparameter. 6.1 Der Erwartungswert Diskrete Zufallsvariablen Kapitel 6 Verteilungsparameter Wie bei einem Merkmal wollen wir nun die Lage und die Streuung der Verteilung einer diskreten Zufallsvariablen durch geeignete Maßzahlen beschreiben. Beginnen wir mit Maßzahlen

Mehr

Teil VI. Gemeinsame Verteilungen. Lernziele. Beispiel: Zwei Würfel. Gemeinsame Verteilung

Teil VI. Gemeinsame Verteilungen. Lernziele. Beispiel: Zwei Würfel. Gemeinsame Verteilung Zusammenfassung: diskrete und stetige Verteilungen Woche 4: Verteilungen Patric Müller diskret Wahrscheinlichkeitsverteilung p() stetig Wahrscheinlichkeitsdichte f ()

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Wahrscheinlichkeitsfunktionen

Mehr

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt Universität Basel Wirtschaftswissenschaftliches Zentrum Zufallsvariablen Dr. Thomas Zehrt Inhalt: 1. Einführung 2. Zufallsvariablen 3. Diskrete Zufallsvariablen 4. Stetige Zufallsvariablen 5. Erwartungswert

Mehr

Beispiel: Zufallsvariable

Beispiel: Zufallsvariable Beispiel: Zufallsvariable 3 Münzen werden unabhängig voneinander geworfen. Jede Münze kann entweder Kopf oder Zahl zeigen. Man ist nur an der Zahl der Köpfe interessiert. Anzahl Kopf Elementarereignis

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal Beispiel 37 Wir werfen eine Münze so lange, bis zum ersten Mal Kopf erscheint. Dies geschehe in jedem Wurf unabhängig mit Wahrscheinlichkeit p. Wir definieren dazu die Zufallsvariable X := Anzahl der Würfe.

Mehr

3. Kombinatorik und Wahrscheinlichkeit

3. Kombinatorik und Wahrscheinlichkeit 3. Kombinatorik und Wahrscheinlichkeit Es geht hier um die Bestimmung der Kardinalität endlicher Mengen. Erinnerung: Seien A, B, A 1,..., A n endliche Mengen. Dann gilt A = B ϕ: A B bijektiv Summenregel:

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung lausthal Begriffe Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Definition: Unter einem Zufallsexperiment versteht man einen,

Mehr

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5 4 Verteilungen und ihre Kennzahlen 1 Kapitel 4: Verteilungen und ihre Kennzahlen A: Beispiele Beispiel 1: Eine diskrete Zufallsvariable X, die nur die Werte 1,, 3, 4, 5 mit positiver Wahrscheinlichkeit

Mehr

Kapitel 8: Zufallsvektoren

Kapitel 8: Zufallsvektoren Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse 03.12.2015 Kapitel 8: Zufallsvektoren Statt einem Merkmal werden häufig mehrere Merkmale gleichzeitig betrachtet, z.b. Körpergröße und

Mehr

Multivariate Zufallsvariablen

Multivariate Zufallsvariablen Kapitel 7 Multivariate Zufallsvariablen 7.1 Diskrete Zufallsvariablen Bisher haben wir immer nur eine Zufallsvariable betrachtet. Bei vielen Anwendungen sind aber mehrere Zufallsvariablen von Interesse.

Mehr

Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm.

Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm. Veranstaltung: Statistik für das Lehramt 16.12.2016 Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm Erwartungswert Varianz Standardabweichung Die Wahrscheinlichkeitsverteilung

Mehr

Kapitel 10 VERTEILUNGEN

Kapitel 10 VERTEILUNGEN Kapitel 10 VERTEILUNGEN Fassung vom 18. Januar 2001 130 VERTEILUNGEN Zufallsvariable. 10.1 10.1 Zufallsvariable. HäuÞg wird statt des Ergebnisses ω Ω eines Zufalls-Experiments eine zugeordnete Zahl X(ω)

Mehr

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung lausthal Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Begriffe Definition: Unter einem Zufallsexperiment versteht man einen,

Mehr

4. Verteilungen von Funktionen von Zufallsvariablen

4. Verteilungen von Funktionen von Zufallsvariablen 4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten

Mehr

4 Diskrete Zufallsvariablen

4 Diskrete Zufallsvariablen 25 4 Diskrete Zufallsvariablen 4.1 Einleitung Die Ergebnisse von Zufallsvorgängen sind nicht notwendigerweise Zahlen. Oft ist es aber hilfreich diese durch Zahlen zu repräsentieren. Beispiel 4.1 (4-maliger

Mehr

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können.

