1.4 Mengen. Wirtschaftswissenschaften häufig nicht so klar formulierbar.

Größe: px
Ab Seite anzeigen:

Download "1.4 Mengen. Wirtschaftswissenschaften häufig nicht so klar formulierbar."

Transkript

1 Wirtschaftswissenschaften häufig nicht so klar formulierbar. Viel häufiger tritt das Phänomen auf, dass man Aussagen widerlegt! Kehren wir zurück zu unserem Beispiel 1.13 über den Zusammenhang zwischen Arbeitslosenquote und Inflation. Dieser Zusammenhang ist heutzutage eindeutig durch etliche Gegenbeispiele widerlegt. Bis in die 80 er Jahre hinein wurde ein solcher Zusammenhang aber vermutet! 1.4 Mengen Ein zentrales Konzept für die Mathematik ist der Begriff der Menge. Eine Menge ist eine Zusammenfassung bestimmter, wohlunterschiedener Objekte. Von jedem dieser Objekte muss eindeutig feststehen, ob das Objekt zur Menge gehört oder nicht. Die Objekte heißen Elemente der Menge Ist a ein Element der Menge M, schreiben wir auch 46

2 a M andernfalls a / M Die Elemente einer Menge sind immer alle verschieden. Es gibt unterschiedliche Möglichkeiten, Mengen zu beschreiben. Wir wollen die Menge M aller geraden ganzen Zahlen zwischen 2 und 15 beschreiben: 1. Aufzählung M = {2,4,6,8,10,12,14}. 47

3 2. teilweise Aufzählung M = {2,4,6,...,12,14} Hierbei muss man aufpassen, dass es nicht zu Missverständnissen kommt. 3. Beschreibung durch charakteristische Eigenschaften M := {x : x Z und x 2 und x 15 und x gerade}. Die leere Menge ist die Menge, die kein Element enthält. Beispiel 1.18 = {x : x wohnt in der Bundesrepublik Deutschland und x ist im Jahre 1700 geboren} Die Mächtigkeit oder Ordnung einer Menge ist die Anzahl der Elemente in der Menge. Unsere oben betrachtete Menge M = {2,4,6,8,10,12,14} hat also die Mächtigkeit 7. Schreibweise: M = Anzahl der Elemente in M. Falls M unendlich viele Elemente hat, schreiben wir M = ( : unendlich). Beziehungen zwischen Mengen 48

4 WirnennenAeineTeilmengevonB,wennjedesElementausAaucheinElement von B ist. Dabei darf auch A = B gelten. A B: A Teilmenge von B A B: A Teilmenge von B und A B Beachte, dass stets A A gilt. Ferner gilt für alle Mengen A. Beispiel 1.19 N Z Q R Die Menge aller Einwohner Magdeburgs ist eine Teilmenge der Menge aller Einwohner Deutschlands. Verknüpfung von Mengen Wir können Mengen schneiden oder vereinigen: A B = {x : x A oder x B} Vereinigung A B = {x : x A und x B} Schnitt 49

5 A B A B A A B B Achtung: Es gilt nicht A B = A + B, sondern A B = A + B A B Zwei Mengen heißen disjunkt, wenn ihr Schnitt leer ist. Für disjunkte Mengen gilt A B = A + B Manchmal wollen wir mehr als nur eine Menge vereinigen oder schneiden. Wir schreiben dann 50

6 n A i = A 1 A 2... A n i=1 n A i = A 1 A 2... A n i=1 Die Differenz von Mengen ist wie folgt definiert: A\B = {x : x A und x / B} A B A\B Ist A eine Teilmenge von Ω, so schreiben wir statt Ω\A auch A oder, genauer, A Ω = Ω\A: 51

7 Ω A A Beispiel 1.20 Wir betrachten die folgenden vier Mengen: A = {x : x R und 1 x 6} B = {x : x N und x < 6} C = {x : x N und x 2} D = {x : x R und x < 6} 52

8 Dann gilt: Mengenalgebra A B = {1,2,3,4,5} A\D = {6} A C = {2,3,4,5,6} C \A = {x : x N und x > 6} B C = {2,3,4,5} B C = N A N = {1,2,3,4,5,6} A R = {x : x R und (x < 1 oder x > 6)} B N = {6,7,8,...}. Ähnlich wie für die Verknüpfung von Aussagen gibt es auch gewisse Rechenregeln für die Verknüpfung von Mengen. Wir geben im folgenden die wichtigsten Regeln an: 53

9 Idempotenzgesetze A A = A A A = A Kommutativgesetze A B = B A A B = B A 54

10 Assoziativgesetze A (B C) = (A B) C A (B C) = (A B) C Distributivgesetze A (B C) = (A B) (A C) A (B C) = (A B) (A C) Inklusionsgesetze A A B A B A Man macht sich diese Regeln am besten anhand einiger Mengendiagramme(Venn- Diagramm) klar. Wir illustrieren hier nur das erste Distributivgesetz. Im ersten Diagramm sehen wir die Menge B C schraffiert. Danach vereinigen wir diese Menge mit A. Im letzten Bild haben wir die Mengen A B und A C jeweils unterschiedlich schraffiert und dadurch auch gleich den Schnitt (A B) (A C) gekennzeichnet. 55

11 B B A B C A A (B C) C C B A (A B) (A C) Ähnliche Gesetze gelten für die Komplementbildung und die Mengendifferenz. Neue Mengen aus alten Mengen Die Potenzmenge einer Menge A ist die Menge aller Teilmengen von A. Bezeichnung: P(A). Ist A endlich, so gilt P(A) = 2 A. Seien a 1,...a n irgendwelche Elemente. Wir nennen (a 1,a 2,...,a n ) 56 C

12 ein n-tupel. Die Elemente müssen nicht unbedingt verschieden sein. Die Menge aller n-tupel (a 1,...,a n ) mit a i A i heißt das kartesische Produkt von A 1,...,A n. Bezeichnung: A 1 A 2 A n. Beispiel 1.21 Sei A = {1,2} und B = {a,b} und C = {b,c}. Dann gilt A (B C) = {(1,a),(1,b),(1,c),(2,a), (2,b),(2,c)} (A B) (A C) = {(1,a),(1,b),(2,a),(2,b), (1,c),(2,c)} A (B C) = {(1,b),(2,b)} (A B) (A C) = {(1,b),(2,b)} Diese Beispiele legen nahe (und man kann es auch beweisen), dass A (B C) = (A B) (A C) A (B C) = (A B) (A C) gilt. Im allgemeinen ist A B B A. 57

