1 Funktionen einer Variablen

Größe: px
Ab Seite anzeigen:

Download "1 Funktionen einer Variablen"

Transkript

1 1 Funktionen einer Variablen 1.1 Einführende Beispiele Kostenfunktion und Stückkostenfunktion: Das Unternehmen Miel produziert hochwertige Waschmaschinen. Es hat monatliche Fikosten von Die sind unabhängig von der produzierten Menge. Pro produziertem Stück fallen variable Kosten (vor allem Material und Löhne) von 500 an. Die monatlichen Gesamtkosten des Unternehmens (in ) betragen dann K() = , wobei die Anzahl der im Monat produzierten Waschmaschinen ist. Bei 100 Waschmaschinen fallen also Gesamtkosten an in Höhe von K(100) = , 1

2 bei 1000 Stück K(1000) = K heißt die Kostenfunktion. Wenn man nicht an den Gesamtkosten K interessiert ist, sondern an den Kosten pro produziertem Stück, so erhält man die Stückkostenfunktion S(). Sie ergibt sich aus der Kostenfunktion K() einfach durch In obigem Beispiel ist S() = K() S() = = Bei 100 produzierten Waschmaschinen ist das also bei 1000 Maschinen S(100) = 2300, S(1000) =

3 Weitere ökonomische Funktionen sind Nachfrage-Funktion (Preis-Absatz-Funktion): Sei p der Preis eines Gutes, N die nachgefragte (abgesetzte) Menge. Die Nachfragefunktion ist dann N(p). Üblicherweise wird N(p) kleiner, wenn der Preis p steigt. So könnte z.b. (p ausgedrückt in ) N(p) = p (1.1) sein. Das heißt, bei einem Preis von 10 beträgt die Nachfrage Stück, bei einem Preis von 13 nur Stück. Oft wird auch umgekehrt die Funktion p(n) betrachtet. Angebotsfunktion: Sei p der Preis eines Gutes, A die vom Produzenten zu dem Preis auf den Markt gebrachte Menge. Die Angebotsfunktion ist dann A(p). 3

4 Erlösfunktion: Für N abgesetzte Güter zum Stückpreis p(n) ist der Erlös in Abhängigkeit von der Menge N E(N) = N p(n). Hierbei ist berücksichtigt, dass der Preis p von der Nachfrage N abhängt, typischerweise mit hoher Nachfrage steigt. In Abhängigkeit vom Preis p ist die Erlösfunktion E(p) = N(p) p. Wenn wir die Nachfragefunktion (1.1) benutzen, erhalten wir E(p) = p 500p 2. Eine typische Frage ist: Für welchen Preis p wird der Erlös E(p) maimal. Solche und ähnliche Fragen werden wir mit etwas mathematischer Theorie beantworten können. 4

5 1.2 Grundlegende Begriffe und Bezeichnungen Eine Abbildung f : R R mit D(f) R heißt reellwertige Funktion einer reellen Variablen (Veränderlichen). D(f) ist der bereits früher definierte Definitionsbereich von f. Also D(f) = { R : Es gibt y R mit y = f()}, d.h. D(f) besteht aus all den, die man in f einsetzen kann. Die Menge heißt der Wertebereich von f. W (f) := {f() : D(f)} 5

6 Wir nennen f() die Zuordnungsvorschrift und den Graph von f. G f = {(, y) D(f) R : y = f()} Viele Zuordnungsvorschriften haben einen natürlichen maimalen Definitionsbereich. Oft wird dann nur die Zuordnungsvorschrift angegeben, und es ist dann die zugehörige Funktion auf dem maimalen Definitionsbereich gemeint. Wenn aus dem Zusammenhang klar ist, was die Funktion f ist, schreiben wir auch einfach D statt D(f). Beispiel hat den maimalen Definitionsbereich R. 1 hat den maimalen Definitionsbereich R \ {0}. 6

7 Die schon vorher betrachtete Kostenfunktion K() = hat als Definitionsbereich R. In dem betrachteten Beispiel sind allerdings nur nicht-negative ganze Zahlen interessant (: Anzahl der Waschmaschinen) und nur bis zu einer gewissen Höhe, die durch die Maimalauslastung des Unternehmens gegeben ist. Dieses Beispiel zeigt, dass nicht alle Werte für, die mathematisch sinnvoll sind, auch im ökonomischen Sinn sinnvoll sind. In vielen Fällen ist f eine Funktion aus S nach T, wobei S, T R Teilmengen von R sind. In dem Fall schreibt man f : S T, f(). Die Elemente f() müssen in T liegen. Der Definitionsbereich von f ist in diesem Fall D(f) = { S : Es gibt y T mit y = f()}. 7

8 Ein Hilfsmittel zur Veranschaulichung einer Funktion f und ihres Graphen ist eine Wertetabelle, in der ausgewählte Werte von zusammen mit ihrem Funktionswert f() eingetragen werden. Beispiel 1.2 Wir setzen unser Beispiel K() = fort: K() Beispiel 1.3 f() = : f() Eine genauere Methode ist das Zeichnen der Graphen in ein Koordinatensystem. 8

9 Der Graph zur oben angegebenen Funktion ist

10 Wir wollen uns in den folgenden Beispielen überlegen, ob die jeweiligen Funktionen f : R R injektiv, surjektiv oder bijektiv sind. Achtung: Es gibt Funktionen, die weder injektiv noch surjektiv noch bijektiv sind! Injektivität bedeutet, dass der Graph jeder Gerade mit der Gleichung y = a (a R) den Graphen G f von f höchstens einmal schneidet. Beachte, dass Gleichungen y = a Geraden parallel zur -Achse beschreiben. Surjektiv heißt, dass jede solche Gerade den Graphen mindestens einmal trifft, und bijektiv schließlich bedeutet, dass jede solche Gerade den Graphen genau einmal trifft, und dass gleichzeitig D(f) = R gilt. Sie müssen Surjektivität etwas anders interpretieren, wenn f : R A mit A R gilt. Surjektivität bedeutet dann, dass jede Gerade mit der Gleichung y = a mit a A den Graphen G f mindestens einmal trifft. 10

11 Beispiel 1.4 f() = : Diese Funktion ist weder injektiv noch surjektiv. 11

12 Beispiel 1.5 f() = y Auch diese Funktion ist nicht surjektiv, denn f() ist niemals 0. Sie ist auch nicht injektiv, weil stets f( ) = f() gilt. 12

13 Beispiel 1.6 S() = für > y Diese Funktion ist injektiv und nimmt alle positiven Werte > 500 an. Wenn wir S also auffassen als eine Abbildung R + { R : > 500}, so ist S surjektiv (sogar bijektiv!). 13

14 Beispiel 1.7 f() = Diese Funktion heißt konstant Allgemein heißt eine Funktion mit der Vorschrift f() = c, wobei c eine Zahl unabhängig von ist, konstant. Konstante Funktionen sind nicht injektiv und nicht surjektiv. 14

