1.1 Mengen und Abbildungen

Größe: px
Ab Seite anzeigen:

Download "1.1 Mengen und Abbildungen"

Transkript

1 Lineare Algebra I WS 2015/16 c Rudolf Scharlau Mengen und Abbildungen In diesem Abschnitt stellen wir die grundlegende mathematische Sprache und Notation zusammen, die für jede Art von heutiger Mathematik unverzichtbar ist. Wir knüpfen an übliches (schul-)mathematisches Vorwissen über Zahlen und Funktionen an, auch setzen wir ein Grundverständnis von analytischer Geometrie voraus (Beschreibung von Punkten durch Koordinaten). Der Rahmen unserer Ausführungen ist allerdings viel weiter gesteckt und dementsprechend die Darstellung abstrakt im Sinne der axiomatischen Vorgehensweise der modernen Mathematik. (Im folgenden Abschnitt 1.3 wird dieser Aspekt noch deutlicher werden.) Im ersten Teil dieses Abschnittes geht es um Mengen: Darstellung von Mengen, Standard-Bezeichnungen für gewisse Mengen, Teilmengen, Vereinigung, Durchschnitt, Differenzmenge, kartesisches Produkt, Mächtigkeit. Im zweiten Teil geht es um das Konzept einer Abbildung (Funktion); hierzu gehören die Begriffe Definitionsbereich, Zielbereich, Bild und Urbild (von Elementen und von Teilmengen). Besonders wichtig sind die Begriffe injektiv, surjektiv, bijektiv und Umkehrabbildung (inverse Abbildung). Nicht jede Abbildung besitzt eine Umkehrabbildung, vielmehr trifft dieses genau für die bijektiven Abbildungen zu. Zum Schluss des Abschnittes stellen wir den Zusammenhang zwischen Abbildungen und Mächtigkeit von Mengen her und führen den Begriff einer abzählbaren Menge ein. Erklärung (G. Cantor 1 ) Eine Menge ist eine Zusammenfassung bestimmter wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens welche die Elemente der Menge genannt werden zu einem Ganzen. Schreibweise: x M x M x ist ein Element von M x ist nicht ein Element von M Definition (Standard-Bezeichnungen für Mengen) N = {1, 2, 3, 4,...} die natürlichen Zahlen N 0 = {0, 1, 2, 3, 4,...} die natürliche Zahlen mit Null Z = {..., 2, 1, 0, 1, 2,...} die ganzen Zahlen Q = { m n m Z, n N} die Bruchzahlen, rationalen Zahlen R die reellen Zahlen die leere Menge Neben den natürlichen, ganzen und rationalen Zahlen (Bruchzahlen) setzen wir auch die reellen Zahlen (dargestellt zum Beispiel durch endliche oder unendliche Dezimalbrüche) grundsätzlich als bekannt voraus. Beispiele: 3 N, 3 R, 1, 5 Z, 1 Z, 1 N, 1, 2121 R Definition Eine Menge M heißt endlich, wenn sie aus nur endlich vielen Elementen besteht. In diesem Fall heißt die Anzahl der Elemente die Mächtigkeit oder auch Kardinalität von M, in Zeichen: M oder #M. Wir kommen unten auf diesen Begriff zurück und gehen dann auch auf unendliche Mengen ein. 1 Georg Cantor, , deutscher Mathematiker, Professor in Halle (Saale)

2 4 Lineare Algebra I WS 2015/16 c Rudolf Scharlau Erklärung (Beschreibung von Mengen) 1. Durch Aufzählung der Elemente, z.b. M = {1, 3, 5, 6}, A = {a, b, c, d, e, f} ; dieses ist prinzipiell bei endlichen Mengen möglich, u.u. auch bei unendlichen Mengen, wenn keine Missverständnisse zu befürchten sind: N 0 = {0, 1, 2, 3, 4...} G = {2, 4, 6, 8,...} die Menge der geraden Zahlen. 2. In beschreibender Form, d.h. durch Angabe der Eigenschaften der Elemente, z.b. Die allgemeine Form ist: G = {x x N und x ist gerade}. M = {x A(x)}, dabei steht A für eine Eigenschaft, die potentielle Elemente haben können; A(x) heißt: die Eigenschaft A trifft für das Objekt x zu. Man kann auch schreiben: G = {x N x ist gerade}, d.h. die größere Menge, in der sich die Elemente der zu definierenden Menge befinden, hier die Menge N, wird nicht unter den Eigenschaften, sondern bereits vor dem Trennstrich in der Mengenklammer genannt. 3. In abgekürzter beschreibender Form, z.b. G = {2 m m N}. Man verzichtet hier auf einen speziellen Namen für die Elemente und gibt sofort ein Bildungsgesetz, z.b. einen Term oder algebraischen Ausdruck, an. Ein anderes Beispiel hierzu: K = {1 + 3z z Z} = {..., 5, 2, 1, 4, 7, 10,... }. Beispiel: die Menge der Quadratzahlen in allen drei Beschreibungsformen: Q = {1, 4, 9, 16, 25,...} = {y y N und es existiert ein x N so dass x 2 = y} = {x 2 x N} Definition (Teilmenge) a) Eine Menge A heißt Teilmenge einer Menge M, falls jedes Element von A auch Element von M ist. Die entsprechende Beziehung zwischen A und M heißt auch Inklusion (von A in M). Bezeichnung: A M.

3 Lineare Algebra I WS 2015/16 c Rudolf Scharlau 5 b) Eine Menge A heißt echte Teilmenge einer Menge M, falls A Teilmenge von M und A M ist. Die entsprechende Beziehung zwischen A und M heißt auch echte Inklusion (von A in M). Bezeichnung: A M oder A M. Wir weisen ausdrücklich darauf hin, dass bei der Inklusion die Gleichheit der beiden Mengen erlaubt ist: es gilt M M. Für die Inklusion wird oft auch die Schreibweise A M benutzt; die von uns gewählte Konvention hat den Vorteil, dass sie zu den üblichen Zeichen bzw. < für den Größenvergleich von Zahlen passt. Definition (Operationen mit Mengen) A B = {x x A und x B} Durchschnitt A B = {x x A oder x B} Vereinigung A B = {x x A und x B} Differenz(menge) Beachte, dass bei der Bildung der Differenzmenge B nicht in A enthalten sein muss. Man kann sich allerdings immer auf diesen Fall zurückziehen, denn es gilt offensichtlich A B = A (A B). Mengen und Mengenoperationen können durch sog. Venn-Diagramme veranschaulicht werden; hier ist die Veranschaulichung der Differenzmenge: A B A A \ B B A \ B Abb. 1.1: Differenzmenge Falls alle betrachteten Mengen Teilmengen einer festen Menge M sind (in einer solchen Situation wird M auch als Grundmenge bezeichnet), wird die Differenzmenge M A auch als das Komplement von A in M bezeichnet. Oft schreibt man für diese Menge A oder A; wir werden diese Bezeichnungen nicht verwenden, weil sie den Bezug auf die Grundmenge M nicht mehr ausdrücken. Definition und Bemerkung Zwei Teilmengen A und B einer Menge M heißen disjunkt, falls A B = ist. Eine Menge M heißt disjunkte Vereinigung von zwei Teilmengen A und B, falls A B = und A B = M ist. Man schreibt dann M = A B. In diesem Fall gilt für die Mächtigkeiten A B = A + B. Definition (Kartesisches Produkt, Produktmenge) a) Das kartesische Produkt zweier Mengen A und B ist definiert als A B := {(a, b) a A und b B}. Ein Element (a, b) A B heißt geordnetes Paar. Nach Definition gilt für beliebige a, a A, b, b B: (a, b) = (a, b ) genau dann, wenn a = a und b = b