13 1.5 Relationen und Abbildungen Die Definition einer Relation ist ganz einfach: Beispiel 1.22 Eine Relation R zwischen zwei Mengen X und Y ist eine Teilmenge R X Y. Gilt X = Y, so heißt R eine Relation auf X. Man schreibt x R y falls (x,y) R. X: Menge der MathematikerInnen. Y: Menge der WirtschaftswissenschaftlerInnen. Eine Relation zwischen X und Y wird z.b. durch Mathematiker x ist jünger als Wirtschaftswissenschaftler y erklärt. Sei X die Menge aller Frauen, Y die Menge aller Männer. Als Relation zwischen X und Y wählen wir verheiratet. A = {1,2}, B = {2,3}. Dann ist A B = {(1,2),(1,3),(2,2),(2,3)}. 58

14 Wir erhalten z.b. folgende Relationen: R 1 = {(a,b) A B : a = b} = {(2,2)} R 2 = {(a,b) A B : a < b} = {(1,2),(1,3),(2,3)} R 3 = {(a,b) A B : a b} = {(1,2),(1,3),(2,3),(2,2)} = A B R 4 = {(a,b) A B : a+b = 2} = Man kann diese Relationen auch durch Graphen verdeutlichen. Dazu malen wir die Menge A und die Menge B auf und verbinden zwei Elemente mit einem Pfeil genau dann, wenn sie in Relation miteinander stehen: 59

15 1 2 R R R R Diese Beispiele zeigen, dass an jedem Punkt kein, ein oder mehrere Pfeile beginnen können. Genauso kann an jedem Punkt kein, ein oder mehrere Pfeile ankommen. Solche Pfeildiagramme sind natürlich unhandlich, wenn die Mengen X und Y unendlich sind. Sind X und Y Zahlbereiche, können wir versuchen, die Menge der Punkte (x, y) R in einem Koordinatensystem zu skizzieren. 60

16 Abbildungen In den Wirtschaftswissenschaften haben wir es meistens mit Abbildungen zu tun. Eine Abbildung aus X nach Y ist eine Relation zwischen X und Y, so dass es zu jedem x X höchstens ein y Y gibt, so dass x und y in Relation zueinander stehen. Das Element y wird mit f(x) bezeichnet. In unserer Pfeildarstellung bedeutet dies, dass in jedem Element x X höchstens ein Pfeil beginnt: Beachte, dass nicht jedem x X ein Funktionswert zugeordnet werden muss. Häufig wird gefordert, dass jedem x X ein y so zugeordnet wird, dass x 61

17 und y in Relation stehen. Wir benutzen hier manchmal folgende Sprechweise: Wenn jedem x X höchstens ein y zugeordnet wird, so sprechen wir von einer Funktion aus X nach Y. Wird jedem x X genau ein f(x) zugeordnet, so wollen wir von einer Abbildung von X nach Y sprechen: Das ist manchmal ganz praktisch: Es hat Vorteile, wenn man komplizierte Funktionen hat wie etwa x f(x) = x 5 +3x 3 x 4, aufgefasst als Abbildung aus R nach R, wo man von vornherein gar nicht weiß, für welche x der Nenner 0 wird, die Funktion also gar nicht definiert ist. Bezeichnung: f : X Y. Die Menge der x X, für die f(x) erklärt ist, nennen wir den Definitionsbereich von f, bezeichnet mit D(f). Der Definitionsbereich D(f) muss nicht ganz X sein, wie die obigen Beispiele zeigen. Die Menge 62

18 X heißt die Menge der unabhängigen Variablen, die Menge Y bezeichnet die abhängigen Variablen, denn wenn wir x kennen, kennen wir auch f(x). Beachten Sie bitte, dass der Definitionsbereich alle x X enthält, für die es ein f(x) gibt, er ist also in einem gewissen Sinne maximal. Beispiel 1.23 Wir definieren f : R R durch f(x) = 1. Dieser Ausdruck x 2 1 ist natürlich nur erklärt, wenn x Also ist f eine Abbildung aus R nach R. Der Definitionsbereich ist R\{±1}. Die graphische Veranschaulichung: 4 y x

19 Beispiel 1.24 Wir betrachten f : R R definiert durch f(x) = lgx (dekadischer Logarithmus). Wir haben schon gesehen, dass der Logarithmus nur für positive Zahlen erklärt ist. Der Definitionsbereich ist also R + : x Machen Sie sich bitte nicht zu viele Gedanken über die Frage, ob eine Abbildungen von oder aus einer Menge X erklärt ist. Wichtig ist nur, dass bei der Beschreibung einer Abbildung durch eine Vorschrift, wie z.b. lg x oder 1 x 2 1 zu 64

20 beachten ist, dass diese Vorschrift für einige Werte von x möglicherweise nicht definiert ist. Oft liegt das daran, dass man nicht durch 0 dividieren darf. Andere Möglichkeiten: Logarithmen oder Wurzeln negativer Zahlen sind nicht definiert. Manche trigonometrische Funktionen haben Stellen, wo sie nicht definiert sind, z.b. tan(π/2) ist nicht definiert. Abbildungen werden oft auch Funktionen genannt. Meistens spricht man von Funktionen, wenn die Mengen X und Y Zahlbereiche sind. Wenn wir hier von Zahlbereichen sprechen, meinen wir nicht etwa nur R, sondern auch R 2, R 3 usw. Denken Sie daran: Ökonomische Daten hängen fast nie nur von einer Variablen ab. Injektiv, Surjektiv, Bijektiv 65