15 Beispiel 1.8 f() = 10 3: Die Abbildung f ist injektiv und surjektiv. Eine Funktion der Form f() = a + b, a 0, heißt linear. Dabei sind a und b feste reelle Zahlen. Die Kostenfunktion K() = ist beispielsweise eine lineare Funktion. 15

16 Beispiel 1.9 Ein Kopierladen erhebt die Kosten pro Fotokopie in Abhängigkeit von der Gesamtzahl der getätigten Kopien. Hierbei gelten folgende Preise: Anzahl der Kopien 1 bis ab 100 Preis pro Kopie 0,05 0, Die Funktion k, die den Preis pro Kopie beschreibt, ist also gegeben durch 0, 05 falls 1 49, k() = 0, 04 falls 50 99, 0, 03 falls 100. Ihr Graph sieht wie folgt aus: 16

17 0.05 ο ο Eine solche Funktion nennt man Treppenfunktion. Treppenfunktionen sind weder injektiv noch surjektiv. Achtung: Eigentlich ist unsere Funktion k() natürlich nur für ganzzahlige definiert. Wir haben bei der hier angegebenen Skizze aber beliebig reellwertig angenommen, was für die Visualisierung durchaus angemessen ist. Bei Funktionen mit Sprüngen wie in diesem Beispiel sollte man bei 17

18 der Visualisierung deutlich machen, welche Punkte an den Sprungstellen zum Funktionsgraphen gehören. Wir malen einen fetten Punkt, wenn der Punkt dazugehört, sonst einen nicht ausgefüllten kleinen Kreis. Die Funktion K, die die Gesamtkosten des Kunden in Abhängigkeit von der Stückzahl angibt, ist 0, 05 falls 1 49, K() = 0, 04 falls 50 99, 0, 03 falls 100. Ihr Graph sieht wie folgt aus: 18

19 6 5 4 ο 3 ο

20 Ist die Funktion f : R R injektiv, hat den Definitionsbereich D und den Wertebereich W, so ist f : D W bijektiv. Dann heißt f 1 : W D, y wobei D mit f() = y die Umkehrfunktion zu f. Der Graph G f 1 = {(y, ) W D y = f()} = {(y, ) W D (, y) G f } entsteht aus G f durch Spiegelung an der Winkelhalbierenden mit der Gleichung = y. 20

21 Beispiel 1.10 Wir betrachten wieder die Stückkostenfunktion S() = Für welche Stückzahl ergibt sich 1500? Wir lösen hierzu nach auf und erhalten = 1500 = 1000, = 170. Das ist die gesuchte Stückzahl, denn es ist nun S(170) = Lösen wir allgemein die Gleichung = y

22 nach auf, so erhalten wir = y 500 und dies ist gerade die Umkehrfunktion, also S 1 (y) = y 500. Mit ihr lässt sich zu beliebigen Stückkosten die zugehörige Stückzahl ermitteln. 22

23 Beispiel 1.11 Die Funktion f : R + 0 R + 0 mit f() = 2 ist bijektiv. Ihre Umkehrabbildung ist f 1 (y) = y. 4 3 y Beachte: Die Funktion f() = 2 kann auch für alle R betrachtet werden, ist dann aber nicht injektiv, folglich gibt es dann auch keine Umkehrfunktion. 23

24 Verknüpfung von Funktionen Aus gegebenen Funktionen können durch Verknüpfung mittels der Grundrechenarten neue Funktionen gebildet werden. Seien f, g : R R Funktionen und λ R. Dann lassen sich auch die folgenden Funktionen definieren: λf : R R, mit f ± g : R R, mit f g : R R, mit f f : R R, mit g (λf)() = λf(), (f ± g)() = f() ± g(), (f g)() = f() g(), f() () = g g(). 24

25 Die Definitionsbereiche sind D(λf) = D(f), D(f ± g) = D(f) D(g), D(f ( g) ) = D(f) D(g), f D = { R : D(f) D(g) und g() 0}. g Wir erinnern daran, dass man auch f g (Verkettung von f und g) bilden kann. Der Definitionsbereich von f g sind diejenigen Elemente R, für die g() im Definitionsbereich von f liegt. 25

26 Beispiel 1.12 Seien f() = 15 3, g() = Dann sind (5f)() = 75 15, (f + g)() = , (f g)() = (15 3)( ) = , ( ) f () = 15 3 g Aus dem Definitionsbereich von f müssen 1 und 1/2 ausgeschlossen g werden, weil g(1) = 0 und g(1/2) = 0. 26

27 Intervalle Seien a, b R mit a < b. Dann unterscheiden wir die folgenden Typen von Intervallen [a, b] = { R : a b} (a, b) = { R : a < < b} [a, b) = { R : a < b} (a, b] = { R : a < b} Intervalle der Form [a, ) = { R : a} (, b] = { R : b} (a, ) = { R : > a} (, b) = { R : < b} abgeschlossenes Intervall, offenes Intervall, halboffene Intervalle. werden uneigentliche Intervalle genannt, die ersten beiden sind abgeschlossene, die letzten beiden offene Intervalle. 27

28 Monotonie Neben Injektivität und Surjektivität spielen weitere Eigenschaften von Funktionen eine wichtige Rolle. Besonders wichtig ist die Monotonie: Seien f : R R eine Funktion und I R ein Intervall im Definitionsbereich von f. Gilt für alle 1, 2 I mit 1 < 2 f( 1 ) f( 2 ) (bzw. f( 1 ) < f( 2 )) (1.2) dann heißt f (streng) monoton wachsend in I. Gilt für alle 1, 2 I mit 1 < 2 f( 1 ) f( 2 ) (bzw. f( 1 ) > f( 2 )) dann heißt f (streng) monoton fallend in I. 28

29 Die Funktion f heißt (streng) monoton wachsend auf dem ganzen Definitionsbereich, wenn die Bedingung (1.2) für alle 1, 2 D(f) mit 1 < 2 erfüllt ist. Entsprechendes gilt für (streng) monoton fallend. Die Stückkostenfunktion S() = ist streng monoton fallend. Anschaulich bedeutet das: Je mehr Stücke produziert werden, so geringer sind die Stückkosten, um so effizienter ist also die Produktion. Wir halten folgenden interessanten Zusammenhang zwischen Monotonie und Injektivität fest: Ist f streng monoton wachsend (oder streng monoton fallend) dann ist f injektiv, hat also eine Umkehrfunktion. 29

30 Beispiel 1.13 Die Funktion f() = ist auf [0, ) streng monoton wachsend, auf (, 2] streng monoton fallend. Wo genau sich das Wachstumsverhalten umkehrt, ist am Graphen nicht genau zu erkennen. Das werden wir später mit mathematischen Methoden ermitteln können