4 6 Lineare Algebra I WS 2015/16 c Rudolf Scharlau b) Allgemeiner ist das kartesische Produkt von n Mengen A 1, A 2,..., A n definiert als A 1 A 2 A n = {(a 1, a 2,..., a n ) a i A i für i = 1,..., n}. Ein Element (a 1, a 2,..., a n ) A 1 A 2 A n heißt n-tupel. Nach Definition gilt für beliebige a i, b i A i, i = 1,..., n: (a 1, a 2,..., a n ) = (b 1, b 2,..., b n ) genau dann, wenn a i = b i für i = 1,..., n. Das kartesische Produkt wird auch einfach als Produktmenge bezeichnet. Zwei n-tupel sind also nur dann gleich, wenn an entsprechenden Stellen dasselbe Element der jeweiligen Menge A i steht. Insbesondere kommt es in geordneten Paaren auf die Reihenfolge der beiden Elemente an: Es gilt (a, b) (b, a), falls a b. (Es müssen a und b beide in A und B liegen, damit die fraglichen Paare in A B liegen. Wir denken bei dieser Bemerkung insbesondere an den wichtigen Fall A = B.) Bezüglich Reihenfolge verhält sich also (a, b) anders als die Menge {a, b}, für die offenbar {a, b} = {b, a} gilt. Übrigens sollte man die Notation {a, b} nur benutzen, wenn a b ist (sonst notiert man die einelementige Menge natürlich als {a}), während ein geordnetes Paar (a, a) durchaus Sinn macht. Bei n-tupeln (wir nehmen hier der Einfachheit halber den Fall A 1 = A 2 = = A n =: A an) kommt es erst recht auf die Reihenfolge an: wenn etwa a, b, c drei verschiedene Elemente aus A sind, dann können wir hieraus 6 verschiedene Tripel in A A A bilden, nämlich (a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b), (c, b, a). Als Spezialfall eines kartesischen Produktes ist vor allem die Menge R R =: R 2 bekannt. Hier handelt es sich um reelle Zahlenpaare, die nach Einführung eines Koordinatensystems mit den Punkten der Ebene identifiziert werden. Wenn M R und N R Intervalle sind, kann man sich entsprechend M N als Rechteck vorstellen. Von dieser geometrischen Interpretation kommt auch die Wortwahl kartesisch beim kartesischen Produkt her: Descartes 2 führte als erster ein solches kartesisches Koordinatensystem ein. Die Bezeichnung eines kartesischen Produktes als Produkt wird auch durch den folgenden Satz unterstützt. Satz Es seien M und N zwei endliche Mengen. Dann ist auch ihr kartesiches Produkt endlich und seine Mächtigkeit gleich dem Produkt der Mächtigkeiten von M und N: M N = M N. Beweis: Sei M = m, N = n, M = {x 1, x 2,..., x m }. Dann ist M N die disjunkte Vereinigung der m Mengen {x i } N, i = 1,..., m. Jede dieser Mengen hat n Elemente (sie ist gleichmächtig zur Menge N, siehe unten a)). Die Mächtigkeit von M N ergibt sich also als die m-fache Summe der Zahl n, also als m n, wie behauptet. Wir behandeln noch eine andere Abzählfrage im Zusammenhang mit endlichen Mengen. 2 René Descartes, , französischer Philosoph und Mathematiker

5 Lineare Algebra I WS 2015/16 c Rudolf Scharlau 7 Definition und Satz Die Menge aller Teilmengen einer Menge M heißt Potenzmenge von M und wird mit P(M) bezeichnet: P(M) := {X X M}. Wenn M endlich mit n Elementen ist, dann besteht P(M) aus 2 n Elementen: P(M) = 2 M. Beweis durch vollständige Induktion nach n: 3 Induktionsanfang: Für n = 0, also M = ist die Behauptung richtig, denn P( ) = { }. Induktionsschritt: Die Behauptung sei für Mengen der Mächtigkeit n bewiesen. Sei M eine Menge mit M = n+1. Wähle ein Element a M, setze M := M {a}. Es gilt also M = n. Wir teilen die Teilmengen X M in zwei Klassen ein: Mengen mit a / X, das sind genau die Teilmengen von M, und Mengen mit a X. Auf diese Art haben wir eine Darstellung P(M) = P(M ) P als disjunkte Vereinigung, wobei P = {X M a X}. Die Mengen in P sind alle von der Form X = X {a}, wobei X eine (durch X eindeutig bestimmte) Teilmenge von M ist. Von diesen Mengen gibt es also genau so viele wie Teilmengen von M, m.a.w. P = P(M ). Nach Induktionsannahme gilt P(M ) = 2 n. Insgesamt folgt also P(M) = P(M ) + P = P(M ) + P(M ) = 2 P(M ) = 2 2 n = 2 n+1, wie gewünscht. Es sei n = 3, M = {a, b, c}. Dann ist P(M) = {, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}} = {, {c}, {b}, {b, c}, {a}, {a, c}, {a, b}, {a, b, c}}. (Die zweite Zeile zeigt die Anordnung der Teilmengen, die sich aus dem Beweis ergibt.) Wir führen zwischendurch einige größtenteils aus der Aussagenlogik stammende Symbole ein, die für das strukturierte und etwas abgekürzte Aufschreiben von Sätzen und Definitionen sehr praktisch sind. Bezeichnungen (einige Symbole der Logik) heißt heißt = heißt heißt : heißt heißt heißt es gibt ein für alle impliziert, aus... folgt genau dann, wenn genau dann, wenn (Definition der linken Seite) und oder Wir kommen zum zweiten Teil dieses Paragraphen, nämlich dem mathematischen Begriff einer Abbildung. Definition Es seien X und Y zwei Mengen. Eine Abbildung von X in Y ist gegeben durch eine Vorschrift f, die jedem Element x X genau ein Element y Y zuordnet. Man schreibt y = f(x) (lies: f von x ). Für die gesamte Abbildung schreibt man 3 Für das Prinzip der vollständigen Induktion siehe den Punkt im folgenden Unterkapitel 1.2.