21 Eine Abbildung f : X Y heißt injektiv wenn aus f(x 1 ) = f(x 2 ) stets x 1 = x 2 folgt. Die Abbildung heißt surjektiv, wenn es zu jedem y Y (mindestens) ein x X gibt mit f(x) = y. Die Abbildung heißt bijektiv, wenn sie injektiv und surjektiv ist und es zu jedem x X ein y gibt mitf(x) = y (f alsoinsbesondereeineabbildung von X nach Y ist). Für unsere Pfeildarstellung von Abbildungen bedeutet das folgendes: injektiv: in jedem y Y endet höchstens ein Pfeil surjektiv: in jedem y Y endet mindestens ein Pfeil bijektiv: in jedem y Y endet genau ein Pfeil und in jedem x X beginnt genau ein Pfeil. 66

22 injektiv surjektiv bijektiv 67

23 In allen drei Fällen haben wir Abbildungen, weil aus den linken Mengen an jedem Punkt nur höchstens ein Pfeil beginnt. Ist f eine injektive Abbildung, so definieren wir f 1 : Y X durch folgende Vorschrift: f 1 (y) = x, wobei x X durch die Eigenschaft f(x) = y bestimmt ist. Beachte, dass x wegen der Injektivität eindeutig bestimmt ist. In unseren Pfeilbildern bedeutet dies einfach, dass wir jeden Pfeil umdrehen. Die Abbildung f 1 heißt die zu f inverse Abbildung. Beachte, dass auch f 1 injektiv ist. Ferner ist f bijektiv genau dann wenn f injektiv und surjektiv ist und zusätzlich f 1 auch surjektiv ist. Bei einer bijektiven Abbildung geht von jedem Punkt in X genau ein Pfeil aus und in jedem Punkt aus Y endet genau ein Pfeil. Das heißt insbesondere, dass X und Y gleich viele Elemente haben. Verknüpfung von Abbildungen Seien f : X Y und g : Y Z zwei Abbildungen. Wir definieren die Abbildung g f : X Z wie folgt: (g f)(x) = g[f(x)]. Also: Wir wenden erst f auf x an, dann auf den Wert f(x) die Abbildung g. Wichtigistes,sichzumerken,dassg f bedeutet,erstf unddanng anzuwenden. 68

24 f g X Y Z g f 69

25 2 Funktionen einer Variablen 2.1 Einführende Beispiele Kostenfunktion und Stückkostenfunktion: Das Unternehmen Miel produziert hochwertige Waschmaschinen. Es hat monatliche Fixkosten von Die sind unabhängig von der produzierten Menge. Pro produziertem Stück fallen variable Kosten (vor allem Material und Löhne) von 500 an. Die monatlichen Gesamtkosten des Unternehmens (in ) betragen dann K(x) = x, wobei x die Anzahl der im Monat produzierten Waschmaschinen ist. Bei 100 Waschmaschinen fallen also Gesamtkosten an in Höhe von bei 1000 Stück K(100) = , K(1000) = K heißt die Kostenfunktion. Wenn man nicht an den Gesamtkosten K interessiert ist, sondern an den Kosten pro produziertem Stück, so erhält man die 70

26 Stückkostenfunktion S(x). Sie ergibt sich aus der Kostenfunktion K(x) einfach durch In obigem Beispiel ist S(x) = K(x) x. S(x) = x x Bei 100 produzierten Waschmaschinen ist das also bei 1000 Maschinen S(100) = 2300, S(1000) = 670. = x Weitere ökonomische Funktionen sind Nachfrage-Funktion (Preis-Absatz-Funktion): Sei p der Preis eines Gutes, N die nachgefragte(abgesetzte) Menge. Die Nachfragefunktion ist dann N(p). Üblicherweise wird N(p) kleiner, wenn der Preis p steigt. So könnte z.b. (p ausgedrückt in ) N(p) = p (2.1) 71

1.3 Aussagen. Beispiel: Das Bruttosozialprodukt der Bundesrepublik Deutschland ist höher als das der USA ist eine offenbar falsche Aussage.

1.3 Aussagen. Beispiel: Das Bruttosozialprodukt der Bundesrepublik Deutschland ist höher als das der USA ist eine offenbar falsche Aussage. 1.3 Aussagen In der Mathematik geht es um Aussagen. Eine Aussage ist ein statement, das entweder wahr oder falsch sein kann. Beides geht nicht! Äußerungen, die nicht die Eigenschaft haben, wahr oder falsch

Mehr

Beispiel 1.20 Wir betrachten die folgenden vier Mengen: A = {x : x R und 1 x 6} B = {x : x N und x < 6} C = {x : x N und x 2} D = {x : x R und x < 6}

Beispiel 1.20 Wir betrachten die folgenden vier Mengen: A = {x : x R und 1 x 6} B = {x : x N und x < 6} C = {x : x N und x 2} D = {x : x R und x < 6} Ω A A Beispiel 1.20 Wir betrachten die folgenden vier Mengen: A = {x : x R und 1 x 6} B = {x : x N und x < 6} C = {x : x N und x 2} D = {x : x R und x < 6} 52 Dann gilt: Mengenalgebra A B = {1,2,3,4,5}

Mehr

Beispiel 1.10 Das Bruttosozialprodukt der Bundesrepublik Deutschland ist höher als das der USA ist eine offenbar falsche Aussage.

Beispiel 1.10 Das Bruttosozialprodukt der Bundesrepublik Deutschland ist höher als das der USA ist eine offenbar falsche Aussage. 1.5 Aussagen In der Mathematik geht es um Aussagen. Eine Aussage ist ein statement, das entweder wahr oder falsch sein kann. Beides geht nicht! Äußerungen, die nicht die Eigenschaft haben, wahr oder falsch

Mehr

1 Grundlagen. 1.1 Aussagen

1 Grundlagen. 1.1 Aussagen 1 Grundlagen 1.1 Aussagen In der Mathematik geht es um Aussagen. Eine Aussage ist ein statement, das entweder wahr oder falsch sein kann. Beides geht nicht! Äußerungen, die nicht die Eigenschaft haben,

Mehr

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um:

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: 1 Grundlagen 1.1 Das Rechnen mit Zahlen Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: N: natürliche Zahlen 1, 2, 3, 4, 5,... Z: ganze Zahlen..., 3, 2, 1, 0, 1, 2, 3,... Q: rationale Zahlen:

Mehr

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: zweier ganzer Zahlen p und q schreiben kann.