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. 2 Zufallsvariable 2.1 Einführung Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. Eine Zufallsvariable X ordnet jedem elementaren Versuchsausgang

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de lordsofthebortz.de lordsofthebortz.de/g+

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik. PD Dr. U. Ludwig. Vorlesung 7 1 / 19

Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik. PD Dr. U. Ludwig. Vorlesung 7 1 / 19 Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik PD Dr. U. Ludwig Vorlesung 7 1 / 19 2.2 Erwartungswert, Varianz und Standardabweichung (Fortsetzung) 2 / 19 Bedingter Erwartungswert

Mehr

4. Gemeinsame Verteilung und Grenzwertsätze

4. Gemeinsame Verteilung und Grenzwertsätze 4. Gemeinsame Verteilung und Grenzwertsätze Häufig in der Praxis: Man muss mehrere (n) ZV en gleichzeitig betrachten (vgl. Statistik I, Kapitel 6) Zunächst Vereinfachung: Betrachte n = 2 Zufallsvariablen

Mehr

4. Gemeinsame Verteilung und Grenzwertsätze

4. Gemeinsame Verteilung und Grenzwertsätze 4. Gemeinsame Verteilung und Grenzwertsätze Häufig in der Praxis: Man muss mehrere (n) ZV en gleichzeitig betrachten (vgl. Statistik I, Kapitel 6) Zunächst Vereinfachung: Betrachte n = 2 Zufallsvariablen

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

Psychologische Methodenlehre und Statistik I

Psychologische Methodenlehre und Statistik I Psychologische Methodenlehre und Statistik I Pantelis Christodoulides & Karin Waldherr SS 2013 Pantelis Christodoulides & Karin Waldherr Psychologische Methodenlehre und Statistik I 1/61 Zufallsexperiment

Mehr

Finanzmathematische Modelle und Simulation

Finanzmathematische Modelle und Simulation Finanzmathematische Modelle und Simulation WS 9/1 Rebecca Henkelmann In meiner Ausarbeitung Grundbegriffe der Stochastik I, geht es darum die folgenden Begriffe für die nächsten Kapitel einzuführen. Auf

Mehr

4 Diskrete Wahrscheinlichkeitsverteilungen

4 Diskrete Wahrscheinlichkeitsverteilungen 4 Diskrete Wahrscheinlichkeitsverteilungen 4.1 Wahrscheinlichkeitsräume, Ereignisse und Unabhängigkeit Definition: Ein diskreter Wahrscheinlichkeitsraum ist ein Paar (Ω, Pr), wobei Ω eine endliche oder

Mehr

Übung 1: Wiederholung Wahrscheinlichkeitstheorie

Übung 1: Wiederholung Wahrscheinlichkeitstheorie Übung 1: Wiederholung Wahrscheinlichkeitstheorie Ü1.1 Zufallsvariablen Eine Zufallsvariable ist eine Variable, deren numerischer Wert solange unbekannt ist, bis er beobachtet wird. Der Wert einer Zufallsvariable

Mehr

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen.

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen. Dieses Quiz soll Ihnen helfen, Kapitel 2.5-2. besser zu verstehen. Frage Wir betrachten ein Würfelspiel. Man wirft einen fairen, sechsseitigen Würfel. Wenn eine oder eine 2 oben liegt, muss man 2 SFr zahlen.

Mehr

Kapitel VII - Funktion und Transformation von Zufallsvariablen

Kapitel VII - Funktion und Transformation von Zufallsvariablen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VII - Funktion und Transformation von Zufallsvariablen Markus Höchstötter Lehrstuhl

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec

Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec Binomialverteilung Jakob Bernoulli (1654-1705) Ars Conjectandi Klassisches Verteilungsmodell für die Berechnung der Wahrscheinlichkeit für die Häufigkeit des Eintretens von Ereignissen in bestimmten noch

Mehr

Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung?

Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung? Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße Von Florian Modler In diesem Artikel möchte ich einen kleinen weiteren Exkurs zu meiner Serie Vier Wahrscheinlichkeitsverteilungen geben

Mehr

Stochastik. 1. Wahrscheinlichkeitsräume

Stochastik. 1. Wahrscheinlichkeitsräume Stochastik 1. Wahrscheinlichkeitsräume Ein Zufallsexperiment ist ein beliebig oft und gleichartig wiederholbarer Vorgang mit mindestens zwei verschiedenen Ergebnissen, bei dem der Ausgang ungewiß ist.

Mehr

1 Wahrscheinlichkeitsrechnung und Zufallsvariablen

1 Wahrscheinlichkeitsrechnung und Zufallsvariablen 1 Wahrscheinlichkeitsrechnung und Zufallsvariablen Zoltán Zomotor Versionsstand: 18. Mai 2015, 09:29 Die nummerierten Felder bitte während der Vorlesung ausfüllen. This work is licensed under the Creative

Mehr

Statistik II für Wirtschaftswissenschaftler

Statistik II für Wirtschaftswissenschaftler Fachbereich Mathematik 20.04.2017 Dr. Hefter & Dr. Herzwurm Übungsblatt 0 Keine Abgabe. Gegeben seien die Mengen A 1 =, A 2 = {1}, A 3 = {1, 1}, A 4 = {1, 3}, A 5 = {1, 2, 4}, A 6 = {1, 2, 3, 4}. a) Bestimmen

Mehr

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen Zusammenfassung: e und e Verteilungen Woche 4: Gemeinsame Verteilungen Wahrscheinlichkeitsverteilung p() Wahrscheinlichkeitsdichte f () WBL 15/17, 11.05.2015 Alain Hauser P(X = k

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de

Mehr

Kapitel XI - Die n-fache unabhängige Wiederholung eines Experiments

Kapitel XI - Die n-fache unabhängige Wiederholung eines Experiments Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XI - Die n-fache unabhängige Wiederholung eines Experiments Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig

Mehr

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück STOCHASTISCHE UNABHÄNGIGKEIT Annika Pohlmann Philipp Oel Wilhelm Dück 1 GLIEDERUNG 1) Bedingte Wahrscheinlichkeiten 2) Unabhängigkeit für mehr als zwei Ereignisse 3) Unabhängigkeit für Zufallsvariable

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 20/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt 4 Lösungshinweise (ohne Ganantie auf Fehlerfreiheit. Wenn man beim Roulette auf Rot oder Schwarz setzt, erhält

Mehr

Statistik III. Walter Zucchini Fred Böker Andreas Stadie

Statistik III. Walter Zucchini Fred Böker Andreas Stadie Statistik III Walter Zucchini Fred Böker Andreas Stadie Inhaltsverzeichnis 1 Zufallsvariablen und ihre Verteilung 1 1.1 Diskrete Zufallsvariablen........................... 1 1.2 Stetige Zufallsvariablen............................

Mehr

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass f Z (z) = Pr[Z = z] = x W X Pr[X + Y = z X = x] Pr[X = x] = x W X Pr[Y = z x] Pr[X = x] = x W X f X (x) f Y (z x). Den Ausdruck

Mehr

1 Multivariate Zufallsvariablen

1 Multivariate Zufallsvariablen 1 Multivariate Zufallsvariablen 1.1 Multivariate Verteilungen Definition 1.1. Zufallsvariable, Zufallsvektor (ZV) Sei Ω die Ergebnismenge eines Zufallsexperiments. Eine (univariate oder eindimensionale)

Mehr

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung Heute Die Binomialverteilung Poissonverteilung Approximation der Binomialverteilung durch die Normalverteilung Arbeiten mit Wahrscheinlichkeitsverteilungen Die Binomialverteilung Man werfe eine Münze n