6 8 Lineare Algebra I WS 2015/16 c Rudolf Scharlau f : X Y (lies: f von X nach Y oder... in Y ). Für ein Element x X benutzt man die Notation x f(x) (lies: x wird abgebildet auf f(x) ). f(x) heißt das Bild von x unter f. X heißt Definitionsbereich. Y heißt Zielbereich oder die Zielmenge. Die Elemente von X heißen auch die Argumente der Abbildung Wichtig: Zwei Abbildungen sind nur dann gleich, wenn die Vorschriften und auch die Definitions- und Zielbereiche übereinstimmen. Die Abbildungen unter (1) des folgenden Beispiels sind alle verschieden, auch wenn die Vorschrift immer die gleiche, nämlich das Quadrieren einer Zahl ist. Beispiele (Abbildungen) (1a) X = N, Y = N, f(x) = x 2 (1b) X = Z, Y = N 0, f(x) = x 2 (1c) X = Z, Y = Z, f(x) = x 2 (2) X = Y = R, f(x) = e x, cos x, sin x reelle Funktionen, wie man sie in der Analysis studiert, sind ebenfalls Abbildungen. (3) X = P({1, 2,..., n}), Y = N 0, f(x) = x die Mächtigkeit von x. (4) X wie eben, Y = X, f(x) = x := {1, 2,..., n} x das Komplement von x. (5) X sei endlich. Dann kann die Vorschrift als eine (endliche) Tabelle aufgefasst werden. Zum Beispiel: X = {1, 2, 3, 4, 5}, Y = {u, v, w, x, y, z}, x f(x) y v w x w Abbildungen zwischen endlichen Mengen (mit wenigen Elementen) kann man auch durch ein Pfeildiagramm veranschaulichen: die Mengen X und Y werden in geeigneter Weise skizziert, und jedes Element des Definitionsbereiches wird mit seinem Bild durch einen Pfeil verbunden: 1 u z Abb. 1.2 Pfeildiagramm einer Abbildung Das Pfeildiagramm einer Abbildung kann nicht beliebig aussehen, vielmehr hat es folgende charakteristische Eigenschaft: Bei jedem Element des Definitionsbereichs X beginnt genau ein Pfeil. Ist eine Abbildung f mit Definitionsbereich X gegeben, kann man den Begriff des Bildes unter f von den Elementen von X auf Teilmengen von X ausdehnen; wir ergänzen ihn nun um den Begriff des Urbildes: v w x y

7 Lineare Algebra I WS 2015/16 c Rudolf Scharlau 9 Definition (Bilder und Urbilder von Teilmengen) Es sei f : X Y eine Abbildung. a) Für A X definiere f(a) := {y Y es gibt ein a A mit f(a) = y} = {f(a) a A} das Bild von A unter f. b) Für B Y definiere f 1 (B) := {x X f(x) B} das Urbild von B unter f. Zur Illustration dieser Begriffe benutzen wir die obigen Beispiele Beispiele (1a) X = N, Y = N, f(x) = x 2 f({1, 2, 3}) = {1, 4, 9} f({5, 7, 12}) = {25, 49, 144} f 1 ({25, 36, 49}) = {5, 6, 7} f 1 ({10, 11, 12,..., 20}) = {4} f 1 ({100, 101,..., 200}) = {10, 11, 12, 13, 14} (1c) X = Z, Y = Z, f(x) = x 2 f 1 ({25}) = {5, 5} f 1 ({25, 36, 49}) = {±5, ±6, ±7} (6 Elemente) f 1 ({ 1, 2, 3,...}) = (leere Menge) (5) (siehe (5)): X = {1, 2, 3, 4, 5}, Y = {u, v, w, x, y, z} f 1 ({u, v}) = {2} f 1 ({z}) = f 1 ({v, w}) = {2, 3, 5} Man mache sich auch klar, wie man Bilder und Urbilder sieht, wenn eine Abbildung durch ein Pfeildiagramm gegeben ist. Definition Eine Abbildung f : X Y heißt injektiv : für alle x, x X gilt: x x = f(x) f(x ), (Verschiedene Elemente in X haben auch verschiedene Bilder unter f.) surjektiv : für alle y Y gibt es ein x X mit f(x) = y, (Jedes Element in Y kommt als Bild unter f vor.) bijektiv : f ist injektiv und surjektiv. Bemerkung a) Die Injektivität kann man auch wie folgt formulieren: x, x X : f(x) = f(x ) = x = x. Wenn zwei Elemente das gleiche Bild haben, so sind sie gleich. b) Die Menge f(x) (also das Bild von ganz X unter f) heißt auch die Bildmenge oder einfach das Bild von f. Eine Abbildung f : X Y ist surjektiv genau dann, wenn f(x) = Y ist, d.h. ihr Bild gleich ganz Y ist.

8 10 Lineare Algebra I WS 2015/16 c Rudolf Scharlau Im Pfeildiagramm bedeuten diese Eigenschaften: injektiv : es laufen keine zwei Pfeile zusammen surjektiv : bei jedem y in Y endet ein Pfeil Aus einer beliebigen Abbildung f : X Y kann man leicht eine surjektive Abbildung machen: Man ersetze nämlich Y durch die Bildmenge f(x). Definition Es sei f : X Y eine Abbildung. Der Graph von f ist definiert als Γ f := {(x, f(x) x X} X Y. Definition Es seien f : X Y und g : Y Z, dabei Y Y zwei Abbildungen, wobei der Zielbereich der ersten im Definitionsbereich der zweiten enthalten ist. Die Komposition, Verkettung oder Hintereinanderausführung g f : X Z (lies: g nach f ) ist definiert durch (g f)(x) = g(f(x)) für alle x X. Bemerkung Die Komposition ist assoziativ, d.h. wenn f : X Y, g : Y Z, h : Z W drei Abbildungen sind mit Y Y und Z Z, so ist h (g f) = (h g) f : X W. Definition und Bemerkung Es sei X irgendeine Menge. Die identische Abbildung id X : X X ist definiert durch id X (x) = x für alle x X. Wenn f : X Y eine beliebige Abbildung ist, so gilt f id X = f = id Y f. Satz und Definition (Umkehrabbildung) Es sei f : X Y eine Abbildung. a) Die folgenden beiden Eigenschaften sind äquivalent: i) f ist bijektiv. ii) Es gibt eine Abbildung g : Y X so, dass g(f(x)) = x für alle x X, d.h. g f = id X und f(g(y)) = y für alle y Y, d.h. f g = id Y. b) Falls f bijektiv ist, so gibt es nur eine Abbildung g, die ii) erfüllt. Schreibe g =: f 1. Diese Abbildung heißt die zu f inverse Abbildung, oder Umkehrabbildung von f. c) Wenn f : X Y bijektiv ist, so ist auch f 1 : Y X bijektiv, und es gilt (f 1 ) 1 = f. Beweis: zu a): Es sind zwei Implikationen zu zeigen: i) = ii) : Zu jedem y Y gibt es genau ein x X mit f(x) = y, denn f ist surjektiv und injektiv. Setze nun g(y) := x. Dann gilt nach Konstruktion g(f(x)) = x für alle x X,