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: zweier ganzer Zahlen p und q schreiben kann. Kapitel 1. Grundlagen 1.1 Das Rechnen mit Zahlen Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: N: natürliche Zahlen 1, 2,3, 4, 5,... Z: ganze Zahlen..., 3, 2, 1, 0,1, 2,3,... Q: rationale

Mehr

1 Funktionen einer Variablen

1 Funktionen einer Variablen 1 Funktionen einer Variablen 1.1 Einführende Beispiele Kostenfunktion und Stückkostenfunktion: Das Unternehmen Miel produziert hochwertige Waschmaschinen. Es hat monatliche Fikosten von 170.000. Die sind

Mehr

1 Funktionen einer Variablen

1 Funktionen einer Variablen 1 Funktionen einer Variablen 1.1 Einführende Beispiele Kostenfunktion und Stückkostenfunktion: Das Unternehmen Miel produziert hochwertige Waschmaschinen. Es hat monatliche Fikosten von 170.000. Die sind

Mehr

2 Funktionen einer Variablen

2 Funktionen einer Variablen 2 Funktionen einer Variablen 2.1 Einführende Beispiele Kostenfunktion und Stückkostenfunktion: Das Unternehmen Miel produziert hochwertige Waschmaschinen. Es hat monatliche Fikosten von 170.000. Die sind

Mehr

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um:

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: Grundlagen. Das Rechnen mit Zahlen Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: N: natürliche Zahlen,2,3,4,5,... Z: ganze Zahlen..., 3, 2,,0,,2,3,... Q: rationale Zahlen: das sind die

Mehr

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um:

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: 1 Grundlagen 1.1 Das Rechnen mit Zahlen Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: N: natürliche Zahlen 1,,3,4,5,... Z: ganze Zahlen..., 3,, 1,0,1,,3,... Q: rationale Zahlen: das sind

Mehr

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: zweier ganzer Zahlen p und q schreiben kann.

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: zweier ganzer Zahlen p und q schreiben kann. Kapitel 1. Grundlagen 1.1 Das Rechnen mit Zahlen Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: N: natürliche Zahlen 1, 2,3, 4, 5,... Z: ganze Zahlen..., 3, 2, 1, 0,1, 2,3,... Q: rationale

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel. Grundlagen. Das Rechnen mit Zahlen Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: N: natürliche Zahlen,,3, 4, 5,... Z: ganze Zahlen..., 3,,, 0,,,3,... Q: rationale Zahlen: das sind

Mehr

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um:

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: Grundlagen. Das Rechnen mit Zahlen Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: N: natürliche Zahlen,2,3,4,5,... Z: ganze Zahlen..., 3, 2,,0,,2,3,... Q: rationale Zahlen: das sind die

Mehr

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um:

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: 1 Grundlagen 1.1 Das Rechnen mit Zahlen Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: N: natürliche Zahlen 1,2,3,4,5,... Z: ganze Zahlen..., 3, 2, 1,0,1,2,3,... Q: rationale Zahlen: das

Mehr

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um:

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: 1 Grundlagen 1.1 Das Rechnen mit Zahlen Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: N: natürliche Zahlen 1, 2, 3, 4, 5,... Z: ganze Zahlen..., 3, 2, 1, 0, 1, 2, 3,... Q: rationale Zahlen:

Mehr

Kapitel 1. Mengen und Abbildungen. 1.1 Mengen

Kapitel 1. Mengen und Abbildungen. 1.1 Mengen Kapitel 1 Mengen und Abbildungen 1.1 Mengen Die Objekte der modernen Mathematik sind die Mengen. Obwohl die Logik einen axiomatischen Zugang zur Mengenlehre bietet, wollen wir uns in dieser Vorlesung auf

Mehr

3 Werkzeuge der Mathematik

3 Werkzeuge der Mathematik 3.1 Mengen (18.11.2011) Definition 3.1 Die Menge heißt leere Menge. :=»x M x x Definition 3.2 Es seien N und M Mengen. Wir definieren: und analog M N : (x M x N). N M : (x N x M). Wir sagen M ist Teilmenge

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Mathematische Grundbegriffe Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr,

Mehr

Mengen, Funktionen und Logik

Mengen, Funktionen und Logik Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Mengen, Funktionen und Logik Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

HM I Tutorium 1. Lucas Kunz. 27. Oktober 2016

HM I Tutorium 1. Lucas Kunz. 27. Oktober 2016 HM I Tutorium 1 Lucas Kunz 27. Oktober 2016 Inhaltsverzeichnis 1 Theorie 2 1.1 Logische Verknüpfungen............................ 2 1.2 Quantoren.................................... 3 1.3 Mengen und ihre

Mehr

Mathematik für Ökonomen 1

Mathematik für Ökonomen 1 Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Herbstemester 2008 Mengen, Funktionen und Logik Inhalt: 1. Mengen 2. Funktionen 3. Logik Teil 1 Mengen

Mehr

die Menge S = {(x,y) : x 2 = y 2 +1,x R} wohl aussehen könnte. Die Antwort ist hier: Interessant ist auch y 2 = x 3 x:

die Menge S = {(x,y) : x 2 = y 2 +1,x R} wohl aussehen könnte. Die Antwort ist hier: Interessant ist auch y 2 = x 3 x: die Menge S = {(x,y) : x 2 = y 2 +1,x R} wohl aussehen könnte. Die Antwort ist hier: Interessant ist auch y 2 = x 3 x: 40 Ganz wichtig für die Wirtschaftswissenschaft ist es, sich Ungleichungen klar zu

Mehr

hat den maximalen Definitionsbereich R\{0}.

hat den maximalen Definitionsbereich R\{0}. Wir nennen f() die Zuordnungsvorschrift und G f = {(,y) D(f) R : y = f()} den Graph von f. Viele Zuordnungsvorschriften haben einen natürlichen maimalen Definitionsbereich. Oft wird dann nur die Zuordnungsvorschrift

Mehr

Grundbegriffe der Informatik Kapitel 3: Mengen, Alphabete, Abbildungen

Grundbegriffe der Informatik Kapitel 3: Mengen, Alphabete, Abbildungen Grundbegriffe der Informatik Kapitel 3: Mengen, Alphabete, Abbildungen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für