31 Können Funktionen nicht beliebig groß oder klein werden, spricht man von beschränkten Funktionen: Sei f : R R eine Funktion und sei D der Definitionsbereich. Gibt es ein c R mit f() c (bzw. f() c) für alle D, dann heißt f nach unten (bzw. oben) beschränkt. Ist f nach unten und nach oben beschränkt, dann heißt f beschränkt. Anders formuliert: Der Wertebereich W (f) ist beschränkt, also W (f) [a, b] für geeignete a, b R. 31

32 Beispiel 1.14 Die Funktion f() = 2 4 mit dem Graphen ist nach unten beschränkt, weil f() 4 für alle R. Die Funktion ist aber nicht nach oben beschränkt. 32

33 Beispiel 1.15 Die Funktion f() = 3 ist weder nach oben noch nach unten beschränkt

34 Wir betrachten wieder die Kostenfunktion K() = auf dem Intervall [0, 2000]. Dort ist K beschränkt, weil K() K(0) = K() K(2000) = für alle [0, 2000]. Das Intervall [0, 2000] könnte aus ökonomischer Sicht relevant sein, wenn etwa die Maimalauslastung bei 2000 produzierten Waschmaschinen liegt. 34

35 Folgende Eigenschaft beschreibt eine gewisse Symmetrie des Funktionsgraphen: Sei f : R R eine Funktion mit D(f) = R, die Funktion ist also auf ganz R definiert. Gilt f( ) = f() für alle R, dann heißt f gerade. Wenn f( ) = f() für alle R gilt, dann heißt f ungerade. Der Graph einer geraden Funktion ist achsensymmetrisch zur y-achse, der einer ungeraden Funktion ist punktsymmetrisch bezüglich des Ursprungs des Koordinatensystems. 35

36 Beispiel 1.16 Die Funktion f() = 4 ist gerade, y

37 Die Funktion f() = 5 ist ungerade: 15 y

38 Nullstellen Häufig interessiert man sich für die Werte der unabhängigen Variable einer Funktion, für die der Funktionswert 0 ist: Sei f : R R eine Funktion. Ist 0 D(f) eine reelle Zahl mit f( 0 ) = 0, dann heißt 0 eine Nullstelle von f. Der folgende Graph skizziert eine Funktion mit drei Nullstellen (3, 1 und 3):

2 Funktionen einer Variablen

2 Funktionen einer Variablen 2 Funktionen einer Variablen 2.1 Einführende Beispiele Kostenfunktion und Stückkostenfunktion: Das Unternehmen Miel produziert hochwertige Waschmaschinen. Es hat monatliche Fikosten von 170.000. Die sind

Mehr

1 Funktionen einer Variablen

1 Funktionen einer Variablen 1 Funktionen einer Variablen 1.1 Einführende Beispiele Kostenfunktion und Stückkostenfunktion: Das Unternehmen Miel produziert hochwertige Waschmaschinen. Es hat monatliche Fikosten von 170.000. Die sind

Mehr

hat den maximalen Definitionsbereich R\{0}.

hat den maximalen Definitionsbereich R\{0}. Wir nennen f() die Zuordnungsvorschrift und G f = {(,y) D(f) R : y = f()} den Graph von f. Viele Zuordnungsvorschriften haben einen natürlichen maimalen Definitionsbereich. Oft wird dann nur die Zuordnungsvorschrift

Mehr

2 Funktionen einer Variablen

2 Funktionen einer Variablen 2 Funktionen einer Variablen Wir haben im letzten Kapitel allgemeine Abbildungen zwischen beliebigen Mengen betrachtet. Hier wollen wir uns nun mit dem Fall beschäftigen, dass sowohl der input als auch

Mehr

Beispiel 1.20 Wir betrachten die folgenden vier Mengen: A = {x : x R und 1 x 6} B = {x : x N und x < 6} C = {x : x N und x 2} D = {x : x R und x < 6}

Beispiel 1.20 Wir betrachten die folgenden vier Mengen: A = {x : x R und 1 x 6} B = {x : x N und x < 6} C = {x : x N und x 2} D = {x : x R und x < 6} Ω A A Beispiel 1.20 Wir betrachten die folgenden vier Mengen: A = {x : x R und 1 x 6} B = {x : x N und x < 6} C = {x : x N und x 2} D = {x : x R und x < 6} 52 Dann gilt: Mengenalgebra A B = {1,2,3,4,5}

Mehr

Ist die Funktion f : R R injektiv, hat den Definitionsbereich D und den Wertebereich W, so ist f : D W bijektiv. Dann heißt

Ist die Funktion f : R R injektiv, hat den Definitionsbereich D und den Wertebereich W, so ist f : D W bijektiv. Dann heißt Ist die Funktion f : R R injektiv, hat den Definitionsbereich D und den Wertebereich W, so ist f : D W bijektiv. Dann heißt f 1 : W D, y wobei D mit f() = y die Umkehrfunktion zu f. Der Graph G f 1 = {(y,

Mehr

Funktionen einer Variablen

Funktionen einer Variablen Kapitel 2. Funktionen einer Variablen 2.1 Einführende Beispiele Kostenfunktion und Stückkostenfunktion: Das Unternehmen Miel produziert hochwertige Waschmaschinen. Es hat monatliche Fikosten von 170.000.

Mehr

Funktionen. x : Variable von f oder Argument f x : Funktionswert, Wert der Funktion f an der Stelle x D f. : Definitionsmenge(Urbildmenge)

Funktionen. x : Variable von f oder Argument f x : Funktionswert, Wert der Funktion f an der Stelle x D f. : Definitionsmenge(Urbildmenge) Funktionen Eine Funktion oder Abbildung ist eine Beziehung zwischen zwei nicht leere Mengen D f und Z, die jedem Element x aus einer Menge D f genau ein Element y aus anderer Menge Z zuordnet. f : D f

Mehr

Kapitel II Funktionen reeller Variabler

Kapitel II Funktionen reeller Variabler Kapitel II Funktionen reeller Variabler D (Funktion) Es sei f XxY eine Abbildung Die Abbildung f heiß Funktion, falls sie eindeutig ist Man schreibt dann auch: f : X Y f ( x) = y, wobei y das (eindeutig

Mehr

1.4 Mengen. Wirtschaftswissenschaften häufig nicht so klar formulierbar.

1.4 Mengen. Wirtschaftswissenschaften häufig nicht so klar formulierbar. Wirtschaftswissenschaften häufig nicht so klar formulierbar. Viel häufiger tritt das Phänomen auf, dass man Aussagen widerlegt! Kehren wir zurück zu unserem Beispiel 1.13 über den Zusammenhang zwischen

Mehr

2 Von der Relation zur Funktion

2 Von der Relation zur Funktion 2 Von der Relation zur Funktion 2.1 Relationen Gegeben seien zwei Zahlenmengen P = 1, 2, 3, 4 und Q = 5, 6, 7. Setzt man alle Elemente der Menge P in Beziehung zu allen Elementen der Menge Q, nennt man