9 Lineare Algebra I WS 2015/16 c Rudolf Scharlau 11 wie unter ii) als erstes behauptet. Wir zeigen nun die zweite Behauptung unter ii). Sei y Y beliebig. Weil f surjektiv ist, existiert ein x X mit f(x) = y. Es folgt f(g(y)) = f(g(f(x))) = f(x) = y, wie gewünscht. ii) = i) : 1) f ist injektiv: Es seien x, x X mit f(x) = f(x ). Dann ist x = g(f(x)) = g(f(x )) = x, wie gewünscht. 2) f ist surjektiv: Sei y Y gegeben. Setze x := g(y). Dann ist wie gewünscht. f(x) = f(g(y)) = (f g)(y) = y, zu b): (Eindeutigkeit von g): Angenommen, h : Y X hat die gleichen Eigenschaften wie g. Dann gilt h = h id Y = h (f g) = (h f) g = id X g = g. zu c): Dieses folgt sofort aus der in a) gegebenen Kennzeichnung bijektiver Abbildungen. Wir kehren noch einmal zum Begriff der Mächtigkeit einer Menge zurück, den wir jetzt mit Hilfe des Abbildungsbegriffs vertiefen können. Definition a) Eine Menge M heißt gleichmächtig zu einer Menge N, falls eine bijektive Abbildung f : M N existiert. b) Eine Menge heißt abzählbar, falls sie gleichmächtig zur Menge der natürlichen Zahlen ist. Bemerkung: Wenn M gleichmächtig zu N ist, so können wir statt der Abbildung f : M N aus der Definition auch die (ebenfalls bijektive) Umkehrabbildung f 1 : N M betrachten. Es folgt, dass N gleichmächtig zu M ist. Etwas lässiger können wir also auch sagen Die Mengen M und N sind gleichmächtig, wobei es dann auf die Reihenfolge, in der M und N genannt werden, nicht ankommt. (Später werden wir sagen: Die Relation gleichmächtig ist symmetrisch.) Wir überlegen uns, dass die Definition der Beziehung gleichmächtig für endliche Mengen zur ursprünglichen Definition der Mächtigkeit passt: Eine Menge M hat n Elemente, wenn ihre Elemente in der Form x 1, x 2,..., x n aufgezählt werden können (wobei natürlich alle x i voneinander verschieden sind). Eine solche Aufzählung (oder Abzählung) ist aber nichts anderes als eine bijektive Abbildung {1, 2,..., n} M, i x i. D.h. jede n-elementige Menge M ist gleichmächtig zur Menge {1, 2,..., n}, die also die Rolle einer Art Standardmenge der Mächtigkeit n hat. Wir halten diese Überlegung in etwas vervollständigter und zitierbarer Form fest: Bemerkung Es sei n N. Eine Menge M hat die Mächtigkeit n genau dann, wenn sie gleichmächtig zur Menge {1, 2,..., n} ist. Wer mag, kann dieses auch als Definition einer Menge der Mächtigkeit n ansehen, womit dann die endlichen und abzählbaren Mengen einheitlich behandelt werden. Um allerdings jeder endlichen Menge eine eindeutige

10 12 Lineare Algebra I WS 2015/16 c Rudolf Scharlau Mächtikeit zuordnen zu können, muss man wissen, dass für m n die Mengen {1, 2,..., m} und {1, 2,..., n} nicht gleichmächtig sind, dass also keine bijektive Abbildung zwischen ihnen exstiert. Hier sind wir dann doch wieder auf unser intuitives Verständnis endlicher Mengen angewiesen, das bereits der obigen Definition zugrundegelegt wurde. Zum Schluss dieses Abschnitts kommen wir noch einmal auf die Begriffe injektiv und surjektiv zurück: Satz Es seien f : X Y und g : Y Z zwei injektive (surjektive, bijektive) Abbildungen. Dann ist auch die Verkettung g f injektiv (bzw. surjektiv, bijektiv). Den Beweis überlassen wir als Übungsaufgabe; wir haben oben beim Beweis von Satz vorgeführt, wie solch ein im Prinzip einfacher, jedoch abstrakter Beweis aussieht. Folgender Hinweis ist noch nützlich: Wenn man den Satz für injektive und surjektive Abbildungen bewiesen hat, so ist für bijektive Abbildungen kein Beweis mehr nötig (denn definitionsgemäß sind bijektive Abbildungen diejenigen, die gleichzeitig injektiv und surjektiv sind). Einen von den anderen Fällen unabhängigen direkten Beweis im bijektiven Fall kann man in wenigen Zeilen geben, wenn man die Kennzeichnung bijektiver Abbildungen aus Satz , Teil a) benutzt: Man prüft nämlich nach, dass die Abbildung f 1 g 1 die Eigenschaften der Inversen zu g f erfüllt. Dieser Beweis erspart das Rechnen mit Elementen der beteiligten Mengen, man rechnet mit den Abbildungen selbst und benutzt nur das Assoziativgesetz sowie die Eigenschaft der identischen Abbildung aus Bemerkung

1.1 Mengen und Abbildungen

1.1 Mengen und Abbildungen Lineare Algebra 2005-2013 c Rudolf Scharlau 3 1.1 Mengen und Abbildungen In diesem Abschnitt stellen wir die grundlegende mathematische Sprache und Notation zusammen, die für jede Art von heutiger Mathematik

Mehr

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund Lineare Algebra 1 Detlev W. Hoffmann WS 2013/14, TU Dortmund 1 Mengen und Zahlen 1.1 Mengen und Abbildungen Eine Menge ist eine Zusammenfassung wohlunterscheidbarer Objekte unserer Anschauung/unseres Denkens/unserer

Mehr

Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe

Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe Kapitel 5 Abbildungen 5.1 Definition: (Abbildung) Eine Abbildung zwischen zwei Mengen M und N ist eine Vorschrift f : M N, die jedem Element x M ein Element f(x) N zuordnet. Schreibweise: x f(x) 5. Beispiel:

Mehr

Grundlagen. Kapitel Mengen

Grundlagen. Kapitel Mengen Kapitel 1 Grundlagen 1.1 Mengen Grundobjekte mathematischer Theorien sind Mengen. Zwar stellt man sich darunter Gesamtheiten von gewissen Dingen (den Elementen der Menge) vor, doch führt die uneingeschränkte

Mehr

2 Mengen und Abbildungen

2 Mengen und Abbildungen 2.1 Mengen Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen. Die Objekte heiÿen Elemente. Ist M eine Menge und x ein Element von M so schreiben wir x M. Wir sagen auch:

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Mengen und Abbildungen

Mengen und Abbildungen Mengen und Abbildungen Der Mengenbegriff Durchschnitt, Vereinigung, Differenzmenge Kartesisches Produkt Abbildungen Prinzip der kleinsten natürlichen Zahl Vollständige Induktion Mengen und Abbildungen

Mehr

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit Mengen! Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor)! Notation 1. Aufzählung aller Elemente: {

Mehr

HM I Tutorium 1. Lucas Kunz. 27. Oktober 2016

HM I Tutorium 1. Lucas Kunz. 27. Oktober 2016 HM I Tutorium 1 Lucas Kunz 27. Oktober 2016 Inhaltsverzeichnis 1 Theorie 2 1.1 Logische Verknüpfungen............................ 2 1.2 Quantoren.................................... 3 1.3 Mengen und ihre

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

17 Lineare Abbildungen

17 Lineare Abbildungen Chr.Nelius: Lineare Algebra II (SS2005) 1 17 Lineare Abbildungen Wir beginnen mit der Klärung des Abbildungsbegriffes. (17.1) DEF: M und N seien nichtleere Mengen. Eine Abbildung f von M nach N (in Zeichen:

Mehr

Diskrete Strukturen Vorlesungen 5 und 6

Diskrete Strukturen Vorlesungen 5 und 6 Sebastian Thomas RWTH Aachen, WS 2016/17 07.11.2016 09.11.2016 Diskrete Strukturen Vorlesungen 5 und 6 3 Abbildungen In diesem Abschnitt führen wir Abbildungen zwischen Mengen ein. Während Mengen von der

Mehr

Analyis I - Grundlagen

Analyis I - Grundlagen Elementare Aussagenlogik October 23, 2008 Elementare Aussagenlogik Definition Eine Aussage im Sinne der Aussagenlogik ist eine sprachliche Aussage, bei der klar entschieden werden kann, ob sie wahr oder