Mehr

Warum Mathe? IG/StV-Mathematik der KFU-Graz. 1 Mengen Mengenoperationen Rechenregeln Mengen 4. Funktionen 7

Warum Mathe? IG/StV-Mathematik der KFU-Graz. 1 Mengen Mengenoperationen Rechenregeln Mengen 4. Funktionen 7 Warum Mathe? IG/StV-Mathematik der KFU-Graz März 2011 Inhalt 1 Mengen 1 1.1 Mengenoperationen.............................. 2 1.2 Rechenregeln.................................. 3 2 Übungsbeispiele zum

Mehr

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund Lineare Algebra 1 Detlev W. Hoffmann WS 2013/14, TU Dortmund 1 Mengen und Zahlen 1.1 Mengen und Abbildungen Eine Menge ist eine Zusammenfassung wohlunterscheidbarer Objekte unserer Anschauung/unseres Denkens/unserer

Mehr

MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/ OKTOBER 2016

MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/ OKTOBER 2016 MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/17 MARK HAMILTON LMU MÜNCHEN 1.1. Grundbegriffe zu Mengen. 1. 17. OKTOBER 2016 Definition 1.1 (Mengen und Elemente). Eine Menge ist die Zusammenfassung

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 19. Oktober 2017 1/27 Zu der Vorlesung gibt es ein Skript, welches auf meiner Homepage

Mehr

Abbildungen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Abbildungen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Abbildungen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Abbildungen Die wichtigsten Relationen sind die Abbildungen: Eine Abbildung (A,B,f ) von A nach

Mehr

Zusatzmaterial zur Mathematik I für E-Techniker Übung 1

Zusatzmaterial zur Mathematik I für E-Techniker Übung 1 Mathematik I für E-Techniker C. Erdmann WS 011/1, Universität Rostock, 1. Vorlesungswoche Zusatzmaterial zur Mathematik I für E-Techniker Übung 1 Wiederholung - Theorie: Mengen Der grundlegende Begriff

Mehr

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. 21. März 2011.

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. 21. März 2011. Technische Universität München Ferienkurs Lineare Algebra 1 Mengenlehre, Aussagen, Relationen und Funktionen 21. März 2011 Tanja Geib Inhaltsverzeichnis 1 Aussagen 1 2 Mengenlehre 3 2.1 Grundlegende Definitionen

Mehr

Ein geordnetes Paar (oder: ein 2-Tupel) enthält immer zwei Elemente, deren Reihenfolge festgelegt ist. Mehrfachnennungen sind nicht erlaubt!

Ein geordnetes Paar (oder: ein 2-Tupel) enthält immer zwei Elemente, deren Reihenfolge festgelegt ist. Mehrfachnennungen sind nicht erlaubt! Relationen, Funktionen und Partitionen 1. Geordnetes Paar Ein geordnetes Paar (oder: ein 2-Tupel) enthält immer zwei Elemente, deren Reihenfolge festgelegt ist. Mehrfachnennungen

Mehr

1.1 Mengen und Abbildungen

1.1 Mengen und Abbildungen Lineare Algebra I WS 2015/16 c Rudolf Scharlau 3 1.1 Mengen und Abbildungen In diesem Abschnitt stellen wir die grundlegende mathematische Sprache und Notation zusammen, die für jede Art von heutiger Mathematik

Mehr

B Grundbegriffe zu Mengen und Abbildungen

B Grundbegriffe zu Mengen und Abbildungen B Grundbegriffe zu Mengen und Abbildungen Die Sprache der Mengen und Abbildungen hat sich als Basissprache in der modernen Mathematik durchgesetzt. Da sie sehr praktisch ist, wird sie auch in diesem Buch

Mehr

Abschnitt 3: Mathematische Grundlagen

Abschnitt 3: Mathematische Grundlagen Abschnitt 3: Mathematische Grundlagen 3. Mathematische Grundlagen 3.1 Mengen und Abbildungen 3.2 Induktion und Rekursion 3.3 Ausdrücke 3 Mathematische Grundlagen Einf. Progr. (WS 08/09) 102 Überblick 3.

Mehr

Abschnitt 3: Mathematische Grundlagen

Abschnitt 3: Mathematische Grundlagen Abschnitt 3: Mathematische Grundlagen 3. Mathematische Grundlagen 3.1 3.2 Induktion und Rekursion 3.3 Boolsche Algebra Peer Kröger (LMU München) Einführung in die Programmierung WS 14/15 48 / 155 Überblick

Mehr

Grundbegriffe der Mengenlehre

Grundbegriffe der Mengenlehre Grundbegriffe der Mengenlehre Krzysztof P. Rybakowski Universität Rostock Fachbereich Mathematik 2003 11 07 1 Vorbemerkungen Ohne die Sprache der Mengenlehre lässt sich Mathematik nicht verstehen. Die

Mehr

Mengen und Abbildungen

Mengen und Abbildungen 1 Mengen und bbildungen sind Hilfsmittel ( Sprache ) zur Formulierung von Sachverhalten; naive Vorstellung gemäß Georg Cantor (1845-1918) (Begründer der Mengenlehre). Definition 1.1 Eine Menge M ist eine

Mehr

Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe

Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe Kapitel 5 Abbildungen 5.1 Definition: (Abbildung) Eine Abbildung zwischen zwei Mengen M und N ist eine Vorschrift f : M N, die jedem Element x M ein Element f(x) N zuordnet. Schreibweise: x f(x) 5. Beispiel:

Mehr

2 Funktionen einer Variablen

2 Funktionen einer Variablen 2 Funktionen einer Variablen Wir haben im letzten Kapitel allgemeine Abbildungen zwischen beliebigen Mengen betrachtet. Hier wollen wir uns nun mit dem Fall beschäftigen, dass sowohl der input als auch

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 15. Oktober 2015 Zu der Vorlesung gibt es ein Skript, welches auf meiner Homepage veröffentlicht

Mehr

mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen

mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen Einführung in die Logik - 6 mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen Modelltheoretische / Denotationelle Semantik der Prdikatenlogik Ein Modell ist ein künstlich geschaffenes