Mehr

Abschnitt 1.3. Funktionen

Abschnitt 1.3. Funktionen Abschnitt 1.3 Funktionen Arbeitsdefinition des Begriffs Funktion Bereits an Ende von Abschnitt 1.1 wurde definiert: Eine Funktion f ordnet Elementen x einer Menge D Elemente f (x) zu, die in der Menge

Mehr

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um:

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: 1 Grundlagen 1.1 Das Rechnen mit Zahlen Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: N: natürliche Zahlen 1, 2, 3, 4, 5,... Z: ganze Zahlen..., 3, 2, 1, 0, 1, 2, 3,... Q: rationale Zahlen:

Mehr

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1. 1 Grundlagen 2. 2 Der Graph einer Funktion 4. 3 Umkehrbarkeit 5

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1. 1 Grundlagen 2. 2 Der Graph einer Funktion 4. 3 Umkehrbarkeit 5 Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1 Inhaltsverzeichnis 1 Grundlagen 2 2 Der Graph einer Funktion

Mehr

Wirtschaftsmathematik - Übungen SS 2019

Wirtschaftsmathematik - Übungen SS 2019 Wirtschaftsmathematik - Übungen SS 019 Blatt 4: Funktionen von einer Variablen 1. Gegeben sind die Mengen M 1 = {1,, 3, 4, 5, 6, 7} und M = { 1, 0, 1, } sowie die Zuordnungsvorschrift f : M 1 M, x f(x)

Mehr

Wirtschaftsmathematik - Übungen WS 2017/18

Wirtschaftsmathematik - Übungen WS 2017/18 Wirtschaftsmathematik - Übungen WS 17/18 Blatt 4: Funktionen von einer Variablen 1. Gegeben sind die Mengen M 1 = {, 1,, 3, 4, 5, 6, 7, 8, 9} und M = { 1,, 1, } sowie die Zuordnungsvorschrift f : M 1 æ

Mehr

Kapitel 2: Abbildungen und elementare Funktionen

Kapitel 2: Abbildungen und elementare Funktionen Kapitel 2: Abbildungen und elementare Funktionen Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) Abbildungen und elementare Funktionen 1 / 18 Gliederung

Mehr

Wirtschaftsmathematik - Übungen WS 2018

Wirtschaftsmathematik - Übungen WS 2018 Wirtschaftsmathematik - Übungen WS 8 Blatt 4: Funktionen von einer Variablen. Gegeben sind die Mengen M = {,,, 3, 4, 5, 6, 7, 8, 9} und M = {,,, } sowie die Zuordnungsvorschrift f : M æ M,x æ f(x) mit

Mehr

Vorkurs Mathematik B

Vorkurs Mathematik B Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 8. September 2011 Für die Mathematik zentral sind Abbildungen und Funktionen. Häufig wird zwischen beiden Begriffen nicht unterschieden.

Mehr

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um:

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: 1 Grundlagen 1.1 Das Rechnen mit Zahlen Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: N: natürliche Zahlen 1,,3,4,5,... Z: ganze Zahlen..., 3,, 1,0,1,,3,... Q: rationale Zahlen: das sind

Mehr

Funktionen. Definition. Eine Funktion (oder Abbildung) ist eine Vorschrift, die jedem Element einer Menge A genau ein Element einer Menge B zuordnet.

Funktionen. Definition. Eine Funktion (oder Abbildung) ist eine Vorschrift, die jedem Element einer Menge A genau ein Element einer Menge B zuordnet. 1 Der Funktionsbegriff Funktionen Definition. Eine Funktion (oder Abbildung) ist eine Vorschrift, die jedem Element einer Menge A genau ein Element einer Menge B zuordnet. Dabei nennt man die Menge A Definitionsmenge

Mehr

Folgende Eigenschaft beschreibt eine gewisse Symmetrie des Funktionsgraphen:

Folgende Eigenschaft beschreibt eine gewisse Symmetrie des Funktionsgraphen: für alle x [0,2000]. Das Intervall [0,2000] könnte aus ökonomischer Sicht relevant sein, wenn etwa die Maximalauslastung bei 2000 produzierten Waschmaschinen liegt. Folgende Eigenschaft beschreibt eine

Mehr

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um:

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: Grundlagen. Das Rechnen mit Zahlen Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: N: natürliche Zahlen,2,3,4,5,... Z: ganze Zahlen..., 3, 2,,0,,2,3,... Q: rationale Zahlen: das sind die

Mehr

1.3 Funktionen einer reellen Veränderlichen und ihre Darstellung im x, y - Koordinatensystem

1.3 Funktionen einer reellen Veränderlichen und ihre Darstellung im x, y - Koordinatensystem .0.0. Funktionen einer reellen Veränderlichen und ihre Darstellung im, - Koordinatensstem Vereinbarungen Wir betrachten vorerst nur noch Funktionen f, deren Definitionsund Wertebereich jeweils R oder ein

Mehr

Wirtschaftsmathematik - Übungen SS 2017

Wirtschaftsmathematik - Übungen SS 2017 Wirtschaftsmathematik - Übungen SS 017 Blatt 4: Funktionen von einer Variablen 1. Gegeben sind die Mengen M 1 = {0, 1,, 3, 4, 5, 6, 7, 8, 9} und M = { 1, 0, 1, } sowie die Zuordnungsvorschrift f : M 1

Mehr

3 Abbildungen. 14 I. Zahlen, Konvergenz und Stetigkeit

3 Abbildungen. 14 I. Zahlen, Konvergenz und Stetigkeit 14 I. Zahlen, Konvergenz und Stetigkeit 3 Abbildungen 3.1 Definition. Es seien zwei Mengen M, N gegeben. Unter einer Abbildung f : M N von M nach N versteht man eine Vorschrift, die jedem Element M genau

Mehr

Was ist eine Funktion?