Mehr

Mengen und Abbildungen

Mengen und Abbildungen 1 Mengen und bbildungen sind Hilfsmittel ( Sprache ) zur Formulierung von Sachverhalten; naive Vorstellung gemäß Georg Cantor (1845-1918) (Begründer der Mengenlehre). Definition 1.1 Eine Menge M ist eine

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Mathematische Grundbegriffe Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr,

Mehr

Abbildungen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Abbildungen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Abbildungen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Abbildungen Die wichtigsten Relationen sind die Abbildungen: Eine Abbildung (A,B,f ) von A nach

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen)

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Mengen, Funktionen und Logik

Mengen, Funktionen und Logik Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Mengen, Funktionen und Logik Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Grundlagen der Mengenlehre

Grundlagen der Mengenlehre mathe plus Grundlagen der Mengenlehre Seite 1 1 Grundbegriffe Grundlagen der Mengenlehre Def 1 Mengenbegriff nach Georg Cantor (1845-1918) Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener

Mehr

Abschnitt 3: Mathematische Grundlagen

Abschnitt 3: Mathematische Grundlagen Abschnitt 3: Mathematische Grundlagen 3. Mathematische Grundlagen 3.1 3.2 Induktion und Rekursion 3.3 Boolsche Algebra Peer Kröger (LMU München) Einführung in die Programmierung WS 14/15 48 / 155 Überblick

Mehr

MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/ OKTOBER 2016

MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/ OKTOBER 2016 MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/17 MARK HAMILTON LMU MÜNCHEN 1.1. Grundbegriffe zu Mengen. 1. 17. OKTOBER 2016 Definition 1.1 (Mengen und Elemente). Eine Menge ist die Zusammenfassung

Mehr

Skript und Übungen Teil II

Skript und Übungen Teil II Vorkurs Mathematik Herbst 2009 M. Carl E. Bönecke Skript und Übungen Teil II Das erste Semester wiederholt die Schulmathematik in einer neuen axiomatischen Sprache; es ähnelt damit dem nachträglichen Erlernen

Mehr

Mathematik für Ökonomen 1

Mathematik für Ökonomen 1 Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Herbstemester 2008 Mengen, Funktionen und Logik Inhalt: 1. Mengen 2. Funktionen 3. Logik Teil 1 Mengen

Mehr

Vorkurs Mathematik Abbildungen

Vorkurs Mathematik Abbildungen Vorkurs Mathematik Abbildungen Philip Bell 19. September 2016 Diese Arbeit beruht im Wesentlichen auf dem Vortrag Relationen, Partitionen und Abbildungen von Fabian Grünig aus den vorangehenden Jahren.

Mehr

Mengen (siehe Teschl/Teschl 1.2)

Mengen (siehe Teschl/Teschl 1.2) Mengen (siehe Teschl/Teschl 1.2) Denition nach Georg Cantor (1895): Eine Menge ist eine Zusammenfassung von bestimmten und wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens zu einem

Mehr

Vorlesung 2. Tilman Bauer. 6. September 2007

Vorlesung 2. Tilman Bauer. 6. September 2007 Vorlesung 2 Universität Münster 6. September 2007 Organisatorisches Meine Koordinaten: Sprechstunden: Di 13:30-14:30 Do 9:00-10:00 tbauer@uni-muenster.de Zimmer 504, Einsteinstr. 62 (Hochhaus) für alle

Mehr

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Saskia Klaus 07.10.016 1 Motivation In den ersten beiden Vorträgen des Vorkurses haben wir gesehen, wie man aus schon bekannten Wahrheiten

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen)

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Mathematik 1 für Informatik Inhalt Grundbegrie

Mathematik 1 für Informatik Inhalt Grundbegrie Mathematik 1 für Informatik Inhalt Grundbegrie Mengen, speziell Zahlenmengen Aussagenlogik, Beweistechniken Funktionen, Relationen Kombinatorik Abzählverfahren Binomialkoezienten Komplexität von Algorithmen

Mehr

Kapitel 3. Natürliche Zahlen und vollständige Induktion

Kapitel 3. Natürliche Zahlen und vollständige Induktion Kapitel 3 Natürliche Zahlen und vollständige Induktion In Kapitel 1 haben wir den direkten Beweis, den modus ponens, kennen gelernt, der durch die Tautologie ( A (A = B) ) = B gegeben ist Dabei war B eine

Mehr

Kapitel 2 MENGENLEHRE

Kapitel 2 MENGENLEHRE Kapitel 2 MENGENLEHRE In diesem Kapitel geben wir eine kurze Einführung in die Mengenlehre, mit der man die ganze Mathematik begründen kann. Wir werden sehen, daßjedes mathematische Objekt eine Menge ist.

Mehr

1 Mengen. 1.1 Elementare Definitionen. Einige mathematische Konzepte

1 Mengen. 1.1 Elementare Definitionen. Einige mathematische Konzepte Einige mathematische Konzepte 1 Mengen 1.1 Elementare Definitionen Mengendefinition Die elementarsten mathematischen Objekte sind Mengen. Für unsere Zwecke ausreichend ist die ursprüngliche Mengendefinition

Mehr

Mengenlehre. Begriff der Mengenzugehörigkeit x M, x Ê M >x : x { a 1. e e x = a n. } 2 x = a 1. >x : x { y P(y) } 2 P(x) Begriff der leeren Menge

Mengenlehre. Begriff der Mengenzugehörigkeit x M, x Ê M >x : x { a 1. e e x = a n. } 2 x = a 1. >x : x { y P(y) } 2 P(x) Begriff der leeren Menge Mengenlehre Grundbegriff ist die Menge Definition (Naive Mengenlehre). Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor) Notation 1. Aufzählung

Mehr

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau,

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau, Algebra I 9. April 2008 c Rudolf Scharlau, 2002 2008 18 1.3 Gruppen Der Begriff der Gruppe ordnet sich in gewisser Weise dem allgemeineren Konzept der Verknüpfung (auf einer Menge) unter. So ist zum Beispiel

Mehr

Formale Sprachen und Automaten

Formale Sprachen und Automaten Mengen Eine Menge ist eine Gruppe von Elementen, die eine Einheit bilden (siehe z.b. Halmos 1976). Formale Sprachen und Automaten Mathematisches Rüstzeug Mengen können verschiedene Typen von Elementen

Mehr

Grundlegendes: Mengen und Aussagen

Grundlegendes: Mengen und Aussagen Kapitel 1 Grundlegendes: Mengen und Aussagen Wie jedes Fachgebiet hat auch die Mathematik eine eigene Fachsprache Ohne ihre Kenntnis wird man ein mathematisches Buch, selbst wenn es für Anwender geschrieben

Mehr

Im allerersten Unterabschnitt wollen wir uns mit einer elementaren Struktur innerhalb der Mathematik beschäftigen: Mengen.

Im allerersten Unterabschnitt wollen wir uns mit einer elementaren Struktur innerhalb der Mathematik beschäftigen: Mengen. Kapitel 1 - Mathematische Grundlagen Seite 1 1 - Mengen Im allerersten Unterabschnitt wollen wir uns mit einer elementaren Struktur innerhalb der Mathematik beschäftigen: Mengen. Definition 1.1 (G. Cantor.