Mehr

0 Mengen und Abbildungen, Gruppen und Körper

0 Mengen und Abbildungen, Gruppen und Körper 0 Mengen und Abbildungen, Gruppen und Körper In diesem Paragrafen behandeln wir einige für die Lineare Algebra und für die Analysis wichtige Grundbegriffe. Wir beginnen mit dem Begriff der Menge. Auf Cantor

Mehr

Die Mengenlehre ist ein Grundelement der Sprache der Mathematik und geht als

Die Mengenlehre ist ein Grundelement der Sprache der Mathematik und geht als Kapitel 1 Naive Mengenlehre 1.1 Mengen (Mengenalgebra; kartesisches Produkt) Die Mengenlehre ist ein Grundelement der Sprache der Mathematik und geht als naive Mengenlehre (im Gegensatz zur strengen Axiomatik)

Mehr

Vorlesung 3: Logik und Mengenlehre

Vorlesung 3: Logik und Mengenlehre 28102013 Erinnerung: Zeilen-Stufen-Form (ZSF) eines LGS 0 0 1 c 1 0 0 0 1 0 0 1 c r 0 0 0 c r+1 0 0 0 0 0 0 0 0 0 c m Erinnerung: Information der Zeilen-Stufen-Form Aus der ZSF liest man ab: Folgerung

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 01/13 Hochschule Augsburg Mathematik : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren

Mehr

Anmerkungen zu Mengen und Abbildungen

Anmerkungen zu Mengen und Abbildungen Anmerkungen zu Mengen und Abbildungen Kartesisches Produkt von n Mengen und n-stellige Relationen Sind M 1, M,, M n nichtleere Mengen, so ist ihr kartesisches Produkt erklärt als Menge aller geordneter

Mehr

2 Mengen, Abbildungen und Relationen

2 Mengen, Abbildungen und Relationen Vorlesung WS 08 09 Analysis 1 Dr. Siegfried Echterhoff 2 Mengen, Abbildungen und Relationen Definition 2.1 (Mengen von Cantor, 1845 1918) Eine Menge M ist eine Zusammenfassung von wohlbestimmten und wohl

Mehr

2 Mengen und Abbildungen

2 Mengen und Abbildungen 2.1 Mengen Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen. Die Objekte heiÿen Elemente. Ist M eine Menge und x ein Element von M so schreiben wir x M. Wir sagen auch:

Mehr

1.1 Mengen und Abbildungen

1.1 Mengen und Abbildungen Lineare Algebra 2005-2013 c Rudolf Scharlau 3 1.1 Mengen und Abbildungen In diesem Abschnitt stellen wir die grundlegende mathematische Sprache und Notation zusammen, die für jede Art von heutiger Mathematik

Mehr

Relationen und Funktionen

Relationen und Funktionen Relationen und Funktionen Relationen und Funktionen Vorkurs Informatik Theoretischer Teil WS 2013/14 2. Oktober 2013 Vorkurs Informatik WS 2013/14 1/27 Relationen und Funktionen > Relationen Relationen

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Mengen und Abbildungen

Mengen und Abbildungen Mengen und Abbildungen Der Mengenbegriff Durchschnitt, Vereinigung, Differenzmenge Kartesisches Produkt Abbildungen Prinzip der kleinsten natürlichen Zahl Vollständige Induktion Mengen und Abbildungen

Mehr

17 Lineare Abbildungen

17 Lineare Abbildungen Chr.Nelius: Lineare Algebra II (SS2005) 1 17 Lineare Abbildungen Wir beginnen mit der Klärung des Abbildungsbegriffes. (17.1) DEF: M und N seien nichtleere Mengen. Eine Abbildung f von M nach N (in Zeichen:

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Lineare Algebra I. - 1.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Monday 12 September 16

Lineare Algebra I. - 1.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Monday 12 September 16 Lineare Algebra I - 1.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß 1. Mengen und Abbildungen: Mengen gehören zu den Grundlegendsten Objekten in der Mathematik Kurze Einführung in die (naive) Mengelehre

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kapitel 2: Mengenlehre. Referenzen zum Nacharbeiten:

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kapitel 2: Mengenlehre. Referenzen zum Nacharbeiten: DM2 Slide 1 Diskrete Mathematik Sebastian Iwanowski FH Wedel Kapitel 2: Mengenlehre Referenzen zum Nacharbeiten: Lang 3 Meinel 2, 4, 5, 10.2-10.4 (zur Vertiefung: Meinel 10.5-10.8 und Beutelspacher 10)

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kapitel 2: Mengenlehre

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kapitel 2: Mengenlehre Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kapitel 2: Mengenlehre Lang 3 Meinel 2, 4, 5, 10.2-10.4 (zur Vertiefung: Meinel 10.5-10.8 und Beutelspacher 10) Dean 2, 5-7

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018 23. November 2017 1/40 Satz 4.27 (Multinomialsatz) Seien r, n N 0. Dann gilt für

Mehr

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. Aufgaben mit Musterlösung

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. Aufgaben mit Musterlösung Technische Universität München Ferienkurs Lineare Algebra 1 Mengenlehre, Aussagen, Relationen und Funktionen Aufgaben mit Musterlösung 21. März 2011 Tanja Geib 1 Aufgabe 1 Geben Sie zu B = {0, 2, 4} und

Mehr

Kapitel 2. Mathematische Grundlagen. Skript zur Vorlesung Einführung in die Programmierung

Kapitel 2. Mathematische Grundlagen. Skript zur Vorlesung Einführung in die Programmierung LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE Kapitel 2 Mathematische Grundlagen Skript zur Vorlesung Einführung in die Programmierung im Wintersemester 2012/13 Ludwig-Maximilians-Universität

Mehr

1. Mengentheoretische Grundbegriffe. naiver Mengenbegriff : Eine Menge ist eine Zusammenfassung M von bestimmten, wohlunterschiedenen

1. Mengentheoretische Grundbegriffe. naiver Mengenbegriff : Eine Menge ist eine Zusammenfassung M von bestimmten, wohlunterschiedenen 1. Mengentheoretische Grundbegriffe Cantors (1845 1918) naiver Mengenbegriff : Slide 1 Eine Menge ist eine Zusammenfassung M von bestimmten, wohlunterschiedenen Objekten unserer Anschauung oder unseres