Mehr

Übungsaufgaben, Statistik 1

Übungsaufgaben, Statistik 1 Übungsaufgaben, Statistik 1 Kapitel 3: Wahrscheinlichkeiten [ 4 ] 3. Übungswoche Der Spiegel berichtet in Heft 29/2007 von folgender Umfrage vom 3. und 4. Juli 2007:,, Immer wieder werden der Dalai Lama

Mehr

Zusatzmaterial zur Vorlesung Statistik II

Zusatzmaterial zur Vorlesung Statistik II Zusatzmaterial zur Vorlesung Statistik II Dr. Steffi Höse Professurvertretung für Ökonometrie und Statistik, KIT Wintersemester 2011/2012 (Fassung vom 15.11.2011, DVI- und PDF-Datei erzeugt am 15. November

Mehr

Kapitel 5. Univariate Zufallsvariablen. 5.1 Diskrete Zufallsvariablen

Kapitel 5. Univariate Zufallsvariablen. 5.1 Diskrete Zufallsvariablen Kapitel 5 Univariate Zufallsvariablen Im ersten Teil dieses Skriptes haben wir uns mit Daten beschäftigt und gezeigt, wie man die Verteilung eines Merkmals beschreiben kann. Ist man nur an der Population

Mehr

Wahrscheinlichkeitstheorie 2

Wahrscheinlichkeitstheorie 2 Wahrscheinlichkeitstheorie 2 Caroline Sporleder Computational Linguistics Universität des Saarlandes Sommersemester 2011 19.05.2011 Caroline Sporleder Wahrscheinlichkeitstheorie 2 (1) Wiederholung (1):

Mehr

KAPITEL 5. Erwartungswert

KAPITEL 5. Erwartungswert KAPITEL 5 Erwartungswert Wir betrachten einen diskreten Wahrscheinlichkeitsraum (Ω, P) und eine Zufallsvariable X : Ω R auf diesem Wahrscheinlichkeitsraum. Die Grundmenge Ω hat also nur endlich oder abzählbar

Mehr

Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff

Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff Zufallsgrößen 2.5 Zufallsgrößen 2.5.1 Verteilungsfunktion einer Zufallsgröße 2.5.2 Wahrscheinlichkeits- und Dichtefunktion Wahrscheinlichkeitsfunktion einer diskreten Zufallsgröße Dichtefunktion einer

Mehr

Grundgesamtheit, Merkmale, Stichprobe. Eigenschaften der Stichprobe. Klasseneinteilung, Histogramm. Arithmetisches Mittel, empirische Varianz

Grundgesamtheit, Merkmale, Stichprobe. Eigenschaften der Stichprobe. Klasseneinteilung, Histogramm. Arithmetisches Mittel, empirische Varianz - 1 - Grundgesamtheit, Merkmale, Stichprobe Dimension, Umfang Skalierung Eigenschaften der Stichprobe kennzeichnende Größen Eigenschaften der Stichprobe kennzeichnende Größen Punktediagramm, Regressionsgerade,

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

Unabhängige Zufallsvariablen

Unabhängige Zufallsvariablen Kapitel 9 Unabhängige Zufallsvariablen Die Unabhängigkeit von Zufallsvariablen wird auf die Unabhängigkeit von Ereignissen zurückgeführt. Im Folgenden sei Ω, A, P ) ein Wahrscheinlichkeitsraum. Definition

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Wahrscheinlichkeitsrechnung und Quantentheorie

Wahrscheinlichkeitsrechnung und Quantentheorie Physikalische Chemie II: Atombau und chemische Bindung Winter 2013/14 Wahrscheinlichkeitsrechnung und Quantentheorie Messergebnisse können in der Quantenmechanik ganz prinzipiell nur noch mit einer bestimmten

Mehr

Sachrechnen/Größen WS 14/15-

Sachrechnen/Größen WS 14/15- Kapitel Daten & Wahrscheinlichkeit 3.1 Kombinatorische Grundlagen 3.2 Kombinatorik & Wahrscheinlichkeit in der Grundschule 3.3 Daten Darstellen 3.1 Kombinatorische Grundlagen Verschiedene Bereiche der

Mehr

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc.