Was ist eine Funktion? Lerndomino zum Thema Funktionsbegriff Kopiereen Sie die Seite (damit Sie einen Kontrollbogen haben), schneiden Sie aus der Kopie die "Dominosteine" zeilenweise aus, mischen Sie die "Dominosteine" und verteilen

Mehr

Wirtschaftsmathematik - Übungen SS 2018

Wirtschaftsmathematik - Übungen SS 2018 Wirtschaftsmathematik - Übungen SS 218 Blatt 4: Funktionen von einer Variablen 1. Gegeben sind die Mengen M 1 = {, 1, 2, 3, 4, 5, 6, 7, 8, 9} und M 2 = { 1,, 1, 2} sowie die Zuordnungsvorschrift f : M

Mehr

Einführungsbeispiel Kostenfunktion

Einführungsbeispiel Kostenfunktion Einführungsbeispiel Kostenfunktion Sie bauen eine Fabrik für Luxusautos auf und steigern die Produktion jeden Monat um 1000 Stück. Dabei messen Sie die jeweiligen Kosten und stellen sie grafisch dar. Die

Mehr

Einführung. Ablesen von einander zugeordneten Werten

Einführung. Ablesen von einander zugeordneten Werten Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,

Mehr

Prof. Dr. Wolfgang Konen Mathematik 1, WS Warum Informatiker Funktionen brauchen

Prof. Dr. Wolfgang Konen Mathematik 1, WS Warum Informatiker Funktionen brauchen Prof. Dr. Wolfgang Konen Mathematik, WS03 30.0.03 4. Reelle Funktionen 4.. Warum Informatiker Funktionen brauchen Funktionen beschreiben Zusammenhänge zwischen Zielgrößen und Einflußgrößen und sind damit

Mehr

Vorlesung Wirtschaftsmathematik II SS 2011, 2/2 SWS. Prof. Dr. M. Voigt

Vorlesung Wirtschaftsmathematik II SS 2011, 2/2 SWS. Prof. Dr. M. Voigt Vorlesung Wirtschaftsmathematik II SS 2011, 2/2 SWS Prof. Dr. M. Voigt 28. April 2011 II Inhaltsverzeichnis 1 Funktionen einer Variablen 1 24 Februar 2011 III Kapitel 1 Funktionen einer Variablen 1.1 Eigenschaften

Mehr

Definition, Funktionsgraph, erste Beispiele

Definition, Funktionsgraph, erste Beispiele 5. Vorlesung im Brückenkurs Mathematik 07 Reelle Funktionen Dr. Markus Herrich Markus Herrich Reelle Funktionen Definition, Funktionsgraph, erste Beispiele Markus Herrich Reelle Funktionen Definition Eine

Mehr

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: zweier ganzer Zahlen p und q schreiben kann.

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: zweier ganzer Zahlen p und q schreiben kann. Kapitel 1. Grundlagen 1.1 Das Rechnen mit Zahlen Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: N: natürliche Zahlen 1, 2,3, 4, 5,... Z: ganze Zahlen..., 3, 2, 1, 0,1, 2,3,... Q: rationale

Mehr

13. Funktionen in einer Variablen

13. Funktionen in einer Variablen 13. Funktionen in einer Variablen Definition. Seien X, Y Mengen. Eine Funktion f : X Y ist eine Vorschrift, wo jedem Element der Menge X eindeutig ein Element von Y zugeordnet wird. Wir betrachten hier

Mehr

Funktionen einer reellen Veränderlichen

Funktionen einer reellen Veränderlichen KAPITEL Funktionen einer reellen Veränderlichen.1 Eigenschaften von Funktionen........................... 39. Potenz- und Wurzelfunktionen............................ 1.3 Trigonometrische Funktionen.............................

Mehr

Analysis. Faktensammlung Analysis Im Modul Wirtschaftsmathematik Sommersemester Prof. Dr. Nikolaus Wolik Wirtschaftsmathematik und Statistik

Analysis. Faktensammlung Analysis Im Modul Wirtschaftsmathematik Sommersemester Prof. Dr. Nikolaus Wolik Wirtschaftsmathematik und Statistik Analysis Faktensammlung Analysis Im Modul Wirtschaftsmathematik Sommersemester 2013 Prof. Dr. Nikolaus Wolik Wirtschaftsmathematik und Statistik Vorwort Die modernen Wirtschaftswissenschaften nutzen in

Mehr

Exponentialfunktionen. Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik

Exponentialfunktionen. Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik e Exponentialfunktionen Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik Exponentialfunktionen Potenzfunktion: y = x 9 Exponentialfunktion: y = 9 x Die Potenz- und die Exponentialfunktionen

Mehr

Was ist eine Funktion?

Was ist eine Funktion? Lerndomino zum Thema Funktionsbegriff Kopiereen Sie die Seite (damit Sie einen Kontrollbogen haben), schneiden Sie aus der Kopie die "Dominosteine" zeilenweise aus, mischen Sie die "Dominosteine" und verteilen

Mehr

1.2 Einfache Eigenschaften von Funktionen

1.2 Einfache Eigenschaften von Funktionen 1.2 Einfache Eigenschaften von Funktionen 1.2.1 Nullstellen Seien A und B Teilmengen von R und f : A B f : Df Wf eine Funktion. Eine Nullstelle der Funktion f ist ein 2 D f, für das f ( = 0 ist. (Eine

Mehr

Abschnitt IV: Funktionen

Abschnitt IV: Funktionen Nr.01 Es sind bekannt P 1 (- / 1) und P (1 / -5). Bestimmen Sie den Funktionsterm. Nr. 0 Der Graph einer linearen Funktion g hat die Steigung und geht durch den Punkt C (-0,5 / -). Bestimmen Sie den Funktionsterm.

Mehr

Aufgabe zum Thema: Gebrochen - rationale Funktionen

Aufgabe zum Thema: Gebrochen - rationale Funktionen Aufgabe zum Thema: Gebrochen - rationale Funktionen Eine gebrochen-rationale Funktion Z (x) hat als Zähler- N (x) funktion Z (x) eine lineare Funktion und als Nennerfunktion N (x) eine ganz-rationale Funktion

Mehr

Bezeichnung von Funktionen x := y:=

Bezeichnung von Funktionen x := y:= Bezeichnung von Funktionen x := y:= Bezeichnung von Funktionen x := y:= Analytische Darstellung (Funktionsgleichung) Explizit: (aufgelöst nach y) Analytische Darstellung (Funktionsgleichung) Explizit:

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis Übungsaufgaben 3. Übung: Woche vom 27. 10. bis 31. 10. 2010 Heft Ü1: 3.14 (c,d,h); 3.15; 3.16 (a-d,f,h,j); 3.17 (d); 3.18 (a,d,f,h,j) Übungsverlegung für Gruppe VIW 05: am Mo., 4.DS, SE2 / 022 (neuer Raum).