Mehr

4. Funktionen und Relationen

4. Funktionen und Relationen 4. Funktionen und Relationen Nikolaus von Oresmes Richard Dedekind (1831-1916) René Descartes 1596-1650 Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 4: Funktionen und Relationen 4.1 Funktionen:

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen

Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen Susanna Pohl Vorkurs Mathematik TU Dortmund 10.03.2015 Mengen und Relationen Mengen Motivation Beschreibung von Mengen Mengenoperationen

Mehr

Vorlesung. Funktionen/Abbildungen

Vorlesung. Funktionen/Abbildungen Vorlesung Funktionen/Abbildungen 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } }

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } } Mengen Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor) Notation 1. Aufzählung aller Elemente: { 1,

Mehr

2 ZAHLEN UND VARIABLE

2 ZAHLEN UND VARIABLE Zahlen und Variable 2 ZAHLEN UND VARIABLE 2.1 Grundlagen der Mengenlehre Unter einer Menge versteht man die Zusammenfassung von unterscheidbaren Objekten zu einem Ganzen. Diese Objekte bezeichnet man als

Mehr

1 Mengen. 1.1 Definition

1 Mengen. 1.1 Definition 1 Mengen 1.1 Definition Eine Menge M ist nach dem Begründer der Mengenlehre Georg Cantor eine Zusammenfassung von wohlunterschiedenen(verschiedenen) Elementen. Eine Menge lässt sich durch verschiedene

Mehr

Elementare Mengenlehre

Elementare Mengenlehre Vorkurs Mathematik, PD Dr. K. Halupczok WWU Münster Fachbereich Mathematik und Informatik 5.9.2013 Ÿ2 Elementare Mengenlehre Der grundlegendste Begri, mit dem Objekte und Strukturen der Mathematik (Zahlen,

Mehr

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit Mengen! Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor)! Notation 1. Aufzählung aller Elemente: {

Mehr

4. Mathematische und notationelle Grundlagen. Beispiel Mengen. Bezeichnungen:

4. Mathematische und notationelle Grundlagen. Beispiel Mengen. Bezeichnungen: 4. Mathematische und notationelle Grundlagen 4.1 Mengen Beispiel 3 A 1 = {2, 4, 6, 8}; A 2 = {0, 2, 4, 6,...} = {n N 0 ; n gerade} Bezeichnungen: x A A x x A B A B A { } x Element A x nicht Element A B

Mehr

Mengenlehre. ALGEBRA Kapitel 1 MNProfil - Mittelstufe KZN. Ronald Balestra CH Zürich Name: Vorname:

Mengenlehre. ALGEBRA Kapitel 1 MNProfil - Mittelstufe KZN. Ronald Balestra CH Zürich  Name: Vorname: Mengenlehre ALGEBRA Kapitel 1 MNProfil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 21. August 2016 Inhaltsverzeichnis 1 Mengenlehre 1 1.1 Die Menge im mathematischen

Mehr

2 Mengen, Relationen, Funktionen

2 Mengen, Relationen, Funktionen Grundlagen der Mathematik für Informatiker 1 2 Mengen, Relationen, Funktionen 2.1 Mengen Definition 2.1 [Georg Cantor 1895] Eine Menge ist eine Zusammenfassung bestimmter, wohlunterschiedener Dinge unserer

Mehr

Grundbegriffe Mengenlehre und Logik

Grundbegriffe Mengenlehre und Logik Grundbegriffe Mengenlehre und Logik Analysis für Informatiker und Lehramt Mathematik MS/GS/FS WS 2016/2017 Agnes Radl Mengen Georg Cantor (1895) Unter einer Menge verstehen wir jede Zusammenfassung M von

Mehr

2 Mengen, Relationen, Funktionen

2 Mengen, Relationen, Funktionen Grundlagen der Mathematik für Informatiker Grundlagen der Mathematik für Informatiker Mengen, Relationen, Funktionen. Mengen Definition. [Georg Cantor 895] Eine Menge ist eine Zusammenfassung bestimmter,

Mehr

Analyis I - Grundlagen

Analyis I - Grundlagen Elementare Aussagenlogik October 23, 2008 Elementare Aussagenlogik Definition Eine Aussage im Sinne der Aussagenlogik ist eine sprachliche Aussage, bei der klar entschieden werden kann, ob sie wahr oder

Mehr

Lösungen zur Übungsserie 1

Lösungen zur Übungsserie 1 Analysis 1 Herbstsemester 2018 Prof. Peter Jossen Montag, 24. September Lösungen zur Übungsserie 1 Aufgaben 1, 3, 4, 5, 6, 8 Aufgabe 1. Sei X eine endliche Menge mit n Elementen, und sei Y eine endliche

Mehr

Kapitel 1: Grundbegriffe

Kapitel 1: Grundbegriffe Kapitel 1: Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) 1 / 20 Gliederung 1 Logik Ein ganz kurzer Ausflug in die Kombinatorik Stefan Ruzika (KO) 2

Mehr

Elemente der Analysis I Kapitel 3: Einführung III, Summen, Logik, Mengen, Beweise

Elemente der Analysis I Kapitel 3: Einführung III, Summen, Logik, Mengen, Beweise Elemente der Analysis I Kapitel 3: Einführung III, Summen, Logik, Mengen, Beweise Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 15. November 2010 http://www.mathematik.uni-trier.de/

Mehr

Brückenkurs Mathematik 2015

Brückenkurs Mathematik 2015 Technische Universität Dresden Fachrichtung Mathematik, Institut für Analysis Dr.rer.nat.habil. Norbert Koksch Brückenkurs Mathematik 2015 1. Vorlesung Logik, Mengen und Funktionen Ich behaupte aber, dass

Mehr

1.3 Relationen und Funktionen

1.3 Relationen und Funktionen 1.3. RELATIONEN UND FUNKTIONEN 1 1.3 Relationen und Funktionen Es gibt eine Konstruktion (Übungsaufgabe!) einer Klasse (a, b) mit der Eigenschaft (a, b) = (c, d) a = c b = d. Diese Klasse (a, b) heißt