Mehr

für alle a, b, x, y R.

für alle a, b, x, y R. Algebra I 13. April 2008 c Rudolf Scharlau, 2002 2008 33 1.5 Ringe Definition 1.5.1 Ein Ring ist eine Menge R zusammen mit zwei Verknüpfungen + und, genannt Addition und Multiplikation, für die folgendes

Mehr

(1.18) Def.: Eine Abbildung f : M N heißt

(1.18) Def.: Eine Abbildung f : M N heißt Zurück zur Mengenlehre: Abbildungen zwischen Mengen (1.17) Def.: Es seien M, N Mengen. Eine Abbildung f : M N von M nach N ist eine Vorschrift, die jedem x M genau ein Element f(x) N zuordnet. a) M = N

Mehr

Vorlesung. Funktionen/Abbildungen

Vorlesung. Funktionen/Abbildungen Vorlesung Funktionen/Abbildungen 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

2. Relationen und Funktionen

2. Relationen und Funktionen 2. Relationen und Funktionen 15 2. Relationen und Funktionen Nachdem wir Mengen eingeführt haben, wollen wir nun auch mehrere von ihnen miteinander in Beziehung setzen können. Das Grundkonzept hierfür

Mehr

Warum Mathe? IG/StV-Mathematik der KFU-Graz. 1 Mengen Mengenoperationen Rechenregeln Mengen 4. Funktionen 7

Warum Mathe? IG/StV-Mathematik der KFU-Graz. 1 Mengen Mengenoperationen Rechenregeln Mengen 4. Funktionen 7 Warum Mathe? IG/StV-Mathematik der KFU-Graz März 2011 Inhalt 1 Mengen 1 1.1 Mengenoperationen.............................. 2 1.2 Rechenregeln.................................. 3 2 Übungsbeispiele zum

Mehr

2. Symmetrische Gruppen

2. Symmetrische Gruppen 14 Andreas Gathmann 2 Symmetrische Gruppen Im letzten Kapitel haben wir Gruppen eingeführt und ihre elementaren Eigenschaften untersucht Wir wollen nun eine neue wichtige Klasse von Beispielen von Gruppen

Mehr

Abschnitt 3: Mathematische Grundlagen

Abschnitt 3: Mathematische Grundlagen Abschnitt 3: Mathematische Grundlagen 3. Mathematische Grundlagen 3.1 3.2 Boolsche Algebra 3.3 Induktion und Rekursion Peer Kröger (LMU München) Einführung in die Programmierung WS 16/17 46 / 708 Überblick

Mehr

2 ZAHLEN UND VARIABLE

2 ZAHLEN UND VARIABLE Zahlen und Variable 2 ZAHLEN UND VARIABLE 2.1 Grundlagen der Mengenlehre Unter einer Menge versteht man die Zusammenfassung von unterscheidbaren Objekten zu einem Ganzen. Diese Objekte bezeichnet man als

Mehr

Einführung in die Mengenlehre

Einführung in die Mengenlehre Einführung in die Mengenlehre D (Menge von Georg Cantor 845-98) Eine Menge ist eine Zusammenfassung bestimmter wohlunterschiedener Objekte unseres Denkens oder unserer Anschauung zu einem Ganzen wobei

Mehr

ELEMENTARE DISKRETE MATHEMATIK Kapitel 4: Mächtigkeit von Mengen

ELEMENTARE DISKRETE MATHEMATIK Kapitel 4: Mächtigkeit von Mengen ELEMENTARE DISKRETE MATHEMATIK Kapitel 4: Mächtigkeit von Mengen MAA.01011UB MAA.01011PH Vorlesung mit Übung im WS 2016/17 Christoph GRUBER Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen

Mehr

Elementare Mengenlehre

Elementare Mengenlehre Vorkurs Mathematik, PD Dr. K. Halupczok WWU Münster Fachbereich Mathematik und Informatik 5.9.2013 Ÿ2 Elementare Mengenlehre Der grundlegendste Begri, mit dem Objekte und Strukturen der Mathematik (Zahlen,

Mehr

3. Relationen Erläuterungen und Schreibweisen

3. Relationen Erläuterungen und Schreibweisen 3. Relationen Eine Relation ist allgemein eine Beziehung, die zwischen Dingen bestehen kann. Relationen im Sinne der Mathematik sind ausschließlich diejenigen Beziehungen, bei denen stets klar ist, ob

Mehr

Lineare Algebra I. - 1.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Monday 12 September 16

Lineare Algebra I. - 1.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Monday 12 September 16 Lineare Algebra I - 1.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß 1. Mengen und Abbildungen: Mengen gehören zu den Grundlegendsten Objekten in der Mathematik Kurze Einführung in die (naive) Mengelehre

Mehr

1 Mengen. 1.1 Definition

1 Mengen. 1.1 Definition 1 Mengen 1.1 Definition Eine Menge M ist nach dem Begründer der Mengenlehre Georg Cantor eine Zusammenfassung von wohlunterschiedenen(verschiedenen) Elementen. Eine Menge lässt sich durch verschiedene

Mehr

N = f0; 1; 2; : : : g: [n] = f1; : : : ; ng: M = f x j x hat die Eigenschaft E g:

N = f0; 1; 2; : : : g: [n] = f1; : : : ; ng: M = f x j x hat die Eigenschaft E g: 1 Mengen Gregor Cantor denierte 1895 eine Menge als eine Zusammenfassung wohldenierter, unterscheidbarer Objekte. Eine Menge wird als neues Objekt angesehen, die Menge ihrer Objekte. Ein Objekt x aus der

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Die Sprache der Mathematik

Die Sprache der Mathematik Die Sprache der Mathematik Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Diese Lehrveranstaltung...... ist Pflicht für alle Studenten der Informatik und

Mehr

3. Die Definition einer Abbildung von A in B beinhaltet eigentlich zwei Bedingungen, nämlich

3. Die Definition einer Abbildung von A in B beinhaltet eigentlich zwei Bedingungen, nämlich Kapitel 3: Abbildungen Seite 32 Kap 3: Abbildungen Kap. 3.1: Abbildungen (Funktion), Bild und Urbild Der Begriff der Abbildung ist wie auch der Begriff der Menge von fundamentaler Bedeutung für die Mathematik.

Mehr

5. Äquivalenzrelationen

5. Äquivalenzrelationen 5. Äquivalenzrelationen 35 5. Äquivalenzrelationen Wenn man eine große und komplizierte Menge (bzw. Gruppe) untersuchen will, so kann es sinnvoll sein, zunächst kleinere, einfachere Mengen (bzw. Gruppen)

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

Mengenlehre. ALGEBRA Kapitel 1 MNProfil - Mittelstufe KZN. Ronald Balestra CH Zürich Name: Vorname:

Mengenlehre. ALGEBRA Kapitel 1 MNProfil - Mittelstufe KZN. Ronald Balestra CH Zürich  Name: Vorname: Mengenlehre ALGEBRA Kapitel 1 MNProfil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 21. August 2016 Inhaltsverzeichnis 1 Mengenlehre 1 1.1 Die Menge im mathematischen

Mehr

01. Gruppen, Ringe, Körper

01. Gruppen, Ringe, Körper 01. Gruppen, Ringe, Körper Gruppen, Ringe bzw. Körper sind wichtige abstrakte algebraische Strukturen. Sie entstehen dadurch, dass auf einer Menge M eine oder mehrere sogenannte Verknüpfungen definiert

Mehr

Lineare Algebra I. Lösung 3.1:

Lineare Algebra I. Lösung 3.1: Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik Lösungsblatt 3 Prof. Dr. Markus Schweighofer 18.11.2009 Aaron Kunert / Sven Wagner Lineare Algebra I Lösung 3.1: (a) Sei

Mehr

1.4 Äquivalenzrelationen

1.4 Äquivalenzrelationen 8 1.4 Äquivalenzrelationen achdem nun die axiomatische Grundlage gelegt ist, können wir uns bis zur Einführung der Kategorien das Leben dadurch erleichtern, daß wir bis dorthin, also bis auf weiteres,

Mehr

Mengenlehre. Aufgaben mit Lösungen

Mengenlehre. Aufgaben mit Lösungen Mengenlehre Aufgaben mit Lösungen Inhaltsverzeichnis 1 Hilfsmittel 1 1. Zahlenmengen........................................ 1 2. Symbole........................................... 1 3. Intervalle: Schreibweise...................................