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc. Abiturvorbereitung Stochastik neue friedländer gesamtschule Klasse 12 GB 24.02.2014 Holger Wuschke B.Sc. Siedler von Catan, Rühlow 2014 Organisatorisches 0. Begriffe in der Stochastik (1) Ein Zufallsexperiment

Mehr

Mathematik für Informatiker III im WS 05/06 Musterlösung zur 4. Übung

Mathematik für Informatiker III im WS 05/06 Musterlösung zur 4. Übung Mathematik für Informatiker III im WS 5/6 Musterlösung zur. Übung erstellt von K. Kriegel Aufgabe : Wir betrachten den Wahrscheinlichkeitsraum der Punkte P =(a, b) aus dem Einheitsquadrat [, ] [, ] mit

Mehr

Übung zur Vorlesung Statistik I WS Übungsblatt 12

Übung zur Vorlesung Statistik I WS Übungsblatt 12 Übung zur Vorlesung Statistik I WS 2013-2014 Übungsblatt 12 20. Januar 2014 Die folgenden ufgaben sind aus ehemaligen Klausuren! ufgabe 38.1 (1 Punkt: In einer Studie werden 10 Patienten therapiert. Die

Mehr

3.3 Bedingte Wahrscheinlichkeit

3.3 Bedingte Wahrscheinlichkeit 28 3.3 Bedingte Wahrscheinlichkeit Oft ist die Wahrscheinlichkeit eines Ereignisses B gesucht unter der Bedingung (bzw. dem Wissen), dass ein Ereignis A bereits eingetreten ist. Man bezeichnet diese Wahrscheinlichkeit

Mehr

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme Binomialverteilung Wahrscheinlichkeitsfunktion Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11.

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11. Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11 Namensschild Dr. Martin Becker Hinweise für die Klausurteilnehmer

Mehr

Teil IV. Diskrete Verteilungen. Woche 3: Verteilungen. Diskrete Zufallsvariablen Wiederholung. Lernziele

Teil IV. Diskrete Verteilungen. Woche 3: Verteilungen. Diskrete Zufallsvariablen Wiederholung. Lernziele Woche 3: Verteilungen Teil IV Patric Müller Diskrete Verteilungen ETHZ WBL 17/19, 08.05.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Wahrscheinlichkeit

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13 Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13 Aufgabenstellung und Ergebnisse Dr. Martin Becker Hinweise für die

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Lageparameter: Erwartungswert d) Erwartungswert

Mehr

Kapitel 5. Stochastik

Kapitel 5. Stochastik 76 Kapitel 5 Stochastik In diesem Kapitel wollen wir die Grundzüge der Wahrscheinlichkeitstheorie behandeln. Wir beschränken uns dabei auf diskrete Wahrscheinlichkeitsräume Ω. Definition 5.1. Ein diskreter

Mehr

6.6 Poisson-Verteilung

6.6 Poisson-Verteilung 6.6 Poisson-Verteilung Die Poisson-Verteilung ist eine Wahrscheinlichkeitsverteilung, die zur Modellierung der Anzahl von zufälligen Vorkommnissen in einem bestimmten räumlichen oder zeitlichen Abschnitt

Mehr

Zusammenfassung Stochastik

Zusammenfassung Stochastik Zusammenfassung Stochastik Die relative Häufigkeit Ein Experiment, dessen Ausgang nicht vorhersagbar ist, heißt Zufallsexperiment (ZE). Ein Würfel wird 40-mal geworfen, mit folgendem Ergebnis Augenzahl

Mehr

Stochastik für die Naturwissenschaften

Stochastik für die Naturwissenschaften Stochastik für die Naturwissenschaften Dr. C.J. Luchsinger 4. Zufallsgrösse X Literatur Kapitel 4 * Storrer: Kapitel (37.2)-(37.8), (38.2)-(38.3), (38.5), (40.2)-(40.5) * Stahel: Kapitel 4, 5 und 6 (ohne

Mehr

Stochastik und Statistik für Ingenieure Vorlesung 4

Stochastik und Statistik für Ingenieure Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Stochastik und Statistik für Ingenieure Vorlesung 4 30. Oktober 2012 Quantile einer stetigen Zufallsgröße Die reelle Zahl

Mehr