Mehr

Urs Wyder, 4057 Basel Funktionen. f x x x x 2

Urs Wyder, 4057 Basel Funktionen. f x x x x 2 Urs Wyder, 4057 Basel Urs.Wyder@edubs.ch Funktionen f 3 ( ) = + f ( ) = sin(4 ) Inhaltsverzeichnis DEFINITION DES FUNKTIONSBEGRIFFS...3. NOTATION...3. STETIGKEIT...3.3 ABSCHNITTSWEISE DEFINIERTE FUNKTIONEN...4

Mehr

Kosten und Umsatzfunktionen

Kosten und Umsatzfunktionen In den folgenden Abschnitten wenden wir gelegentlich Anwendungen aus der Wirtschaft behandeln. Wir stellen deshalb einige volks- und betriebswirtschaftliche Funktionen vor. Dabei handelt es sich stets

Mehr

Celle. Betragsfunktion 1-E1. Vorkurs, Mathematik

Celle. Betragsfunktion 1-E1. Vorkurs, Mathematik Celle Betragsfunktion 1-E1 1-E2 Betragsfunktion y = x : Aufgabe 1 Abb. 1: Graph der Betragsfunktion y = x Die Abb. 3-1 zeigt die Betragsfunktion y = x. Beschreiben Sie die Eigenschaften dieser Funktion:

Mehr

1. Begründen Sie, ob durch folgende Vorschriften reelle Funktionen y = f(x) definiert werden.

1. Begründen Sie, ob durch folgende Vorschriften reelle Funktionen y = f(x) definiert werden. Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen Elementare Funktionen. Begründen Sie, ob durch folgende Vorschriften reelle Funktionen y = f( definiert werden. { { 2

Mehr

Kapitel 4. Abbildungen = Funktionen. Oft hängt eine Größe von einer anderen ab. Beispiele: a) Höhe eines bestimmten Baumes von der Zeit

Kapitel 4. Abbildungen = Funktionen. Oft hängt eine Größe von einer anderen ab. Beispiele: a) Höhe eines bestimmten Baumes von der Zeit Kapitel 4 Abbildungen = Funktionen 4.1 Abbildungen Oft hängt eine Größe von einer anderen ab. Beispiele: a) Höhe eines bestimmten Baumes von der Zeit b) Volumen eines Würfels von der Kantenlänge c) Alkoholgehalt

Mehr

4.4 Umkehrfunktion 77. Sei o.b.d.a. f(a) > 0 und f(b) < 0, setzen M = {y [a, b] mit f(x) > 0 für alle x [a, y]}

4.4 Umkehrfunktion 77. Sei o.b.d.a. f(a) > 0 und f(b) < 0, setzen M = {y [a, b] mit f(x) > 0 für alle x [a, y]} . Umkehrfunktion 77 B e w e i s : Sei o.b.d.a. fa) > und fb) für alle [a, y] M a M), M beschränkt y b) Aiom V ξ [a, b] : ξ sup M fa) f) n.z.z. : i) fξ) ii) ξ a, b) zu i):

Mehr

unabhängigen Variablen Eine Funktion dient der Beschreibung von Zusammenhängen zwischen mehreren verschiedenen Faktoren.

unabhängigen Variablen Eine Funktion dient der Beschreibung von Zusammenhängen zwischen mehreren verschiedenen Faktoren. Funktionsbegriff 2.1 2 Funktionen mit einer unabhängigen Variablen 2.1 Funktionsbegriff Eine Funktion dient der Beschreibung von Zusammenhängen zwischen mehreren verschiedenen Faktoren. In den Wirtschaftswissenschaften

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 08/9 c Dr. K. Rothe Analysis I für Studierende der Ingenieurwissenschaften Hörsaalübung mit Beispielaufgaben zu Blatt Mengen Darstellung durch: a) Aufzählung

Mehr

Mengen, Funktionen und Logik

Mengen, Funktionen und Logik Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Mengen, Funktionen und Logik Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Leseprobe. Helge Röpcke, Markus Wessler. Wirtschaftsmathematik. Methoden - Beispiele - Anwendungen. Herausgegeben von Robert Galata, Markus Wessler

Leseprobe. Helge Röpcke, Markus Wessler. Wirtschaftsmathematik. Methoden - Beispiele - Anwendungen. Herausgegeben von Robert Galata, Markus Wessler Leseprobe Helge Röpcke, Markus Wessler Wirtschaftsmathematik Methoden - Beispiele - Anwendungen Herausgegeben von Robert Galata, Markus Wessler ISBN (Buch): 978-3-446-43256-7 ISBN (E-Book): 978-3-446-43375-5

Mehr

9 Funktionen und ihre Graphen

9 Funktionen und ihre Graphen 57 9 Funktionen und ihre Graphen Funktionsbegriff Eine Funktion ordnet jedem Element aus einer Menge D f genau ein Element aus einer Menge W f zu. mit = f(), D f Die Menge aller Funktionswerte nennt man

Mehr

4.4 Beispiele ökonomischer Funktionen

4.4 Beispiele ökonomischer Funktionen 4.4 Beispiele ökonomischer Funktionen Zusammenhänge zwischen ökonomischen Grössen wie Preis, produzierte Stückzahl, Gewinn, usw. werden häufig mittels Funktionen beschrieben. Die Funktion ist damit ein

Mehr

Mathematik I Herbstsemester 2014 Kapitel 4: Anwendungen der Differentialrechnung

Mathematik I Herbstsemester 2014 Kapitel 4: Anwendungen der Differentialrechnung Mathematik I Herbstsemester 2014 Kapitel 4: Anwendungen der Differentialrechnung www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Prof. Dr. Wolfgang Konen Mathematik 1, WS Warum Informatiker Funktionen brauchen

Prof. Dr. Wolfgang Konen Mathematik 1, WS Warum Informatiker Funktionen brauchen Prof. Dr. Wolfgang Konen Mathematik, WS6..6 4. Reelle Funktionen 4.. Warum Informatiker Funktionen brauchen Funktionen beschreiben Zusammenhänge zwischen Zielgrößen und Einflussgrößen und sind damit Grundlage

Mehr

Umkehrfunktionen 1-E. Ma 1 Lubov Vassilevskaya

Umkehrfunktionen 1-E. Ma 1 Lubov Vassilevskaya Umkehrfunktionen 1-E Wiederholung: Funktion als eine Abbildung Abb. 1-1: Darstellung einer Abbildung Eine Funktion f (x) beschreibt eine Abbildung von X nach Y f X Y, x f x Der erste Ausdruck charakterisiert

Mehr

Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren. Man nennt die Untersuchung von Funktionen auch Kurvendiskussion.

Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren. Man nennt die Untersuchung von Funktionen auch Kurvendiskussion. Tutorium Mathe 1 MT I Funktionen: Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren Man nennt die Untersuchung von Funktionen auch Kurvendiskussion 1 Definitionsbereich/Wertebereich

Mehr

Mathematik für Ökonomen 1

Mathematik für Ökonomen 1 Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Herbstemester 2008 Mengen, Funktionen und Logik Inhalt: 1. Mengen 2. Funktionen 3. Logik Teil 1 Mengen

Mehr

4. Funktionen und Relationen

4. Funktionen und Relationen 4. Funktionen und Relationen Nikolaus von Oresmes Richard Dedekind (1831-1916) René Descartes 1596-1650 Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 4: Funktionen und Relationen 4.1 Funktionen:

Mehr

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 2.1

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 2.1 .1 Fachbereich 6: Abteilung Didaktik der Mathematik Elemente der Algebra . Inhaltsverzeichnis Elemente der Algebra & Argumentationsgrundlagen, Gleichungen & Gleichungssysteme Quadratische und Gleichungen

Mehr

Univariate Analysis. Analysis und nichtlineare Modelle Sommersemester

Univariate Analysis. Analysis und nichtlineare Modelle Sommersemester Analysis und nichtlineare Modelle Sommersemester 9 5 Univariate Analysis C. Berechnen Sie ohne Taschenrechner(!). Runden Sie die Ergebnisse auf ganze Zahlen. (a) 7 :, (b) 795 :.. Berechnen Sie ohne Taschenrechner(!):

Mehr

Fachhochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel

Fachhochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel Fachhochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@fh-koeln.de Übungen zur Vorlesung Wirtschaftsmathematik Etremwerte und Kurvendiskussion

Mehr

Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 3-1 FUNKTIONEN. Was ist eine Funktion?

Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 3-1 FUNKTIONEN. Was ist eine Funktion? ARBEITSBLATT - FUNKTIONEN Was ist eine Funktion? Stellen wir uns Folgendes vor: Wir stehen vor einem Schaufenster und betrachten die Waren, welche ausgestellt sind. Da wir nicht beliebig viel Geld haben

Mehr

Logarithmusfunktion zur Basis 2, Aufgaben. 7-E Vorkurs, Mathematik

Logarithmusfunktion zur Basis 2, Aufgaben. 7-E Vorkurs, Mathematik Logarithmusfunktion zur Basis 2, Aufgaben 7-E Vorkurs, Mathematik Logarithmusfunktion zur Basis 2: Aufgaben 7-9 Aufgabe 7: Bestimmen Sie eine vertikale Asymptote für die folgenden Funktionen: f ( x) =

Mehr

Analysis in der Ökonomie (Teil 1) Aufgaben

Analysis in der Ökonomie (Teil 1) Aufgaben Analysis in der Ökonomie (Teil 1) Aufgaben 1 In einer Fabrik, die Farbfernseher produziert, fallen monatlich fie Kosten in Höhe von 1 Mio an Die variablen Kosten betragen für jeden produzierten Fernseher

Mehr

Mathematik I Herbstsemester 2014

Mathematik I Herbstsemester 2014 Mathematik I Herbstsemester 2014 www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 22 1 Funktionen Definitionen

Mehr

Prof. Dr. Wolfgang Konen Mathematik 1, WS Warum Informatiker Funktionen brauchen

Prof. Dr. Wolfgang Konen Mathematik 1, WS Warum Informatiker Funktionen brauchen Prof. Dr. Wolfgang Konen Mathematik, WS05 3.0.05 4. Reelle Funktionen 4.. Warum Informatiker Funktionen brauchen Funktionen beschreiben Zusammenhänge zwischen Zielgrößen und Einflussgrößen und sind damit

Mehr

Mathematik I Herbstsemester 2018 Kapitel 1: Funktionen

Mathematik I Herbstsemester 2018 Kapitel 1: Funktionen Mathematik I Herbstsemester 2018 Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 23 1. Funktionen Definition einer Funktion Darstellungsformen einer Funktion Funktionseigenschaften Nullstellen

Mehr

Die Schreibweise x M bedeutet, dass das Objekt x in der Menge M liegt. Ist dies nicht der Fall, dann schreibt man

Die Schreibweise x M bedeutet, dass das Objekt x in der Menge M liegt. Ist dies nicht der Fall, dann schreibt man Die Schreibweise x M bedeutet, dass das Objekt x in der Menge M liegt. Ist dies nicht der Fall, dann schreibt man x / M. Man sagt, M ist Teilmenge von N und schreibt M N, wenn für jedes x M auch x N gilt.

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Mathematik für Wirtschaftswissenschaftler Yves Schneider Universität Luzern Frühjahr 2016 Repetition Kapitel 1 bis 3 2 / 54 Repetition Kapitel 1 bis 3 Ausgewählte Themen Kapitel 1 Ausgewählte Themen Kapitel

Mehr

R. Brinkmann Seite

R. Brinkmann   Seite R. Brinkmann http://brinkmann-du.de Seite 1 1.08.016 Kurvendiskussion Vorbetrachtungen Um den Graphen einer Funktion zeichnen und interpretieren zu können, ist es erforderlich einiges über markante Punkte

Mehr

Institut für Stochastik, Fernstudienzentrum

Institut für Stochastik, Fernstudienzentrum Institut für Stochastik, Fernstudienzentrum Vorkurs Mathematik für die Fachrichtung Wirtschaftswissenschaften im Herbst 2014 Präsenzwoche Übungsaufgaben zum Thema Abbildungen Aufgabe 8 Es seien Ω := {0,

Mehr

Vorlesung. Funktionen/Abbildungen

Vorlesung. Funktionen/Abbildungen Vorlesung Funktionen/Abbildungen 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Ökonomie. ganz gründlich mit vielen Aufgaben. Teil1: Funktionen aus der Wirtschaftsmathematik bis 2. Grades

Ökonomie. ganz gründlich mit vielen Aufgaben. Teil1: Funktionen aus der Wirtschaftsmathematik bis 2. Grades Ökonomie ganz gründlich mit vielen Aufgaben Teil1: Funktionen aus der Wirtschaftsmathematik bis. Grades Ökonomie Nachfragefunktion, Angebotsfunktion, Erlösfunktion, Kostenfunktionen, Gewinnfunktionen Alternativer

Mehr

Beschränktheit, Monotonie & Symmetrie

Beschränktheit, Monotonie & Symmetrie Beschränktheit, Monotonie & Symmetrie ein Referat Dies ist eine Beilage zum Gruppen-SOL - Projekt Potenz- & Exponentialfunktionen Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch November 2015 Inhaltsverzeichnis

Mehr

4.1 Definition. Gegeben: Relation f X Y f heißt Funktion (Abbildung) von X nach Y, wenn. = y 1. = y 2. xfy 1. xfy 2

4.1 Definition. Gegeben: Relation f X Y f heißt Funktion (Abbildung) von X nach Y, wenn. = y 1. = y 2. xfy 1. xfy 2 4.1 Definition Gegeben: Relation f X Y f heißt Funktion (Abbildung) von X nach Y, wenn xfy 1 xfy 2 = y 1 = y 2 Y heißt Zielbereich oder Zielmenge von f. Statt (x, y) f oder xfy schreibt man y = f(x). Vollständige

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Wirtschaftsmathematik Methoden - Beispiele - Anwendungen von Robert Galata, Markus Wessler, Helge Röpcke 1. Auflage Hanser München 2012 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 446 43256 7

Mehr

x 2 14x+49 = x 2 2x+1 Ein Wechsel des Verhaltens der Ungleichung ist demnach nur bei x = 1, x = 4 und x = 7

x 2 14x+49 = x 2 2x+1 Ein Wechsel des Verhaltens der Ungleichung ist demnach nur bei x = 1, x = 4 und x = 7 Aufgabe 1. a) Die Ungleichung ist einfach und wird am besten direkt gelöst: 7 x > x 7 14 > 2x x < 7 Die Lösungsmenge ist das offene Intervall (, 7). b) Die Ungleichung ist für x = 7 nicht definiert. Um