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Mengenlehre gibt es seit den achtziger Jahren des 19. Jahrhunderts. Sie wurde von

Mengenlehre gibt es seit den achtziger Jahren des 19. Jahrhunderts. Sie wurde von Grundbegriffe der Mengenlehre 2 Mengenlehre gibt es seit den achtziger Jahren des 19. Jahrhunderts. Sie wurde von Georg Cantor begründet. Der Begriffsapparat der Mengenlehre hat sich als so nützlich für

Mehr

Vorkurs Mathematik B

Vorkurs Mathematik B Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 8. September 2011 Für die Mathematik zentral sind Abbildungen und Funktionen. Häufig wird zwischen beiden Begriffen nicht unterschieden.

Mehr

mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen

mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen Einführung in die Logik - 6 mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen Modelltheoretische / Denotationelle Semantik der Prdikatenlogik Ein Modell ist ein künstlich geschaffenes

Mehr

Brückenkurs Mathematik 2015

Brückenkurs Mathematik 2015 Technische Universität Dresden Fachrichtung Mathematik, Institut für Analysis Dr.rer.nat.habil. Norbert Koksch Brückenkurs Mathematik 2015 1. Vorlesung Logik, Mengen und Funktionen Ich behaupte aber, dass

Mehr

Vorlesung 4. Tilman Bauer. 13. September Wir befassen uns in dieser Vorlesung noch einmal mit Mengen.

Vorlesung 4. Tilman Bauer. 13. September Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Vorlesung 4 Universität Münster 13. September 2007 1 Kartesische Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Seien M und N zwei Mengen. Dann bezeichnen wir mit M N das (kartesische) Produkt

Mehr

4.1 Definition. Gegeben: Relation f X Y f heißt Funktion (Abbildung) von X nach Y, wenn. = y 1. = y 2. xfy 1. xfy 2

4.1 Definition. Gegeben: Relation f X Y f heißt Funktion (Abbildung) von X nach Y, wenn. = y 1. = y 2. xfy 1. xfy 2 4.1 Definition Gegeben: Relation f X Y f heißt Funktion (Abbildung) von X nach Y, wenn xfy 1 xfy 2 = y 1 = y 2 Y heißt Zielbereich oder Zielmenge von f. Statt (x, y) f oder xfy schreibt man y = f(x). Vollständige

Mehr

Mathematik-Vorkurs für Informatiker (Wintersemester 2012/13) Übungsblatt 8 (Relationen und Funktionen)

Mathematik-Vorkurs für Informatiker (Wintersemester 2012/13) Übungsblatt 8 (Relationen und Funktionen) DEPENDABLE SYSTEMS AND SOFTWARE Fachrichtung 6. Informatik Universität des Saarlandes Christian Eisentraut, M.Sc. Julia Krämer Mathematik-Vorkurs für Informatiker (Wintersemester 0/3) Übungsblatt 8 (Relationen

Mehr

Grundkurs Mathematik I

Grundkurs Mathematik I Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 9 In theory, theory and praxis are the same, in praxis they aren t Die Multiplikation auf den natürlichen Zahlen Zur Definition

Mehr

Fachwissenschaftliche Grundlagen

Fachwissenschaftliche Grundlagen Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau Roland Gunesch 5. Vorlesung Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 5. Vorlesung 1 / 30 Themen

Mehr

Mathematik 1, Teil B

Mathematik 1, Teil B FH Oldenburg/Ostfriesland/Wilhelmshaven Fachb. Technik, Abt. Elektrotechnik u. Informatik Prof. Dr. J. Wiebe www.et-inf.fho-emden.de/~wiebe Mathematik 1, Teil B Inhalt: 1.) Grundbegriffe der Mengenlehre

Mehr

Funktionen. Definition. Eine Funktion (oder Abbildung) ist eine Vorschrift, die jedem Element einer Menge A genau ein Element einer Menge B zuordnet.

Funktionen. Definition. Eine Funktion (oder Abbildung) ist eine Vorschrift, die jedem Element einer Menge A genau ein Element einer Menge B zuordnet. 1 Der Funktionsbegriff Funktionen Definition. Eine Funktion (oder Abbildung) ist eine Vorschrift, die jedem Element einer Menge A genau ein Element einer Menge B zuordnet. Dabei nennt man die Menge A Definitionsmenge

Mehr

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen Topologische Grundbegriffe I Vortrag zum Proseminar Analysis, 26.04.2010 Nina Neidhardt und Simon Langer Im Folgenden soll gezeigt werden, dass topologische Konzepte, die uns schon für die Reellen Zahlen

Mehr

Analysis I. Alexander Grigorian Universität Bielefeld

Analysis I. Alexander Grigorian Universität Bielefeld Analysis I Alexander Grigorian Universität Bielefeld SS 2012 ii Contents 1 Mengen und Zahlen 1 1.1 Grundbegriffe dermengenlehre... 1 1.1.1 MengenundOperationenaufdenMengen... 1 1.1.2 Äquivalenzrelationen...

Mehr

Blatt 0: Mathematik I für Ingenieure (B) Abbildungen und Kompositionen. apl. Prof. Dr. Matthias Kunik/ Dr. Uwe Risch

Blatt 0: Mathematik I für Ingenieure (B) Abbildungen und Kompositionen. apl. Prof. Dr. Matthias Kunik/ Dr. Uwe Risch Blatt 0: Mathematik I für Ingenieure (B) apl. Prof. Dr. Matthias Kunik/ Dr. Uwe Risch 10.10.016 Abbildungen und Kompositionen Allgemeine Erklärungen: Siehe Seite 1 zu Anmerkungen zu Mengen und Abbildungen!