Mehr

Übersichtsblatt Hertrampf/Bahrdt. 1 Mathematische Aussagen. Theoretische Informatik I WS2018/19

Übersichtsblatt Hertrampf/Bahrdt. 1 Mathematische Aussagen. Theoretische Informatik I WS2018/19 Theoretische Informatik I WS2018/19 Übersichtsblatt Hertrampf/Bahrdt Institut für Formale Methoden der Informatik Theoretische Informatik Universität Stuttgart 1 Mathematische Aussagen Um mathematische

Mehr

Aufgabenblatt 1: Abgabe am vor der Vorlesung

Aufgabenblatt 1: Abgabe am vor der Vorlesung Aufgabenblatt 1: Abgabe am 17.09.09 vor der Vorlesung Aufgabe 1. a.) (1P) Geben Sie die Lösungsmenge der folgenden Gleichung an: 6x + y = 10. Zeichnen Sie die Lösungsmenge in ein Koordinatensystem. b.)

Mehr

Wirtschaftsmathematik - Übungen WS 2017/18

Wirtschaftsmathematik - Übungen WS 2017/18 Wirtschaftsmathematik - Übungen WS 17/18 Blatt 4: Funktionen von einer Variablen 1. Gegeben sind die Mengen M 1 = {, 1,, 3, 4, 5, 6, 7, 8, 9} und M = { 1,, 1, } sowie die Zuordnungsvorschrift f : M 1 æ

Mehr

Gliederung. Mengen und operationen. Relationen. Funktionen. Kardinalität von Mengen. Formale Grundlagen der Informatik Knorr/Fuchs SS 2000

Gliederung. Mengen und operationen. Relationen. Funktionen. Kardinalität von Mengen. Formale Grundlagen der Informatik Knorr/Fuchs SS 2000 Gliederung Mengen und operationen Relationen Funktionen Kardinalität von Mengen Mengen, Relationen, Funktionen 1 Mengen Definition (Naive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer

Mehr

Aus welchen Mengen soll das Futter gemischt werden, so dass die Gesamtkosten minimal werden?

Aus welchen Mengen soll das Futter gemischt werden, so dass die Gesamtkosten minimal werden? Futtermischung (Beispiel nach OHSE, D. (004/005): athematik für Wirtschaftswissenschaftler. Bd. I u. II, ünchen: Vahlen) Zur Fütterung von Hühnern einer Farm sind drei Futtermittel F, F und F 3 vorgesehen,

Mehr

WS 20013/14. Diskrete Strukturen

WS 20013/14. Diskrete Strukturen WS 20013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Vorlesung Diskrete Strukturen Abbildungen

Vorlesung Diskrete Strukturen Abbildungen Vorlesung Diskrete Strukturen Abbildungen Bernhard Ganter WS 2009/10 Hashfunktionen Wenn eine Datenbank Millionen von Dokumenten enthält und immer neue dazu kommen, stellt sich folgendes Problem: Bei neuen

Mehr

(1.18) Def.: Eine Abbildung f : M N heißt

(1.18) Def.: Eine Abbildung f : M N heißt Zurück zur Mengenlehre: Abbildungen zwischen Mengen (1.17) Def.: Es seien M, N Mengen. Eine Abbildung f : M N von M nach N ist eine Vorschrift, die jedem x M genau ein Element f(x) N zuordnet. a) M = N

Mehr

Vorkurs Mathematik. Vorlesung 4. Abbildungen

Vorkurs Mathematik. Vorlesung 4. Abbildungen Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Vorkurs Mathematik Vorlesung 4 Abbildungen Definition 4.1. Seien L und M zwei Mengen. Eine Abbildung F von L nach M ist dadurch gegeben, dass jedem Element der

Mehr

Mengenlehre. Ist M eine Menge und x ein Element von M, so schreiben wir x M. Ist x kein Element von M, so schreiben wir x M.

Mengenlehre. Ist M eine Menge und x ein Element von M, so schreiben wir x M. Ist x kein Element von M, so schreiben wir x M. Mengenlehre Eine Menge ist eine Zusammenfassung bestimmter und unterschiedlicher Objekte. Für jedes Objekt lässt sich eindeutig sagen, ob es zu der Menge gehört. Die Objekte heißen Elemente der Menge.

Mehr

Vorlesung 2. Tilman Bauer. 6. September 2007

Vorlesung 2. Tilman Bauer. 6. September 2007 Vorlesung 2 Universität Münster 6. September 2007 Organisatorisches Meine Koordinaten: Sprechstunden: Di 13:30-14:30 Do 9:00-10:00 tbauer@uni-muenster.de Zimmer 504, Einsteinstr. 62 (Hochhaus) für alle

Mehr

: das Bild von ) unter der Funktion ist gegeben durch

: das Bild von ) unter der Funktion ist gegeben durch % 1.3 Funktionen Seien und Mengen nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig. Bezeichnungen: : Definitionsbereich : Bildbereich (Zielmenge) von Der Graph einer Funktion: graph!

Mehr

Vorlesung Diskrete Strukturen Abbildungen

Vorlesung Diskrete Strukturen Abbildungen Vorlesung Diskrete Strukturen Abbildungen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2009/10 1 Bernhard Ganter, TU Dresden Modul Einführung in die

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 2 Körper Wir werden nun die Eigenschaften der reellen Zahlen besprechen. Grundlegende Eigenschaften von mathematischen Strukuren

Mehr

Vorkurs Mathematik 2016

Vorkurs Mathematik 2016 Vorkurs Mathematik 2016 WWU Münster, Fachbereich Mathematik und Informatik PD Dr. K. Halupczok Skript VK3 vom 15.9.2016 VK3: Elementare Mengenlehre Der grundlegendste Begri, mit dem Objekte und Strukturen

Mehr

Relationen und Funktionen

Relationen und Funktionen Vorkurs Mathematik Dr. Regula Krapf Sommersemester 018 Relationen und Funktionen Definition. Seien M und N Mengen. Eine Relation auf M N ist eine Teilmenge R M N. Falls (x,y) R, so schreibt man auch x

Mehr