Mehr

3 Folgen, Reihen und stetige Funktionen

3 Folgen, Reihen und stetige Funktionen Höhere Mathematik 101 3 Folgen, Reihen und stetige Funktionen 3.1 Folgen und Reihen: Definitionen und Beispiele Eine reelle oder komplexe Zahlenfolge ist eine Abbildung, die jeder natürlichen Zahl n eine

Mehr

1 Höhere Ableitungen 2. 2 Mittelwertsatz und Monotonie 3. 3 Konvexe und konkave Funktionen 5. 4 Lokale und globale Extremalstellen 7

1 Höhere Ableitungen 2. 2 Mittelwertsatz und Monotonie 3. 3 Konvexe und konkave Funktionen 5. 4 Lokale und globale Extremalstellen 7 Universität Basel 4 Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematik 1 Dr. Thomas Zehrt Kurvendiskussionen Inhaltsverzeichnis 1 Höhere Ableitungen 2 2 Mittelwertsatz und

Mehr

3. Die Definition einer Abbildung von A in B beinhaltet eigentlich zwei Bedingungen, nämlich

3. Die Definition einer Abbildung von A in B beinhaltet eigentlich zwei Bedingungen, nämlich Kapitel 3: Abbildungen Seite 33 Kap 3: Abbildungen Kap. 3.1: Abbildungen (Funktion), Bild und Urbild Der Begriff der Abbildung ist wie auch der Begriff der Menge von fundamentaler Bedeutung für die Mathematik.

Mehr

3. Die Definition einer Abbildung von A in B beinhaltet eigentlich zwei Bedingungen, nämlich

3. Die Definition einer Abbildung von A in B beinhaltet eigentlich zwei Bedingungen, nämlich Kapitel 3: Abbildungen Seite 32 Kap 3: Abbildungen Kap. 3.1: Abbildungen (Funktion), Bild und Urbild Der Begriff der Abbildung ist wie auch der Begriff der Menge von fundamentaler Bedeutung für die Mathematik.

Mehr

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe)

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) D-MAVT/D-MATL Analysis I HS 018 Dr. Andreas Steiger Lösung - Serie 3 MC-Aufgaben (Online-Abgabe) 1. Es sei die Funktion f : [0, ) [0, ) definiert durch f(x) = ln(x + 1), wobei der Logarithmus ln zur Basis

Mehr

Die Mengenlehre ist ein Grundelement der Sprache der Mathematik und geht als

Die Mengenlehre ist ein Grundelement der Sprache der Mathematik und geht als Kapitel 1 Naive Mengenlehre 1.1 Mengen (Mengenalgebra; kartesisches Produkt) Die Mengenlehre ist ein Grundelement der Sprache der Mathematik und geht als naive Mengenlehre (im Gegensatz zur strengen Axiomatik)

Mehr

Wiederholung Lineare Gleichungen Funktionen. Mathematik W3. Mag. DI Rainer Sickinger BRP, LMM. v 4 Mag. DI Rainer Sickinger Mathematik W3 1 / 74

Wiederholung Lineare Gleichungen Funktionen. Mathematik W3. Mag. DI Rainer Sickinger BRP, LMM. v 4 Mag. DI Rainer Sickinger Mathematik W3 1 / 74 Mathematik W3 Mag. DI Rainer Sickinger BRP, LMM v 4 Mag. DI Rainer Sickinger Mathematik W3 1 / 74 Binomische Formeln Binomische Formeln: (a + b) 2 =? (a b) 2 =? (a + b)(a b) =? v 4 Mag. DI Rainer Sickinger

Mehr

Analysis 1 für Informatiker (An1I)

Analysis 1 für Informatiker (An1I) Hochschule für Technik Rapperswil Analysis 1 für Informatiker (An1I) Stand: 2012-11-13 Inhaltsverzeichnis 1 Funktionen 3 1.1 Gerade, ungerade und periodische Funktionen..................... 3 1.2 Injektive,

Mehr

Konstante, lineare, quadratische Funktion

Konstante, lineare, quadratische Funktion Aufgaben 7 Funktionstypen Konstante, lineare, quadratische Funktion Lernziele - den Grafen einer konstanten, linearen, quadratischen Funktion skizzieren können. - die Existenz von Nullstellen einer konstanten,

Mehr

Funktionen. Mathematik-Repetitorium

Funktionen. Mathematik-Repetitorium Funktionen 4.1 Funktionen einer reellen Veränderlichen 4.2 Eigenschaften von Funktionen 4.3 Die elementaren Funktionen 4.4 Grenzwerte von Funktionen, Stetigkeit Funktionen 1 4. Funktionen Funktionen 2

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 1 4. Semester ARBEITSBLATT 1 FUNKTIONEN. Was ist eine Funktion?

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 1 4. Semester ARBEITSBLATT 1 FUNKTIONEN. Was ist eine Funktion? Mathematik: Mag. Schmid Wolfgang Arbeitsblatt. Semester ARBEITSBLATT FUNKTIONEN Was ist eine Funktion? Stellen wir uns Folgendes vor: Wir stehen vor einem Schaufenster und betrachten die Waren, welche

Mehr

Nachfrage im Angebotsmonopol

Nachfrage im Angebotsmonopol Nachfrage im Angebotsmonopol Aufgabe 1 Bearbeiten Sie in Ihrem Buch auf der Seite 42 die Aufgabe 13. Aufgabe 2 Die Birkholz AG hat bei einem Marktforschungsunternehmen ermitteln lassen, dass die Nachfrager

Mehr

Funktion. Eine Funktion. x f (x) ordnet jedem Argument x aus dem Definitionsbereich D R einen Wert f (x) aus dem Wertebereich W R zu.

Funktion. Eine Funktion. x f (x) ordnet jedem Argument x aus dem Definitionsbereich D R einen Wert f (x) aus dem Wertebereich W R zu. Funktion Eine Funktion f : D R, x f (x) ordnet jedem Argument x aus dem Definitionsbereich D R einen Wert f (x) aus dem Wertebereich W R zu. Funktion 1-1 Der Graph von f besteht aus den Paaren (x, y) mit

Mehr

Einführung in das mathematische Arbeiten im SS Funktionen. Evelina Erlacher 1 7. März 2007

Einführung in das mathematische Arbeiten im SS Funktionen. Evelina Erlacher 1 7. März 2007 Workshops zur VO Einführung in das mathematische Arbeiten im SS 007 Inhaltsverzeichnis Funktionen Evelina Erlacher 7. März 007 Der Funktionsbegriff Darstellungsmöglichkeiten von Funktionen 3 Einige Typen

Mehr