Mehr

FU Berlin: WiSe (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5. Aufgabe 18. Aufgabe 20. (siehe Musterlösung Zettel 4)

FU Berlin: WiSe (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5. Aufgabe 18. Aufgabe 20. (siehe Musterlösung Zettel 4) FU Berlin: WiSe 13-14 (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5 Aufgabe 18 (siehe Musterlösung Zettel 4) Aufgabe 20 In der Menge R der reellen Zahlen sei die Relation 2 R 2 definiert durch: x 2 y :

Mehr

Mengenlehre. Mengenlehre. Vorkurs Informatik WS 2013/ September Vorkurs Informatik - WS2013/14

Mengenlehre. Mengenlehre. Vorkurs Informatik WS 2013/ September Vorkurs Informatik - WS2013/14 Mengenlehre Mengenlehre Vorkurs Informatik WS 2013/14 30. September 2013 Mengen Mengen Definition (Menge) Unter einer Menge verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten

Mehr

3 Mengen, Logik. 1 Naive Mengenlehre

3 Mengen, Logik. 1 Naive Mengenlehre 3 Mengen, Logik Jörn Loviscach Versionsstand: 21. September 2013, 15:53 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.j3l7h.de/videos.html This work is

Mehr

Lineare Algebra I. Eine Vorlesung von Prof. Dr. Klaus Hulek

Lineare Algebra I. Eine Vorlesung von Prof. Dr. Klaus Hulek Lineare Algebra I Eine Vorlesung von Prof. Dr. Klaus Hulek hulek@math.uni-hannover.de c Klaus Hulek Institut für Mathematik Universität Hannover D 30060 Hannover Germany E-Mail : hulek@math.uni-hannover.de

Mehr

Logik, Mengen und Abbildungen

Logik, Mengen und Abbildungen Kapitel 1 Logik, Mengen und bbildungen Josef Leydold Mathematik für VW WS 2016/17 1 Logik, Mengen und bbildungen 1 / 26 ussage Um Mathematik betreiben zu können, sind ein paar Grundkenntnisse der mathematischen

Mehr

Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule

Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule Berufsfeldbezogenes Fachseminar - Zahlentheorie Lisa Laudan Prof. Dr. Jürg Kramer Wintersemester 2014/2015 Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule 1.1

Mehr

Topologische Räume und stetige Abbildungen Teil 2

Topologische Räume und stetige Abbildungen Teil 2 TU Dortmund Mathematik Fakultät Proseminar zur Linearen Algebra Ausarbeitung zum Thema Topologische Räume und stetige Abbildungen Teil 2 Anna Kwasniok Dozent: Prof. Dr. L. Schwachhöfer Vorstellung des

Mehr

1.5 Restklassen, Äquivalenzrelationen und Isomorphie

1.5 Restklassen, Äquivalenzrelationen und Isomorphie Lineare Algebra I WS 2015/16 c Rudolf Scharlau 39 1.5 Restklassen, Äquivalenzrelationen und Isomorphie In diesem Abschnitt wird zunächst der mathematische Begriff einer Relation kurz und informell eingeführt.

Mehr

x 2 + y 2 = f x y = λ

x 2 + y 2 = f x y = λ Lineare Abbildungen Def Es seien (V 1,+, ) und (V 2,+, ) zwei Vektorräume Eine Abbildung f : V 1 V 2 heißt linear, falls für alle Vektoren u,v V 1 und für jedes λ R gilt: f (u + v) = f (u) + f (v), f (λu)

Mehr

Eine Menge A ist die Zusammenfassung gleichartiger Elemente zu einer Gesamtheit. Eine Menge kann definiert werden durch

Eine Menge A ist die Zusammenfassung gleichartiger Elemente zu einer Gesamtheit. Eine Menge kann definiert werden durch 1.2 Mengenlehre Grundlagen der Mathematik 1 1.2 Mengenlehre Definition: Menge, Element, Variablenraum Eine Menge A ist die Zusammenfassung gleichartiger Elemente zu einer Gesamtheit. Eine Menge kann definiert

Mehr

2. Vorlesung. Die Theorie der schwarz-weissen Ketten.

2. Vorlesung. Die Theorie der schwarz-weissen Ketten. 2. Vorlesung. Die Theorie der schwarz-weissen Ketten. Die Theorie der schwarzen Steinchen haben wir jetzt halbwegs vertanden. Statt mit schwarzen Steinen wie die Griechen, wollen wir jetzt mit schwarzen

Mehr

3 Vollständige Induktion

3 Vollständige Induktion 3.1 Natürliche Zahlen In den vorherigen Kapiteln haben wir die Menge der natürlichen Zahlen schon mehrfach als Beispiel benutzt. Das Konzept der natürlichen Zahlen erscheint uns einfach, da wir es schon

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mathematische Sprache und naive Mengenlehre Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johann-von-Neumann-Haus Fachschaft Menge aller Studenten eines Institutes

Mehr

4. Vortrag - Garben. Ling Lin, Kristijan Cule Datum: 26. April 2009

4. Vortrag - Garben. Ling Lin, Kristijan Cule Datum: 26. April 2009 4. Vortrag - Garben Datum: 26. April 2009 1 Graduierte Ringe Definition 4.1.1. Eine k-algebra R heißt graduiert, wenn sie dargestellt werden kann als eine direkte Summe R = R n, wobei die R n als k-unterräume

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume

Mehr

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl.

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl. Unterräume und Lineare Hülle 59 3. Unterräume und Lineare Hülle Definition.1 Eine Teilmenge U eines R-Vektorraums V heißt von V, wenn gilt: Unterraum (U 1) 0 U. (U ) U + U U, d.h. x, y U x + y U. (U )

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Grundlagen der Mathematik Übungsaufgaben zu Kapitel 1 Einführung 1.1.1 Für reelle Zahlen a und b gilt (a+b) (a-b) = a 2 -b 2. Was ist die Voraussetzung? Wie lautet die Behauptung? Beweisen Sie die Behauptung.

Mehr

Große Mengen und Ultrafilter. 1 Große Mengen

Große Mengen und Ultrafilter. 1 Große Mengen Vortrag zum Seminar zur Analysis, 31.10.2012 Marcel Marnitz In diesem Vortrag wird das Konzept mathematischer Filter eingeführt. Sie werden in späteren Vorträgen zur Konstruktion der hyperreellen Zahlen

Mehr

Euler-Venn-Diagramme

Euler-Venn-Diagramme Euler-Venn-Diagramme Mengendiagramme dienen der graphischen Veranschaulichung der Mengenlehre. 1-E1 1-E2 Mathematische Symbole c leere Menge Folge-Pfeil Äquivalenz-Pfeil Existenzquantor, x für (mindestens)

Mehr

Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die kontinuierlich ablaufende Zeit.

Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die kontinuierlich ablaufende Zeit. Kapitel 4 Reelle Zahlen 4.1 Die reellen Zahlen (Schranken von Mengen; Axiomatik; Anordnung; Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die

Mehr

2.3 Basis und Dimension

2.3 Basis und Dimension Lineare Algebra I WS 205/6 c Rudolf Scharlau 65 2.3 Basis und Dimension In diesem zentralen Abschnitt werden einige für die gesamte Lineare Algebra fundamentale Grundbegriffe eingeführt: Lineare Abhängigkeit

Mehr

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Anordnung. Definition 2.1 Man nennt eine Anordnung für K, wenn: 1. Für jeden a K gilt a a (Reflexivität).

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Anordnung. Definition 2.1 Man nennt eine Anordnung für K, wenn: 1. Für jeden a K gilt a a (Reflexivität). Analysis 1, Woche 2 Reelle Zahlen 2.1 Anordnung Definition 2.1 Man nennt eine Anordnung für K, wenn: 1. Für jeden a K gilt a a (Reflexivität). 2. Für jeden a, b K mit a b und b a gilt a = b (Antisymmetrie).

Mehr

Topologische Aspekte: Eine kurze Zusammenfassung

Topologische Aspekte: Eine kurze Zusammenfassung Kapitel 1 Topologische Aspekte: Eine kurze Zusammenfassung Wer das erste Knopfloch verfehlt, kommt mit dem Zuknöpfen nicht zu Rande J. W. Goethe In diesem Kapitel bringen wir die Begriffe Umgebung, Konvergenz,

Mehr